Mutant NPM1 Hijacks Transcriptional Hubs to Maintain Pathogenic Gene Programs in Acute Myeloid Leukemia
Nucleophosmin (NPM1) is a ubiquitously expressed nucleolar protein with a wide range of biological functions. In 30% of acute myeloid leukemia (AML), the terminal exon of NPM1 is often found mutated, resulting in the addition of a nuclear export signal and a shift of the protein to the cytoplasm (NP...
Saved in:
Published in | Cancer discovery Vol. 13; no. 3; pp. 724 - 745 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for Cancer Research
01.03.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2159-8274 2159-8290 2159-8290 |
DOI | 10.1158/2159-8290.CD-22-0424 |
Cover
Abstract | Nucleophosmin (NPM1) is a ubiquitously expressed nucleolar protein with a wide range of biological functions. In 30% of acute myeloid leukemia (AML), the terminal exon of NPM1 is often found mutated, resulting in the addition of a nuclear export signal and a shift of the protein to the cytoplasm (NPM1c). AMLs carrying this mutation have aberrant expression of the HOXA/B genes, whose overexpression leads to leukemogenic transformation. Here, for the first time, we comprehensively prove that NPM1c binds to a subset of active gene promoters in NPM1c AMLs, including well-known leukemia-driving genes-HOXA/B cluster genes and MEIS1. NPM1c sustains the active transcription of key target genes by orchestrating a transcription hub and maintains the active chromatin landscape by inhibiting the activity of histone deacetylases. Together, these findings reveal the neomorphic function of NPM1c as a transcriptional amplifier for leukemic gene expression and open up new paradigms for therapeutic intervention.
NPM1 mutation is the most common mutation in AML, yet the mechanism of how the mutant protein results in AML remains unclear. Here, for the first time, we prove mutant NPM1 directly binds to active chromatin regions and hijacks the transcription of AML-driving genes. See related article by Uckelmann et al., p. 746. This article is highlighted in the In This Issue feature, p. 517. |
---|---|
AbstractList | Mutant NPM1 in leukemia obtains neomorphic activity to hijack active
HOXA/B
and
MEIS1
transcription on chromatin via the association of XPO1 and blocks the histone deacetylase activity associated with myeloid differentiation.
Nucleophosmin (NPM1) is a ubiquitously expressed nucleolar protein with a wide range of biological functions. In 30% of acute myeloid leukemia (AML), the terminal exon of
NPM1
is often found mutated, resulting in the addition of a nuclear export signal and a shift of the protein to the cytoplasm (NPM1c). AMLs carrying this mutation have aberrant expression of the
HOXA/B
genes, whose overexpression leads to leukemogenic transformation. Here, for the first time, we comprehensively prove that NPM1c binds to a subset of active gene promoters in NPM1c AMLs, including well-known leukemia-driving genes—
HOXA/B
cluster genes and
MEIS1
. NPM1c sustains the active transcription of key target genes by orchestrating a transcription hub and maintains the active chromatin landscape by inhibiting the activity of histone deacetylases. Together, these findings reveal the neomorphic function of NPM1c as a transcriptional amplifier for leukemic gene expression and open up new paradigms for therapeutic intervention. Nucleophosmin (NPM1) is a ubiquitously expressed nucleolar protein with a wide range of biological functions. In 30% of acute myeloid leukemia (AML), the terminal exon of NPM1 is often found mutated, resulting in the addition of a nuclear export signal and a shift of the protein to the cytoplasm (NPM1c). AMLs carrying this mutation have aberrant expression of the HOXA/B genes, whose overexpression leads to leukemogenic transformation. Here, for the first time, we comprehensively prove that NPM1c binds to a subset of active gene promoters in NPM1c AMLs, including well-known leukemia-driving genes-HOXA/B cluster genes and MEIS1. NPM1c sustains the active transcription of key target genes by orchestrating a transcription hub and maintains the active chromatin landscape by inhibiting the activity of histone deacetylases. Together, these findings reveal the neomorphic function of NPM1c as a transcriptional amplifier for leukemic gene expression and open up new paradigms for therapeutic intervention. NPM1 mutation is the most common mutation in AML, yet the mechanism of how the mutant protein results in AML remains unclear. Here, for the first time, we prove mutant NPM1 directly binds to active chromatin regions and hijacks the transcription of AML-driving genes. See related article by Uckelmann et al., p. 746. This article is highlighted in the In This Issue feature, p. 517. Nucleophosmin (NPM1) is a ubiquitously expressed nucleolar protein with a wide range of biological functions. In 30% of acute myeloid leukemia (AML), the terminal exon of NPM1 is often found mutated, resulting in the addition of a nuclear export signal and a shift of the protein to the cytoplasm (NPM1c). AMLs carrying this mutation have aberrant expression of the HOXA/B genes, whose overexpression leads to leukemogenic transformation. Here, for the first time, we comprehensively prove that NPM1c binds to a subset of active gene promoters in NPM1c AMLs, including well-known leukemia-driving genes-HOXA/B cluster genes and MEIS1. NPM1c sustains the active transcription of key target genes by orchestrating a transcription hub and maintains the active chromatin landscape by inhibiting the activity of histone deacetylases. Together, these findings reveal the neomorphic function of NPM1c as a transcriptional amplifier for leukemic gene expression and open up new paradigms for therapeutic intervention.Nucleophosmin (NPM1) is a ubiquitously expressed nucleolar protein with a wide range of biological functions. In 30% of acute myeloid leukemia (AML), the terminal exon of NPM1 is often found mutated, resulting in the addition of a nuclear export signal and a shift of the protein to the cytoplasm (NPM1c). AMLs carrying this mutation have aberrant expression of the HOXA/B genes, whose overexpression leads to leukemogenic transformation. Here, for the first time, we comprehensively prove that NPM1c binds to a subset of active gene promoters in NPM1c AMLs, including well-known leukemia-driving genes-HOXA/B cluster genes and MEIS1. NPM1c sustains the active transcription of key target genes by orchestrating a transcription hub and maintains the active chromatin landscape by inhibiting the activity of histone deacetylases. Together, these findings reveal the neomorphic function of NPM1c as a transcriptional amplifier for leukemic gene expression and open up new paradigms for therapeutic intervention.NPM1 mutation is the most common mutation in AML, yet the mechanism of how the mutant protein results in AML remains unclear. Here, for the first time, we prove mutant NPM1 directly binds to active chromatin regions and hijacks the transcription of AML-driving genes. See related article by Uckelmann et al., p. 746. This article is highlighted in the In This Issue feature, p. 517.SIGNIFICANCENPM1 mutation is the most common mutation in AML, yet the mechanism of how the mutant protein results in AML remains unclear. Here, for the first time, we prove mutant NPM1 directly binds to active chromatin regions and hijacks the transcription of AML-driving genes. See related article by Uckelmann et al., p. 746. This article is highlighted in the In This Issue feature, p. 517. |
Author | Han, Qinyu Grembecka, Jolanta Chen, Dong Wang, Xinyu Li, Qinglan Pfeifer, Gerd P. Miao, Hongzhi Himadewi, Pamela Chong, Shasha Wang, Xue Qing David Wan, Liling Liu, Yiman Fan, Dandan Zhang, Xiaotian Cierpicki, Tomasz Su, Jianzhong Gore, Haley |
AuthorAffiliation | 6 Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas 3 Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 5 Department of Pathology, University of Michigan, Ann Arbor, Michigan 1 Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 2 Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China 4 Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania |
AuthorAffiliation_xml | – name: 5 Department of Pathology, University of Michigan, Ann Arbor, Michigan – name: 6 Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas – name: 2 Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China – name: 3 Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California – name: 4 Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania – name: 1 Department of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan |
Author_xml | – sequence: 1 givenname: Xue Qing David orcidid: 0000-0003-4951-5788 surname: Wang fullname: Wang, Xue Qing David – sequence: 2 givenname: Dandan orcidid: 0000-0002-1471-1183 surname: Fan fullname: Fan, Dandan – sequence: 3 givenname: Qinyu orcidid: 0000-0003-3464-8967 surname: Han fullname: Han, Qinyu – sequence: 4 givenname: Yiman orcidid: 0000-0002-2223-7223 surname: Liu fullname: Liu, Yiman – sequence: 5 givenname: Hongzhi orcidid: 0000-0003-4862-9484 surname: Miao fullname: Miao, Hongzhi – sequence: 6 givenname: Xinyu orcidid: 0000-0003-0806-4335 surname: Wang fullname: Wang, Xinyu – sequence: 7 givenname: Qinglan orcidid: 0000-0003-0160-8774 surname: Li fullname: Li, Qinglan – sequence: 8 givenname: Dong orcidid: 0000-0003-2210-1024 surname: Chen fullname: Chen, Dong – sequence: 9 givenname: Haley orcidid: 0000-0001-8993-6611 surname: Gore fullname: Gore, Haley – sequence: 10 givenname: Pamela orcidid: 0000-0001-5721-1974 surname: Himadewi fullname: Himadewi, Pamela – sequence: 11 givenname: Gerd P. orcidid: 0000-0002-5080-9604 surname: Pfeifer fullname: Pfeifer, Gerd P. – sequence: 12 givenname: Tomasz orcidid: 0000-0003-2058-0658 surname: Cierpicki fullname: Cierpicki, Tomasz – sequence: 13 givenname: Jolanta orcidid: 0000-0002-6180-9095 surname: Grembecka fullname: Grembecka, Jolanta – sequence: 14 givenname: Jianzhong orcidid: 0000-0003-1054-6042 surname: Su fullname: Su, Jianzhong – sequence: 15 givenname: Shasha orcidid: 0000-0002-5372-311X surname: Chong fullname: Chong, Shasha – sequence: 16 givenname: Liling orcidid: 0000-0002-5444-0437 surname: Wan fullname: Wan, Liling – sequence: 17 givenname: Xiaotian orcidid: 0000-0002-9533-4761 surname: Zhang fullname: Zhang, Xiaotian |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36455589$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1vGyEURFWq5qP5B1XFsZdNAMOy9FApcpq4kp36kJ4Ryz47JLvgAhsp_76sklhtD0FCjHgz857eHKMDHzwg9ImSM0pFc86oUFXDFDmbX1aMVYQz_g4d7b8P9ljyQ3Sa0j0physuiPyADmc1F0I06ghtV2M2PuOb9Yrihbs39iHh22h8stHtsgve9HgxtgnngFfG-VwuXpt8F7bgncXX4AGvY9hGMyRcahd2zIBXT9AH1-EljA8wOPMRvd-YPsHpy3uCfl19v50vquXP6x_zi2VlueS5mrGubgVXrWo2jLFNTTqmQE7AKiHbAqVhjZCktkA7ygXrWmOlkTUBwunsBH179t2N7QCdBZ-j6fUuusHEJx2M0_9WvLvT2_ColZKirlkx-PJiEMPvEVLWg0sW-t54CGPSZaH1TLGG8UL9_HevfZPX7RYCfybYGFKKsNlTKNFTjnoKSU-B6fmlZkxPORbZ1_9k1mUzZVEmdv3b4j9XMKKt |
CitedBy_id | crossref_primary_10_1093_sleep_zsad326 crossref_primary_10_1016_j_molcel_2025_02_013 crossref_primary_10_1016_j_exphem_2023_06_001 crossref_primary_10_1002_ajh_26989 crossref_primary_10_1016_j_gde_2024_102203 crossref_primary_10_1182_blood_2024026232 crossref_primary_10_1111_bjh_19563 crossref_primary_10_1038_s41408_023_00898_4 crossref_primary_10_1097_HS9_0000000000000923 crossref_primary_10_1038_s43856_024_00613_9 crossref_primary_10_1038_s41590_024_01921_x crossref_primary_10_1158_2159_8290_CD_23_0876 crossref_primary_10_1158_2643_3230_BCD_24_0009 crossref_primary_10_1158_0008_5472_CAN_22_3631 crossref_primary_10_1007_s12185_024_03835_8 crossref_primary_10_1038_s41577_025_01130_z crossref_primary_10_3390_biomedicines11071805 crossref_primary_10_1016_j_celrep_2023_112884 crossref_primary_10_1038_s41375_024_02476_4 crossref_primary_10_1159_000530253 crossref_primary_10_1038_s41580_024_00789_x crossref_primary_10_1158_2643_3230_BCD_23_0144 crossref_primary_10_1186_s13072_023_00511_9 crossref_primary_10_1097_MOH_0000000000000796 crossref_primary_10_1093_stcltm_szae089 crossref_primary_10_1002_jha2_996 crossref_primary_10_1158_0008_5472_CAN_24_2125 crossref_primary_10_1016_j_trecan_2023_08_012 crossref_primary_10_1016_j_tips_2024_11_002 crossref_primary_10_1038_s41408_024_01004_y crossref_primary_10_1002_ijc_35332 crossref_primary_10_1182_blood_2024025032 crossref_primary_10_3390_cancers16234017 crossref_primary_10_1002_1878_0261_13731 crossref_primary_10_1016_j_ejmg_2023_104869 crossref_primary_10_1016_j_celrep_2023_113484 crossref_primary_10_3390_biomedicines12102282 crossref_primary_10_1016_j_trecan_2023_05_006 crossref_primary_10_1097_HS9_0000000000000914 crossref_primary_10_1073_pnas_2406519121 |
Cites_doi | 10.1056/NEJMoa041974 10.1038/s41571-020-00442-4 10.1182/blood.2019004226 10.1016/j.cell.2014.02.019 10.1182/blood-2009-03-208587 10.1093/bioinformatics/bts635 10.1038/ng.796 10.1182/blood-2008-09-179747 10.1074/jbc.M801706200 10.1158/2159-8290.CD-21-0177 10.1016/j.celrep.2016.12.054 10.7554/eLife.21856 10.1186/1471-2105-12-323 10.7554/eLife.70557 10.1172/JCI97117 10.1038/s41467-020-15364-z 10.1016/j.exphem.2013.10.005 10.1186/gb-2012-13-3-r16 10.1073/pnas.1219192110 10.7554/eLife.46667 10.1038/s41375-019-0681-8 10.1038/leu.2016.145 10.1186/s13059-014-0550-8 10.1128/MCB.01033-06 10.7150/thno.26900 10.1016/j.molcel.2022.04.017 10.1038/s41586-019-1842-7 10.1158/2159-8290.CD-16-0237 10.1038/nrc1885 10.1038/ncb1282 10.1126/sciadv.abm3945 10.1007/s12185-018-02578-7 10.1038/s41588-021-00925-9 10.1182/blood-2007-06-098251 10.21769/BioProtoc.2175 10.1139/bcb-2016-0068 10.1126/science.aar2555 10.1186/s12864-018-5016-z 10.1016/j.ccell.2018.08.005 10.1016/j.molcel.2022.09.034 10.1182/blood-2006-07-012252 10.1016/j.cell.2016.04.047 10.1038/leu.2013.338 10.1016/j.cell.2013.03.036 10.1038/leu.2015.6 10.1093/bioinformatics/btp352 10.1126/science.aax5863 10.1038/s41375-018-0368-6 10.1126/sciadv.1500503 10.1016/j.cell.2013.03.035 10.1172/JCI129126 10.1016/S0092-8674(04)00171-0 10.7554/eLife.09540 10.1186/gb-2008-9-9-r137 10.1016/j.celrep.2017.12.063 10.1186/s13045-017-0412-4 10.1038/nature03915 10.1038/s41467-018-03255-3 10.1016/j.molcel.2022.04.007 |
ContentType | Journal Article |
Copyright | 2022 The Authors; Published by the American Association for Cancer Research. 2022 The Authors; Published by the American Association for Cancer Research 2022 American Association for Cancer Research |
Copyright_xml | – notice: 2022 The Authors; Published by the American Association for Cancer Research. – notice: 2022 The Authors; Published by the American Association for Cancer Research 2022 American Association for Cancer Research |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1158/2159-8290.CD-22-0424 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Mutant NPM1 Hijacks Transcription in AML |
EISSN | 2159-8290 |
EndPage | 745 |
ExternalDocumentID | PMC9975662 36455589 10_1158_2159_8290_CD_22_0424 |
Genre | Comment Research Support, Non-U.S. Gov't Editorial Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA207272 – fundername: NHGRI NIH HHS grantid: DP2 HG012443 – fundername: NCI NIH HHS grantid: K99 CA226399 – fundername: NCI NIH HHS grantid: R00 CA226399 – fundername: NCI NIH HHS grantid: R01 CA160467 – fundername: NCI NIH HHS grantid: R01 CA240514 – fundername: ; – fundername: ; grantid: 1DP2HG012443 – fundername: ; grantid: Young Investigator award 2018 – fundername: ; grantid: R01CA207272 – fundername: ; grantid: 00036068 – fundername: ; grantid: Fellow 2018 – fundername: ; grantid: SSP-2022-108 – fundername: ; grantid: R01CA160467 – fundername: ; grantid: R01CA240514 |
GroupedDBID | --- 53G 5VS AAYXX ADBBV AENEX AFHIN AFUMD ALMA_UNASSIGNED_HOLDINGS BR6 BTFSW CITATION EBS EJD KQ8 OK1 RCR RHI CGR CUY CVF ECM EIF NPM 7X8 5PM ADCOW |
ID | FETCH-LOGICAL-c474t-32d6b549b98f222f60d29e72f60c957be727a285706ce1d1452dbac7a760e0413 |
ISSN | 2159-8274 2159-8290 |
IngestDate | Thu Aug 21 18:38:46 EDT 2025 Fri Sep 05 00:05:50 EDT 2025 Sat Mar 15 01:21:13 EDT 2025 Tue Jul 01 00:56:35 EDT 2025 Thu Apr 24 23:13:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
License | 2022 The Authors; Published by the American Association for Cancer Research. This open access article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c474t-32d6b549b98f222f60d29e72f60c957be727a285706ce1d1452dbac7a760e0413 |
Notes | SourceType-Scholarly Journals-1 content type line 23 ObjectType-Editorial-2 ObjectType-Commentary-1 ObjectType-Article-3 J. Su, S. Chong, L. Wan, and X. Zhang jointly supervised this article. Current address for X.Q.D. Wang: Department of Biochemistry, University of Southern California, Los Angeles, California. Cancer Discov 2023;13:724–45 Note: X.Q.D. Wang, D. Fan, Q. Han, and Y. Liu contributed equally to this article. |
ORCID | 0000-0003-1054-6042 0000-0002-5444-0437 0000-0003-4862-9484 0000-0002-6180-9095 0000-0002-2223-7223 0000-0002-1471-1183 0000-0001-5721-1974 0000-0003-3464-8967 0000-0003-4951-5788 0000-0003-0806-4335 0000-0001-8993-6611 0000-0002-5080-9604 0000-0003-2210-1024 0000-0002-5372-311X 0000-0003-2058-0658 0000-0002-9533-4761 0000-0003-0160-8774 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9975662 |
PMID | 36455589 |
PQID | 2746392824 |
PQPubID | 23479 |
PageCount | 22 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9975662 proquest_miscellaneous_2746392824 pubmed_primary_36455589 crossref_primary_10_1158_2159_8290_CD_22_0424 crossref_citationtrail_10_1158_2159_8290_CD_22_0424 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cancer discovery |
PublicationTitleAlternate | Cancer Discov |
PublicationYear | 2023 |
Publisher | American Association for Cancer Research |
Publisher_xml | – name: American Association for Cancer Research |
References | Song (2023030108202976300_) 2022; 82 Etchin (2023030108202976300_) 2017; 31 Love (2023030108202976300_) 2014; 15 Scott (2023030108202976300_) 2016; 94 Wan (2023030108202976300_) 2020; 577 Lin (2023030108202976300_) 2017; 45 Kerry (2023030108202976300_) 2017; 18 Himadewi (2023030108202976300_) 2021; 10 Mitrea (2023030108202976300_) 2018; 9 Falini (2023030108202976300_) 2007; 109 Wu (2023030108202976300_) 2021; 11 Gu (2023030108202976300_) 2018; 128 Somerville (2023030108202976300_) 2018; 22 Grass (2023030108202976300_) 2006; 26 Grummitt (2023030108202976300_) 2008; 283 Dawson (2023030108202976300_) 2014; 28 Kuhn (2023030108202976300_) 2016; 6 Dobin (2023030108202976300_) 2013; 29 Herrmann (2023030108202976300_) 2017; 7 Groschel (2023030108202976300_) 2014; 157 Escobar (2023030108202976300_) 2022; 8 Oka (2023030108202976300_) 2019; 8 Zhang (2023030108202976300_) 2008; 9 Camus (2023030108202976300_) 2017; 10 Wang (2023030108202976300_) 2005; 7 Falini (2023030108202976300_) 2020; 136 Sportoletti (2023030108202976300_) 2008; 111 Yun (2023030108202976300_) 2021; 53 Falini (2023030108202976300_) 2005; 352 Zhang (2023030108202976300_) 2018; 8 Loberg (2023030108202976300_) 2019; 33 Chong (2023030108202976300_) 2022; 82 Chong (2023030108202976300_) 2018; 361 Loven (2023030108202976300_) 2013; 153 Shao (2023030108202976300_) 2012; 13 Whyte (2023030108202976300_) 2013; 153 Trojanowski (2023030108202976300_) 2022; 82 Li (2023030108202976300_) 2011; 12 Rau (2023030108202976300_) 2014; 42 Wang (2023030108202976300_) 2018; 19 Johnson (2023030108202976300_) 2015; 1 Janicki (2023030108202976300_) 2004; 116 Oka (2023030108202976300_) 2016; 5 Klossowski (2023030108202976300_) 2020; 130 Horman (2023030108202976300_) 2009; 113 Skene (2023030108202976300_) 2017; 6 Feric (2023030108202976300_) 2016; 165 Wang (2023030108202976300_) 2020; 34 Brunetti (2023030108202976300_) 2018; 34 Uckelmann (2023030108202976300_) 2020; 367 Paulsen (2023030108202976300_) 2013; 110 Cheng (2023030108202976300_) 2010; 115 Azmi (2023030108202976300_) 2021; 18 Grisendi (2023030108202976300_) 2005; 437 Brunetti (2023030108202976300_) 2019; 110 Grisendi (2023030108202976300_) 2006; 6 Vassiliou (2023030108202976300_) 2011; 43 Qin (2023030108202976300_) 2020; 11 Li (2023030108202976300_) 2009; 25 Spencer (2023030108202976300_) 2015; 29 36455613 - Cancer Discov. 2023 Mar 1;13(3):746-765. doi: 10.1158/2159-8290.CD-22-0366. |
References_xml | – volume: 352 start-page: 254 year: 2005 ident: 2023030108202976300_ article-title: Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype publication-title: N Engl J Med doi: 10.1056/NEJMoa041974 – volume: 18 start-page: 152 year: 2021 ident: 2023030108202976300_ article-title: The nuclear export protein XPO1 - from biology to targeted therapy publication-title: Nat Rev Clin Oncol doi: 10.1038/s41571-020-00442-4 – volume: 136 start-page: 1707 year: 2020 ident: 2023030108202976300_ article-title: NPM1-mutated acute myeloid leukemia: from bench to bedside publication-title: Blood doi: 10.1182/blood.2019004226 – volume: 157 start-page: 369 year: 2014 ident: 2023030108202976300_ article-title: A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia publication-title: Cell doi: 10.1016/j.cell.2014.02.019 – volume: 115 start-page: 3341 year: 2010 ident: 2023030108202976300_ article-title: The cytoplasmic NPM mutant induces myeloproliferation in a transgenic mouse model publication-title: Blood doi: 10.1182/blood-2009-03-208587 – volume: 29 start-page: 15 year: 2013 ident: 2023030108202976300_ article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 43 start-page: 470 year: 2011 ident: 2023030108202976300_ article-title: Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice publication-title: Nat Genet doi: 10.1038/ng.796 – volume: 113 start-page: 5466 year: 2009 ident: 2023030108202976300_ article-title: Gfi1 integrates progenitor versus granulocytic transcriptional programming publication-title: Blood doi: 10.1182/blood-2008-09-179747 – volume: 283 start-page: 23326 year: 2008 ident: 2023030108202976300_ article-title: Structural consequences of nucleophosmin mutations in acute myeloid leukemia publication-title: J Biol Chem doi: 10.1074/jbc.M801706200 – volume: 11 start-page: 3198 year: 2021 ident: 2023030108202976300_ article-title: Actinomycin D targets NPM1c-primed mitochondria to restore PML-driven senescence in AML therapy publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-21-0177 – volume: 18 start-page: 482 year: 2017 ident: 2023030108202976300_ article-title: MLL-AF4 spreading identifies binding sites that are distinct from super-enhancers and that govern sensitivity to DOT1L inhibition in leukemia publication-title: Cell Rep doi: 10.1016/j.celrep.2016.12.054 – volume: 6 start-page: e21856 year: 2017 ident: 2023030108202976300_ article-title: An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites publication-title: Elife doi: 10.7554/eLife.21856 – volume: 12 start-page: 323 year: 2011 ident: 2023030108202976300_ article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome publication-title: BMC Bioinf doi: 10.1186/1471-2105-12-323 – volume: 45 start-page: 3707 year: 2017 ident: 2023030108202976300_ article-title: Efficient DNA binding of NF-kappaB requires the chaperone-like function of NPM1 publication-title: Nucleic Acids Res – volume: 10 start-page: e70557 year: 2021 ident: 2023030108202976300_ article-title: 3'HS1 CTCF binding site in human beta-globin locus regulates fetal hemoglobin expression publication-title: Elife doi: 10.7554/eLife.70557 – volume: 128 start-page: 4260 year: 2018 ident: 2023030108202976300_ article-title: Leukemogenic nucleophosmin mutation disrupts the transcription factor hub that regulates granulomonocytic fates publication-title: J Clin Invest doi: 10.1172/JCI97117 – volume: 11 start-page: 1669 year: 2020 ident: 2023030108202976300_ article-title: NPM1 upregulates the transcription of PD-L1 and suppresses T cell activity in triple-negative breast cancer publication-title: Nat Commun doi: 10.1038/s41467-020-15364-z – volume: 42 start-page: 101 year: 2014 ident: 2023030108202976300_ article-title: NPMc+ cooperates with Flt3/ITD mutations to cause acute leukemia recapitulating human disease publication-title: Exp Hematol doi: 10.1016/j.exphem.2013.10.005 – volume: 13 start-page: R16 year: 2012 ident: 2023030108202976300_ article-title: MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets publication-title: Genome Biol doi: 10.1186/gb-2012-13-3-r16 – volume: 110 start-page: 2240 year: 2013 ident: 2023030108202976300_ article-title: Coordinated regulation of synthesis and stability of RNA during the acute TNF-induced proinflammatory response publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1219192110 – volume: 8 start-page: e46667 year: 2019 ident: 2023030108202976300_ article-title: Chromatin-bound CRM1 recruits SET-Nup214 and NPM1c onto HOX clusters causing aberrant HOX expression in leukemia cells publication-title: Elife doi: 10.7554/eLife.46667 – volume: 34 start-page: 1278 year: 2020 ident: 2023030108202976300_ article-title: NPM1c impedes CTCF functions through cytoplasmic mislocalization in acute myeloid leukemia publication-title: Leukemia doi: 10.1038/s41375-019-0681-8 – volume: 31 start-page: 143 year: 2017 ident: 2023030108202976300_ article-title: KPT-8602, a second-generation inhibitor of XPO1-mediated nuclear export, is well tolerated and highly active against AML blasts and leukemia-initiating cells publication-title: Leukemia doi: 10.1038/leu.2016.145 – volume: 15 start-page: 550 year: 2014 ident: 2023030108202976300_ article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 26 start-page: 7056 year: 2006 ident: 2023030108202976300_ article-title: Distinct functions of dispersed GATA factor complexes at an endogenous gene locus publication-title: Mol Cell Biol doi: 10.1128/MCB.01033-06 – volume: 8 start-page: 4359 year: 2018 ident: 2023030108202976300_ article-title: Inactivation of PBX3 and HOXA9 by down-regulating H3K79 methylation represses NPM1-mutated leukemic cell survival publication-title: Theranostics doi: 10.7150/thno.26900 – volume: 82 start-page: 1878 year: 2022 ident: 2023030108202976300_ article-title: Transcription activation is enhanced by multivalent interactions independent of phase separation publication-title: Mol Cell doi: 10.1016/j.molcel.2022.04.017 – volume: 577 start-page: 121 year: 2020 ident: 2023030108202976300_ article-title: Impaired cell fate through gain-of-function mutations in a chromatin reader publication-title: Nature doi: 10.1038/s41586-019-1842-7 – volume: 6 start-page: 1166 year: 2016 ident: 2023030108202976300_ article-title: Targeting chromatin regulators inhibits leukemogenic gene expression in NPM1 mutant leukemia publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-16-0237 – volume: 6 start-page: 493 year: 2006 ident: 2023030108202976300_ article-title: Nucleophosmin and cancer publication-title: Nat Rev Cancer doi: 10.1038/nrc1885 – volume: 7 start-page: 823 year: 2005 ident: 2023030108202976300_ article-title: Temporal and spatial control of nucleophosmin by the Ran-Crm1 complex in centrosome duplication publication-title: Nat Cell Biol doi: 10.1038/ncb1282 – volume: 8 start-page: eabm3945 year: 2022 ident: 2023030108202976300_ article-title: Inheritance of repressed chromatin domains during S phase requires the histone chaperone NPM1 publication-title: Sci Adv doi: 10.1126/sciadv.abm3945 – volume: 110 start-page: 150 year: 2019 ident: 2023030108202976300_ article-title: New insights into the biology of acute myeloid leukemia with mutated NPM1 publication-title: Int J Hematol doi: 10.1007/s12185-018-02578-7 – volume: 53 start-page: 1443 year: 2021 ident: 2023030108202976300_ article-title: Mutational synergy during leukemia induction remodels chromatin accessibility, histone modifications and three-dimensional DNA topology to alter gene expression publication-title: Nat Genet doi: 10.1038/s41588-021-00925-9 – volume: 111 start-page: 3859 year: 2008 ident: 2023030108202976300_ article-title: Npm1 is a haploinsufficient suppressor of myeloid and lymphoid malignancies in the mouse publication-title: Blood doi: 10.1182/blood-2007-06-098251 – volume: 7 start-page: e2175 year: 2017 ident: 2023030108202976300_ article-title: Differential salt fractionation of nuclei to analyze chromatin-associated proteins from cultured mammalian cells publication-title: Bio Protoc doi: 10.21769/BioProtoc.2175 – volume: 94 start-page: 419 year: 2016 ident: 2023030108202976300_ article-title: Nucleolin and nucleophosmin: nucleolar proteins with multiple functions in DNA repair publication-title: Biochem Cell Biol doi: 10.1139/bcb-2016-0068 – volume: 361 start-page: eaar2555 year: 2018 ident: 2023030108202976300_ article-title: Imaging dynamic and selective low-complexity domain interactions that control gene transcription publication-title: Science doi: 10.1126/science.aar2555 – volume: 19 start-page: 633 year: 2018 ident: 2023030108202976300_ article-title: Nascent RNA sequencing analysis provides insights into enhancer-mediated gene regulation publication-title: BMC Genomics doi: 10.1186/s12864-018-5016-z – volume: 34 start-page: 499 year: 2018 ident: 2023030108202976300_ article-title: Mutant NPM1 maintains the leukemic state through HOX expression publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.08.005 – volume: 82 start-page: 4080 year: 2022 ident: 2023030108202976300_ article-title: Hotspot mutations in the structured ENL YEATS domain link aberrant transcriptional condensates and cancer publication-title: Mol Cell doi: 10.1016/j.molcel.2022.09.034 – volume: 109 start-page: 874 year: 2007 ident: 2023030108202976300_ article-title: Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features publication-title: Blood doi: 10.1182/blood-2006-07-012252 – volume: 165 start-page: 1686 year: 2016 ident: 2023030108202976300_ article-title: Coexisting liquid phases underlie nucleolar subcompartments publication-title: Cell doi: 10.1016/j.cell.2016.04.047 – volume: 28 start-page: 311 year: 2014 ident: 2023030108202976300_ article-title: Recurrent mutations, including NPM1c, activate a BRD4-dependent core transcriptional program in acute myeloid leukemia publication-title: Leukemia doi: 10.1038/leu.2013.338 – volume: 153 start-page: 320 year: 2013 ident: 2023030108202976300_ article-title: Selective inhibition of tumor oncogenes by disruption of super-enhancers publication-title: Cell doi: 10.1016/j.cell.2013.03.036 – volume: 29 start-page: 1279 year: 2015 ident: 2023030108202976300_ article-title: Epigenomic analysis of the HOX gene loci reveals mechanisms that may control canonical expression patterns in AML and normal hematopoietic cells publication-title: Leukemia doi: 10.1038/leu.2015.6 – volume: 25 start-page: 2078 year: 2009 ident: 2023030108202976300_ article-title: The sequence alignment/map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 367 start-page: 586 year: 2020 ident: 2023030108202976300_ article-title: Therapeutic targeting of preleukemia cells in a mouse model of NPM1 mutant acute myeloid leukemia publication-title: Science doi: 10.1126/science.aax5863 – volume: 33 start-page: 1635 year: 2019 ident: 2023030108202976300_ article-title: Sequentially inducible mouse models reveal that Npm1 mutation causes malignant transformation of Dnmt3a-mutant clonal hematopoiesis publication-title: Leukemia doi: 10.1038/s41375-018-0368-6 – volume: 1 start-page: e1500503 year: 2015 ident: 2023030108202976300_ article-title: Cis-regulatory mechanisms governing stem and progenitor cell transitions publication-title: Sci Adv doi: 10.1126/sciadv.1500503 – volume: 153 start-page: 307 year: 2013 ident: 2023030108202976300_ article-title: Master transcription factors and mediator establish super-enhancers at key cell identity genes publication-title: Cell doi: 10.1016/j.cell.2013.03.035 – volume: 130 start-page: 981 year: 2020 ident: 2023030108202976300_ article-title: Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia publication-title: J Clin Invest doi: 10.1172/JCI129126 – volume: 116 start-page: 683 year: 2004 ident: 2023030108202976300_ article-title: From silencing to gene expression: real-time analysis in single cells publication-title: Cell doi: 10.1016/S0092-8674(04)00171-0 – volume: 5 start-page: e09540 year: 2016 ident: 2023030108202976300_ article-title: Chromatin-prebound Crm1 recruits Nup98-HoxA9 fusion to induce aberrant expression of Hox cluster genes publication-title: Elife doi: 10.7554/eLife.09540 – volume: 9 start-page: R137 year: 2008 ident: 2023030108202976300_ article-title: Model-based analysis of ChIP-Seq (MACS) publication-title: Genome Biol doi: 10.1186/gb-2008-9-9-r137 – volume: 22 start-page: 638 year: 2018 ident: 2023030108202976300_ article-title: Derepression of the iroquois homeodomain transcription factor gene IRX3 confers differentiation block in acute leukemia publication-title: Cell Rep doi: 10.1016/j.celrep.2017.12.063 – volume: 10 start-page: 47 year: 2017 ident: 2023030108202976300_ article-title: XPO1 in B cell hematological malignancies: from recurrent somatic mutations to targeted therapy publication-title: J Hematol Oncol doi: 10.1186/s13045-017-0412-4 – volume: 437 start-page: 147 year: 2005 ident: 2023030108202976300_ article-title: Role of nucleophosmin in embryonic development and tumorigenesis publication-title: Nature doi: 10.1038/nature03915 – volume: 9 start-page: 842 year: 2018 ident: 2023030108202976300_ article-title: Self-interaction of NPM1 modulates multiple mechanisms of liquid-liquid phase separation publication-title: Nat Commun doi: 10.1038/s41467-018-03255-3 – volume: 82 start-page: 2084 year: 2022 ident: 2023030108202976300_ article-title: Tuning levels of low-complexity domain interactions to modulate endogenous oncogenic transcription publication-title: Mol Cell doi: 10.1016/j.molcel.2022.04.007 – reference: 36455613 - Cancer Discov. 2023 Mar 1;13(3):746-765. doi: 10.1158/2159-8290.CD-22-0366. |
SSID | ssj0000494507 |
Score | 2.5592718 |
Snippet | Nucleophosmin (NPM1) is a ubiquitously expressed nucleolar protein with a wide range of biological functions. In 30% of acute myeloid leukemia (AML), the... Mutant NPM1 in leukemia obtains neomorphic activity to hijack active HOXA/B and MEIS1 transcription on chromatin via the association of XPO1 and blocks the... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 724 |
SubjectTerms | Chromatin - genetics Humans Leukemia, Myeloid, Acute - drug therapy Mutation Nuclear Proteins - genetics Nuclear Proteins - metabolism Nucleophosmin |
Title | Mutant NPM1 Hijacks Transcriptional Hubs to Maintain Pathogenic Gene Programs in Acute Myeloid Leukemia |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36455589 https://www.proquest.com/docview/2746392824 https://pubmed.ncbi.nlm.nih.gov/PMC9975662 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELbaVIpyqfrupg-5Um8rtqzBGI7RptWqDVEjJdLeENimoc1ClMAh_fWdMRjYTao-Lsgys0bi-3aY8TxMyPs08vIw46GTBzk6KDIHPai1E3kcPniBzH3jKMbHwfLM_7ziqyFX1VSX1NlM_ryzruR_UIU5wBWrZP8B2X5RmIAx4AtXQBiuf4Vx3OAZwNPjr_F8uiy-Y7l8263cqgLsHAyaAQ3MOC1K3AbApvznFSxZSNNzGksFMEPL5MUeSEwbiG_0RVWo6ZFufuh1kY4N2AWy5ArjOhKTP0cb8q3SWDV6eoLbD6NkeWz1WHb17Gpg47KdBOmbxs4dFY35KBTrTq7bkGDekJE100ZxgRURORig3dCy3ohN3khliraG-rYq51ie0K81Wxw64DdjpHYsDoBcrg28GE_lvD2PaKuFtr11nzxgQpho_peTsN-KwxY5YBZ3hZXw3A93PXWP7Np1Nm2YW47Jdn7tyGA5fUQedp4GPWhp85jc0-UTsht3uRRPybeWPRTZQzv20C32UGQPrStq2UMH9lBkD7XsoXDPsId27KGWPc_I2aePp4ul0x274Uhf-LXjMRVk3I-yKMzBeswDV7FICxzIiIsMhiJleDBCIPVczX3OVJZKkYrA1S4YRc_JTlmV-iWhrsyU4Blz0S5PZRCqTITeXKpAMaZ4NCGefZGJ7HrS49EoF4nxTXmYIBIJIpEsDhPGEkRiQpz-V5dtT5Y_yL-zGCWgPDEilpa6aq4TJnyw0FmIMi9azPoVLdgTIjbQ7AWwMfvmnbI4Nw3ao0iAl8T2f7vmK7I3_HNek536qtFvwLits7eGmr8AmnygDg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutant+NPM1+Hijacks+Transcriptional+Hubs+to+Maintain+Pathogenic+Gene+Programs+in+Acute+Myeloid+Leukemia&rft.jtitle=Cancer+discovery&rft.au=Wang%2C+Xue+Qing+David&rft.au=Fan%2C+Dandan&rft.au=Han%2C+Qinyu&rft.au=Liu%2C+Yiman&rft.date=2023-03-01&rft.eissn=2159-8290&rft.volume=13&rft.issue=3&rft.spage=724&rft_id=info:doi/10.1158%2F2159-8290.CD-22-0424&rft_id=info%3Apmid%2F36455589&rft.externalDocID=36455589 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2159-8274&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2159-8274&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2159-8274&client=summon |