Reinforcement Learning-Based Routing Protocols for Vehicular Ad Hoc Networks: A Comparative Survey
Vehicular-ad hoc networks (VANETs) hold great importance because of their potentials in road safety improvement, traffic monitoring, and in-vehicle infotainment services. Due to high mobility, sparse connectivity, road-side obstacles, and shortage of roadside units, the links between the vehicles ar...
Saved in:
Published in | IEEE access Vol. 9; pp. 27552 - 27587 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2021.3058388 |
Cover
Abstract | Vehicular-ad hoc networks (VANETs) hold great importance because of their potentials in road safety improvement, traffic monitoring, and in-vehicle infotainment services. Due to high mobility, sparse connectivity, road-side obstacles, and shortage of roadside units, the links between the vehicles are subject to frequent disconnections; consequently, routing is crucial. Recently, to achieve more efficient routing, reinforcement learning (RL)-based routing algorithms have been investigated. RL represents a class of artificial intelligence that implements a learning procedure based on previous experiences and provides a better solution for future operations. RL algorithms are more favorable than other optimization techniques owing to their modest usage of memory and computational resources. Because a VANET deals with passenger safety, any kind of flaw is intolerable in VANET routing. Fortunately, RL-based algorithms have the potentials to optimize the different quality-of-service parameters of VANET routing such as bandwidth, end-to-end delay, throughput, control overhead, and packet delivery ratio. However, to the best of the authors' knowledge, surveys on RL-based routing protocols for VANETs have not been conducted. To fulfill this gap in the literature and to provide future research directions, it is necessary to aggregate the scattered works on this topic. This study presents a comparative investigation of RL-based routing protocols, by considering their working procedure, advantages, disadvantages, and applications. They are qualitatively compared in terms of key features, characteristics, optimization criteria, performance evaluation techniques, and implemented RL techniques. Lastly, open issues and research challenges are discussed to make RL-based VANET routing protocols more efficient in the future. |
---|---|
AbstractList | Vehicular-ad hoc networks (VANETs) hold great importance because of their potentials in road safety improvement, traffic monitoring, and in-vehicle infotainment services. Due to high mobility, sparse connectivity, road-side obstacles, and shortage of roadside units, the links between the vehicles are subject to frequent disconnections; consequently, routing is crucial. Recently, to achieve more efficient routing, reinforcement learning (RL)-based routing algorithms have been investigated. RL represents a class of artificial intelligence that implements a learning procedure based on previous experiences and provides a better solution for future operations. RL algorithms are more favorable than other optimization techniques owing to their modest usage of memory and computational resources. Because a VANET deals with passenger safety, any kind of flaw is intolerable in VANET routing. Fortunately, RL-based algorithms have the potentials to optimize the different quality-of-service parameters of VANET routing such as bandwidth, end-to-end delay, throughput, control overhead, and packet delivery ratio. However, to the best of the authors' knowledge, surveys on RL-based routing protocols for VANETs have not been conducted. To fulfill this gap in the literature and to provide future research directions, it is necessary to aggregate the scattered works on this topic. This study presents a comparative investigation of RL-based routing protocols, by considering their working procedure, advantages, disadvantages, and applications. They are qualitatively compared in terms of key features, characteristics, optimization criteria, performance evaluation techniques, and implemented RL techniques. Lastly, open issues and research challenges are discussed to make RL-based VANET routing protocols more efficient in the future. |
Author | Moh, Sangman Nazib, Rezoan Ahmed |
Author_xml | – sequence: 1 givenname: Rezoan Ahmed orcidid: 0000-0002-0652-6711 surname: Nazib fullname: Nazib, Rezoan Ahmed organization: Department of Computer Engineering, Chosun University, Gwangju, South Korea – sequence: 2 givenname: Sangman orcidid: 0000-0001-9175-3400 surname: Moh fullname: Moh, Sangman email: smmoh@chosun.ac.kr organization: Department of Computer Engineering, Chosun University, Gwangju, South Korea |
BookMark | eNp9kU9v1DAQxS1UJErpJ-jFEucs_hM7NrclKrTSqkVd4Go5zqT1ko0X2ynqt8clLUIcmItnRu_3NNZ7jY6mMAFCZ5SsKCX63bptz7fbFSOMrjgRiiv1Ah0zKnXFBZdHf_Wv0GlKO1JKlZVojlF3A34aQnSwhynjDdg4-em2-mAT9PgmzLlM-HMMObgwJlyk-BvceTePNuJ1jy-Cw1eQf4b4Pb3Ha9yG_cFGm_094O0c7-HhDXo52DHB6dN7gr5-PP_SXlSb60-X7XpTubqpc8UtkWqwHR0IdENHJTgqLIG-UZQOtWuI7p0Qkqhe1Eo5LgVTrJEDs7WQUvITdLn49sHuzCH6vY0PJlhvfi9CvDU2Zu9GMEz0tKEgCbdD3ViilOZOKWaZ7jst6-L1dvE6xPBjhpTNLsxxKucbVmuiCONcF5VeVC6GlCIMxvlcvh6mHK0fDSXmMSGzJGQeEzJPCRWW_8M-X_x_6myhPAD8ITQXVHPCfwETAZ1N |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_2174_0122103279273609231213075003 crossref_primary_10_3390_math10203731 crossref_primary_10_1007_s40747_023_01241_x crossref_primary_10_1109_ACCESS_2022_3216066 crossref_primary_10_3390_s24010040 crossref_primary_10_1016_j_cose_2025_104352 crossref_primary_10_1109_ACCESS_2021_3128516 crossref_primary_10_1007_s40747_021_00629_x crossref_primary_10_1109_TITS_2023_3304127 crossref_primary_10_1109_JIOT_2022_3175677 crossref_primary_10_1007_s11277_021_09166_9 crossref_primary_10_3390_math11214426 crossref_primary_10_3390_smartcities7060125 crossref_primary_10_32604_cmc_2022_028280 crossref_primary_10_1016_j_ijin_2023_10_001 crossref_primary_10_1109_JIOT_2022_3162849 crossref_primary_10_1007_s42979_024_03606_6 crossref_primary_10_1007_s10586_024_04322_9 crossref_primary_10_1016_j_jnca_2022_103497 crossref_primary_10_1002_ett_4914 crossref_primary_10_1016_j_dcan_2024_11_007 crossref_primary_10_3390_info16010008 crossref_primary_10_3390_s22218222 crossref_primary_10_3390_a16080381 crossref_primary_10_3390_electronics13112099 crossref_primary_10_1088_1742_6596_2325_1_012042 crossref_primary_10_4316_AECE_2024_04003 crossref_primary_10_1109_ACCESS_2021_3074180 crossref_primary_10_3390_su13116187 crossref_primary_10_3390_su16219239 crossref_primary_10_3390_info15050283 crossref_primary_10_3390_math13050833 crossref_primary_10_1109_TAES_2022_3167386 crossref_primary_10_1016_j_icte_2024_05_001 crossref_primary_10_1587_transcom_2021EBP3210 crossref_primary_10_3390_designs6060121 crossref_primary_10_3390_math10244673 crossref_primary_10_1016_j_eswa_2022_118477 crossref_primary_10_1016_j_vehcom_2022_100455 crossref_primary_10_1109_ACCESS_2023_3314732 crossref_primary_10_1007_s11277_024_11528_y crossref_primary_10_1109_JSEN_2023_3345947 crossref_primary_10_32604_iasc_2022_024091 crossref_primary_10_1007_s10586_024_04831_7 crossref_primary_10_1109_ACCESS_2022_3152767 crossref_primary_10_1109_ACCESS_2022_3221446 crossref_primary_10_1016_j_pmcj_2022_101724 |
Cites_doi | 10.1007/978-3-642-27645-3_1 10.1155/2019/2423915 10.1109/JIOT.2019.2957778 10.1007/s12530-013-9093-6 10.1109/TVT.2015.2481464 10.3390/s20195685 10.1109/FGCN.2015.17 10.1109/VTCSpring.2019.8746494 10.1016/j.cie.2018.04.037 10.1109/WC-M.2006.250355 10.1109/IWCMC48107.2020.9148237 10.1109/ACCESS.2020.2963850 10.1016/j.comnet.2017.07.017 10.1109/ICTIS.2019.8883680 10.1109/ITOEC49072.2020.9141805 10.1016/B978-1-55860-200-7.50075-1 10.1109/PCCC.2014.7017079 10.1145/3272036.3272037 10.1109/ICTEmSys.2019.8695963 10.1007/s00779-012-0600-8 10.1007/s10489-018-1368-y 10.1109/ITSC.2019.8917306 10.1109/COMST.2018.2841901 10.1109/TSMCC.2007.913919 10.1145/3007748.3007762 10.1109/TNSE.2020.3017751 10.1109/ICACCI.2017.8126198 10.1109/ICOS.2016.7882000 10.1109/MoWNet.2016.7496597 10.1109/TCYB.2016.2542923 10.1111/j.1540-5915.1978.tb00753.x 10.1109/ACCESS.2020.2989790 10.1109/INFCOM.2004.1354517 10.1109/CISIS.2013.18 10.1177/0037549709345997 10.1007/BF00992698 10.1016/j.vehcom.2017.04.004 10.1016/j.pmcj.2018.07.004 10.1109/TSG.2018.2790704 10.1109/JSEN.2020.3034600 10.1109/MWC.2009.5281251 10.1016/j.jnca.2016.10.014 10.1109/NMIC.2019.00008 10.1007/s11277-018-5809-z 10.1016/S0004-3702(02)00121-2 10.1007/978-3-642-21937-5_1 10.1109/ICSESS.2015.7339127 10.1109/ICVES.2012.6294332 10.1561/2300000021 10.1109/MPRV.2008.80 10.1109/ICICES.2014.7033833 10.1007/s12652-018-0819-y 10.1109/TVT.2018.2789466 10.1109/ACCESS.2018.2879758 10.1109/ICPHYS.2018.8390808 10.1109/PIMRC.2016.7794599 10.1109/INFCOM.2003.1208920 10.1613/jair.301 10.3390/s20092708 10.1007/978-3-319-74439-1_10 10.1109/ICETET.2013.18 10.1016/j.vehcom.2017.01.002 10.1109/ICC.2009.5198623 10.1109/GLOCOM.2018.8647426 10.1023/A:1007678930559 10.1109/COMST.2019.2916583 10.1109/MWC.2017.1600117 10.1109/TVT.2015.2482904 10.1109/TMC.2016.2607748 10.1109/ICSESS.2010.5552320 10.1109/IC3I.2014.7019587 10.1587/transcom.E93.B.1431 10.1016/j.comcom.2019.11.011 10.1109/TSMCA.2005.846390 10.1109/IWCMC.2013.6583700 10.1109/TMC.2004.1261816 10.15837/ijccc.2020.5.3928 10.1007/s11277-017-3987-8 10.1109/ACCESS.2015.2502949 10.1016/S0377-2217(02)00363-6 10.1109/IMSAA.2009.5439454 10.1007/978-981-10-6571-2_303 10.1049/iet-com.2010.0258 10.1109/ISADS.2011.22 10.1109/VTCSpring.2015.7145689 10.1016/j.procs.2015.07.456 10.1109/TVT.2013.2273945 10.1109/AiDAS47888.2019.8970890 10.1109/TVT.2011.2173510 10.1007/s11235-017-0280-9 10.1109/ACCESS.2019.2913776 10.1111/coin.12261 10.1109/TPDS.2011.102 10.1109/TCCN.2019.2944399 10.1002/wcm.859 10.1109/CAIS.2019.8769454 10.1109/MWC.2007.4407231 10.1109/COMST.2016.2611524 10.1109/THS.2017.7943477 10.1109/MSP.2017.2743240 10.3390/app10124077 10.1049/iet-ifs.2010.0160 10.1109/ACCESS.2019.2891073 10.1109/ICCMC.2019.8819723 10.1016/j.vehcom.2018.01.006 10.1109/JCN.2019.000056 10.1109/ACCESS.2018.2875739 10.1007/s11277-012-0594-6 10.1109/ICAIT47043.2019.8987282 10.1016/j.adhoc.2018.11.011 10.1287/trsc.1090.0295 10.1109/ICCS.2018.8689228 10.1109/TVT.2018.2871606 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2021.3058388 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 27587 |
ExternalDocumentID | oai_doaj_org_article_25d171e603af47a08893c882a29db964 10_1109_ACCESS_2021_3058388 9351930 |
Genre | orig-research |
GrantInformation_xml | – fundername: Chosun University, 2020 grantid: K202160030 funderid: 10.13039/501100002457 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c474t-3a068fab1f0ebfb16ec15a0ed7811f4c709dc55608d5488c36528276f2a456663 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:20:03 EDT 2025 Sun Jun 29 12:31:26 EDT 2025 Tue Jul 01 04:03:16 EDT 2025 Thu Apr 24 22:57:27 EDT 2025 Wed Aug 27 05:45:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-3a068fab1f0ebfb16ec15a0ed7811f4c709dc55608d5488c36528276f2a456663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9175-3400 0000-0002-0652-6711 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9351930 |
PQID | 2490802339 |
PQPubID | 4845423 |
PageCount | 36 |
ParticipantIDs | ieee_primary_9351930 proquest_journals_2490802339 crossref_primary_10_1109_ACCESS_2021_3058388 doaj_primary_oai_doaj_org_article_25d171e603af47a08893c882a29db964 crossref_citationtrail_10_1109_ACCESS_2021_3058388 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref59 ref58 ref53 ref55 ref54 van otterlo (ref29) 2012; 12 mitchell (ref13) 2013 abuelenin (ref104) 2014 gao (ref90) 2020 ref51 fujimoto (ref40) 2019 ref45 rodoshi (ref16) 2020; 20 ref48 van eenennaam (ref110) 2009 tasnim rodoshi (ref50) 2020 ref47 michel (ref37) 2010 ref49 sharma (ref1) 2018; 12 ref8 ref9 ref4 ref3 ref6 ref5 ref100 ref101 thrun (ref35) 1993 singh (ref7) 2015 asadi (ref38) 2017 ref34 wu (ref67) 2010; e93 b ref31 ref30 ref33 ref32 ref39 sheikh (ref127) 2019; 2019 ref23 ref26 ref25 ref20 ref22 ref21 adrian (ref105) 2019 schulman (ref41) 2015 ref27 google (ref43) 2018 ref12 ref128 ref15 ref129 ref14 ref126 ref97 ref96 ref124 ref99 ref11 ref125 ref98 ref10 habib (ref44) 2016 ref17 ref19 ref18 ref133 ref93 ref92 gaskett (ref46) 1999 ref131 ref95 abuashour (ref116) 2018 ref132 ref94 ref130 ref91 ref89 ref86 ref85 ref88 ref87 williams (ref36) 1992 chettibi (ref24) 2011; 162 sutton (ref28) 2018 ref82 ref81 schulman (ref42) 2017 ref84 bowling (ref52) 2001 valantina (ref64) 2015; 57 ref83 ref80 ref79 ref108 marchang (ref114) 2012; 6 ref78 ref109 ref106 ref107 ref75 ref74 ref77 ref102 ref76 ref103 ref2 ref71 ref111 ref70 ref112 ref73 ref72 ref68 ref119 ref117 ref69 ref118 ref115 ref63 ref66 ref113 ref65 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
References_xml | – volume: 12 start-page: 3 year: 2012 ident: ref29 article-title: Reinforcement learning and Markov decision processes publication-title: Adaptation Learning and Optimization doi: 10.1007/978-3-642-27645-3_1 – start-page: 1021 year: 2001 ident: ref52 article-title: Rational and convergent learning in stochastic games publication-title: Proc IJCAI Int Jt Artif Intell – volume: 2019 start-page: 1 year: 2019 ident: ref127 article-title: A comprehensive survey on VANET security services in traffic management system publication-title: Wireless Commun Mobile Comput doi: 10.1155/2019/2423915 – ident: ref51 doi: 10.1109/JIOT.2019.2957778 – year: 2013 ident: ref13 publication-title: An Artificial Intelligence Approach – ident: ref32 doi: 10.1007/s12530-013-9093-6 – ident: ref68 doi: 10.1109/TVT.2015.2481464 – start-page: 203 year: 2010 ident: ref37 article-title: Adaptive-greedy exploration in reinforcement learning based on value differences publication-title: Proc Annu Conf Artif Intell – ident: ref62 doi: 10.3390/s20195685 – ident: ref56 doi: 10.1109/FGCN.2015.17 – ident: ref45 doi: 10.1109/VTCSpring.2019.8746494 – ident: ref22 doi: 10.1016/j.cie.2018.04.037 – ident: ref108 doi: 10.1109/WC-M.2006.250355 – ident: ref75 doi: 10.1109/IWCMC48107.2020.9148237 – ident: ref60 doi: 10.1109/ACCESS.2020.2963850 – ident: ref106 doi: 10.1016/j.comnet.2017.07.017 – ident: ref5 doi: 10.1109/ICTIS.2019.8883680 – ident: ref73 doi: 10.1109/ITOEC49072.2020.9141805 – ident: ref119 doi: 10.1016/B978-1-55860-200-7.50075-1 – ident: ref55 doi: 10.1109/PCCC.2014.7017079 – ident: ref77 doi: 10.1145/3272036.3272037 – year: 2020 ident: ref90 article-title: V2 VR: Reliable hybrid-network-oriented V2 V data transmission and routing considering RSUs and connectivity probability publication-title: IEEE Trans Intell Transp Syst – ident: ref120 doi: 10.1109/ICTEmSys.2019.8695963 – ident: ref71 doi: 10.1007/s00779-012-0600-8 – ident: ref2 doi: 10.1007/s10489-018-1368-y – ident: ref34 doi: 10.1109/ITSC.2019.8917306 – ident: ref93 doi: 10.1109/COMST.2018.2841901 – ident: ref112 doi: 10.1109/TSMCC.2007.913919 – ident: ref130 doi: 10.1145/3007748.3007762 – ident: ref115 doi: 10.1109/TNSE.2020.3017751 – ident: ref122 doi: 10.1109/ICACCI.2017.8126198 – ident: ref131 doi: 10.1109/ICOS.2016.7882000 – ident: ref18 doi: 10.1109/MoWNet.2016.7496597 – ident: ref123 doi: 10.1109/TCYB.2016.2542923 – ident: ref109 doi: 10.1111/j.1540-5915.1978.tb00753.x – ident: ref12 doi: 10.1109/ACCESS.2020.2989790 – ident: ref99 doi: 10.1109/INFCOM.2004.1354517 – ident: ref98 doi: 10.1109/CISIS.2013.18 – ident: ref100 doi: 10.1177/0037549709345997 – ident: ref47 doi: 10.1007/BF00992698 – ident: ref132 doi: 10.1016/j.vehcom.2017.04.004 – ident: ref121 doi: 10.1016/j.pmcj.2018.07.004 – ident: ref126 doi: 10.1109/TSG.2018.2790704 – ident: ref91 doi: 10.1109/JSEN.2020.3034600 – ident: ref94 doi: 10.1109/MWC.2009.5281251 – ident: ref53 doi: 10.1016/j.jnca.2016.10.014 – ident: ref54 doi: 10.1109/NMIC.2019.00008 – ident: ref66 doi: 10.1007/s11277-018-5809-z – ident: ref103 doi: 10.1016/S0004-3702(02)00121-2 – volume: 162 start-page: 1 year: 2011 ident: ref24 article-title: A survey of reinforcement learning based routing protocols for mobile ad-hoc networks publication-title: Recent Trends in Wireless and Mobile Networks doi: 10.1007/978-3-642-21937-5_1 – ident: ref8 doi: 10.1109/ICSESS.2015.7339127 – ident: ref6 doi: 10.1109/ICVES.2012.6294332 – ident: ref30 doi: 10.1561/2300000021 – ident: ref97 doi: 10.1109/MPRV.2008.80 – ident: ref63 doi: 10.1109/ICICES.2014.7033833 – ident: ref83 doi: 10.1007/s12652-018-0819-y – ident: ref79 doi: 10.1109/TVT.2018.2789466 – ident: ref92 doi: 10.1109/ACCESS.2018.2879758 – ident: ref17 doi: 10.1109/ICPHYS.2018.8390808 – ident: ref72 doi: 10.1109/PIMRC.2016.7794599 – start-page: 618 year: 2020 ident: ref50 article-title: Deep reinforcement learning based dynamic resource allocation in cloud radio access networks publication-title: Proc Int Conf Inf Commun Technol Converg (ICTC) – ident: ref101 doi: 10.1109/INFCOM.2003.1208920 – ident: ref23 doi: 10.1613/jair.301 – start-page: 1 year: 2019 ident: ref105 article-title: MRV-M: A cluster stability in highway VANET using minimum relative velocity based on K-medoids publication-title: Proc 5th Int Conf Sci Technol (ICST) – volume: 20 start-page: 2708 year: 2020 ident: ref16 article-title: Resource management in cloud radio access network: Conventional and new approaches publication-title: SENSORS doi: 10.3390/s20092708 – start-page: 106 year: 2018 ident: ref116 article-title: Control overhead reduction in cluster-based VANET routing protocol publication-title: Ad Hoc Networks doi: 10.1007/978-3-319-74439-1_10 – ident: ref3 doi: 10.1109/ICETET.2013.18 – ident: ref125 doi: 10.1016/j.vehcom.2017.01.002 – year: 1992 ident: ref36 article-title: Tight performance bounds on greedy policies based on imperfect value functions – ident: ref85 doi: 10.1109/ICC.2009.5198623 – ident: ref80 doi: 10.1109/GLOCOM.2018.8647426 – ident: ref39 doi: 10.1023/A:1007678930559 – ident: ref48 doi: 10.1109/COMST.2019.2916583 – ident: ref113 doi: 10.1109/MWC.2017.1600117 – ident: ref117 doi: 10.1109/TVT.2015.2482904 – ident: ref84 doi: 10.1109/TMC.2016.2607748 – start-page: 243 year: 2017 ident: ref38 article-title: An alternative softmax operator for reinforcement learning publication-title: Proc PMLR – ident: ref10 doi: 10.1109/ICSESS.2010.5552320 – start-page: 2052 year: 2019 ident: ref40 article-title: Off-policy deep reinforcement learning without exploration publication-title: Proc PMLR – ident: ref9 doi: 10.1109/IC3I.2014.7019587 – start-page: 1 year: 2015 ident: ref7 article-title: Performance analysis of secure & efficient AODV (SE-AODV) with AODV routing protocol using NS2 publication-title: Proc 3rd Int Conf Rel Infocom Technol Optim Trends Future Directions (ICRITO) – volume: e93 b start-page: 1431 year: 2010 ident: ref67 article-title: Distributed reinforcement learning approach for vehicular ad-hoc networks publication-title: IEICE Trans Commun doi: 10.1587/transcom.E93.B.1431 – start-page: 1889 year: 2015 ident: ref41 article-title: Trust region policy optimization publication-title: Proc Int Conf Mach Learn – ident: ref21 doi: 10.1016/j.comcom.2019.11.011 – ident: ref19 doi: 10.1109/TSMCA.2005.846390 – ident: ref57 doi: 10.1109/IWCMC.2013.6583700 – ident: ref70 doi: 10.1109/TMC.2004.1261816 – ident: ref69 doi: 10.15837/ijccc.2020.5.3928 – ident: ref33 doi: 10.1007/s11277-017-3987-8 – year: 2017 ident: ref42 article-title: Proximal policy optimization algorithms publication-title: arXiv 1707 06347 – ident: ref25 doi: 10.1109/ACCESS.2015.2502949 – ident: ref102 doi: 10.1016/S0377-2217(02)00363-6 – ident: ref76 doi: 10.1109/IMSAA.2009.5439454 – ident: ref61 doi: 10.1007/978-981-10-6571-2_303 – ident: ref124 doi: 10.1049/iet-com.2010.0258 – ident: ref87 doi: 10.1109/ISADS.2011.22 – ident: ref26 doi: 10.1109/VTCSpring.2015.7145689 – volume: 57 start-page: 1394 year: 2015 ident: ref64 article-title: Q-learning based point to point data transfer in VANETs publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2015.07.456 – ident: ref65 doi: 10.1109/TVT.2013.2273945 – ident: ref118 doi: 10.1109/AiDAS47888.2019.8970890 – start-page: 170 year: 2016 ident: ref44 article-title: Optimal route selection in complex multi-stage supply chain networks using SARSA($\lambda$ ) publication-title: Proc 19th Int Conf Comput Inf Technol (ICCIT) – ident: ref88 doi: 10.1109/TVT.2011.2173510 – ident: ref128 doi: 10.1007/s11235-017-0280-9 – ident: ref111 doi: 10.1109/ACCESS.2019.2913776 – ident: ref58 doi: 10.1111/coin.12261 – ident: ref27 doi: 10.1109/TPDS.2011.102 – ident: ref81 doi: 10.1109/TCCN.2019.2944399 – start-page: 417 year: 1999 ident: ref46 article-title: Q-learning in continuous state and action spaces publication-title: Proc Australas Joint Conf Artif Intell – ident: ref95 doi: 10.1002/wcm.859 – ident: ref15 doi: 10.1109/CAIS.2019.8769454 – ident: ref89 doi: 10.1109/MWC.2007.4407231 – year: 1993 ident: ref35 article-title: Efficient exploration in reinforcement learning – ident: ref4 doi: 10.1109/COMST.2016.2611524 – ident: ref14 doi: 10.1109/THS.2017.7943477 – ident: ref49 doi: 10.1109/MSP.2017.2743240 – ident: ref86 doi: 10.3390/app10124077 – volume: 6 start-page: 77 year: 2012 ident: ref114 article-title: Light-weight trust-based routing protocol for mobile ad hoc networks publication-title: IET Inf Secur doi: 10.1049/iet-ifs.2010.0160 – ident: ref129 doi: 10.1109/ACCESS.2019.2891073 – ident: ref107 doi: 10.1109/ICCMC.2019.8819723 – start-page: 391 year: 2014 ident: ref104 article-title: Empirical study of traffic velocity distribution and its effect on VANETs connectivity publication-title: Proc Int Conf Connected Vehicles Expo (ICCVE) – ident: ref59 doi: 10.1016/j.vehcom.2018.01.006 – ident: ref11 doi: 10.1109/JCN.2019.000056 – volume: 12 start-page: 138 year: 2018 ident: ref1 article-title: A survey on intrusion detection systems and honeypot based proactive security mechanisms in VANETs and VANET cloud publication-title: Veh Commun – year: 2018 ident: ref28 publication-title: Reinforcement Learning An Introduction – ident: ref82 doi: 10.1109/ACCESS.2018.2875739 – start-page: 9971 year: 2018 ident: ref43 article-title: Non-delusional Q-learning and value iteration publication-title: Proc NIPS – ident: ref96 doi: 10.1007/s11277-012-0594-6 – ident: ref20 doi: 10.1109/ICAIT47043.2019.8987282 – ident: ref133 doi: 10.1016/j.adhoc.2018.11.011 – start-page: 1 year: 2009 ident: ref110 article-title: A survey of propagation models used in vehicular ad hoc network (VANET) research – ident: ref31 doi: 10.1287/trsc.1090.0295 – ident: ref78 doi: 10.1109/ICCS.2018.8689228 – ident: ref74 doi: 10.1109/TVT.2018.2871606 |
SSID | ssj0000816957 |
Score | 2.4430678 |
Snippet | Vehicular-ad hoc networks (VANETs) hold great importance because of their potentials in road safety improvement, traffic monitoring, and in-vehicle... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 27552 |
SubjectTerms | Algorithms Artificial intelligence intelligent algorithm intelligent transportation system Machine learning Mobile ad hoc networks Optimization Optimization techniques Passenger safety Performance evaluation Q-learning Quality of service quality-of-service routing Reinforcement learning Roadsides Routing Routing (telecommunications) routing protocol Routing protocols Safety Traffic safety Vehicular ad hoc network Vehicular ad hoc networks |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ1ar5ODR1WQ3yW68tUUpHkR84S1k81BBWulD8N87yca2IOjF4y7ZR2ZmM99MZr9B6JhVDlCQ1RmR1mXMU55VwkCUkou8FEyHzZ1QbXEtBg_s6ok_LbX6CjVhDT1wI7iznFtaUidIoT0rdajKKQzAQp1LW0sRmUCJJEvBVFyDKyokLxPNECXyrNvvw4wgIMzpKdh4VcReKwtXFBn7U4uVH-tydDaXG2g9oUTcbd5uE6244RZaW-IO3Eb1rYukpybm93DiSX3OeuCWLA6FPnCEb8aj6Qh0PcEwFD-6l9dYd4q7Fg9GBl83ReCTc9zF_QUPOL6bjT_c5w56uLy47w-y1DAhM6xk06zQRFRe19QTV_uaCmco18TZ8DupZ6YEhRgOGKeyEKhUphAcIq5S-FwDjgLssYtaw9HQ7SFce0YAigC8s4bpkOrwPDh_W0AMwplvo_xbdsokNvHQ1OJNxaiCSNUIXAWBqyTwNjqZX_TekGn8PrwXlDIfGpiw4wmwD5XsQ_1lH220HVQ6v4kMHQkL0kadbxWr9NVOVB52QQHEFHL_Px59gFbDdJqETQe1puOZOwQIM62PorV-Aas051k priority: 102 providerName: Directory of Open Access Journals |
Title | Reinforcement Learning-Based Routing Protocols for Vehicular Ad Hoc Networks: A Comparative Survey |
URI | https://ieeexplore.ieee.org/document/9351930 https://www.proquest.com/docview/2490802339 https://doaj.org/article/25d171e603af47a08893c882a29db964 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VntoD9IVYaCsfemy2edhOwm27olohUVXQVr1Zjh-AqDbVbhYJfj0zjjdFBSFuSeREtr5x_M14_A3ACa8csiCrk7S2LuE-E0klDXopucxLyTVt7lC2xaWc3fD3d-JuA06HszDOuZB85sZ0GfbybWtWFCo7q6maXIEO-jM0s_6s1hBPoQIStSijsFCW1meT6RTHgC5gno3RqqsiVFd5XHyCRn8sqvLHnzgsLxcv4MO6Y31WybfxqmvG5ucTzcb_7fkOPI88k016w9iFDTffg-3f1Af3ofnogmyqCRFCFpVWPyfnuLBZRqlCeMeuFm3XorUsGTZlt-7L15C5yiaWzVrDLvs08uVbNmHTRyVx9mm1-O5-HMDNxbvr6SyJJRcSw0veJYVOZeV1k_nUNb7JpDOZ0KmzdCDVc1MipEYgS6osujqVKaRAn62UPtfIxJC9vITNeTt3r4A1nqdIZnDY1nBNwRIviD7YAr0Ywf0I8jUWykQ9ciqLca-CX5LWqgdQEYAqAjiC0-Glh16O49_NzwnkoSlpaYcHCI6KU1PlwmZl5mRaaM9LTXlfhUHHQ-e1bWrJR7BPgA4fiViO4HBtMirO-6XKaR8VaVBRv_77W29gizrYB3EOYbNbrNwR0pquOQ7hgONg1b8A6hfyvQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB1V7QE4UKAgAgV84NhN98P27nJLI6oAbYSgRb1ZXn8UBMqiZIPU_npmvM4WAULcspE38urNxu-Nx28AXvLKIQuyOklr6xLuM5FU0qBKyWVeSq5pc4eqLeZyds7fXoiLLTgYzsI450LxmRvTx7CXb1uzplTZYU3d5AoU6DsCVUXVn9YaMirUQqIWZbQWytL6cDKd4lOgCMyzMcZ1VYT-KjfLT3Dpj21V_vgvDgvM8S6cbqbW15V8Ha-7Zmyuf3Nt_N-534O7kWmySR8a92HLLR7AnV_8B_eg-eCCcaoJOUIWvVYvkyNc2iyjYiG8Yu-XbddivKwYDmWf3OcvoXaVTSybtYbN-0Ly1Ss2YdMbL3H2cb384a4ewvnx67PpLIlNFxLDS94lhU5l5XWT-dQ1vsmkM5nQqbN0JNVzUyKoRiBPqiyKncoUUqBqK6XPNXIx5C-PYHvRLtxjYI3nKdIZfGxruKZ0iRdEIGyBOkZwP4J8g4Uy0ZGcGmN8U0GZpLXqAVQEoIoAjuBguOl7b8jx7-FHBPIwlNy0wxcIjoovp8qFzcrMybTQnpeaKr8Kg9JD57VtaslHsEeADj8SsRzB_iZkVHzzVyqnnVQkQkX95O93vYBbs7PTE3XyZv7uKdymyfYpnX3Y7pZr9wxJTtc8D7H9Exu99Rs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+Learning-Based+Routing+Protocols+for+Vehicular+Ad+Hoc+Networks%3A+A+Comparative+Survey&rft.jtitle=IEEE+access&rft.au=Nazib%2C+Rezoan+Ahmed&rft.au=Moh%2C+Sangman&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=27552&rft.epage=27587&rft_id=info:doi/10.1109%2FACCESS.2021.3058388&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3058388 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |