A Deep Learning System for Automated Angle-Closure Detection in Anterior Segment Optical Coherence Tomography Images
Anterior segment optical coherence tomography (AS-OCT) provides an objective imaging modality for visually identifying anterior segment structures. An automated detection system could assist ophthalmologists in interpreting AS-OCT images for the presence of angle closure. Development of an artificia...
Saved in:
| Published in | American journal of ophthalmology Vol. 203; pp. 37 - 45 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.07.2019
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0002-9394 1879-1891 1879-1891 |
| DOI | 10.1016/j.ajo.2019.02.028 |
Cover
| Abstract | Anterior segment optical coherence tomography (AS-OCT) provides an objective imaging modality for visually identifying anterior segment structures. An automated detection system could assist ophthalmologists in interpreting AS-OCT images for the presence of angle closure.
Development of an artificial intelligence automated detection system for the presence of angle closure.
A deep learning system for automated angle-closure detection in AS-OCT images was developed, and this was compared with another automated angle-closure detection system based on quantitative features. A total of 4135 Visante AS-OCT images from 2113 subjects (8270 anterior chamber angle images with 7375 open-angle and 895 angle-closure) were examined. The deep learning angle-closure detection system for a 2-class classification problem was tested by 5-fold cross-validation. The deep learning system and the automated angle-closure detection system based on quantitative features were evaluated against clinicians' grading of AS-OCT images as the reference standard.
The area under the receiver operating characteristic curve of the system using quantitative features was 0.90 (95% confidence interval [CI] 0.891–0.914) with a sensitivity of 0.79 ± 0.037 and a specificity of 0.87 ± 0.009, while the area under the receiver operating characteristic curve of the deep learning system was 0.96 (95% CI 0.953–0.968) with a sensitivity of 0.90 ± 0.02 and a specificity of 0.92 ± 0.008, against clinicians' grading of AS-OCT images as the reference standard.
The results demonstrate the potential of the deep learning system for angle-closure detection in AS-OCT images. |
|---|---|
| AbstractList | Anterior segment optical coherence tomography (AS-OCT) provides an objective imaging modality for visually identifying anterior segment structures. An automated detection system could assist ophthalmologists in interpreting AS-OCT images for the presence of angle closure.PURPOSEAnterior segment optical coherence tomography (AS-OCT) provides an objective imaging modality for visually identifying anterior segment structures. An automated detection system could assist ophthalmologists in interpreting AS-OCT images for the presence of angle closure.Development of an artificial intelligence automated detection system for the presence of angle closure.DESIGNDevelopment of an artificial intelligence automated detection system for the presence of angle closure.A deep learning system for automated angle-closure detection in AS-OCT images was developed, and this was compared with another automated angle-closure detection system based on quantitative features. A total of 4135 Visante AS-OCT images from 2113 subjects (8270 anterior chamber angle images with 7375 open-angle and 895 angle-closure) were examined. The deep learning angle-closure detection system for a 2-class classification problem was tested by 5-fold cross-validation. The deep learning system and the automated angle-closure detection system based on quantitative features were evaluated against clinicians' grading of AS-OCT images as the reference standard.METHODSA deep learning system for automated angle-closure detection in AS-OCT images was developed, and this was compared with another automated angle-closure detection system based on quantitative features. A total of 4135 Visante AS-OCT images from 2113 subjects (8270 anterior chamber angle images with 7375 open-angle and 895 angle-closure) were examined. The deep learning angle-closure detection system for a 2-class classification problem was tested by 5-fold cross-validation. The deep learning system and the automated angle-closure detection system based on quantitative features were evaluated against clinicians' grading of AS-OCT images as the reference standard.The area under the receiver operating characteristic curve of the system using quantitative features was 0.90 (95% confidence interval [CI] 0.891-0.914) with a sensitivity of 0.79 ± 0.037 and a specificity of 0.87 ± 0.009, while the area under the receiver operating characteristic curve of the deep learning system was 0.96 (95% CI 0.953-0.968) with a sensitivity of 0.90 ± 0.02 and a specificity of 0.92 ± 0.008, against clinicians' grading of AS-OCT images as the reference standard.RESULTSThe area under the receiver operating characteristic curve of the system using quantitative features was 0.90 (95% confidence interval [CI] 0.891-0.914) with a sensitivity of 0.79 ± 0.037 and a specificity of 0.87 ± 0.009, while the area under the receiver operating characteristic curve of the deep learning system was 0.96 (95% CI 0.953-0.968) with a sensitivity of 0.90 ± 0.02 and a specificity of 0.92 ± 0.008, against clinicians' grading of AS-OCT images as the reference standard.The results demonstrate the potential of the deep learning system for angle-closure detection in AS-OCT images.CONCLUSIONSThe results demonstrate the potential of the deep learning system for angle-closure detection in AS-OCT images. Anterior segment optical coherence tomography (AS-OCT) provides an objective imaging modality for visually identifying anterior segment structures. An automated detection system could assist ophthalmologists in interpreting AS-OCT images for the presence of angle closure. Development of an artificial intelligence automated detection system for the presence of angle closure. A deep learning system for automated angle-closure detection in AS-OCT images was developed, and this was compared with another automated angle-closure detection system based on quantitative features. A total of 4135 Visante AS-OCT images from 2113 subjects (8270 anterior chamber angle images with 7375 open-angle and 895 angle-closure) were examined. The deep learning angle-closure detection system for a 2-class classification problem was tested by 5-fold cross-validation. The deep learning system and the automated angle-closure detection system based on quantitative features were evaluated against clinicians' grading of AS-OCT images as the reference standard. The area under the receiver operating characteristic curve of the system using quantitative features was 0.90 (95% confidence interval [CI] 0.891–0.914) with a sensitivity of 0.79 ± 0.037 and a specificity of 0.87 ± 0.009, while the area under the receiver operating characteristic curve of the deep learning system was 0.96 (95% CI 0.953–0.968) with a sensitivity of 0.90 ± 0.02 and a specificity of 0.92 ± 0.008, against clinicians' grading of AS-OCT images as the reference standard. The results demonstrate the potential of the deep learning system for angle-closure detection in AS-OCT images. PurposeAnterior segment optical coherence tomography (AS-OCT) provides an objective imaging modality for visually identifying anterior segment structures. An automated detection system could assist ophthalmologists in interpreting AS-OCT images for the presence of angle closure.DesignDevelopment of an artificial intelligence automated detection system for the presence of angle closure.MethodsA deep learning system for automated angle-closure detection in AS-OCT images was developed, and this was compared with another automated angle-closure detection system based on quantitative features. A total of 4135 Visante AS-OCT images from 2113 subjects (8270 anterior chamber angle images with 7375 open-angle and 895 angle-closure) were examined. The deep learning angle-closure detection system for a 2-class classification problem was tested by 5-fold cross-validation. The deep learning system and the automated angle-closure detection system based on quantitative features were evaluated against clinicians' grading of AS-OCT images as the reference standard.ResultsThe area under the receiver operating characteristic curve of the system using quantitative features was 0.90 (95% confidence interval [CI] 0.891–0.914) with a sensitivity of 0.79 ± 0.037 and a specificity of 0.87 ± 0.009, while the area under the receiver operating characteristic curve of the deep learning system was 0.96 (95% CI 0.953–0.968) with a sensitivity of 0.90 ± 0.02 and a specificity of 0.92 ± 0.008, against clinicians' grading of AS-OCT images as the reference standard.ConclusionsThe results demonstrate the potential of the deep learning system for angle-closure detection in AS-OCT images. |
| Author | Xu, Yanwu Fu, Huazhu Liu, Jiang Baskaran, Mani Wong, Damon Wing Kee Tun, Tin A. Mahesh, Meenakshi Lin, Stephen Aung, Tin Perera, Shamira A. |
| Author_xml | – sequence: 1 givenname: Huazhu surname: Fu fullname: Fu, Huazhu email: huazhufu@gmail.com organization: Cixi Institute of Biomedical Engineering, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Zhejiang, China – sequence: 2 givenname: Mani surname: Baskaran fullname: Baskaran, Mani organization: Singapore Eye Research Institute, Singapore National Eye Center, Singapore – sequence: 3 givenname: Yanwu surname: Xu fullname: Xu, Yanwu organization: Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore – sequence: 4 givenname: Stephen surname: Lin fullname: Lin, Stephen organization: Microsoft Research, Beijing, China – sequence: 5 givenname: Damon Wing Kee surname: Wong fullname: Wong, Damon Wing Kee organization: Singapore Eye Research Institute, Singapore National Eye Center, Singapore – sequence: 6 givenname: Jiang surname: Liu fullname: Liu, Jiang organization: Cixi Institute of Biomedical Engineering, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Zhejiang, China – sequence: 7 givenname: Tin A. surname: Tun fullname: Tun, Tin A. organization: Singapore Eye Research Institute, Singapore National Eye Center, Singapore – sequence: 8 givenname: Meenakshi surname: Mahesh fullname: Mahesh, Meenakshi organization: Singapore Eye Research Institute, Singapore National Eye Center, Singapore – sequence: 9 givenname: Shamira A. surname: Perera fullname: Perera, Shamira A. organization: Singapore Eye Research Institute, Singapore National Eye Center, Singapore – sequence: 10 givenname: Tin surname: Aung fullname: Aung, Tin organization: Singapore Eye Research Institute, Singapore National Eye Center, Singapore |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30849350$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtr3DAUhUVJaSbT_oBuiqCbbjzVw7Zsuhqmr8BAFknXQpGvHbm25Epyi_99ZSbtYhZp4YIQOp8495wrdGGdBYReU7KjhJbv-53q3Y4RWu8IS1M9QxtaiTqjVU0v0IYQwrKa1_klugqhT9dS5OIFuuSkymtekA2Ke_wRYMJHUN4a2-HbJUQYces83s_RjSpCg_e2GyA7DC7MHhIQQUfjLDY2PUXwJqlvoRvBRnwzRaPVgA_uATxYDfjOja7zanpY8PWoOggv0fNWDQFePZ5b9O3zp7vD1-x48-X6sD9mOhd5zHhbMWCFqsuCcA4gVFlyKrSgSuctI-V92-ZlDrTRraigrYEILoqCCwIVYQXfInb6d7aTWn6pYZCTN6Pyi6RErhHKXqYI5RqhJCxNlaB3J2jy7scMIcrRBA3DoCy4OUiWwi3yWiRPW_T2TNq72du0kmSsIEXJK8qT6s2jar4foflr4U8JSUBPAu1dCB7a_3IpzhhtolpLiV6Z4Unyw4mElPxPA14GbdaeGuNTrbJx5km6PqP1YOxa-HdY_sH-Bm5V0ws |
| CitedBy_id | crossref_primary_10_1146_annurev_vision_100419_111350 crossref_primary_10_1016_j_ajo_2020_07_030 crossref_primary_10_1016_j_cmpb_2022_106735 crossref_primary_10_1002_14651858_CD012947_pub2 crossref_primary_10_1016_j_xops_2024_100471 crossref_primary_10_1007_s42979_023_01734_z crossref_primary_10_1371_journal_pdig_0000193 crossref_primary_10_4103_ijo_IJO_1569_22 crossref_primary_10_1038_s41433_020_01191_5 crossref_primary_10_1016_j_media_2022_102499 crossref_primary_10_1097_APO_0000000000000596 crossref_primary_10_1167_tvst_11_4_7 crossref_primary_10_3389_fmed_2022_832920 crossref_primary_10_1016_j_media_2020_101798 crossref_primary_10_1167_tvst_10_4_34 crossref_primary_10_1111_ceo_14044 crossref_primary_10_3390_diagnostics12123055 crossref_primary_10_1038_s41598_021_93186_9 crossref_primary_10_1136_bjophthalmol_2021_319798 crossref_primary_10_1167_tvst_10_1_7 crossref_primary_10_7717_peerj_18611 crossref_primary_10_1177_0300060519867808 crossref_primary_10_1016_j_bspc_2023_104778 crossref_primary_10_1167_tvst_10_11_21 crossref_primary_10_1016_j_preteyeres_2024_101291 crossref_primary_10_1186_s42492_024_00183_6 crossref_primary_10_3389_fmed_2022_891369 crossref_primary_10_1007_s10103_024_04089_w crossref_primary_10_53432_2078_4104_2023_22_1_115_128 crossref_primary_10_4103_DLJO_DLJO_7_23 crossref_primary_10_1364_BOE_465286 crossref_primary_10_1007_s00417_024_06709_1 crossref_primary_10_1002_VIW_20220070 crossref_primary_10_1136_bjo_2023_323860 crossref_primary_10_21518_ms2023_469 crossref_primary_10_1186_s40662_020_00183_6 crossref_primary_10_3788_LOP232292 crossref_primary_10_1186_s40662_022_00314_1 crossref_primary_10_1109_TIM_2022_3196323 crossref_primary_10_1167_tvst_11_2_11 crossref_primary_10_1001_jamaophthalmol_2020_4994 crossref_primary_10_1016_j_xcrm_2023_101095 crossref_primary_10_1016_j_patcog_2023_110069 crossref_primary_10_3390_diagnostics15050643 crossref_primary_10_1016_j_xops_2023_100360 crossref_primary_10_1007_s13167_023_00337_1 crossref_primary_10_1097_IJG_0000000000001972 crossref_primary_10_1016_j_aopr_2022_100078 crossref_primary_10_1016_j_jfo_2021_11_002 crossref_primary_10_17116_oftalma2024140051130 crossref_primary_10_3389_fopht_2022_937205 crossref_primary_10_17816_OV625627 crossref_primary_10_1007_s11042_020_09303_9 crossref_primary_10_1055_a_2307_0313 crossref_primary_10_1155_2022_2722608 crossref_primary_10_1007_s13755_022_00170_2 crossref_primary_10_1016_j_ophtha_2021_09_018 crossref_primary_10_1016_j_jbi_2022_104037 crossref_primary_10_3389_fphy_2022_969683 crossref_primary_10_1016_j_knosys_2022_109109 crossref_primary_10_3390_jcm10163452 crossref_primary_10_1136_bjophthalmol_2020_318275 crossref_primary_10_1016_j_eswa_2021_115068 crossref_primary_10_1016_j_ogla_2023_06_011 crossref_primary_10_1364_BOE_512138 crossref_primary_10_1016_j_ajo_2021_02_004 crossref_primary_10_1167_tvst_9_2_42 crossref_primary_10_1136_bjophthalmol_2019_315016 crossref_primary_10_1364_BOE_418364 crossref_primary_10_48084_etasr_6226 crossref_primary_10_1038_s41598_019_48679_z crossref_primary_10_1167_tvst_10_6_19 crossref_primary_10_1136_bjophthalmol_2019_315651 crossref_primary_10_1167_tvst_9_2_33 crossref_primary_10_1007_s10792_021_02208_y crossref_primary_10_1016_j_ophtha_2019_09_014 crossref_primary_10_1167_tvst_11_6_24 crossref_primary_10_1016_j_artmed_2021_102132 crossref_primary_10_3389_fmed_2021_775711 crossref_primary_10_1167_tvst_11_8_30 crossref_primary_10_12968_opti_2024_269_6941_29 crossref_primary_10_1016_j_jcjo_2024_07_001 crossref_primary_10_1016_j_ogla_2022_02_010 crossref_primary_10_1136_bmjophth_2023_001600 crossref_primary_10_1007_s00417_021_05078_3 crossref_primary_10_1016_j_preteyeres_2023_101227 crossref_primary_10_1109_JBHI_2020_2999077 crossref_primary_10_1136_bjophthalmol_2021_319058 crossref_primary_10_1016_j_ogla_2021_11_003 crossref_primary_10_1007_s12652_021_02928_0 crossref_primary_10_1097_IJG_0000000000002194 crossref_primary_10_3390_ijms24032814 crossref_primary_10_1007_s40747_022_00869_5 crossref_primary_10_1167_tvst_10_9_28 crossref_primary_10_1167_tvst_9_2_18 crossref_primary_10_4103_tjo_TJO_D_24_00053 crossref_primary_10_1167_tvst_9_2_11 crossref_primary_10_1038_s41433_019_0655_0 crossref_primary_10_1007_s11042_022_12826_y crossref_primary_10_1016_j_compbiomed_2022_105471 crossref_primary_10_3390_jcm9123814 |
| Cites_doi | 10.1136/bjo.2005.081224 10.1001/archophthalmol.2010.231 10.1038/nature21056 10.1016/j.preteyeres.2018.04.002 10.1016/j.ophtha.2012.07.005 10.1001/jama.2017.18152 10.1109/TMI.2017.2703147 10.1016/j.ophtha.2018.01.023 10.1016/j.ajo.2012.01.015 10.1016/S0002-9394(98)00283-9 10.1001/archophthalmol.2007.46 10.1136/bjo.85.11.1277 10.1016/j.ophtha.2014.05.013 10.1155/2014/942367 10.1145/1961189.1961199 10.1145/3065386 10.1038/s41551-018-0195-0 10.1136/bjo.2007.129932 10.1001/jamaophthalmol.2017.3782 10.1038/s41551-016-0024 10.1001/jamaophthalmol.2016.5847 10.1016/j.neunet.2014.09.003 10.1016/j.cell.2018.02.010 10.1109/TMI.2018.2837012 10.1016/j.ophtha.2010.02.007 10.1016/j.ophtha.2007.05.050 10.1001/jama.2017.14585 10.1109/TMI.2018.2791488 10.1007/s11263-015-0816-y 10.1001/archopht.1957.00940010526005 10.1109/TKDE.2009.191 10.1001/archophthalmol.2009.22 10.1038/nature14539 10.1001/archophthalmol.2011.68 10.1016/j.ophtha.2016.05.029 |
| ContentType | Journal Article |
| Copyright | 2019 The Authors Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. 2019. The Authors |
| Copyright_xml | – notice: 2019 The Authors – notice: Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2019. The Authors |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.ajo.2019.02.028 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-1891 |
| EndPage | 45 |
| ExternalDocumentID | 10.1016/j.ajo.2019.02.028 30849350 10_1016_j_ajo_2019_02_028 S000293941930087X |
| Genre | Multicenter Study Comparative Study Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Singapore |
| GeographicLocations_xml | – name: Singapore |
| GroupedDBID | --- --K --M -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1CY 1P~ 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ AABNK AAEDT AAEDW AAHTB AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABCQX ABDPE ABFNM ABFRF ABJNI ABLJU ABMAC ABMZM ABOCM ABPEJ ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACLOT ACNCT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHMBA AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CS3 EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W J5H K-O KOM L7B M41 MO0 N4W N9A O-L O9- OAUVE OF- OPF OQ~ OZT P-8 P-9 P2P PC. PQQKQ PROAC Q38 R2- ROL RPZ SCC SDF SDG SDP SEL SES SPCBC SSH SSZ SV3 T5K UNMZH UV1 VH1 WH7 WOW X7M XPP Z5R ZGI ZXP ~G- ~HD 6I. AACTN AAFTH AFCTW RIG AAYXX CITATION 3V. 7RV 7X7 8FI AFKRA AFKWA AJOXV AMFUW AZQEC BENPR CGR CUY CVF ECM EIF FYUFA GUQSH M1P M2O NPM PKN K9. NAPCQ 7X8 ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c474t-3f82e25a965033ee7a66317c71ac4f206bff464e1dcf78ef9e073755370e80253 |
| IEDL.DBID | .~1 |
| ISSN | 0002-9394 1879-1891 |
| IngestDate | Tue Aug 19 21:44:44 EDT 2025 Wed Oct 01 14:12:56 EDT 2025 Mon Oct 06 18:30:22 EDT 2025 Wed Feb 19 02:30:20 EST 2025 Wed Oct 01 05:25:06 EDT 2025 Thu Apr 24 22:57:15 EDT 2025 Sun Apr 06 06:53:37 EDT 2025 Tue Oct 14 19:35:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-3f82e25a965033ee7a66317c71ac4f206bff464e1dcf78ef9e073755370e80253 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S000293941930087X |
| PMID | 30849350 |
| PQID | 2250563813 |
| PQPubID | 41749 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_1016_j_ajo_2019_02_028 proquest_miscellaneous_2189549750 proquest_journals_2250563813 pubmed_primary_30849350 crossref_primary_10_1016_j_ajo_2019_02_028 crossref_citationtrail_10_1016_j_ajo_2019_02_028 elsevier_sciencedirect_doi_10_1016_j_ajo_2019_02_028 elsevier_clinicalkey_doi_10_1016_j_ajo_2019_02_028 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | July 2019 2019-07-00 20190701 |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: July 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Chicago |
| PublicationTitle | American journal of ophthalmology |
| PublicationTitleAlternate | Am J Ophthalmol |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
| References | Chang, Lin (bib34) 2011; 2 Russakovsky, Deng, Su (bib37) 2015; 115 Wong, Lim, Sakata (bib8) 2009; 127 Fu, Xu, Wong (bib10) 2016; 2016 Tham, Li, Wong, Quigley, Aung, Cheng (bib3) 2014; 121 Poplin, Varadarajan, Blumer (bib19) 2018; 2 Long, Lin, Liu (bib24) 2017; 1 Foster Pauland Johnson (bib2) 2001; 85 LeCun, Bengio, Hinton (bib14) 2015; 521 Ting, Cheung, Lim, Al (bib21) 2017; 318 Woo, Pavlin, Slomovic, Taback, Buys (bib44) 1999; 127 Schmidhuber (bib15) 2015; 61 Asaoka, Murata, Iwase, Araie (bib25) 2016; 123 Fu, Xu, Lin (bib12) 2018 Nongpiur, Sakata, Friedman (bib31) 2010; 117 Bejnordi, Veta, Diest (bib16) 2017; 318 Tan, He, Zhao (bib30) 2012; 154 Fu, Cheng, Xu, Wong, Liu, Cao (bib27) 2018; 37 Xu, Liu, Cheng (bib11) 2013; 2013 Gulshan, Peng, Coram (bib20) 2016; 304 Scheie (bib40) 1957; 58 Ang, Baskaran, Werkmeister (bib4) 2018; 66 Simonyan, Zisserman (bib35) 2015 Fu, Cheng, Xu (bib28) 2018; 37 van der Maaten, Hinton (bib41) 2008; 9 Thomas (bib5) 2007; 114 Kermany, Goldbaum, Cai, Al (bib18) 2018; 172 Pan, Yang (bib36) 2010; 22 Li, He, Keel, Meng, Chang, He (bib26) 2018; 125 Burlina, Joshi, Pekala, Pacheco, Freund, Bressler (bib22) 2017; 135 Quigley, Broman (bib1) 2006; 90 Narayanaswamy, Sakata, He (bib33) 2010; 128 Nongpiur, Haaland, Friedman (bib6) 2013; 120 Esteva, Kuprel, Novoa (bib17) 2017; 542 Wu, Nongpiur, He (bib32) 2011; 129 Sakata, Lavanya, Friedman (bib9) 2008; 126 Nongpiur, Aboobakar, Baskaran (bib7) 2017; 135 Spaeth (bib39) 1971; 91 Ni Ni, Tian, Marziliano, Wong (bib43) 2014; 2014 Xu, Liu, Tan (bib13) 2012; 2012 Krizhevsky, Sutskever, Hinton (bib38) 2017; 60 Grassmann, Mengelkamp, Brandl (bib23) 2018 Console, Sakata, Aung, Friedman, He (bib42) 2008; 92 Fu, Xu, Lin (bib29) 2017; 36 Xu (10.1016/j.ajo.2019.02.028_bib13) 2012; 2012 Esteva (10.1016/j.ajo.2019.02.028_bib17) 2017; 542 Fu (10.1016/j.ajo.2019.02.028_bib28) 2018; 37 Tan (10.1016/j.ajo.2019.02.028_bib30) 2012; 154 Russakovsky (10.1016/j.ajo.2019.02.028_bib37) 2015; 115 Foster Pauland Johnson (10.1016/j.ajo.2019.02.028_bib2) 2001; 85 Tham (10.1016/j.ajo.2019.02.028_bib3) 2014; 121 Fu (10.1016/j.ajo.2019.02.028_bib10) 2016; 2016 Wong (10.1016/j.ajo.2019.02.028_bib8) 2009; 127 Kermany (10.1016/j.ajo.2019.02.028_bib18) 2018; 172 Schmidhuber (10.1016/j.ajo.2019.02.028_bib15) 2015; 61 Pan (10.1016/j.ajo.2019.02.028_bib36) 2010; 22 Quigley (10.1016/j.ajo.2019.02.028_bib1) 2006; 90 Bejnordi (10.1016/j.ajo.2019.02.028_bib16) 2017; 318 Chang (10.1016/j.ajo.2019.02.028_bib34) 2011; 2 Thomas (10.1016/j.ajo.2019.02.028_bib5) 2007; 114 Scheie (10.1016/j.ajo.2019.02.028_bib40) 1957; 58 Long (10.1016/j.ajo.2019.02.028_bib24) 2017; 1 Burlina (10.1016/j.ajo.2019.02.028_bib22) 2017; 135 van der Maaten (10.1016/j.ajo.2019.02.028_bib41) 2008; 9 Asaoka (10.1016/j.ajo.2019.02.028_bib25) 2016; 123 Xu (10.1016/j.ajo.2019.02.028_bib11) 2013; 2013 Poplin (10.1016/j.ajo.2019.02.028_bib19) 2018; 2 Ni Ni (10.1016/j.ajo.2019.02.028_bib43) 2014; 2014 Ang (10.1016/j.ajo.2019.02.028_bib4) 2018; 66 Sakata (10.1016/j.ajo.2019.02.028_bib9) 2008; 126 Fu (10.1016/j.ajo.2019.02.028_bib12) 2018 Narayanaswamy (10.1016/j.ajo.2019.02.028_bib33) 2010; 128 Woo (10.1016/j.ajo.2019.02.028_bib44) 1999; 127 Fu (10.1016/j.ajo.2019.02.028_bib29) 2017; 36 Krizhevsky (10.1016/j.ajo.2019.02.028_bib38) 2017; 60 Wu (10.1016/j.ajo.2019.02.028_bib32) 2011; 129 Ting (10.1016/j.ajo.2019.02.028_bib21) 2017; 318 Fu (10.1016/j.ajo.2019.02.028_bib27) 2018; 37 Gulshan (10.1016/j.ajo.2019.02.028_bib20) 2016; 304 Nongpiur (10.1016/j.ajo.2019.02.028_bib7) 2017; 135 Li (10.1016/j.ajo.2019.02.028_bib26) 2018; 125 Nongpiur (10.1016/j.ajo.2019.02.028_bib31) 2010; 117 Simonyan (10.1016/j.ajo.2019.02.028_bib35) 2015 Nongpiur (10.1016/j.ajo.2019.02.028_bib6) 2013; 120 Grassmann (10.1016/j.ajo.2019.02.028_bib23) 2018 Console (10.1016/j.ajo.2019.02.028_bib42) 2008; 92 LeCun (10.1016/j.ajo.2019.02.028_bib14) 2015; 521 Spaeth (10.1016/j.ajo.2019.02.028_bib39) 1971; 91 |
| References_xml | – volume: 304 start-page: 649 year: 2016 end-page: 656 ident: bib20 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: bib37 article-title: ImageNet large scale visual recognition challenge publication-title: Int J Comput Vis – volume: 1 start-page: 0024 year: 2017 ident: bib24 article-title: An artificial intelligence platform for the multihospital collaborative management of congenital cataracts publication-title: Nat Biomed Eng – volume: 66 start-page: 132 year: 2018 end-page: 156 ident: bib4 article-title: Anterior segment optical coherence tomography publication-title: Prog Retin Eye Res – volume: 126 start-page: 181 year: 2008 end-page: 185 ident: bib9 article-title: Assessment of the scleral spur in anterior segment optical coherence tomography images publication-title: Arch Ophthalmol – volume: 128 start-page: 1321 year: 2010 end-page: 1327 ident: bib33 article-title: Diagnostic performance of anterior chamber angle measurements for detecting eyes with narrow angles publication-title: Arch Ophthalmol – volume: 90 start-page: 262 year: 2006 end-page: 267 ident: bib1 article-title: The number of people with glaucoma worldwide in 2010 and 2020 publication-title: Br J Ophthalmol – volume: 2012 start-page: 3167 year: 2012 end-page: 3170 ident: bib13 article-title: Anterior chamber angle classification using multiscale histograms of oriented gradients for glaucoma subtype identification publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib14 article-title: Deep learning publication-title: Nature – volume: 37 start-page: 2493 year: 2018 end-page: 2501 ident: bib28 article-title: Disc-aware ensemble network for glaucoma screening from fundus image publication-title: IEEE Trans Med Imaging – volume: 117 start-page: 1967 year: 2010 end-page: 1973 ident: bib31 article-title: Novel association of smaller anterior chamber width with angle closure in Singaporeans publication-title: Ophthalmology – volume: 114 start-page: 2362 year: 2007 end-page: 2363 ident: bib5 article-title: Anterior segment optical coherence tomography publication-title: Ophthalmology – volume: 120 start-page: 48 year: 2013 end-page: 54 ident: bib6 article-title: Classification algorithms based on anterior segment optical coherence tomography measurements for detection of angle closure publication-title: Ophthalmology – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: bib15 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw – volume: 58 start-page: 510 year: 1957 end-page: 512 ident: bib40 article-title: Width and pigmentation of the angle of the anterior chamber; a system of grading by gonioscopy publication-title: AMA Arch Ophthalmol – volume: 121 start-page: 2081 year: 2014 end-page: 2090 ident: bib3 article-title: Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis publication-title: Ophthalmology – volume: 2014 start-page: 942367 year: 2014 ident: bib43 article-title: Anterior chamber angle shape analysis and classification of glaucoma in SS-OCT images publication-title: J Ophthalmol – start-page: 1 year: 2018 end-page: 11 ident: bib23 article-title: A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography publication-title: Ophthalmology – volume: 127 start-page: 43 year: 1999 end-page: 47 ident: bib44 article-title: Ultrasound biomicroscopic quantitative analysis of light-dark changes associated with pupillary block publication-title: Am J Ophthalmol – year: 2018 ident: bib12 article-title: Multi-context deep network for angle-closure glaucoma screening in anterior segment OCT publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI – volume: 2013 start-page: 7380 year: 2013 end-page: 7383 ident: bib11 article-title: Automated anterior chamber angle localization and glaucoma type classification in OCT images publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 542 start-page: 115 year: 2017 end-page: 118 ident: bib17 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature – year: 2015 ident: bib35 article-title: Very deep convolutional networks for large-scale image recognition. Presented at: International Conference on Learning Representations – volume: 37 start-page: 1597 year: 2018 end-page: 1605 ident: bib27 article-title: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation publication-title: IEEE Trans Med Imaging – volume: 172 start-page: 1122 year: 2018 end-page: 1131 ident: bib18 article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning publication-title: Cell – volume: 91 start-page: 709 year: 1971 end-page: 739 ident: bib39 article-title: The normal development of the human anterior chamber angle: a new system of descriptive grading publication-title: Trans Ophthalmol Soc U K – volume: 2 start-page: 158 year: 2018 end-page: 164 ident: bib19 article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning publication-title: Nat Biomed Eng – volume: 135 start-page: 1170 year: 2017 end-page: 1176 ident: bib22 article-title: Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks publication-title: JAMA Ophthalmol – volume: 2016 start-page: 1288 year: 2016 end-page: 1291 ident: bib10 article-title: Automatic anterior chamber angle structure segmentation in AS-OCT image based on label transfer publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 154 start-page: 39 year: 2012 end-page: 46 ident: bib30 article-title: Determinants of lens vault and association with narrow angles in patients From Singapore publication-title: Am J Ophthalmol – volume: 129 start-page: 569 year: 2011 end-page: 574 ident: bib32 article-title: Association of narrow angles with anterior chamber area and volume measured with anterior-segment optical coherence tomography publication-title: Arch Ophthalmol – volume: 125 start-page: 1199 year: 2018 end-page: 1206 ident: bib26 article-title: Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs publication-title: Ophthalmology – volume: 135 start-page: 252 year: 2017 end-page: 258 ident: bib7 article-title: Association of baseline anterior segment parameters with the development of incident gonioscopic angle closure publication-title: JAMA Ophthalmol – volume: 318 start-page: 2199 year: 2017 end-page: 2210 ident: bib16 article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer publication-title: JAMA – volume: 22 start-page: 1345 year: 2010 end-page: 1359 ident: bib36 article-title: A Survey on Transfer Learning publication-title: IEEE Trans Knowl Data Eng – volume: 36 start-page: 1930 year: 2017 end-page: 1938 ident: bib29 article-title: Segmentation and quantification for angle-closure glaucoma assessment in anterior segment OCT publication-title: IEEE Trans Med Imaging – volume: 123 start-page: 1974 year: 2016 end-page: 1980 ident: bib25 article-title: Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier publication-title: Ophthalmology – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: bib38 article-title: ImageNet classification with deep convolutional neural networks publication-title: Communications of the ACM – volume: 318 start-page: 2211 year: 2017 end-page: 2223 ident: bib21 article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes publication-title: JAMA – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: bib41 article-title: Visualizing Data using t-SNE publication-title: J Mach Learn Res – volume: 85 start-page: 1277 year: 2001 end-page: 1282 ident: bib2 article-title: Glaucoma in China: how big is the problem? publication-title: Br J Ophthalmol – volume: 2 start-page: 1 year: 2011 end-page: 27 ident: bib34 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans Intell Syst Technol – volume: 92 start-page: 1612 year: 2008 end-page: 1616 ident: bib42 article-title: Quantitative analysis of anterior segment optical coherence tomography images: the Zhongshan Angle Assessment Program publication-title: Br J Ophthalmol – volume: 127 start-page: 256 year: 2009 end-page: 260 ident: bib8 article-title: High-definition optical coherence tomography imaging of the iridocorneal angle of the eye publication-title: Arch Ophthalmol – volume: 90 start-page: 262 issue: 3 year: 2006 ident: 10.1016/j.ajo.2019.02.028_bib1 article-title: The number of people with glaucoma worldwide in 2010 and 2020 publication-title: Br J Ophthalmol doi: 10.1136/bjo.2005.081224 – volume: 128 start-page: 1321 issue: 10 year: 2010 ident: 10.1016/j.ajo.2019.02.028_bib33 article-title: Diagnostic performance of anterior chamber angle measurements for detecting eyes with narrow angles publication-title: Arch Ophthalmol doi: 10.1001/archophthalmol.2010.231 – volume: 542 start-page: 115 issue: 7639 year: 2017 ident: 10.1016/j.ajo.2019.02.028_bib17 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – volume: 66 start-page: 132 year: 2018 ident: 10.1016/j.ajo.2019.02.028_bib4 article-title: Anterior segment optical coherence tomography publication-title: Prog Retin Eye Res doi: 10.1016/j.preteyeres.2018.04.002 – volume: 120 start-page: 48 issue: 1 year: 2013 ident: 10.1016/j.ajo.2019.02.028_bib6 article-title: Classification algorithms based on anterior segment optical coherence tomography measurements for detection of angle closure publication-title: Ophthalmology doi: 10.1016/j.ophtha.2012.07.005 – volume: 318 start-page: 2211 issue: 22 year: 2017 ident: 10.1016/j.ajo.2019.02.028_bib21 article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes publication-title: JAMA doi: 10.1001/jama.2017.18152 – volume: 36 start-page: 1930 issue: 9 year: 2017 ident: 10.1016/j.ajo.2019.02.028_bib29 article-title: Segmentation and quantification for angle-closure glaucoma assessment in anterior segment OCT publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2703147 – volume: 9 start-page: 2579 issue: Nov year: 2008 ident: 10.1016/j.ajo.2019.02.028_bib41 article-title: Visualizing Data using t-SNE publication-title: J Mach Learn Res – volume: 125 start-page: 1199 issue: 8 year: 2018 ident: 10.1016/j.ajo.2019.02.028_bib26 article-title: Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs publication-title: Ophthalmology doi: 10.1016/j.ophtha.2018.01.023 – volume: 91 start-page: 709 year: 1971 ident: 10.1016/j.ajo.2019.02.028_bib39 article-title: The normal development of the human anterior chamber angle: a new system of descriptive grading publication-title: Trans Ophthalmol Soc U K – volume: 154 start-page: 39 issue: 1 year: 2012 ident: 10.1016/j.ajo.2019.02.028_bib30 article-title: Determinants of lens vault and association with narrow angles in patients From Singapore publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2012.01.015 – volume: 127 start-page: 43 issue: 1 year: 1999 ident: 10.1016/j.ajo.2019.02.028_bib44 article-title: Ultrasound biomicroscopic quantitative analysis of light-dark changes associated with pupillary block publication-title: Am J Ophthalmol doi: 10.1016/S0002-9394(98)00283-9 – volume: 126 start-page: 181 issue: 2 year: 2008 ident: 10.1016/j.ajo.2019.02.028_bib9 article-title: Assessment of the scleral spur in anterior segment optical coherence tomography images publication-title: Arch Ophthalmol doi: 10.1001/archophthalmol.2007.46 – volume: 85 start-page: 1277 issue: 11 year: 2001 ident: 10.1016/j.ajo.2019.02.028_bib2 article-title: Glaucoma in China: how big is the problem? publication-title: Br J Ophthalmol doi: 10.1136/bjo.85.11.1277 – volume: 121 start-page: 2081 issue: 11 year: 2014 ident: 10.1016/j.ajo.2019.02.028_bib3 article-title: Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis publication-title: Ophthalmology doi: 10.1016/j.ophtha.2014.05.013 – volume: 2014 start-page: 942367 year: 2014 ident: 10.1016/j.ajo.2019.02.028_bib43 article-title: Anterior chamber angle shape analysis and classification of glaucoma in SS-OCT images publication-title: J Ophthalmol doi: 10.1155/2014/942367 – volume: 2 start-page: 1 issue: 3 year: 2011 ident: 10.1016/j.ajo.2019.02.028_bib34 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans Intell Syst Technol doi: 10.1145/1961189.1961199 – start-page: 1 year: 2018 ident: 10.1016/j.ajo.2019.02.028_bib23 article-title: A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography publication-title: Ophthalmology – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 10.1016/j.ajo.2019.02.028_bib38 article-title: ImageNet classification with deep convolutional neural networks publication-title: Communications of the ACM doi: 10.1145/3065386 – volume: 2 start-page: 158 issue: 3 year: 2018 ident: 10.1016/j.ajo.2019.02.028_bib19 article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning publication-title: Nat Biomed Eng doi: 10.1038/s41551-018-0195-0 – year: 2018 ident: 10.1016/j.ajo.2019.02.028_bib12 article-title: Multi-context deep network for angle-closure glaucoma screening in anterior segment OCT – volume: 92 start-page: 1612 issue: 12 year: 2008 ident: 10.1016/j.ajo.2019.02.028_bib42 article-title: Quantitative analysis of anterior segment optical coherence tomography images: the Zhongshan Angle Assessment Program publication-title: Br J Ophthalmol doi: 10.1136/bjo.2007.129932 – volume: 2012 start-page: 3167 year: 2012 ident: 10.1016/j.ajo.2019.02.028_bib13 article-title: Anterior chamber angle classification using multiscale histograms of oriented gradients for glaucoma subtype identification publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 135 start-page: 1170 issue: 11 year: 2017 ident: 10.1016/j.ajo.2019.02.028_bib22 article-title: Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks publication-title: JAMA Ophthalmol doi: 10.1001/jamaophthalmol.2017.3782 – volume: 1 start-page: 0024 issue: 24 year: 2017 ident: 10.1016/j.ajo.2019.02.028_bib24 article-title: An artificial intelligence platform for the multihospital collaborative management of congenital cataracts publication-title: Nat Biomed Eng doi: 10.1038/s41551-016-0024 – volume: 135 start-page: 252 issue: 3 year: 2017 ident: 10.1016/j.ajo.2019.02.028_bib7 article-title: Association of baseline anterior segment parameters with the development of incident gonioscopic angle closure publication-title: JAMA Ophthalmol doi: 10.1001/jamaophthalmol.2016.5847 – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.ajo.2019.02.028_bib15 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw doi: 10.1016/j.neunet.2014.09.003 – year: 2015 ident: 10.1016/j.ajo.2019.02.028_bib35 – volume: 2016 start-page: 1288 year: 2016 ident: 10.1016/j.ajo.2019.02.028_bib10 article-title: Automatic anterior chamber angle structure segmentation in AS-OCT image based on label transfer publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 172 start-page: 1122 issue: 5 year: 2018 ident: 10.1016/j.ajo.2019.02.028_bib18 article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning publication-title: Cell doi: 10.1016/j.cell.2018.02.010 – volume: 37 start-page: 2493 issue: 11 year: 2018 ident: 10.1016/j.ajo.2019.02.028_bib28 article-title: Disc-aware ensemble network for glaucoma screening from fundus image publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2837012 – volume: 117 start-page: 1967 issue: 10 year: 2010 ident: 10.1016/j.ajo.2019.02.028_bib31 article-title: Novel association of smaller anterior chamber width with angle closure in Singaporeans publication-title: Ophthalmology doi: 10.1016/j.ophtha.2010.02.007 – volume: 114 start-page: 2362 issue: 12 year: 2007 ident: 10.1016/j.ajo.2019.02.028_bib5 article-title: Anterior segment optical coherence tomography publication-title: Ophthalmology doi: 10.1016/j.ophtha.2007.05.050 – volume: 318 start-page: 2199 issue: 22 year: 2017 ident: 10.1016/j.ajo.2019.02.028_bib16 article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer publication-title: JAMA doi: 10.1001/jama.2017.14585 – volume: 37 start-page: 1597 issue: 7 year: 2018 ident: 10.1016/j.ajo.2019.02.028_bib27 article-title: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2791488 – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 10.1016/j.ajo.2019.02.028_bib37 article-title: ImageNet large scale visual recognition challenge publication-title: Int J Comput Vis doi: 10.1007/s11263-015-0816-y – volume: 58 start-page: 510 issue: 4 year: 1957 ident: 10.1016/j.ajo.2019.02.028_bib40 article-title: Width and pigmentation of the angle of the anterior chamber; a system of grading by gonioscopy publication-title: AMA Arch Ophthalmol doi: 10.1001/archopht.1957.00940010526005 – volume: 2013 start-page: 7380 year: 2013 ident: 10.1016/j.ajo.2019.02.028_bib11 article-title: Automated anterior chamber angle localization and glaucoma type classification in OCT images publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 22 start-page: 1345 issue: 10 year: 2010 ident: 10.1016/j.ajo.2019.02.028_bib36 article-title: A Survey on Transfer Learning publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2009.191 – volume: 127 start-page: 256 issue: 3 year: 2009 ident: 10.1016/j.ajo.2019.02.028_bib8 article-title: High-definition optical coherence tomography imaging of the iridocorneal angle of the eye publication-title: Arch Ophthalmol doi: 10.1001/archophthalmol.2009.22 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.ajo.2019.02.028_bib14 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 304 start-page: 649 issue: 6 year: 2016 ident: 10.1016/j.ajo.2019.02.028_bib20 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA – volume: 129 start-page: 569 issue: 5 year: 2011 ident: 10.1016/j.ajo.2019.02.028_bib32 article-title: Association of narrow angles with anterior chamber area and volume measured with anterior-segment optical coherence tomography publication-title: Arch Ophthalmol doi: 10.1001/archophthalmol.2011.68 – volume: 123 start-page: 1974 issue: 9 year: 2016 ident: 10.1016/j.ajo.2019.02.028_bib25 article-title: Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier publication-title: Ophthalmology doi: 10.1016/j.ophtha.2016.05.029 |
| SSID | ssj0006747 |
| Score | 2.5990038 |
| Snippet | Anterior segment optical coherence tomography (AS-OCT) provides an objective imaging modality for visually identifying anterior segment structures. An... PurposeAnterior segment optical coherence tomography (AS-OCT) provides an objective imaging modality for visually identifying anterior segment structures. An... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 37 |
| SubjectTerms | Anterior Eye Segment - diagnostic imaging Artificial Intelligence Automation Data analysis Datasets Deep Learning Diabetic retinopathy Female Funding Glaucoma Glaucoma, Angle-Closure - diagnosis Gonioscopy - methods Humans Lasers Machine learning Male Medical imaging Middle Aged Ophthalmology ROC Curve Tomography, Optical Coherence - methods |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA96B4oPfuuuTIngk9LRNGmSPpbpmMKm4C7Mp5Lmnlw2u_ay2yL613vSpsXPTaFvOaeQ5CT5Jeec3yHkxZJBqhnjkcIDIcKVKCOTlCkCuaVhxgFo5xOFD4_kwUK8O0lPAlm0z4X5yX_fx2GZM5-jx7KeWjPR18mWTBF2z8jW4uhD_mmEtxnvix764tkR0xkbPZh_-sffzqDfMeYtcrOr1-brF1NVP5w7-3eGiK1NT1fow00-73ZtuWu__ULm-E9duktuB_RJ88Fc7pFrUN8nNw6Df_0BaXP6GmBNA-vqig6E5hSRLc27tkF4C0ua16sKor2q8a-LqND24Vw1Pa2xyXM_o_RHWPl3R_p-3T-WU58G0icW0uPmPNBk07fnuJttHpLF_pvjvYMo1GWIrFCijbjTCSSpyaT3gQIog7CFKauYscIlsSydE1IAW1qnNLgMcB9RacpVDBoxFn9EZnVTwzah3ElrnYyFhUwgksHLl0LJJC2lykol5iQeZ6qwgbTc186oijE67azA0Sz8aBZxgp-ek5eTynpg7LhMOBmnvxhTUXHzLHDOLlMSk1LAKQP-uEptZ7SvImwUmyLpISjCJj4nz6dmXOLeb2NqaDqUQXvGazxiuzl5PNjl1DMea5Fx3_JqMtSru_3kv6R3yKy96OApoq-2fBbW3Xc6Vybn priority: 102 providerName: Unpaywall |
| Title | A Deep Learning System for Automated Angle-Closure Detection in Anterior Segment Optical Coherence Tomography Images |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S000293941930087X https://dx.doi.org/10.1016/j.ajo.2019.02.028 https://www.ncbi.nlm.nih.gov/pubmed/30849350 https://www.proquest.com/docview/2250563813 https://www.proquest.com/docview/2189549750 https://doi.org/10.1016/j.ajo.2019.02.028 |
| UnpaywallVersion | publishedVersion |
| Volume | 203 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1891 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006747 issn: 1879-1891 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-1891 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006747 issn: 1879-1891 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-1891 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006747 issn: 1879-1891 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-1891 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006747 issn: 1879-1891 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1891 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006747 issn: 1879-1891 databaseCode: AKRWK dateStart: 19950101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9KBT8exM96WssKPimx2WSTTR7DabkqPQV7cD4tm9zscSVNQpuj-OLf7kyyiYrSghAIyc5Admd35pedj2Xs9UpAlAgRegoNgocrMfZMkEcI5FZGGAuQWEoUPpnHs4X8uIyWO2w65MJQWKXT_b1O77S1e3PoRvOw2Wwox9dHW5VKhCBUWG1JGexS0SkG7378CvOIlVQDBCbqwbPZxXiZM8r_E2lXtpMOZP-3bfobe95jd7ZVY75fmbL8zR4dPWD3HZDkWf-tD9kOVI_Y7RPnKn_M2oy_B2i4K6C65n1tco4glWfbtkakCiueVesSvGlZ00YhMrRdZFbFNxU2URlnpP4Ka9pC5J-bbt-bU0ZHlyPIT-tzV_GaH5-jYrp8whZHH06nM88dseAVUsnWC20SQBCZNCZ3JoAyiECEKpQwhbSBH-fWyliCWBVWJWBTQJWgoihUPiQIl8KnbLeqK3jGeGjjorCxLwtAmagI_6MUUgZRHqs0V3LC_GFwdeHqj9MxGKUeAs3ONMpDkzy0H-CVTNibkaXpi29cRxwMEtNDVinqQY2m4TomOTL9Me1uYtsfpoR2a_5SBx2aRAQUTtirsRlXK7lgTAX1FmlEQn5VhGkTttdPpbFnoZ_INKSWt-Pcurnbz_-vBy_YXXrqA4_32W57sYWXCK_a_KBbPwfsVnb8aTbH-2L-Jfv2E1fXIlE |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIlE4IN4ECiwSJ5BbP9Ze-xgFqhSaciCVclttnNkolWtb1BHiwm9nxl4bEKiVkHzyzEjex8x83nkswJtVgHEaBJGnyCF4pImJZ8JlTEBuZQJjEVPLhcKz02R6Jj8u4sUOTPpaGE6rdLa_s-mttXZvDt1sHtabDdf4-uSrMkkQhBurLW7ATRmHiv_ADn78yvNIlFQ9Bmb2PrTZJnmZcy4ADLK2byffyP5v5_Q3-LwDe9uyNt-_maL4zSEd3YO7DkmKcfex92EHywdwa-Zi5Q-hGYv3iLVwHVTXomtOLgilivG2qQiq4kqMy3WB3qSo-KSQBJo2NasUm5JI3MeZuL_gms8Qxee6PfgWXNLRFgmKeXXhWl6L4wuyTJeP4Ozow3wy9dwdC14ulWy8yKYhhrHJEo5nIipDECRQuQpMLm3oJ0trZSIxWOVWpWgzJJug4jhSPqaEl6LHsFtWJT4FEdkkz23iyxxpUVRMP1KKOMN4mahsqeQI_H5yde4akPM9GIXuM83ONa2H5vXQfkhPOoK3g0jddd-4ijnsV0z3ZaVkCDX5hquE5CD0x767Tmy_3xLaKf2lDls4SRAoGsHrgUzqyjEYU2K1JZ4g5cAq4bQRPOm20jCyyE9lFjHl3bC3rh_2s_8bwSvYm85nJ_rk-PTTc7jNlC4LeR92m69bfEFYq1m-bHXpJ8ZgIjY |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA96B4oPfuuuTIngk9LRNGmSPpbpmMKm4C7Mp5Lmnlw2u_ay2yL613vSpsXPTaFvOaeQ5CT5Jeec3yHkxZJBqhnjkcIDIcKVKCOTlCkCuaVhxgFo5xOFD4_kwUK8O0lPAlm0z4X5yX_fx2GZM5-jx7KeWjPR18mWTBF2z8jW4uhD_mmEtxnvix764tkR0xkbPZh_-sffzqDfMeYtcrOr1-brF1NVP5w7-3eGiK1NT1fow00-73ZtuWu__ULm-E9duktuB_RJ88Fc7pFrUN8nNw6Df_0BaXP6GmBNA-vqig6E5hSRLc27tkF4C0ua16sKor2q8a-LqND24Vw1Pa2xyXM_o_RHWPl3R_p-3T-WU58G0icW0uPmPNBk07fnuJttHpLF_pvjvYMo1GWIrFCijbjTCSSpyaT3gQIog7CFKauYscIlsSydE1IAW1qnNLgMcB9RacpVDBoxFn9EZnVTwzah3ElrnYyFhUwgksHLl0LJJC2lykol5iQeZ6qwgbTc186oijE67azA0Sz8aBZxgp-ek5eTynpg7LhMOBmnvxhTUXHzLHDOLlMSk1LAKQP-uEptZ7SvImwUmyLpISjCJj4nz6dmXOLeb2NqaDqUQXvGazxiuzl5PNjl1DMea5Fx3_JqMtSru_3kv6R3yKy96OApoq-2fBbW3Xc6Vybn |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+System+for+Automated+Angle-Closure+Detection+in+Anterior+Segment+Optical+Coherence+Tomography+Images&rft.jtitle=American+journal+of+ophthalmology&rft.au=Fu%2C+Huazhu&rft.au=Baskaran%2C+Mani&rft.au=Xu%2C+Yanwu&rft.au=Lin%2C+Stephen&rft.date=2019-07-01&rft.pub=Elsevier+Inc&rft.issn=0002-9394&rft.volume=203&rft.spage=37&rft.epage=45&rft_id=info:doi/10.1016%2Fj.ajo.2019.02.028&rft.externalDocID=S000293941930087X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9394&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9394&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9394&client=summon |