Reinforcement Learning-Based Routing Protocols for Vehicular Ad Hoc Networks: A Comparative Survey

Vehicular-ad hoc networks (VANETs) hold great importance because of their potentials in road safety improvement, traffic monitoring, and in-vehicle infotainment services. Due to high mobility, sparse connectivity, road-side obstacles, and shortage of roadside units, the links between the vehicles ar...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 27552 - 27587
Main Authors Nazib, Rezoan Ahmed, Moh, Sangman
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2021.3058388

Cover

Abstract Vehicular-ad hoc networks (VANETs) hold great importance because of their potentials in road safety improvement, traffic monitoring, and in-vehicle infotainment services. Due to high mobility, sparse connectivity, road-side obstacles, and shortage of roadside units, the links between the vehicles are subject to frequent disconnections; consequently, routing is crucial. Recently, to achieve more efficient routing, reinforcement learning (RL)-based routing algorithms have been investigated. RL represents a class of artificial intelligence that implements a learning procedure based on previous experiences and provides a better solution for future operations. RL algorithms are more favorable than other optimization techniques owing to their modest usage of memory and computational resources. Because a VANET deals with passenger safety, any kind of flaw is intolerable in VANET routing. Fortunately, RL-based algorithms have the potentials to optimize the different quality-of-service parameters of VANET routing such as bandwidth, end-to-end delay, throughput, control overhead, and packet delivery ratio. However, to the best of the authors' knowledge, surveys on RL-based routing protocols for VANETs have not been conducted. To fulfill this gap in the literature and to provide future research directions, it is necessary to aggregate the scattered works on this topic. This study presents a comparative investigation of RL-based routing protocols, by considering their working procedure, advantages, disadvantages, and applications. They are qualitatively compared in terms of key features, characteristics, optimization criteria, performance evaluation techniques, and implemented RL techniques. Lastly, open issues and research challenges are discussed to make RL-based VANET routing protocols more efficient in the future.
AbstractList Vehicular-ad hoc networks (VANETs) hold great importance because of their potentials in road safety improvement, traffic monitoring, and in-vehicle infotainment services. Due to high mobility, sparse connectivity, road-side obstacles, and shortage of roadside units, the links between the vehicles are subject to frequent disconnections; consequently, routing is crucial. Recently, to achieve more efficient routing, reinforcement learning (RL)-based routing algorithms have been investigated. RL represents a class of artificial intelligence that implements a learning procedure based on previous experiences and provides a better solution for future operations. RL algorithms are more favorable than other optimization techniques owing to their modest usage of memory and computational resources. Because a VANET deals with passenger safety, any kind of flaw is intolerable in VANET routing. Fortunately, RL-based algorithms have the potentials to optimize the different quality-of-service parameters of VANET routing such as bandwidth, end-to-end delay, throughput, control overhead, and packet delivery ratio. However, to the best of the authors' knowledge, surveys on RL-based routing protocols for VANETs have not been conducted. To fulfill this gap in the literature and to provide future research directions, it is necessary to aggregate the scattered works on this topic. This study presents a comparative investigation of RL-based routing protocols, by considering their working procedure, advantages, disadvantages, and applications. They are qualitatively compared in terms of key features, characteristics, optimization criteria, performance evaluation techniques, and implemented RL techniques. Lastly, open issues and research challenges are discussed to make RL-based VANET routing protocols more efficient in the future.
Author Moh, Sangman
Nazib, Rezoan Ahmed
Author_xml – sequence: 1
  givenname: Rezoan Ahmed
  orcidid: 0000-0002-0652-6711
  surname: Nazib
  fullname: Nazib, Rezoan Ahmed
  organization: Department of Computer Engineering, Chosun University, Gwangju, South Korea
– sequence: 2
  givenname: Sangman
  orcidid: 0000-0001-9175-3400
  surname: Moh
  fullname: Moh, Sangman
  email: smmoh@chosun.ac.kr
  organization: Department of Computer Engineering, Chosun University, Gwangju, South Korea
BookMark eNp9kU9v1DAQxS1UJErpJ-jFEucs_hM7NrclKrTSqkVd4Go5zqT1ko0X2ynqt8clLUIcmItnRu_3NNZ7jY6mMAFCZ5SsKCX63bptz7fbFSOMrjgRiiv1Ah0zKnXFBZdHf_Wv0GlKO1JKlZVojlF3A34aQnSwhynjDdg4-em2-mAT9PgmzLlM-HMMObgwJlyk-BvceTePNuJ1jy-Cw1eQf4b4Pb3Ha9yG_cFGm_094O0c7-HhDXo52DHB6dN7gr5-PP_SXlSb60-X7XpTubqpc8UtkWqwHR0IdENHJTgqLIG-UZQOtWuI7p0Qkqhe1Eo5LgVTrJEDs7WQUvITdLn49sHuzCH6vY0PJlhvfi9CvDU2Zu9GMEz0tKEgCbdD3ViilOZOKWaZ7jst6-L1dvE6xPBjhpTNLsxxKucbVmuiCONcF5VeVC6GlCIMxvlcvh6mHK0fDSXmMSGzJGQeEzJPCRWW_8M-X_x_6myhPAD8ITQXVHPCfwETAZ1N
CODEN IAECCG
CitedBy_id crossref_primary_10_2174_0122103279273609231213075003
crossref_primary_10_3390_math10203731
crossref_primary_10_1007_s40747_023_01241_x
crossref_primary_10_1109_ACCESS_2022_3216066
crossref_primary_10_3390_s24010040
crossref_primary_10_1016_j_cose_2025_104352
crossref_primary_10_1109_ACCESS_2021_3128516
crossref_primary_10_1007_s40747_021_00629_x
crossref_primary_10_1109_TITS_2023_3304127
crossref_primary_10_1109_JIOT_2022_3175677
crossref_primary_10_1007_s11277_021_09166_9
crossref_primary_10_3390_math11214426
crossref_primary_10_3390_smartcities7060125
crossref_primary_10_32604_cmc_2022_028280
crossref_primary_10_1016_j_ijin_2023_10_001
crossref_primary_10_1109_JIOT_2022_3162849
crossref_primary_10_1007_s42979_024_03606_6
crossref_primary_10_1007_s10586_024_04322_9
crossref_primary_10_1016_j_jnca_2022_103497
crossref_primary_10_1002_ett_4914
crossref_primary_10_1016_j_dcan_2024_11_007
crossref_primary_10_3390_info16010008
crossref_primary_10_3390_s22218222
crossref_primary_10_3390_a16080381
crossref_primary_10_3390_electronics13112099
crossref_primary_10_1088_1742_6596_2325_1_012042
crossref_primary_10_4316_AECE_2024_04003
crossref_primary_10_1109_ACCESS_2021_3074180
crossref_primary_10_3390_su13116187
crossref_primary_10_3390_su16219239
crossref_primary_10_3390_info15050283
crossref_primary_10_3390_math13050833
crossref_primary_10_1109_TAES_2022_3167386
crossref_primary_10_1016_j_icte_2024_05_001
crossref_primary_10_1587_transcom_2021EBP3210
crossref_primary_10_3390_designs6060121
crossref_primary_10_3390_math10244673
crossref_primary_10_1016_j_eswa_2022_118477
crossref_primary_10_1016_j_vehcom_2022_100455
crossref_primary_10_1109_ACCESS_2023_3314732
crossref_primary_10_1007_s11277_024_11528_y
crossref_primary_10_1109_JSEN_2023_3345947
crossref_primary_10_32604_iasc_2022_024091
crossref_primary_10_1007_s10586_024_04831_7
crossref_primary_10_1109_ACCESS_2022_3152767
crossref_primary_10_1109_ACCESS_2022_3221446
crossref_primary_10_1016_j_pmcj_2022_101724
Cites_doi 10.1007/978-3-642-27645-3_1
10.1155/2019/2423915
10.1109/JIOT.2019.2957778
10.1007/s12530-013-9093-6
10.1109/TVT.2015.2481464
10.3390/s20195685
10.1109/FGCN.2015.17
10.1109/VTCSpring.2019.8746494
10.1016/j.cie.2018.04.037
10.1109/WC-M.2006.250355
10.1109/IWCMC48107.2020.9148237
10.1109/ACCESS.2020.2963850
10.1016/j.comnet.2017.07.017
10.1109/ICTIS.2019.8883680
10.1109/ITOEC49072.2020.9141805
10.1016/B978-1-55860-200-7.50075-1
10.1109/PCCC.2014.7017079
10.1145/3272036.3272037
10.1109/ICTEmSys.2019.8695963
10.1007/s00779-012-0600-8
10.1007/s10489-018-1368-y
10.1109/ITSC.2019.8917306
10.1109/COMST.2018.2841901
10.1109/TSMCC.2007.913919
10.1145/3007748.3007762
10.1109/TNSE.2020.3017751
10.1109/ICACCI.2017.8126198
10.1109/ICOS.2016.7882000
10.1109/MoWNet.2016.7496597
10.1109/TCYB.2016.2542923
10.1111/j.1540-5915.1978.tb00753.x
10.1109/ACCESS.2020.2989790
10.1109/INFCOM.2004.1354517
10.1109/CISIS.2013.18
10.1177/0037549709345997
10.1007/BF00992698
10.1016/j.vehcom.2017.04.004
10.1016/j.pmcj.2018.07.004
10.1109/TSG.2018.2790704
10.1109/JSEN.2020.3034600
10.1109/MWC.2009.5281251
10.1016/j.jnca.2016.10.014
10.1109/NMIC.2019.00008
10.1007/s11277-018-5809-z
10.1016/S0004-3702(02)00121-2
10.1007/978-3-642-21937-5_1
10.1109/ICSESS.2015.7339127
10.1109/ICVES.2012.6294332
10.1561/2300000021
10.1109/MPRV.2008.80
10.1109/ICICES.2014.7033833
10.1007/s12652-018-0819-y
10.1109/TVT.2018.2789466
10.1109/ACCESS.2018.2879758
10.1109/ICPHYS.2018.8390808
10.1109/PIMRC.2016.7794599
10.1109/INFCOM.2003.1208920
10.1613/jair.301
10.3390/s20092708
10.1007/978-3-319-74439-1_10
10.1109/ICETET.2013.18
10.1016/j.vehcom.2017.01.002
10.1109/ICC.2009.5198623
10.1109/GLOCOM.2018.8647426
10.1023/A:1007678930559
10.1109/COMST.2019.2916583
10.1109/MWC.2017.1600117
10.1109/TVT.2015.2482904
10.1109/TMC.2016.2607748
10.1109/ICSESS.2010.5552320
10.1109/IC3I.2014.7019587
10.1587/transcom.E93.B.1431
10.1016/j.comcom.2019.11.011
10.1109/TSMCA.2005.846390
10.1109/IWCMC.2013.6583700
10.1109/TMC.2004.1261816
10.15837/ijccc.2020.5.3928
10.1007/s11277-017-3987-8
10.1109/ACCESS.2015.2502949
10.1016/S0377-2217(02)00363-6
10.1109/IMSAA.2009.5439454
10.1007/978-981-10-6571-2_303
10.1049/iet-com.2010.0258
10.1109/ISADS.2011.22
10.1109/VTCSpring.2015.7145689
10.1016/j.procs.2015.07.456
10.1109/TVT.2013.2273945
10.1109/AiDAS47888.2019.8970890
10.1109/TVT.2011.2173510
10.1007/s11235-017-0280-9
10.1109/ACCESS.2019.2913776
10.1111/coin.12261
10.1109/TPDS.2011.102
10.1109/TCCN.2019.2944399
10.1002/wcm.859
10.1109/CAIS.2019.8769454
10.1109/MWC.2007.4407231
10.1109/COMST.2016.2611524
10.1109/THS.2017.7943477
10.1109/MSP.2017.2743240
10.3390/app10124077
10.1049/iet-ifs.2010.0160
10.1109/ACCESS.2019.2891073
10.1109/ICCMC.2019.8819723
10.1016/j.vehcom.2018.01.006
10.1109/JCN.2019.000056
10.1109/ACCESS.2018.2875739
10.1007/s11277-012-0594-6
10.1109/ICAIT47043.2019.8987282
10.1016/j.adhoc.2018.11.011
10.1287/trsc.1090.0295
10.1109/ICCS.2018.8689228
10.1109/TVT.2018.2871606
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3058388
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 27587
ExternalDocumentID oai_doaj_org_article_25d171e603af47a08893c882a29db964
10_1109_ACCESS_2021_3058388
9351930
Genre orig-research
GrantInformation_xml – fundername: Chosun University, 2020
  grantid: K202160030
  funderid: 10.13039/501100002457
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c474t-3a068fab1f0ebfb16ec15a0ed7811f4c709dc55608d5488c36528276f2a456663
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:20:03 EDT 2025
Sun Jun 29 12:31:26 EDT 2025
Tue Jul 01 04:03:16 EDT 2025
Thu Apr 24 22:57:27 EDT 2025
Wed Aug 27 05:45:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-3a068fab1f0ebfb16ec15a0ed7811f4c709dc55608d5488c36528276f2a456663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9175-3400
0000-0002-0652-6711
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9351930
PQID 2490802339
PQPubID 4845423
PageCount 36
ParticipantIDs ieee_primary_9351930
proquest_journals_2490802339
crossref_primary_10_1109_ACCESS_2021_3058388
doaj_primary_oai_doaj_org_article_25d171e603af47a08893c882a29db964
crossref_citationtrail_10_1109_ACCESS_2021_3058388
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref53
ref55
ref54
van otterlo (ref29) 2012; 12
mitchell (ref13) 2013
abuelenin (ref104) 2014
gao (ref90) 2020
ref51
fujimoto (ref40) 2019
ref45
rodoshi (ref16) 2020; 20
ref48
van eenennaam (ref110) 2009
tasnim rodoshi (ref50) 2020
ref47
michel (ref37) 2010
ref49
sharma (ref1) 2018; 12
ref8
ref9
ref4
ref3
ref6
ref5
ref100
ref101
thrun (ref35) 1993
singh (ref7) 2015
asadi (ref38) 2017
ref34
wu (ref67) 2010; e93 b
ref31
ref30
ref33
ref32
ref39
sheikh (ref127) 2019; 2019
ref23
ref26
ref25
ref20
ref22
ref21
adrian (ref105) 2019
schulman (ref41) 2015
ref27
google (ref43) 2018
ref12
ref128
ref15
ref129
ref14
ref126
ref97
ref96
ref124
ref99
ref11
ref125
ref98
ref10
habib (ref44) 2016
ref17
ref19
ref18
ref133
ref93
ref92
gaskett (ref46) 1999
ref131
ref95
abuashour (ref116) 2018
ref132
ref94
ref130
ref91
ref89
ref86
ref85
ref88
ref87
williams (ref36) 1992
chettibi (ref24) 2011; 162
sutton (ref28) 2018
ref82
ref81
schulman (ref42) 2017
ref84
bowling (ref52) 2001
valantina (ref64) 2015; 57
ref83
ref80
ref79
ref108
marchang (ref114) 2012; 6
ref78
ref109
ref106
ref107
ref75
ref74
ref77
ref102
ref76
ref103
ref2
ref71
ref111
ref70
ref112
ref73
ref72
ref68
ref119
ref117
ref69
ref118
ref115
ref63
ref66
ref113
ref65
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – volume: 12
  start-page: 3
  year: 2012
  ident: ref29
  article-title: Reinforcement learning and Markov decision processes
  publication-title: Adaptation Learning and Optimization
  doi: 10.1007/978-3-642-27645-3_1
– start-page: 1021
  year: 2001
  ident: ref52
  article-title: Rational and convergent learning in stochastic games
  publication-title: Proc IJCAI Int Jt Artif Intell
– volume: 2019
  start-page: 1
  year: 2019
  ident: ref127
  article-title: A comprehensive survey on VANET security services in traffic management system
  publication-title: Wireless Commun Mobile Comput
  doi: 10.1155/2019/2423915
– ident: ref51
  doi: 10.1109/JIOT.2019.2957778
– year: 2013
  ident: ref13
  publication-title: An Artificial Intelligence Approach
– ident: ref32
  doi: 10.1007/s12530-013-9093-6
– ident: ref68
  doi: 10.1109/TVT.2015.2481464
– start-page: 203
  year: 2010
  ident: ref37
  article-title: Adaptive-greedy exploration in reinforcement learning based on value differences
  publication-title: Proc Annu Conf Artif Intell
– ident: ref62
  doi: 10.3390/s20195685
– ident: ref56
  doi: 10.1109/FGCN.2015.17
– ident: ref45
  doi: 10.1109/VTCSpring.2019.8746494
– ident: ref22
  doi: 10.1016/j.cie.2018.04.037
– ident: ref108
  doi: 10.1109/WC-M.2006.250355
– ident: ref75
  doi: 10.1109/IWCMC48107.2020.9148237
– ident: ref60
  doi: 10.1109/ACCESS.2020.2963850
– ident: ref106
  doi: 10.1016/j.comnet.2017.07.017
– ident: ref5
  doi: 10.1109/ICTIS.2019.8883680
– ident: ref73
  doi: 10.1109/ITOEC49072.2020.9141805
– ident: ref119
  doi: 10.1016/B978-1-55860-200-7.50075-1
– ident: ref55
  doi: 10.1109/PCCC.2014.7017079
– ident: ref77
  doi: 10.1145/3272036.3272037
– year: 2020
  ident: ref90
  article-title: V2 VR: Reliable hybrid-network-oriented V2 V data transmission and routing considering RSUs and connectivity probability
  publication-title: IEEE Trans Intell Transp Syst
– ident: ref120
  doi: 10.1109/ICTEmSys.2019.8695963
– ident: ref71
  doi: 10.1007/s00779-012-0600-8
– ident: ref2
  doi: 10.1007/s10489-018-1368-y
– ident: ref34
  doi: 10.1109/ITSC.2019.8917306
– ident: ref93
  doi: 10.1109/COMST.2018.2841901
– ident: ref112
  doi: 10.1109/TSMCC.2007.913919
– ident: ref130
  doi: 10.1145/3007748.3007762
– ident: ref115
  doi: 10.1109/TNSE.2020.3017751
– ident: ref122
  doi: 10.1109/ICACCI.2017.8126198
– ident: ref131
  doi: 10.1109/ICOS.2016.7882000
– ident: ref18
  doi: 10.1109/MoWNet.2016.7496597
– ident: ref123
  doi: 10.1109/TCYB.2016.2542923
– ident: ref109
  doi: 10.1111/j.1540-5915.1978.tb00753.x
– ident: ref12
  doi: 10.1109/ACCESS.2020.2989790
– ident: ref99
  doi: 10.1109/INFCOM.2004.1354517
– ident: ref98
  doi: 10.1109/CISIS.2013.18
– ident: ref100
  doi: 10.1177/0037549709345997
– ident: ref47
  doi: 10.1007/BF00992698
– ident: ref132
  doi: 10.1016/j.vehcom.2017.04.004
– ident: ref121
  doi: 10.1016/j.pmcj.2018.07.004
– ident: ref126
  doi: 10.1109/TSG.2018.2790704
– ident: ref91
  doi: 10.1109/JSEN.2020.3034600
– ident: ref94
  doi: 10.1109/MWC.2009.5281251
– ident: ref53
  doi: 10.1016/j.jnca.2016.10.014
– ident: ref54
  doi: 10.1109/NMIC.2019.00008
– ident: ref66
  doi: 10.1007/s11277-018-5809-z
– ident: ref103
  doi: 10.1016/S0004-3702(02)00121-2
– volume: 162
  start-page: 1
  year: 2011
  ident: ref24
  article-title: A survey of reinforcement learning based routing protocols for mobile ad-hoc networks
  publication-title: Recent Trends in Wireless and Mobile Networks
  doi: 10.1007/978-3-642-21937-5_1
– ident: ref8
  doi: 10.1109/ICSESS.2015.7339127
– ident: ref6
  doi: 10.1109/ICVES.2012.6294332
– ident: ref30
  doi: 10.1561/2300000021
– ident: ref97
  doi: 10.1109/MPRV.2008.80
– ident: ref63
  doi: 10.1109/ICICES.2014.7033833
– ident: ref83
  doi: 10.1007/s12652-018-0819-y
– ident: ref79
  doi: 10.1109/TVT.2018.2789466
– ident: ref92
  doi: 10.1109/ACCESS.2018.2879758
– ident: ref17
  doi: 10.1109/ICPHYS.2018.8390808
– ident: ref72
  doi: 10.1109/PIMRC.2016.7794599
– start-page: 618
  year: 2020
  ident: ref50
  article-title: Deep reinforcement learning based dynamic resource allocation in cloud radio access networks
  publication-title: Proc Int Conf Inf Commun Technol Converg (ICTC)
– ident: ref101
  doi: 10.1109/INFCOM.2003.1208920
– ident: ref23
  doi: 10.1613/jair.301
– start-page: 1
  year: 2019
  ident: ref105
  article-title: MRV-M: A cluster stability in highway VANET using minimum relative velocity based on K-medoids
  publication-title: Proc 5th Int Conf Sci Technol (ICST)
– volume: 20
  start-page: 2708
  year: 2020
  ident: ref16
  article-title: Resource management in cloud radio access network: Conventional and new approaches
  publication-title: SENSORS
  doi: 10.3390/s20092708
– start-page: 106
  year: 2018
  ident: ref116
  article-title: Control overhead reduction in cluster-based VANET routing protocol
  publication-title: Ad Hoc Networks
  doi: 10.1007/978-3-319-74439-1_10
– ident: ref3
  doi: 10.1109/ICETET.2013.18
– ident: ref125
  doi: 10.1016/j.vehcom.2017.01.002
– year: 1992
  ident: ref36
  article-title: Tight performance bounds on greedy policies based on imperfect value functions
– ident: ref85
  doi: 10.1109/ICC.2009.5198623
– ident: ref80
  doi: 10.1109/GLOCOM.2018.8647426
– ident: ref39
  doi: 10.1023/A:1007678930559
– ident: ref48
  doi: 10.1109/COMST.2019.2916583
– ident: ref113
  doi: 10.1109/MWC.2017.1600117
– ident: ref117
  doi: 10.1109/TVT.2015.2482904
– ident: ref84
  doi: 10.1109/TMC.2016.2607748
– start-page: 243
  year: 2017
  ident: ref38
  article-title: An alternative softmax operator for reinforcement learning
  publication-title: Proc PMLR
– ident: ref10
  doi: 10.1109/ICSESS.2010.5552320
– start-page: 2052
  year: 2019
  ident: ref40
  article-title: Off-policy deep reinforcement learning without exploration
  publication-title: Proc PMLR
– ident: ref9
  doi: 10.1109/IC3I.2014.7019587
– start-page: 1
  year: 2015
  ident: ref7
  article-title: Performance analysis of secure & efficient AODV (SE-AODV) with AODV routing protocol using NS2
  publication-title: Proc 3rd Int Conf Rel Infocom Technol Optim Trends Future Directions (ICRITO)
– volume: e93 b
  start-page: 1431
  year: 2010
  ident: ref67
  article-title: Distributed reinforcement learning approach for vehicular ad-hoc networks
  publication-title: IEICE Trans Commun
  doi: 10.1587/transcom.E93.B.1431
– start-page: 1889
  year: 2015
  ident: ref41
  article-title: Trust region policy optimization
  publication-title: Proc Int Conf Mach Learn
– ident: ref21
  doi: 10.1016/j.comcom.2019.11.011
– ident: ref19
  doi: 10.1109/TSMCA.2005.846390
– ident: ref57
  doi: 10.1109/IWCMC.2013.6583700
– ident: ref70
  doi: 10.1109/TMC.2004.1261816
– ident: ref69
  doi: 10.15837/ijccc.2020.5.3928
– ident: ref33
  doi: 10.1007/s11277-017-3987-8
– year: 2017
  ident: ref42
  article-title: Proximal policy optimization algorithms
  publication-title: arXiv 1707 06347
– ident: ref25
  doi: 10.1109/ACCESS.2015.2502949
– ident: ref102
  doi: 10.1016/S0377-2217(02)00363-6
– ident: ref76
  doi: 10.1109/IMSAA.2009.5439454
– ident: ref61
  doi: 10.1007/978-981-10-6571-2_303
– ident: ref124
  doi: 10.1049/iet-com.2010.0258
– ident: ref87
  doi: 10.1109/ISADS.2011.22
– ident: ref26
  doi: 10.1109/VTCSpring.2015.7145689
– volume: 57
  start-page: 1394
  year: 2015
  ident: ref64
  article-title: Q-learning based point to point data transfer in VANETs
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2015.07.456
– ident: ref65
  doi: 10.1109/TVT.2013.2273945
– ident: ref118
  doi: 10.1109/AiDAS47888.2019.8970890
– start-page: 170
  year: 2016
  ident: ref44
  article-title: Optimal route selection in complex multi-stage supply chain networks using SARSA($\lambda$ )
  publication-title: Proc 19th Int Conf Comput Inf Technol (ICCIT)
– ident: ref88
  doi: 10.1109/TVT.2011.2173510
– ident: ref128
  doi: 10.1007/s11235-017-0280-9
– ident: ref111
  doi: 10.1109/ACCESS.2019.2913776
– ident: ref58
  doi: 10.1111/coin.12261
– ident: ref27
  doi: 10.1109/TPDS.2011.102
– ident: ref81
  doi: 10.1109/TCCN.2019.2944399
– start-page: 417
  year: 1999
  ident: ref46
  article-title: Q-learning in continuous state and action spaces
  publication-title: Proc Australas Joint Conf Artif Intell
– ident: ref95
  doi: 10.1002/wcm.859
– ident: ref15
  doi: 10.1109/CAIS.2019.8769454
– ident: ref89
  doi: 10.1109/MWC.2007.4407231
– year: 1993
  ident: ref35
  article-title: Efficient exploration in reinforcement learning
– ident: ref4
  doi: 10.1109/COMST.2016.2611524
– ident: ref14
  doi: 10.1109/THS.2017.7943477
– ident: ref49
  doi: 10.1109/MSP.2017.2743240
– ident: ref86
  doi: 10.3390/app10124077
– volume: 6
  start-page: 77
  year: 2012
  ident: ref114
  article-title: Light-weight trust-based routing protocol for mobile ad hoc networks
  publication-title: IET Inf Secur
  doi: 10.1049/iet-ifs.2010.0160
– ident: ref129
  doi: 10.1109/ACCESS.2019.2891073
– ident: ref107
  doi: 10.1109/ICCMC.2019.8819723
– start-page: 391
  year: 2014
  ident: ref104
  article-title: Empirical study of traffic velocity distribution and its effect on VANETs connectivity
  publication-title: Proc Int Conf Connected Vehicles Expo (ICCVE)
– ident: ref59
  doi: 10.1016/j.vehcom.2018.01.006
– ident: ref11
  doi: 10.1109/JCN.2019.000056
– volume: 12
  start-page: 138
  year: 2018
  ident: ref1
  article-title: A survey on intrusion detection systems and honeypot based proactive security mechanisms in VANETs and VANET cloud
  publication-title: Veh Commun
– year: 2018
  ident: ref28
  publication-title: Reinforcement Learning An Introduction
– ident: ref82
  doi: 10.1109/ACCESS.2018.2875739
– start-page: 9971
  year: 2018
  ident: ref43
  article-title: Non-delusional Q-learning and value iteration
  publication-title: Proc NIPS
– ident: ref96
  doi: 10.1007/s11277-012-0594-6
– ident: ref20
  doi: 10.1109/ICAIT47043.2019.8987282
– ident: ref133
  doi: 10.1016/j.adhoc.2018.11.011
– start-page: 1
  year: 2009
  ident: ref110
  article-title: A survey of propagation models used in vehicular ad hoc network (VANET) research
– ident: ref31
  doi: 10.1287/trsc.1090.0295
– ident: ref78
  doi: 10.1109/ICCS.2018.8689228
– ident: ref74
  doi: 10.1109/TVT.2018.2871606
SSID ssj0000816957
Score 2.4430678
Snippet Vehicular-ad hoc networks (VANETs) hold great importance because of their potentials in road safety improvement, traffic monitoring, and in-vehicle...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 27552
SubjectTerms Algorithms
Artificial intelligence
intelligent algorithm
intelligent transportation system
Machine learning
Mobile ad hoc networks
Optimization
Optimization techniques
Passenger safety
Performance evaluation
Q-learning
Quality of service
quality-of-service routing
Reinforcement learning
Roadsides
Routing
Routing (telecommunications)
routing protocol
Routing protocols
Safety
Traffic safety
Vehicular ad hoc network
Vehicular ad hoc networks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ1ar5ODR1WQ3yW68tUUpHkR84S1k81BBWulD8N87yca2IOjF4y7ZR2ZmM99MZr9B6JhVDlCQ1RmR1mXMU55VwkCUkou8FEyHzZ1QbXEtBg_s6ok_LbX6CjVhDT1wI7iznFtaUidIoT0rdajKKQzAQp1LW0sRmUCJJEvBVFyDKyokLxPNECXyrNvvw4wgIMzpKdh4VcReKwtXFBn7U4uVH-tydDaXG2g9oUTcbd5uE6244RZaW-IO3Eb1rYukpybm93DiSX3OeuCWLA6FPnCEb8aj6Qh0PcEwFD-6l9dYd4q7Fg9GBl83ReCTc9zF_QUPOL6bjT_c5w56uLy47w-y1DAhM6xk06zQRFRe19QTV_uaCmco18TZ8DupZ6YEhRgOGKeyEKhUphAcIq5S-FwDjgLssYtaw9HQ7SFce0YAigC8s4bpkOrwPDh_W0AMwplvo_xbdsokNvHQ1OJNxaiCSNUIXAWBqyTwNjqZX_TekGn8PrwXlDIfGpiw4wmwD5XsQ_1lH220HVQ6v4kMHQkL0kadbxWr9NVOVB52QQHEFHL_Px59gFbDdJqETQe1puOZOwQIM62PorV-Aas051k
  priority: 102
  providerName: Directory of Open Access Journals
Title Reinforcement Learning-Based Routing Protocols for Vehicular Ad Hoc Networks: A Comparative Survey
URI https://ieeexplore.ieee.org/document/9351930
https://www.proquest.com/docview/2490802339
https://doaj.org/article/25d171e603af47a08893c882a29db964
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VntoD9IVYaCsfemy2edhOwm27olohUVXQVr1Zjh-AqDbVbhYJfj0zjjdFBSFuSeREtr5x_M14_A3ACa8csiCrk7S2LuE-E0klDXopucxLyTVt7lC2xaWc3fD3d-JuA06HszDOuZB85sZ0GfbybWtWFCo7q6maXIEO-jM0s_6s1hBPoQIStSijsFCW1meT6RTHgC5gno3RqqsiVFd5XHyCRn8sqvLHnzgsLxcv4MO6Y31WybfxqmvG5ucTzcb_7fkOPI88k016w9iFDTffg-3f1Af3ofnogmyqCRFCFpVWPyfnuLBZRqlCeMeuFm3XorUsGTZlt-7L15C5yiaWzVrDLvs08uVbNmHTRyVx9mm1-O5-HMDNxbvr6SyJJRcSw0veJYVOZeV1k_nUNb7JpDOZ0KmzdCDVc1MipEYgS6osujqVKaRAn62UPtfIxJC9vITNeTt3r4A1nqdIZnDY1nBNwRIviD7YAr0Ywf0I8jUWykQ9ciqLca-CX5LWqgdQEYAqAjiC0-Glh16O49_NzwnkoSlpaYcHCI6KU1PlwmZl5mRaaM9LTXlfhUHHQ-e1bWrJR7BPgA4fiViO4HBtMirO-6XKaR8VaVBRv_77W29gizrYB3EOYbNbrNwR0pquOQ7hgONg1b8A6hfyvQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB1V7QE4UKAgAgV84NhN98P27nJLI6oAbYSgRb1ZXn8UBMqiZIPU_npmvM4WAULcspE38urNxu-Nx28AXvLKIQuyOklr6xLuM5FU0qBKyWVeSq5pc4eqLeZyds7fXoiLLTgYzsI450LxmRvTx7CXb1uzplTZYU3d5AoU6DsCVUXVn9YaMirUQqIWZbQWytL6cDKd4lOgCMyzMcZ1VYT-KjfLT3Dpj21V_vgvDgvM8S6cbqbW15V8Ha-7Zmyuf3Nt_N-534O7kWmySR8a92HLLR7AnV_8B_eg-eCCcaoJOUIWvVYvkyNc2iyjYiG8Yu-XbddivKwYDmWf3OcvoXaVTSybtYbN-0Ly1Ss2YdMbL3H2cb384a4ewvnx67PpLIlNFxLDS94lhU5l5XWT-dQ1vsmkM5nQqbN0JNVzUyKoRiBPqiyKncoUUqBqK6XPNXIx5C-PYHvRLtxjYI3nKdIZfGxruKZ0iRdEIGyBOkZwP4J8g4Uy0ZGcGmN8U0GZpLXqAVQEoIoAjuBguOl7b8jx7-FHBPIwlNy0wxcIjoovp8qFzcrMybTQnpeaKr8Kg9JD57VtaslHsEeADj8SsRzB_iZkVHzzVyqnnVQkQkX95O93vYBbs7PTE3XyZv7uKdymyfYpnX3Y7pZr9wxJTtc8D7H9Exu99Rs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+Learning-Based+Routing+Protocols+for+Vehicular+Ad+Hoc+Networks%3A+A+Comparative+Survey&rft.jtitle=IEEE+access&rft.au=Nazib%2C+Rezoan+Ahmed&rft.au=Moh%2C+Sangman&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=27552&rft.epage=27587&rft_id=info:doi/10.1109%2FACCESS.2021.3058388&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3058388
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon