A Deep Learning System for Automated Angle-Closure Detection in Anterior Segment Optical Coherence Tomography Images

Anterior segment optical coherence tomography (AS-OCT) provides an objective imaging modality for visually identifying anterior segment structures. An automated detection system could assist ophthalmologists in interpreting AS-OCT images for the presence of angle closure. Development of an artificia...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of ophthalmology Vol. 203; pp. 37 - 45
Main Authors Fu, Huazhu, Baskaran, Mani, Xu, Yanwu, Lin, Stephen, Wong, Damon Wing Kee, Liu, Jiang, Tun, Tin A., Mahesh, Meenakshi, Perera, Shamira A., Aung, Tin
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2019
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0002-9394
1879-1891
1879-1891
DOI10.1016/j.ajo.2019.02.028

Cover

Abstract Anterior segment optical coherence tomography (AS-OCT) provides an objective imaging modality for visually identifying anterior segment structures. An automated detection system could assist ophthalmologists in interpreting AS-OCT images for the presence of angle closure. Development of an artificial intelligence automated detection system for the presence of angle closure. A deep learning system for automated angle-closure detection in AS-OCT images was developed, and this was compared with another automated angle-closure detection system based on quantitative features. A total of 4135 Visante AS-OCT images from 2113 subjects (8270 anterior chamber angle images with 7375 open-angle and 895 angle-closure) were examined. The deep learning angle-closure detection system for a 2-class classification problem was tested by 5-fold cross-validation. The deep learning system and the automated angle-closure detection system based on quantitative features were evaluated against clinicians' grading of AS-OCT images as the reference standard. The area under the receiver operating characteristic curve of the system using quantitative features was 0.90 (95% confidence interval [CI] 0.891–0.914) with a sensitivity of 0.79 ± 0.037 and a specificity of 0.87 ± 0.009, while the area under the receiver operating characteristic curve of the deep learning system was 0.96 (95% CI 0.953–0.968) with a sensitivity of 0.90 ± 0.02 and a specificity of 0.92 ± 0.008, against clinicians' grading of AS-OCT images as the reference standard. The results demonstrate the potential of the deep learning system for angle-closure detection in AS-OCT images.
AbstractList Anterior segment optical coherence tomography (AS-OCT) provides an objective imaging modality for visually identifying anterior segment structures. An automated detection system could assist ophthalmologists in interpreting AS-OCT images for the presence of angle closure.PURPOSEAnterior segment optical coherence tomography (AS-OCT) provides an objective imaging modality for visually identifying anterior segment structures. An automated detection system could assist ophthalmologists in interpreting AS-OCT images for the presence of angle closure.Development of an artificial intelligence automated detection system for the presence of angle closure.DESIGNDevelopment of an artificial intelligence automated detection system for the presence of angle closure.A deep learning system for automated angle-closure detection in AS-OCT images was developed, and this was compared with another automated angle-closure detection system based on quantitative features. A total of 4135 Visante AS-OCT images from 2113 subjects (8270 anterior chamber angle images with 7375 open-angle and 895 angle-closure) were examined. The deep learning angle-closure detection system for a 2-class classification problem was tested by 5-fold cross-validation. The deep learning system and the automated angle-closure detection system based on quantitative features were evaluated against clinicians' grading of AS-OCT images as the reference standard.METHODSA deep learning system for automated angle-closure detection in AS-OCT images was developed, and this was compared with another automated angle-closure detection system based on quantitative features. A total of 4135 Visante AS-OCT images from 2113 subjects (8270 anterior chamber angle images with 7375 open-angle and 895 angle-closure) were examined. The deep learning angle-closure detection system for a 2-class classification problem was tested by 5-fold cross-validation. The deep learning system and the automated angle-closure detection system based on quantitative features were evaluated against clinicians' grading of AS-OCT images as the reference standard.The area under the receiver operating characteristic curve of the system using quantitative features was 0.90 (95% confidence interval [CI] 0.891-0.914) with a sensitivity of 0.79 ± 0.037 and a specificity of 0.87 ± 0.009, while the area under the receiver operating characteristic curve of the deep learning system was 0.96 (95% CI 0.953-0.968) with a sensitivity of 0.90 ± 0.02 and a specificity of 0.92 ± 0.008, against clinicians' grading of AS-OCT images as the reference standard.RESULTSThe area under the receiver operating characteristic curve of the system using quantitative features was 0.90 (95% confidence interval [CI] 0.891-0.914) with a sensitivity of 0.79 ± 0.037 and a specificity of 0.87 ± 0.009, while the area under the receiver operating characteristic curve of the deep learning system was 0.96 (95% CI 0.953-0.968) with a sensitivity of 0.90 ± 0.02 and a specificity of 0.92 ± 0.008, against clinicians' grading of AS-OCT images as the reference standard.The results demonstrate the potential of the deep learning system for angle-closure detection in AS-OCT images.CONCLUSIONSThe results demonstrate the potential of the deep learning system for angle-closure detection in AS-OCT images.
Anterior segment optical coherence tomography (AS-OCT) provides an objective imaging modality for visually identifying anterior segment structures. An automated detection system could assist ophthalmologists in interpreting AS-OCT images for the presence of angle closure. Development of an artificial intelligence automated detection system for the presence of angle closure. A deep learning system for automated angle-closure detection in AS-OCT images was developed, and this was compared with another automated angle-closure detection system based on quantitative features. A total of 4135 Visante AS-OCT images from 2113 subjects (8270 anterior chamber angle images with 7375 open-angle and 895 angle-closure) were examined. The deep learning angle-closure detection system for a 2-class classification problem was tested by 5-fold cross-validation. The deep learning system and the automated angle-closure detection system based on quantitative features were evaluated against clinicians' grading of AS-OCT images as the reference standard. The area under the receiver operating characteristic curve of the system using quantitative features was 0.90 (95% confidence interval [CI] 0.891–0.914) with a sensitivity of 0.79 ± 0.037 and a specificity of 0.87 ± 0.009, while the area under the receiver operating characteristic curve of the deep learning system was 0.96 (95% CI 0.953–0.968) with a sensitivity of 0.90 ± 0.02 and a specificity of 0.92 ± 0.008, against clinicians' grading of AS-OCT images as the reference standard. The results demonstrate the potential of the deep learning system for angle-closure detection in AS-OCT images.
PurposeAnterior segment optical coherence tomography (AS-OCT) provides an objective imaging modality for visually identifying anterior segment structures. An automated detection system could assist ophthalmologists in interpreting AS-OCT images for the presence of angle closure.DesignDevelopment of an artificial intelligence automated detection system for the presence of angle closure.MethodsA deep learning system for automated angle-closure detection in AS-OCT images was developed, and this was compared with another automated angle-closure detection system based on quantitative features. A total of 4135 Visante AS-OCT images from 2113 subjects (8270 anterior chamber angle images with 7375 open-angle and 895 angle-closure) were examined. The deep learning angle-closure detection system for a 2-class classification problem was tested by 5-fold cross-validation. The deep learning system and the automated angle-closure detection system based on quantitative features were evaluated against clinicians' grading of AS-OCT images as the reference standard.ResultsThe area under the receiver operating characteristic curve of the system using quantitative features was 0.90 (95% confidence interval [CI] 0.891–0.914) with a sensitivity of 0.79 ± 0.037 and a specificity of 0.87 ± 0.009, while the area under the receiver operating characteristic curve of the deep learning system was 0.96 (95% CI 0.953–0.968) with a sensitivity of 0.90 ± 0.02 and a specificity of 0.92 ± 0.008, against clinicians' grading of AS-OCT images as the reference standard.ConclusionsThe results demonstrate the potential of the deep learning system for angle-closure detection in AS-OCT images.
Author Xu, Yanwu
Fu, Huazhu
Liu, Jiang
Baskaran, Mani
Wong, Damon Wing Kee
Tun, Tin A.
Mahesh, Meenakshi
Lin, Stephen
Aung, Tin
Perera, Shamira A.
Author_xml – sequence: 1
  givenname: Huazhu
  surname: Fu
  fullname: Fu, Huazhu
  email: huazhufu@gmail.com
  organization: Cixi Institute of Biomedical Engineering, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Zhejiang, China
– sequence: 2
  givenname: Mani
  surname: Baskaran
  fullname: Baskaran, Mani
  organization: Singapore Eye Research Institute, Singapore National Eye Center, Singapore
– sequence: 3
  givenname: Yanwu
  surname: Xu
  fullname: Xu, Yanwu
  organization: Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore
– sequence: 4
  givenname: Stephen
  surname: Lin
  fullname: Lin, Stephen
  organization: Microsoft Research, Beijing, China
– sequence: 5
  givenname: Damon Wing Kee
  surname: Wong
  fullname: Wong, Damon Wing Kee
  organization: Singapore Eye Research Institute, Singapore National Eye Center, Singapore
– sequence: 6
  givenname: Jiang
  surname: Liu
  fullname: Liu, Jiang
  organization: Cixi Institute of Biomedical Engineering, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Zhejiang, China
– sequence: 7
  givenname: Tin A.
  surname: Tun
  fullname: Tun, Tin A.
  organization: Singapore Eye Research Institute, Singapore National Eye Center, Singapore
– sequence: 8
  givenname: Meenakshi
  surname: Mahesh
  fullname: Mahesh, Meenakshi
  organization: Singapore Eye Research Institute, Singapore National Eye Center, Singapore
– sequence: 9
  givenname: Shamira A.
  surname: Perera
  fullname: Perera, Shamira A.
  organization: Singapore Eye Research Institute, Singapore National Eye Center, Singapore
– sequence: 10
  givenname: Tin
  surname: Aung
  fullname: Aung, Tin
  organization: Singapore Eye Research Institute, Singapore National Eye Center, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30849350$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtr3DAUhUVJaSbT_oBuiqCbbjzVw7Zsuhqmr8BAFknXQpGvHbm25Epyi_99ZSbtYhZp4YIQOp8495wrdGGdBYReU7KjhJbv-53q3Y4RWu8IS1M9QxtaiTqjVU0v0IYQwrKa1_klugqhT9dS5OIFuuSkymtekA2Ke_wRYMJHUN4a2-HbJUQYces83s_RjSpCg_e2GyA7DC7MHhIQQUfjLDY2PUXwJqlvoRvBRnwzRaPVgA_uATxYDfjOja7zanpY8PWoOggv0fNWDQFePZ5b9O3zp7vD1-x48-X6sD9mOhd5zHhbMWCFqsuCcA4gVFlyKrSgSuctI-V92-ZlDrTRraigrYEILoqCCwIVYQXfInb6d7aTWn6pYZCTN6Pyi6RErhHKXqYI5RqhJCxNlaB3J2jy7scMIcrRBA3DoCy4OUiWwi3yWiRPW_T2TNq72du0kmSsIEXJK8qT6s2jar4foflr4U8JSUBPAu1dCB7a_3IpzhhtolpLiV6Z4Unyw4mElPxPA14GbdaeGuNTrbJx5km6PqP1YOxa-HdY_sH-Bm5V0ws
CitedBy_id crossref_primary_10_1146_annurev_vision_100419_111350
crossref_primary_10_1016_j_ajo_2020_07_030
crossref_primary_10_1016_j_cmpb_2022_106735
crossref_primary_10_1002_14651858_CD012947_pub2
crossref_primary_10_1016_j_xops_2024_100471
crossref_primary_10_1007_s42979_023_01734_z
crossref_primary_10_1371_journal_pdig_0000193
crossref_primary_10_4103_ijo_IJO_1569_22
crossref_primary_10_1038_s41433_020_01191_5
crossref_primary_10_1016_j_media_2022_102499
crossref_primary_10_1097_APO_0000000000000596
crossref_primary_10_1167_tvst_11_4_7
crossref_primary_10_3389_fmed_2022_832920
crossref_primary_10_1016_j_media_2020_101798
crossref_primary_10_1167_tvst_10_4_34
crossref_primary_10_1111_ceo_14044
crossref_primary_10_3390_diagnostics12123055
crossref_primary_10_1038_s41598_021_93186_9
crossref_primary_10_1136_bjophthalmol_2021_319798
crossref_primary_10_1167_tvst_10_1_7
crossref_primary_10_7717_peerj_18611
crossref_primary_10_1177_0300060519867808
crossref_primary_10_1016_j_bspc_2023_104778
crossref_primary_10_1167_tvst_10_11_21
crossref_primary_10_1016_j_preteyeres_2024_101291
crossref_primary_10_1186_s42492_024_00183_6
crossref_primary_10_3389_fmed_2022_891369
crossref_primary_10_1007_s10103_024_04089_w
crossref_primary_10_53432_2078_4104_2023_22_1_115_128
crossref_primary_10_4103_DLJO_DLJO_7_23
crossref_primary_10_1364_BOE_465286
crossref_primary_10_1007_s00417_024_06709_1
crossref_primary_10_1002_VIW_20220070
crossref_primary_10_1136_bjo_2023_323860
crossref_primary_10_21518_ms2023_469
crossref_primary_10_1186_s40662_020_00183_6
crossref_primary_10_3788_LOP232292
crossref_primary_10_1186_s40662_022_00314_1
crossref_primary_10_1109_TIM_2022_3196323
crossref_primary_10_1167_tvst_11_2_11
crossref_primary_10_1001_jamaophthalmol_2020_4994
crossref_primary_10_1016_j_xcrm_2023_101095
crossref_primary_10_1016_j_patcog_2023_110069
crossref_primary_10_3390_diagnostics15050643
crossref_primary_10_1016_j_xops_2023_100360
crossref_primary_10_1007_s13167_023_00337_1
crossref_primary_10_1097_IJG_0000000000001972
crossref_primary_10_1016_j_aopr_2022_100078
crossref_primary_10_1016_j_jfo_2021_11_002
crossref_primary_10_17116_oftalma2024140051130
crossref_primary_10_3389_fopht_2022_937205
crossref_primary_10_17816_OV625627
crossref_primary_10_1007_s11042_020_09303_9
crossref_primary_10_1055_a_2307_0313
crossref_primary_10_1155_2022_2722608
crossref_primary_10_1007_s13755_022_00170_2
crossref_primary_10_1016_j_ophtha_2021_09_018
crossref_primary_10_1016_j_jbi_2022_104037
crossref_primary_10_3389_fphy_2022_969683
crossref_primary_10_1016_j_knosys_2022_109109
crossref_primary_10_3390_jcm10163452
crossref_primary_10_1136_bjophthalmol_2020_318275
crossref_primary_10_1016_j_eswa_2021_115068
crossref_primary_10_1016_j_ogla_2023_06_011
crossref_primary_10_1364_BOE_512138
crossref_primary_10_1016_j_ajo_2021_02_004
crossref_primary_10_1167_tvst_9_2_42
crossref_primary_10_1136_bjophthalmol_2019_315016
crossref_primary_10_1364_BOE_418364
crossref_primary_10_48084_etasr_6226
crossref_primary_10_1038_s41598_019_48679_z
crossref_primary_10_1167_tvst_10_6_19
crossref_primary_10_1136_bjophthalmol_2019_315651
crossref_primary_10_1167_tvst_9_2_33
crossref_primary_10_1007_s10792_021_02208_y
crossref_primary_10_1016_j_ophtha_2019_09_014
crossref_primary_10_1167_tvst_11_6_24
crossref_primary_10_1016_j_artmed_2021_102132
crossref_primary_10_3389_fmed_2021_775711
crossref_primary_10_1167_tvst_11_8_30
crossref_primary_10_12968_opti_2024_269_6941_29
crossref_primary_10_1016_j_jcjo_2024_07_001
crossref_primary_10_1016_j_ogla_2022_02_010
crossref_primary_10_1136_bmjophth_2023_001600
crossref_primary_10_1007_s00417_021_05078_3
crossref_primary_10_1016_j_preteyeres_2023_101227
crossref_primary_10_1109_JBHI_2020_2999077
crossref_primary_10_1136_bjophthalmol_2021_319058
crossref_primary_10_1016_j_ogla_2021_11_003
crossref_primary_10_1007_s12652_021_02928_0
crossref_primary_10_1097_IJG_0000000000002194
crossref_primary_10_3390_ijms24032814
crossref_primary_10_1007_s40747_022_00869_5
crossref_primary_10_1167_tvst_10_9_28
crossref_primary_10_1167_tvst_9_2_18
crossref_primary_10_4103_tjo_TJO_D_24_00053
crossref_primary_10_1167_tvst_9_2_11
crossref_primary_10_1038_s41433_019_0655_0
crossref_primary_10_1007_s11042_022_12826_y
crossref_primary_10_1016_j_compbiomed_2022_105471
crossref_primary_10_3390_jcm9123814
Cites_doi 10.1136/bjo.2005.081224
10.1001/archophthalmol.2010.231
10.1038/nature21056
10.1016/j.preteyeres.2018.04.002
10.1016/j.ophtha.2012.07.005
10.1001/jama.2017.18152
10.1109/TMI.2017.2703147
10.1016/j.ophtha.2018.01.023
10.1016/j.ajo.2012.01.015
10.1016/S0002-9394(98)00283-9
10.1001/archophthalmol.2007.46
10.1136/bjo.85.11.1277
10.1016/j.ophtha.2014.05.013
10.1155/2014/942367
10.1145/1961189.1961199
10.1145/3065386
10.1038/s41551-018-0195-0
10.1136/bjo.2007.129932
10.1001/jamaophthalmol.2017.3782
10.1038/s41551-016-0024
10.1001/jamaophthalmol.2016.5847
10.1016/j.neunet.2014.09.003
10.1016/j.cell.2018.02.010
10.1109/TMI.2018.2837012
10.1016/j.ophtha.2010.02.007
10.1016/j.ophtha.2007.05.050
10.1001/jama.2017.14585
10.1109/TMI.2018.2791488
10.1007/s11263-015-0816-y
10.1001/archopht.1957.00940010526005
10.1109/TKDE.2009.191
10.1001/archophthalmol.2009.22
10.1038/nature14539
10.1001/archophthalmol.2011.68
10.1016/j.ophtha.2016.05.029
ContentType Journal Article
Copyright 2019 The Authors
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
2019. The Authors
Copyright_xml – notice: 2019 The Authors
– notice: Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2019. The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
ADTOC
UNPAY
DOI 10.1016/j.ajo.2019.02.028
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-1891
EndPage 45
ExternalDocumentID 10.1016/j.ajo.2019.02.028
30849350
10_1016_j_ajo_2019_02_028
S000293941930087X
Genre Multicenter Study
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Singapore
GeographicLocations_xml – name: Singapore
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1CY
1P~
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAHTB
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABCQX
ABDPE
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ABPEJ
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACLOT
ACNCT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHMBA
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M41
MO0
N4W
N9A
O-L
O9-
OAUVE
OF-
OPF
OQ~
OZT
P-8
P-9
P2P
PC.
PQQKQ
PROAC
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SPCBC
SSH
SSZ
SV3
T5K
UNMZH
UV1
VH1
WH7
WOW
X7M
XPP
Z5R
ZGI
ZXP
~G-
~HD
6I.
AACTN
AAFTH
AFCTW
RIG
AAYXX
CITATION
3V.
7RV
7X7
8FI
AFKRA
AFKWA
AJOXV
AMFUW
AZQEC
BENPR
CGR
CUY
CVF
ECM
EIF
FYUFA
GUQSH
M1P
M2O
NPM
PKN
K9.
NAPCQ
7X8
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c474t-3f82e25a965033ee7a66317c71ac4f206bff464e1dcf78ef9e073755370e80253
IEDL.DBID .~1
ISSN 0002-9394
1879-1891
IngestDate Tue Aug 19 21:44:44 EDT 2025
Wed Oct 01 14:12:56 EDT 2025
Mon Oct 06 18:30:22 EDT 2025
Wed Feb 19 02:30:20 EST 2025
Wed Oct 01 05:25:06 EDT 2025
Thu Apr 24 22:57:15 EDT 2025
Sun Apr 06 06:53:37 EDT 2025
Tue Oct 14 19:35:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-3f82e25a965033ee7a66317c71ac4f206bff464e1dcf78ef9e073755370e80253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S000293941930087X
PMID 30849350
PQID 2250563813
PQPubID 41749
PageCount 9
ParticipantIDs unpaywall_primary_10_1016_j_ajo_2019_02_028
proquest_miscellaneous_2189549750
proquest_journals_2250563813
pubmed_primary_30849350
crossref_primary_10_1016_j_ajo_2019_02_028
crossref_citationtrail_10_1016_j_ajo_2019_02_028
elsevier_sciencedirect_doi_10_1016_j_ajo_2019_02_028
elsevier_clinicalkey_doi_10_1016_j_ajo_2019_02_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2019
2019-07-00
20190701
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Chicago
PublicationTitle American journal of ophthalmology
PublicationTitleAlternate Am J Ophthalmol
PublicationYear 2019
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Chang, Lin (bib34) 2011; 2
Russakovsky, Deng, Su (bib37) 2015; 115
Wong, Lim, Sakata (bib8) 2009; 127
Fu, Xu, Wong (bib10) 2016; 2016
Tham, Li, Wong, Quigley, Aung, Cheng (bib3) 2014; 121
Poplin, Varadarajan, Blumer (bib19) 2018; 2
Long, Lin, Liu (bib24) 2017; 1
Foster Pauland Johnson (bib2) 2001; 85
LeCun, Bengio, Hinton (bib14) 2015; 521
Ting, Cheung, Lim, Al (bib21) 2017; 318
Woo, Pavlin, Slomovic, Taback, Buys (bib44) 1999; 127
Schmidhuber (bib15) 2015; 61
Asaoka, Murata, Iwase, Araie (bib25) 2016; 123
Fu, Xu, Lin (bib12) 2018
Nongpiur, Sakata, Friedman (bib31) 2010; 117
Bejnordi, Veta, Diest (bib16) 2017; 318
Tan, He, Zhao (bib30) 2012; 154
Fu, Cheng, Xu, Wong, Liu, Cao (bib27) 2018; 37
Xu, Liu, Cheng (bib11) 2013; 2013
Gulshan, Peng, Coram (bib20) 2016; 304
Scheie (bib40) 1957; 58
Ang, Baskaran, Werkmeister (bib4) 2018; 66
Simonyan, Zisserman (bib35) 2015
Fu, Cheng, Xu (bib28) 2018; 37
van der Maaten, Hinton (bib41) 2008; 9
Thomas (bib5) 2007; 114
Kermany, Goldbaum, Cai, Al (bib18) 2018; 172
Pan, Yang (bib36) 2010; 22
Li, He, Keel, Meng, Chang, He (bib26) 2018; 125
Burlina, Joshi, Pekala, Pacheco, Freund, Bressler (bib22) 2017; 135
Quigley, Broman (bib1) 2006; 90
Narayanaswamy, Sakata, He (bib33) 2010; 128
Nongpiur, Haaland, Friedman (bib6) 2013; 120
Esteva, Kuprel, Novoa (bib17) 2017; 542
Wu, Nongpiur, He (bib32) 2011; 129
Sakata, Lavanya, Friedman (bib9) 2008; 126
Nongpiur, Aboobakar, Baskaran (bib7) 2017; 135
Spaeth (bib39) 1971; 91
Ni Ni, Tian, Marziliano, Wong (bib43) 2014; 2014
Xu, Liu, Tan (bib13) 2012; 2012
Krizhevsky, Sutskever, Hinton (bib38) 2017; 60
Grassmann, Mengelkamp, Brandl (bib23) 2018
Console, Sakata, Aung, Friedman, He (bib42) 2008; 92
Fu, Xu, Lin (bib29) 2017; 36
Xu (10.1016/j.ajo.2019.02.028_bib13) 2012; 2012
Esteva (10.1016/j.ajo.2019.02.028_bib17) 2017; 542
Fu (10.1016/j.ajo.2019.02.028_bib28) 2018; 37
Tan (10.1016/j.ajo.2019.02.028_bib30) 2012; 154
Russakovsky (10.1016/j.ajo.2019.02.028_bib37) 2015; 115
Foster Pauland Johnson (10.1016/j.ajo.2019.02.028_bib2) 2001; 85
Tham (10.1016/j.ajo.2019.02.028_bib3) 2014; 121
Fu (10.1016/j.ajo.2019.02.028_bib10) 2016; 2016
Wong (10.1016/j.ajo.2019.02.028_bib8) 2009; 127
Kermany (10.1016/j.ajo.2019.02.028_bib18) 2018; 172
Schmidhuber (10.1016/j.ajo.2019.02.028_bib15) 2015; 61
Pan (10.1016/j.ajo.2019.02.028_bib36) 2010; 22
Quigley (10.1016/j.ajo.2019.02.028_bib1) 2006; 90
Bejnordi (10.1016/j.ajo.2019.02.028_bib16) 2017; 318
Chang (10.1016/j.ajo.2019.02.028_bib34) 2011; 2
Thomas (10.1016/j.ajo.2019.02.028_bib5) 2007; 114
Scheie (10.1016/j.ajo.2019.02.028_bib40) 1957; 58
Long (10.1016/j.ajo.2019.02.028_bib24) 2017; 1
Burlina (10.1016/j.ajo.2019.02.028_bib22) 2017; 135
van der Maaten (10.1016/j.ajo.2019.02.028_bib41) 2008; 9
Asaoka (10.1016/j.ajo.2019.02.028_bib25) 2016; 123
Xu (10.1016/j.ajo.2019.02.028_bib11) 2013; 2013
Poplin (10.1016/j.ajo.2019.02.028_bib19) 2018; 2
Ni Ni (10.1016/j.ajo.2019.02.028_bib43) 2014; 2014
Ang (10.1016/j.ajo.2019.02.028_bib4) 2018; 66
Sakata (10.1016/j.ajo.2019.02.028_bib9) 2008; 126
Fu (10.1016/j.ajo.2019.02.028_bib12) 2018
Narayanaswamy (10.1016/j.ajo.2019.02.028_bib33) 2010; 128
Woo (10.1016/j.ajo.2019.02.028_bib44) 1999; 127
Fu (10.1016/j.ajo.2019.02.028_bib29) 2017; 36
Krizhevsky (10.1016/j.ajo.2019.02.028_bib38) 2017; 60
Wu (10.1016/j.ajo.2019.02.028_bib32) 2011; 129
Ting (10.1016/j.ajo.2019.02.028_bib21) 2017; 318
Fu (10.1016/j.ajo.2019.02.028_bib27) 2018; 37
Gulshan (10.1016/j.ajo.2019.02.028_bib20) 2016; 304
Nongpiur (10.1016/j.ajo.2019.02.028_bib7) 2017; 135
Li (10.1016/j.ajo.2019.02.028_bib26) 2018; 125
Nongpiur (10.1016/j.ajo.2019.02.028_bib31) 2010; 117
Simonyan (10.1016/j.ajo.2019.02.028_bib35) 2015
Nongpiur (10.1016/j.ajo.2019.02.028_bib6) 2013; 120
Grassmann (10.1016/j.ajo.2019.02.028_bib23) 2018
Console (10.1016/j.ajo.2019.02.028_bib42) 2008; 92
LeCun (10.1016/j.ajo.2019.02.028_bib14) 2015; 521
Spaeth (10.1016/j.ajo.2019.02.028_bib39) 1971; 91
References_xml – volume: 304
  start-page: 649
  year: 2016
  end-page: 656
  ident: bib20
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bib37
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int J Comput Vis
– volume: 1
  start-page: 0024
  year: 2017
  ident: bib24
  article-title: An artificial intelligence platform for the multihospital collaborative management of congenital cataracts
  publication-title: Nat Biomed Eng
– volume: 66
  start-page: 132
  year: 2018
  end-page: 156
  ident: bib4
  article-title: Anterior segment optical coherence tomography
  publication-title: Prog Retin Eye Res
– volume: 126
  start-page: 181
  year: 2008
  end-page: 185
  ident: bib9
  article-title: Assessment of the scleral spur in anterior segment optical coherence tomography images
  publication-title: Arch Ophthalmol
– volume: 128
  start-page: 1321
  year: 2010
  end-page: 1327
  ident: bib33
  article-title: Diagnostic performance of anterior chamber angle measurements for detecting eyes with narrow angles
  publication-title: Arch Ophthalmol
– volume: 90
  start-page: 262
  year: 2006
  end-page: 267
  ident: bib1
  article-title: The number of people with glaucoma worldwide in 2010 and 2020
  publication-title: Br J Ophthalmol
– volume: 2012
  start-page: 3167
  year: 2012
  end-page: 3170
  ident: bib13
  article-title: Anterior chamber angle classification using multiscale histograms of oriented gradients for glaucoma subtype identification
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib14
  article-title: Deep learning
  publication-title: Nature
– volume: 37
  start-page: 2493
  year: 2018
  end-page: 2501
  ident: bib28
  article-title: Disc-aware ensemble network for glaucoma screening from fundus image
  publication-title: IEEE Trans Med Imaging
– volume: 117
  start-page: 1967
  year: 2010
  end-page: 1973
  ident: bib31
  article-title: Novel association of smaller anterior chamber width with angle closure in Singaporeans
  publication-title: Ophthalmology
– volume: 114
  start-page: 2362
  year: 2007
  end-page: 2363
  ident: bib5
  article-title: Anterior segment optical coherence tomography
  publication-title: Ophthalmology
– volume: 120
  start-page: 48
  year: 2013
  end-page: 54
  ident: bib6
  article-title: Classification algorithms based on anterior segment optical coherence tomography measurements for detection of angle closure
  publication-title: Ophthalmology
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: bib15
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw
– volume: 58
  start-page: 510
  year: 1957
  end-page: 512
  ident: bib40
  article-title: Width and pigmentation of the angle of the anterior chamber; a system of grading by gonioscopy
  publication-title: AMA Arch Ophthalmol
– volume: 121
  start-page: 2081
  year: 2014
  end-page: 2090
  ident: bib3
  article-title: Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis
  publication-title: Ophthalmology
– volume: 2014
  start-page: 942367
  year: 2014
  ident: bib43
  article-title: Anterior chamber angle shape analysis and classification of glaucoma in SS-OCT images
  publication-title: J Ophthalmol
– start-page: 1
  year: 2018
  end-page: 11
  ident: bib23
  article-title: A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography
  publication-title: Ophthalmology
– volume: 127
  start-page: 43
  year: 1999
  end-page: 47
  ident: bib44
  article-title: Ultrasound biomicroscopic quantitative analysis of light-dark changes associated with pupillary block
  publication-title: Am J Ophthalmol
– year: 2018
  ident: bib12
  article-title: Multi-context deep network for angle-closure glaucoma screening in anterior segment OCT
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI
– volume: 2013
  start-page: 7380
  year: 2013
  end-page: 7383
  ident: bib11
  article-title: Automated anterior chamber angle localization and glaucoma type classification in OCT images
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: bib17
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– year: 2015
  ident: bib35
  article-title: Very deep convolutional networks for large-scale image recognition. Presented at: International Conference on Learning Representations
– volume: 37
  start-page: 1597
  year: 2018
  end-page: 1605
  ident: bib27
  article-title: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation
  publication-title: IEEE Trans Med Imaging
– volume: 172
  start-page: 1122
  year: 2018
  end-page: 1131
  ident: bib18
  article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning
  publication-title: Cell
– volume: 91
  start-page: 709
  year: 1971
  end-page: 739
  ident: bib39
  article-title: The normal development of the human anterior chamber angle: a new system of descriptive grading
  publication-title: Trans Ophthalmol Soc U K
– volume: 2
  start-page: 158
  year: 2018
  end-page: 164
  ident: bib19
  article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
  publication-title: Nat Biomed Eng
– volume: 135
  start-page: 1170
  year: 2017
  end-page: 1176
  ident: bib22
  article-title: Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks
  publication-title: JAMA Ophthalmol
– volume: 2016
  start-page: 1288
  year: 2016
  end-page: 1291
  ident: bib10
  article-title: Automatic anterior chamber angle structure segmentation in AS-OCT image based on label transfer
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 154
  start-page: 39
  year: 2012
  end-page: 46
  ident: bib30
  article-title: Determinants of lens vault and association with narrow angles in patients From Singapore
  publication-title: Am J Ophthalmol
– volume: 129
  start-page: 569
  year: 2011
  end-page: 574
  ident: bib32
  article-title: Association of narrow angles with anterior chamber area and volume measured with anterior-segment optical coherence tomography
  publication-title: Arch Ophthalmol
– volume: 125
  start-page: 1199
  year: 2018
  end-page: 1206
  ident: bib26
  article-title: Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs
  publication-title: Ophthalmology
– volume: 135
  start-page: 252
  year: 2017
  end-page: 258
  ident: bib7
  article-title: Association of baseline anterior segment parameters with the development of incident gonioscopic angle closure
  publication-title: JAMA Ophthalmol
– volume: 318
  start-page: 2199
  year: 2017
  end-page: 2210
  ident: bib16
  article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
  publication-title: JAMA
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: bib36
  article-title: A Survey on Transfer Learning
  publication-title: IEEE Trans Knowl Data Eng
– volume: 36
  start-page: 1930
  year: 2017
  end-page: 1938
  ident: bib29
  article-title: Segmentation and quantification for angle-closure glaucoma assessment in anterior segment OCT
  publication-title: IEEE Trans Med Imaging
– volume: 123
  start-page: 1974
  year: 2016
  end-page: 1980
  ident: bib25
  article-title: Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier
  publication-title: Ophthalmology
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: bib38
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Communications of the ACM
– volume: 318
  start-page: 2211
  year: 2017
  end-page: 2223
  ident: bib21
  article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes
  publication-title: JAMA
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: bib41
  article-title: Visualizing Data using t-SNE
  publication-title: J Mach Learn Res
– volume: 85
  start-page: 1277
  year: 2001
  end-page: 1282
  ident: bib2
  article-title: Glaucoma in China: how big is the problem?
  publication-title: Br J Ophthalmol
– volume: 2
  start-page: 1
  year: 2011
  end-page: 27
  ident: bib34
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans Intell Syst Technol
– volume: 92
  start-page: 1612
  year: 2008
  end-page: 1616
  ident: bib42
  article-title: Quantitative analysis of anterior segment optical coherence tomography images: the Zhongshan Angle Assessment Program
  publication-title: Br J Ophthalmol
– volume: 127
  start-page: 256
  year: 2009
  end-page: 260
  ident: bib8
  article-title: High-definition optical coherence tomography imaging of the iridocorneal angle of the eye
  publication-title: Arch Ophthalmol
– volume: 90
  start-page: 262
  issue: 3
  year: 2006
  ident: 10.1016/j.ajo.2019.02.028_bib1
  article-title: The number of people with glaucoma worldwide in 2010 and 2020
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjo.2005.081224
– volume: 128
  start-page: 1321
  issue: 10
  year: 2010
  ident: 10.1016/j.ajo.2019.02.028_bib33
  article-title: Diagnostic performance of anterior chamber angle measurements for detecting eyes with narrow angles
  publication-title: Arch Ophthalmol
  doi: 10.1001/archophthalmol.2010.231
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  ident: 10.1016/j.ajo.2019.02.028_bib17
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 66
  start-page: 132
  year: 2018
  ident: 10.1016/j.ajo.2019.02.028_bib4
  article-title: Anterior segment optical coherence tomography
  publication-title: Prog Retin Eye Res
  doi: 10.1016/j.preteyeres.2018.04.002
– volume: 120
  start-page: 48
  issue: 1
  year: 2013
  ident: 10.1016/j.ajo.2019.02.028_bib6
  article-title: Classification algorithms based on anterior segment optical coherence tomography measurements for detection of angle closure
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2012.07.005
– volume: 318
  start-page: 2211
  issue: 22
  year: 2017
  ident: 10.1016/j.ajo.2019.02.028_bib21
  article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes
  publication-title: JAMA
  doi: 10.1001/jama.2017.18152
– volume: 36
  start-page: 1930
  issue: 9
  year: 2017
  ident: 10.1016/j.ajo.2019.02.028_bib29
  article-title: Segmentation and quantification for angle-closure glaucoma assessment in anterior segment OCT
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2703147
– volume: 9
  start-page: 2579
  issue: Nov
  year: 2008
  ident: 10.1016/j.ajo.2019.02.028_bib41
  article-title: Visualizing Data using t-SNE
  publication-title: J Mach Learn Res
– volume: 125
  start-page: 1199
  issue: 8
  year: 2018
  ident: 10.1016/j.ajo.2019.02.028_bib26
  article-title: Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2018.01.023
– volume: 91
  start-page: 709
  year: 1971
  ident: 10.1016/j.ajo.2019.02.028_bib39
  article-title: The normal development of the human anterior chamber angle: a new system of descriptive grading
  publication-title: Trans Ophthalmol Soc U K
– volume: 154
  start-page: 39
  issue: 1
  year: 2012
  ident: 10.1016/j.ajo.2019.02.028_bib30
  article-title: Determinants of lens vault and association with narrow angles in patients From Singapore
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2012.01.015
– volume: 127
  start-page: 43
  issue: 1
  year: 1999
  ident: 10.1016/j.ajo.2019.02.028_bib44
  article-title: Ultrasound biomicroscopic quantitative analysis of light-dark changes associated with pupillary block
  publication-title: Am J Ophthalmol
  doi: 10.1016/S0002-9394(98)00283-9
– volume: 126
  start-page: 181
  issue: 2
  year: 2008
  ident: 10.1016/j.ajo.2019.02.028_bib9
  article-title: Assessment of the scleral spur in anterior segment optical coherence tomography images
  publication-title: Arch Ophthalmol
  doi: 10.1001/archophthalmol.2007.46
– volume: 85
  start-page: 1277
  issue: 11
  year: 2001
  ident: 10.1016/j.ajo.2019.02.028_bib2
  article-title: Glaucoma in China: how big is the problem?
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjo.85.11.1277
– volume: 121
  start-page: 2081
  issue: 11
  year: 2014
  ident: 10.1016/j.ajo.2019.02.028_bib3
  article-title: Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2014.05.013
– volume: 2014
  start-page: 942367
  year: 2014
  ident: 10.1016/j.ajo.2019.02.028_bib43
  article-title: Anterior chamber angle shape analysis and classification of glaucoma in SS-OCT images
  publication-title: J Ophthalmol
  doi: 10.1155/2014/942367
– volume: 2
  start-page: 1
  issue: 3
  year: 2011
  ident: 10.1016/j.ajo.2019.02.028_bib34
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/1961189.1961199
– start-page: 1
  year: 2018
  ident: 10.1016/j.ajo.2019.02.028_bib23
  article-title: A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography
  publication-title: Ophthalmology
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 10.1016/j.ajo.2019.02.028_bib38
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Communications of the ACM
  doi: 10.1145/3065386
– volume: 2
  start-page: 158
  issue: 3
  year: 2018
  ident: 10.1016/j.ajo.2019.02.028_bib19
  article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-018-0195-0
– year: 2018
  ident: 10.1016/j.ajo.2019.02.028_bib12
  article-title: Multi-context deep network for angle-closure glaucoma screening in anterior segment OCT
– volume: 92
  start-page: 1612
  issue: 12
  year: 2008
  ident: 10.1016/j.ajo.2019.02.028_bib42
  article-title: Quantitative analysis of anterior segment optical coherence tomography images: the Zhongshan Angle Assessment Program
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjo.2007.129932
– volume: 2012
  start-page: 3167
  year: 2012
  ident: 10.1016/j.ajo.2019.02.028_bib13
  article-title: Anterior chamber angle classification using multiscale histograms of oriented gradients for glaucoma subtype identification
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 135
  start-page: 1170
  issue: 11
  year: 2017
  ident: 10.1016/j.ajo.2019.02.028_bib22
  article-title: Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2017.3782
– volume: 1
  start-page: 0024
  issue: 24
  year: 2017
  ident: 10.1016/j.ajo.2019.02.028_bib24
  article-title: An artificial intelligence platform for the multihospital collaborative management of congenital cataracts
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-016-0024
– volume: 135
  start-page: 252
  issue: 3
  year: 2017
  ident: 10.1016/j.ajo.2019.02.028_bib7
  article-title: Association of baseline anterior segment parameters with the development of incident gonioscopic angle closure
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2016.5847
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.ajo.2019.02.028_bib15
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2014.09.003
– year: 2015
  ident: 10.1016/j.ajo.2019.02.028_bib35
– volume: 2016
  start-page: 1288
  year: 2016
  ident: 10.1016/j.ajo.2019.02.028_bib10
  article-title: Automatic anterior chamber angle structure segmentation in AS-OCT image based on label transfer
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 172
  start-page: 1122
  issue: 5
  year: 2018
  ident: 10.1016/j.ajo.2019.02.028_bib18
  article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.010
– volume: 37
  start-page: 2493
  issue: 11
  year: 2018
  ident: 10.1016/j.ajo.2019.02.028_bib28
  article-title: Disc-aware ensemble network for glaucoma screening from fundus image
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2837012
– volume: 117
  start-page: 1967
  issue: 10
  year: 2010
  ident: 10.1016/j.ajo.2019.02.028_bib31
  article-title: Novel association of smaller anterior chamber width with angle closure in Singaporeans
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2010.02.007
– volume: 114
  start-page: 2362
  issue: 12
  year: 2007
  ident: 10.1016/j.ajo.2019.02.028_bib5
  article-title: Anterior segment optical coherence tomography
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2007.05.050
– volume: 318
  start-page: 2199
  issue: 22
  year: 2017
  ident: 10.1016/j.ajo.2019.02.028_bib16
  article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
  publication-title: JAMA
  doi: 10.1001/jama.2017.14585
– volume: 37
  start-page: 1597
  issue: 7
  year: 2018
  ident: 10.1016/j.ajo.2019.02.028_bib27
  article-title: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2791488
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.1016/j.ajo.2019.02.028_bib37
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-015-0816-y
– volume: 58
  start-page: 510
  issue: 4
  year: 1957
  ident: 10.1016/j.ajo.2019.02.028_bib40
  article-title: Width and pigmentation of the angle of the anterior chamber; a system of grading by gonioscopy
  publication-title: AMA Arch Ophthalmol
  doi: 10.1001/archopht.1957.00940010526005
– volume: 2013
  start-page: 7380
  year: 2013
  ident: 10.1016/j.ajo.2019.02.028_bib11
  article-title: Automated anterior chamber angle localization and glaucoma type classification in OCT images
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 10.1016/j.ajo.2019.02.028_bib36
  article-title: A Survey on Transfer Learning
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2009.191
– volume: 127
  start-page: 256
  issue: 3
  year: 2009
  ident: 10.1016/j.ajo.2019.02.028_bib8
  article-title: High-definition optical coherence tomography imaging of the iridocorneal angle of the eye
  publication-title: Arch Ophthalmol
  doi: 10.1001/archophthalmol.2009.22
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.ajo.2019.02.028_bib14
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 304
  start-page: 649
  issue: 6
  year: 2016
  ident: 10.1016/j.ajo.2019.02.028_bib20
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
– volume: 129
  start-page: 569
  issue: 5
  year: 2011
  ident: 10.1016/j.ajo.2019.02.028_bib32
  article-title: Association of narrow angles with anterior chamber area and volume measured with anterior-segment optical coherence tomography
  publication-title: Arch Ophthalmol
  doi: 10.1001/archophthalmol.2011.68
– volume: 123
  start-page: 1974
  issue: 9
  year: 2016
  ident: 10.1016/j.ajo.2019.02.028_bib25
  article-title: Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2016.05.029
SSID ssj0006747
Score 2.5990038
Snippet Anterior segment optical coherence tomography (AS-OCT) provides an objective imaging modality for visually identifying anterior segment structures. An...
PurposeAnterior segment optical coherence tomography (AS-OCT) provides an objective imaging modality for visually identifying anterior segment structures. An...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 37
SubjectTerms Anterior Eye Segment - diagnostic imaging
Artificial Intelligence
Automation
Data analysis
Datasets
Deep Learning
Diabetic retinopathy
Female
Funding
Glaucoma
Glaucoma, Angle-Closure - diagnosis
Gonioscopy - methods
Humans
Lasers
Machine learning
Male
Medical imaging
Middle Aged
Ophthalmology
ROC Curve
Tomography, Optical Coherence - methods
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA96B4oPfuuuTIngk9LRNGmSPpbpmMKm4C7Mp5Lmnlw2u_ay2yL613vSpsXPTaFvOaeQ5CT5Jeec3yHkxZJBqhnjkcIDIcKVKCOTlCkCuaVhxgFo5xOFD4_kwUK8O0lPAlm0z4X5yX_fx2GZM5-jx7KeWjPR18mWTBF2z8jW4uhD_mmEtxnvix764tkR0xkbPZh_-sffzqDfMeYtcrOr1-brF1NVP5w7-3eGiK1NT1fow00-73ZtuWu__ULm-E9duktuB_RJ88Fc7pFrUN8nNw6Df_0BaXP6GmBNA-vqig6E5hSRLc27tkF4C0ua16sKor2q8a-LqND24Vw1Pa2xyXM_o_RHWPl3R_p-3T-WU58G0icW0uPmPNBk07fnuJttHpLF_pvjvYMo1GWIrFCijbjTCSSpyaT3gQIog7CFKauYscIlsSydE1IAW1qnNLgMcB9RacpVDBoxFn9EZnVTwzah3ElrnYyFhUwgksHLl0LJJC2lykol5iQeZ6qwgbTc186oijE67azA0Sz8aBZxgp-ek5eTynpg7LhMOBmnvxhTUXHzLHDOLlMSk1LAKQP-uEptZ7SvImwUmyLpISjCJj4nz6dmXOLeb2NqaDqUQXvGazxiuzl5PNjl1DMea5Fx3_JqMtSru_3kv6R3yKy96OApoq-2fBbW3Xc6Vybn
  priority: 102
  providerName: Unpaywall
Title A Deep Learning System for Automated Angle-Closure Detection in Anterior Segment Optical Coherence Tomography Images
URI https://www.clinicalkey.com/#!/content/1-s2.0-S000293941930087X
https://dx.doi.org/10.1016/j.ajo.2019.02.028
https://www.ncbi.nlm.nih.gov/pubmed/30849350
https://www.proquest.com/docview/2250563813
https://www.proquest.com/docview/2189549750
https://doi.org/10.1016/j.ajo.2019.02.028
UnpaywallVersion publishedVersion
Volume 203
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1891
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006747
  issn: 1879-1891
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-1891
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006747
  issn: 1879-1891
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-1891
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006747
  issn: 1879-1891
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-1891
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006747
  issn: 1879-1891
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1891
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006747
  issn: 1879-1891
  databaseCode: AKRWK
  dateStart: 19950101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9KBT8exM96WssKPimx2WSTTR7DabkqPQV7cD4tm9zscSVNQpuj-OLf7kyyiYrSghAIyc5Admd35pedj2Xs9UpAlAgRegoNgocrMfZMkEcI5FZGGAuQWEoUPpnHs4X8uIyWO2w65MJQWKXT_b1O77S1e3PoRvOw2Wwox9dHW5VKhCBUWG1JGexS0SkG7378CvOIlVQDBCbqwbPZxXiZM8r_E2lXtpMOZP-3bfobe95jd7ZVY75fmbL8zR4dPWD3HZDkWf-tD9kOVI_Y7RPnKn_M2oy_B2i4K6C65n1tco4glWfbtkakCiueVesSvGlZ00YhMrRdZFbFNxU2URlnpP4Ka9pC5J-bbt-bU0ZHlyPIT-tzV_GaH5-jYrp8whZHH06nM88dseAVUsnWC20SQBCZNCZ3JoAyiECEKpQwhbSBH-fWyliCWBVWJWBTQJWgoihUPiQIl8KnbLeqK3jGeGjjorCxLwtAmagI_6MUUgZRHqs0V3LC_GFwdeHqj9MxGKUeAs3ONMpDkzy0H-CVTNibkaXpi29cRxwMEtNDVinqQY2m4TomOTL9Me1uYtsfpoR2a_5SBx2aRAQUTtirsRlXK7lgTAX1FmlEQn5VhGkTttdPpbFnoZ_INKSWt-Pcurnbz_-vBy_YXXrqA4_32W57sYWXCK_a_KBbPwfsVnb8aTbH-2L-Jfv2E1fXIlE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIlE4IN4ECiwSJ5BbP9Ze-xgFqhSaciCVclttnNkolWtb1BHiwm9nxl4bEKiVkHzyzEjex8x83nkswJtVgHEaBJGnyCF4pImJZ8JlTEBuZQJjEVPLhcKz02R6Jj8u4sUOTPpaGE6rdLa_s-mttXZvDt1sHtabDdf4-uSrMkkQhBurLW7ATRmHiv_ADn78yvNIlFQ9Bmb2PrTZJnmZcy4ADLK2byffyP5v5_Q3-LwDe9uyNt-_maL4zSEd3YO7DkmKcfex92EHywdwa-Zi5Q-hGYv3iLVwHVTXomtOLgilivG2qQiq4kqMy3WB3qSo-KSQBJo2NasUm5JI3MeZuL_gms8Qxee6PfgWXNLRFgmKeXXhWl6L4wuyTJeP4Ozow3wy9dwdC14ulWy8yKYhhrHJEo5nIipDECRQuQpMLm3oJ0trZSIxWOVWpWgzJJug4jhSPqaEl6LHsFtWJT4FEdkkz23iyxxpUVRMP1KKOMN4mahsqeQI_H5yde4akPM9GIXuM83ONa2H5vXQfkhPOoK3g0jddd-4ijnsV0z3ZaVkCDX5hquE5CD0x767Tmy_3xLaKf2lDls4SRAoGsHrgUzqyjEYU2K1JZ4g5cAq4bQRPOm20jCyyE9lFjHl3bC3rh_2s_8bwSvYm85nJ_rk-PTTc7jNlC4LeR92m69bfEFYq1m-bHXpJ8ZgIjY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA96B4oPfuuuTIngk9LRNGmSPpbpmMKm4C7Mp5Lmnlw2u_ay2yL613vSpsXPTaFvOaeQ5CT5Jeec3yHkxZJBqhnjkcIDIcKVKCOTlCkCuaVhxgFo5xOFD4_kwUK8O0lPAlm0z4X5yX_fx2GZM5-jx7KeWjPR18mWTBF2z8jW4uhD_mmEtxnvix764tkR0xkbPZh_-sffzqDfMeYtcrOr1-brF1NVP5w7-3eGiK1NT1fow00-73ZtuWu__ULm-E9duktuB_RJ88Fc7pFrUN8nNw6Df_0BaXP6GmBNA-vqig6E5hSRLc27tkF4C0ua16sKor2q8a-LqND24Vw1Pa2xyXM_o_RHWPl3R_p-3T-WU58G0icW0uPmPNBk07fnuJttHpLF_pvjvYMo1GWIrFCijbjTCSSpyaT3gQIog7CFKauYscIlsSydE1IAW1qnNLgMcB9RacpVDBoxFn9EZnVTwzah3ElrnYyFhUwgksHLl0LJJC2lykol5iQeZ6qwgbTc186oijE67azA0Sz8aBZxgp-ek5eTynpg7LhMOBmnvxhTUXHzLHDOLlMSk1LAKQP-uEptZ7SvImwUmyLpISjCJj4nz6dmXOLeb2NqaDqUQXvGazxiuzl5PNjl1DMea5Fx3_JqMtSru_3kv6R3yKy96OApoq-2fBbW3Xc6Vybn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+System+for+Automated+Angle-Closure+Detection+in+Anterior+Segment+Optical+Coherence+Tomography+Images&rft.jtitle=American+journal+of+ophthalmology&rft.au=Fu%2C+Huazhu&rft.au=Baskaran%2C+Mani&rft.au=Xu%2C+Yanwu&rft.au=Lin%2C+Stephen&rft.date=2019-07-01&rft.pub=Elsevier+Inc&rft.issn=0002-9394&rft.volume=203&rft.spage=37&rft.epage=45&rft_id=info:doi/10.1016%2Fj.ajo.2019.02.028&rft.externalDocID=S000293941930087X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9394&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9394&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9394&client=summon