Patient privacy in smart cities by blockchain technology and feature selection with Harris Hawks Optimization (HHO) algorithm and machine learning

A medical center in the smart cities of the future needs data security and confidentiality to treat patients accurately. One mechanism for sending medical data is to send information to other medical centers without preserving confidentiality. This method is not impressive because in treating people...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 81; no. 6; pp. 8719 - 8743
Main Authors Al-Safi, Haedar, Munilla, Jorge, Rahebi, Javad
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
1573-7721
DOI10.1007/s11042-022-12164-z

Cover

Abstract A medical center in the smart cities of the future needs data security and confidentiality to treat patients accurately. One mechanism for sending medical data is to send information to other medical centers without preserving confidentiality. This method is not impressive because in treating people, the privacy of medical information is a principle. In the proposed framework, the opinion of experts from other medical centers for the treatment of patients is received and consider the best therapy. The proposed method has two layers. In the first layer, data transmission uses blockchain. In the second layer, blocks related to patients’ records analyze by machine learning methods. Patient records place in a block of the blockchain. Block of patient sends to other medical centers. Each treatment center can recommend the proposed type of treatment and blockchain attachment and send it to all nodes and treatment centers. Each medical center receiving data of the patients, then predicts the treatment using data mining methods. Sending medical data between medical centers with blockchain and maintaining confidentiality is one of the innovations of this article. The proposed method is a binary version of the HHO algorithm for feature selection. Another innovation of this research is the use of majority voting learning in diagnosing the type of disease in medical centers. Implementation of the proposed system shows that the blockchain preserves data confidentiality of about 100%. The reliability and reliability of the proposed framework are much higher than the centralized method. The result shows that the accuracy, sensitivity, and precision of the proposed method for diagnosing heart disease are 92.75%, 92.15%, and 95.69%, respectively. The proposed method has a lower error in diagnosing heart disease from ANN, SVM, DT, RF, AdaBoost, and BN.
AbstractList A medical center in the smart cities of the future needs data security and confidentiality to treat patients accurately. One mechanism for sending medical data is to send information to other medical centers without preserving confidentiality. This method is not impressive because in treating people, the privacy of medical information is a principle. In the proposed framework, the opinion of experts from other medical centers for the treatment of patients is received and consider the best therapy. The proposed method has two layers. In the first layer, data transmission uses blockchain. In the second layer, blocks related to patients' records analyze by machine learning methods. Patient records place in a block of the blockchain. Block of patient sends to other medical centers. Each treatment center can recommend the proposed type of treatment and blockchain attachment and send it to all nodes and treatment centers. Each medical center receiving data of the patients, then predicts the treatment using data mining methods. Sending medical data between medical centers with blockchain and maintaining confidentiality is one of the innovations of this article. The proposed method is a binary version of the HHO algorithm for feature selection. Another innovation of this research is the use of majority voting learning in diagnosing the type of disease in medical centers. Implementation of the proposed system shows that the blockchain preserves data confidentiality of about 100%. The reliability and reliability of the proposed framework are much higher than the centralized method. The result shows that the accuracy, sensitivity, and precision of the proposed method for diagnosing heart disease are 92.75%, 92.15%, and 95.69%, respectively. The proposed method has a lower error in diagnosing heart disease from ANN, SVM, DT, RF, AdaBoost, and BN.A medical center in the smart cities of the future needs data security and confidentiality to treat patients accurately. One mechanism for sending medical data is to send information to other medical centers without preserving confidentiality. This method is not impressive because in treating people, the privacy of medical information is a principle. In the proposed framework, the opinion of experts from other medical centers for the treatment of patients is received and consider the best therapy. The proposed method has two layers. In the first layer, data transmission uses blockchain. In the second layer, blocks related to patients' records analyze by machine learning methods. Patient records place in a block of the blockchain. Block of patient sends to other medical centers. Each treatment center can recommend the proposed type of treatment and blockchain attachment and send it to all nodes and treatment centers. Each medical center receiving data of the patients, then predicts the treatment using data mining methods. Sending medical data between medical centers with blockchain and maintaining confidentiality is one of the innovations of this article. The proposed method is a binary version of the HHO algorithm for feature selection. Another innovation of this research is the use of majority voting learning in diagnosing the type of disease in medical centers. Implementation of the proposed system shows that the blockchain preserves data confidentiality of about 100%. The reliability and reliability of the proposed framework are much higher than the centralized method. The result shows that the accuracy, sensitivity, and precision of the proposed method for diagnosing heart disease are 92.75%, 92.15%, and 95.69%, respectively. The proposed method has a lower error in diagnosing heart disease from ANN, SVM, DT, RF, AdaBoost, and BN.
A medical center in the smart cities of the future needs data security and confidentiality to treat patients accurately. One mechanism for sending medical data is to send information to other medical centers without preserving confidentiality. This method is not impressive because in treating people, the privacy of medical information is a principle. In the proposed framework, the opinion of experts from other medical centers for the treatment of patients is received and consider the best therapy. The proposed method has two layers. In the first layer, data transmission uses blockchain. In the second layer, blocks related to patients’ records analyze by machine learning methods. Patient records place in a block of the blockchain. Block of patient sends to other medical centers. Each treatment center can recommend the proposed type of treatment and blockchain attachment and send it to all nodes and treatment centers. Each medical center receiving data of the patients, then predicts the treatment using data mining methods. Sending medical data between medical centers with blockchain and maintaining confidentiality is one of the innovations of this article. The proposed method is a binary version of the HHO algorithm for feature selection. Another innovation of this research is the use of majority voting learning in diagnosing the type of disease in medical centers. Implementation of the proposed system shows that the blockchain preserves data confidentiality of about 100%. The reliability and reliability of the proposed framework are much higher than the centralized method. The result shows that the accuracy, sensitivity, and precision of the proposed method for diagnosing heart disease are 92.75%, 92.15%, and 95.69%, respectively. The proposed method has a lower error in diagnosing heart disease from ANN, SVM, DT, RF, AdaBoost, and BN.
Author Al-Safi, Haedar
Rahebi, Javad
Munilla, Jorge
Author_xml – sequence: 1
  givenname: Haedar
  surname: Al-Safi
  fullname: Al-Safi, Haedar
  organization: Department of Telecommunication Engineering, Malaga University, Department of Software Engineering, Istanbul Ayvansaray University
– sequence: 2
  givenname: Jorge
  surname: Munilla
  fullname: Munilla, Jorge
  organization: Department of Telecommunication Engineering, Malaga University, Department of Software Engineering, Istanbul Ayvansaray University
– sequence: 3
  givenname: Javad
  orcidid: 0000-0001-9875-4860
  surname: Rahebi
  fullname: Rahebi, Javad
  email: cevatrahebi@ayvansaray.edu.tr
  organization: Department of Telecommunication Engineering, Malaga University, Department of Software Engineering, Istanbul Ayvansaray University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35153619$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhSNURH_gBVggS2zaRcB2fuxskKoKGKRKwwLW1o3jZNw69mA7HWUegyfGnRkodFGxsqV7ztG53z3NjqyzKsteE_yOYMzeB0JwSXNMaU4oqct8-yw7IRUrcsYoOUr_guOcVZgcZ6ch3GBM6oqWL7LjoiJVUZPmJPv5FaJWNqK113cgZ6QtCiP4iKROg4DaGbXGyVu5gjSKSq6sM26YEdgO9Qri5BUKyigZtbNoo-MKLcB7HdKzuQ1ouY561FvYjc8Xi-UFAjM4n4TjLmQEudJWIaPAW22Hl9nzHkxQrw7vWfb908dvV4v8evn5y9XldS5LVsacMlKVlPSNqlsmZUV7kFzKlmDCWw5NwTmFmnaMlrxpoKNd3za14qyVZc-6tjjLin3uZNcwb8AYkSCk3WdBsLgnLPaERSIsdoTFNrk-7F3rqR1VJxM7Dw9OB1r8O7F6JQZ3JzgnjLEmBZwfArz7MakQxaiDVMaAVW4KgtaU16xqKE3St4-kN27yNkFJqqIqiqYpq6R683ejP1V-HzkJ-F4gvQvBq16k2-7ukQpq8_S29JH1vxAdwIYktoPyD7WfcP0C8abfLA
CitedBy_id crossref_primary_10_3233_WEB_220118
crossref_primary_10_3390_electronics13122398
crossref_primary_10_3390_healthcare11010081
crossref_primary_10_1007_s11277_024_11050_1
crossref_primary_10_3390_diagnostics13142392
crossref_primary_10_1007_s11760_023_02813_7
crossref_primary_10_3233_JIFS_232902
crossref_primary_10_1016_j_eswa_2022_118741
crossref_primary_10_3390_diagnostics13101728
crossref_primary_10_1007_s11042_022_14238_4
crossref_primary_10_1007_s10462_024_10873_5
crossref_primary_10_1155_2022_7276028
crossref_primary_10_1002_ett_4824
crossref_primary_10_1007_s10489_022_03743_6
crossref_primary_10_1007_s10278_025_01474_x
Cites_doi 10.1007/s11042-021-10860-w
10.1007/s11042-020-10284-y
10.1016/j.compind.2020.103290
10.1155/2021/6649640
10.1016/j.ijmedinf.2021.104399
10.1016/j.jpdc.2021.03.011
10.1155/2020/5345923
10.1109/MNET.011.2000326
10.1109/SIU49456.2020.9302168
10.3390/jcp1010002
10.1007/s11042-020-09646-3
10.1109/JBHI.2020.2999497
10.3390/su12176768
10.1109/ACCESS.2021.3049325
10.1016/j.micpro.2020.103524
10.1016/j.irbm.2021.05.003
10.1007/s11227-021-03637-3
10.1016/j.future.2019.02.028
10.2991/ijcis.d.200915.003
10.1007/s00779-021-01543-2
10.1016/j.techfore.2020.120536
10.1109/LNET.2021.3070270
10.1155/2021/6621540
10.1016/j.matpr.2021.01.475
10.3390/s20102913
10.1016/j.ins.2019.05.025
10.1109/ACCESS.2021.3065440
10.1007/978-981-15-9031-3_25
10.1016/j.chb.2021.106854
10.1186/s13638-020-01858-3
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright Springer Nature B.V. Mar 2022
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
– notice: Copyright Springer Nature B.V. Mar 2022
DBID AAYXX
CITATION
NPM
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s11042-022-12164-z
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ABI/INFORM Global (Corporate)

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 8743
ExternalDocumentID 10.1007/s11042-022-12164-z
PMC8817779
35153619
10_1007_s11042_022_12164_z
Genre Journal Article
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PQGLB
PUEGO
-4Z
-59
-5G
-BR
-EM
3V.
ADINQ
GQ6
GROUPED_ABI_INFORM_COMPLETE
M0N
NPM
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c474t-2715421f9e6b7cc52fac8ccb1018b8a93882a62d724899ad2dfb96e87bc4f7db3
IEDL.DBID UNPAY
ISSN 1380-7501
1573-7721
IngestDate Sun Oct 26 04:05:22 EDT 2025
Tue Sep 30 16:45:56 EDT 2025
Wed Oct 01 13:41:21 EDT 2025
Fri Jul 25 21:00:16 EDT 2025
Wed Feb 19 02:26:31 EST 2025
Wed Oct 01 06:33:49 EDT 2025
Thu Apr 24 23:06:39 EDT 2025
Thu Apr 10 07:12:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Medical data
Privacy
Disease data
Security
Blockchain
Machine learning
Language English
License The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-2715421f9e6b7cc52fac8ccb1018b8a93882a62d724899ad2dfb96e87bc4f7db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9875-4860
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s11042-022-12164-z.pdf
PMID 35153619
PQID 2635339945
PQPubID 54626
PageCount 25
ParticipantIDs unpaywall_primary_10_1007_s11042_022_12164_z
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8817779
proquest_miscellaneous_2628675922
proquest_journals_2635339945
pubmed_primary_35153619
crossref_citationtrail_10_1007_s11042_022_12164_z
crossref_primary_10_1007_s11042_022_12164_z
springer_journals_10_1007_s11042_022_12164_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationTitleAlternate Multimed Tools Appl
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Z Ma (12164_CR20) 2019; 496
12164_CR5
12164_CR6
AA Heidari (12164_CR12) 2019; 97
12164_CR1
12164_CR2
AH Mohsin (12164_CR22) 2021; 80
12164_CR3
J Peral (12164_CR26) 2020; 12
12164_CR8
H Mora (12164_CR23) 2021; 122
N Iqbal (12164_CR14) 2021; 9
X Liu (12164_CR19) 2020; 24
12164_CR30
M Kim (12164_CR16) 2020; 20
12164_CR31
12164_CR32
DB Rawat (12164_CR27) 2021; 1
GN Nguyen (12164_CR25) 2021; 153
HM Hussien (12164_CR13) 2021; 22
SMBK Albargathe (12164_CR4) 2021; 80
12164_CR15
A Tandon (12164_CR29) 2020; 122
12164_CR17
G Muhammad (12164_CR24) 2021; 35
PG Shynu (12164_CR28) 2021; 9
12164_CR21
FA Alsarori (12164_CR7) 2020; 13
S Balasubramanian (12164_CR9) 2021; 165
MJ Gul (12164_CR11) 2021; 80
MJ Baucas (12164_CR10) 2021; 3
S Latif (12164_CR18) 2021; 21
References_xml – ident: 12164_CR6
  doi: 10.1007/s11042-021-10860-w
– volume: 80
  start-page: 14137
  issue: 9
  year: 2021
  ident: 12164_CR22
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-10284-y
– volume: 122
  start-page: 103290
  year: 2020
  ident: 12164_CR29
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2020.103290
– ident: 12164_CR32
  doi: 10.1155/2021/6649640
– ident: 12164_CR2
  doi: 10.1016/j.ijmedinf.2021.104399
– volume: 21
  start-page: 100190
  year: 2021
  ident: 12164_CR18
  publication-title: J Ind Inf Integr
– volume: 153
  start-page: 150
  year: 2021
  ident: 12164_CR25
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2021.03.011
– ident: 12164_CR21
  doi: 10.1155/2020/5345923
– volume: 35
  start-page: 74
  issue: 2
  year: 2021
  ident: 12164_CR24
  publication-title: IEEE Netw
  doi: 10.1109/MNET.011.2000326
– ident: 12164_CR1
  doi: 10.1109/SIU49456.2020.9302168
– volume: 1
  start-page: 4
  issue: 1
  year: 2021
  ident: 12164_CR27
  publication-title: J Cybersecurity Priv
  doi: 10.3390/jcp1010002
– volume: 80
  start-page: 2565
  issue: 2
  year: 2021
  ident: 12164_CR4
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-09646-3
– volume: 24
  start-page: 2177
  issue: 8
  year: 2020
  ident: 12164_CR19
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2020.2999497
– volume: 22
  start-page: 100217
  year: 2021
  ident: 12164_CR13
  publication-title: J Ind Inf Integr
– volume: 12
  start-page: 6768
  issue: 17
  year: 2020
  ident: 12164_CR26
  publication-title: Sustainability
  doi: 10.3390/su12176768
– volume: 9
  start-page: 8069
  year: 2021
  ident: 12164_CR14
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3049325
– volume: 80
  start-page: 103524
  year: 2021
  ident: 12164_CR11
  publication-title: Microprocess Microsyst
  doi: 10.1016/j.micpro.2020.103524
– ident: 12164_CR8
  doi: 10.1016/j.irbm.2021.05.003
– ident: 12164_CR30
  doi: 10.1007/s11227-021-03637-3
– volume: 97
  start-page: 849
  year: 2019
  ident: 12164_CR12
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2019.02.028
– volume: 13
  start-page: 1507
  issue: 1
  year: 2020
  ident: 12164_CR7
  publication-title: Int J Comput Intell Syst
  doi: 10.2991/ijcis.d.200915.003
– ident: 12164_CR5
  doi: 10.1007/s00779-021-01543-2
– volume: 165
  start-page: 120536
  year: 2021
  ident: 12164_CR9
  publication-title: Technol Forecast Soc Chang
  doi: 10.1016/j.techfore.2020.120536
– volume: 3
  start-page: 52
  issue: 2
  year: 2021
  ident: 12164_CR10
  publication-title: IEEE Netw Lett
  doi: 10.1109/LNET.2021.3070270
– ident: 12164_CR3
  doi: 10.1155/2021/6621540
– ident: 12164_CR17
  doi: 10.1016/j.matpr.2021.01.475
– volume: 20
  start-page: 2913
  issue: 10
  year: 2020
  ident: 12164_CR16
  publication-title: Sensors
  doi: 10.3390/s20102913
– volume: 496
  start-page: 225
  year: 2019
  ident: 12164_CR20
  publication-title: Inf Sci (Ny)
  doi: 10.1016/j.ins.2019.05.025
– volume: 9
  start-page: 45706
  year: 2021
  ident: 12164_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3065440
– ident: 12164_CR15
  doi: 10.1007/978-981-15-9031-3_25
– volume: 122
  start-page: 106854
  year: 2021
  ident: 12164_CR23
  publication-title: Comput Hum Behav
  doi: 10.1016/j.chb.2021.106854
– ident: 12164_CR31
  doi: 10.1186/s13638-020-01858-3
SSID ssj0016524
Score 2.412931
Snippet A medical center in the smart cities of the future needs data security and confidentiality to treat patients accurately. One mechanism for sending medical data...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8719
SubjectTerms Algorithms
Blockchain
Cardiovascular disease
Computer Communication Networks
Computer Science
Confidentiality
Cryptography
Data mining
Data Structures and Information Theory
Data transmission
Feature selection
Health care facilities
Health services
Heart diseases
Innovations
Machine learning
Multimedia Information Systems
Optimization
Patients
Privacy
Reliability
Smart cities
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4a3QPsgcu4BQYyEg8gFtE4FycP07ShTRES3YSYtLfIt6zT2rSsKVP3M_jFHDtOumpSxVMebMdxztX2Od8B-Bgo48UGuDdBcfCjUFA_0zTzeRyXQV_pvpQmOfnHIMnPou_n8fkGDNpcGBNW2epEq6jVRJoz8q8GNCVEaxrF-9PfvqkaZW5X2xIa3JVWUHsWYuwBbFKDjNWDzcOjwenP7l4hiV2Z27Tvo60MXBpNk0wXmFQVE92OQ5PIv101Vff8z_thlN1d6hY8nFdTvrjho9Edc3X8FB47P5McNIzxDDZ0tQ1P2hoOxIn0NmzdASR8Dn9PG5hVgjP84XJBLisyGyN3EWmRV4lYEIHm70oOOTbV3bk84ZUipbYooWRma-sgwYk55SU5v0ZNgo-bqxk5QRU1drmf5FOen3wmfHSBP7oeju1Lxja6UxNXzuLiBZwdH_36lvuuaoMvIxbVPmXoldGgzHQimJQxLblMpRQGGkykPAvRp-cJVYxGuNfjiqpSZIlOmZBRyZQIX0KvmlT6NRBGeaZRLciQhZFA1yq1SJOxVizmfcY9CFoCFdJBmpvKGqNiCcZsiFogUQtL1OLWgy_dmGkD6LG2905L98IJ96xYsqIHH7pmFEtz18IrPZmbPjTFvVhGqQevGjbppgvRhwxx4-oBW2GgroOB_F5tqS6HFvo7TQPGGI7cbVlt-VnrVrHbseN_LPrN-kW_hUfUSIkNxNuBXn091-_QM6vFeydu_wAqejXM
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOUAPBcorUNAgcQDRSGvn4eRYVa0iJCgHVuotsh2nrbqbrTa7VNuf0V_M2Otku2pVlVMOfsWaGfuzPfMNwBdWWRTL6GxC5hDGkeJhbngeyiSp2aAyA61tcPLPX2kxjH8cJ8c-KKztvN27J0m3Uq-C3ZgNJbHe54wTyA-vHsOTxNJ5kRYP-V7_dpAmPpVtNghpP2Q-VObuPta3o1sY87arZP9euglP582FXFzK0ejGlnT4ArY8lsS9pfBfwiPTbMPzLk8DerPdhs0bpIOv4Pr3kkoVaYS_Ui_wrMF2TBqE2rGrolqgoi3uXJ9KKpr1d-8omwpr45hAsXX5c0ioaG9ysZBTWi3oc3ne4hEtQ2Mf34lfi-LoG8rRyWRKFceuk7Hz4DToU1acvIbh4cGf_SL0mRlCHYt4FnJByIuzOjepElonvJY601pZ-i-VyTwi3C5TXgke03lOVryqVZ6aTCgd16JS0RvYaCaNeQcouMwNmb6ORBQrgk-ZY5NMTCUSORAyANYJqNSettxmzxiVK8JlK9SShFo6oZZXAXzv21wsSTvurb3Tyb30BtyWlqMnIvAWJwF87ovJ9Ox7imzMZG7r8IzOWznnAbxdqkk_XEQ4MaLDaQBiTYH6CpbWe72kOTt19N5ZxoQQ1HK3U7XVb903i91eHR8w6ff_1_sHeMat1Tjnux3YmE3n5iOhsZn65IzvH3gALJA
  priority: 102
  providerName: Springer Nature
Title Patient privacy in smart cities by blockchain technology and feature selection with Harris Hawks Optimization (HHO) algorithm and machine learning
URI https://link.springer.com/article/10.1007/s11042-022-12164-z
https://www.ncbi.nlm.nih.gov/pubmed/35153619
https://www.proquest.com/docview/2635339945
https://www.proquest.com/docview/2628675922
https://pubmed.ncbi.nlm.nih.gov/PMC8817779
https://link.springer.com/content/pdf/10.1007/s11042-022-12164-z.pdf
UnpaywallVersion publishedVersion
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: ADMLS
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7721
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD7a2gfYA4NxK4zKSDyAWLrGSerksUC7CkRXISptT5HtONvUNq3alKn9Gfxijp1LV4YmEE-R4pOL5S_H34nP-Qzwxo40i7UxNsHPwXIdQa1A0cDinhfbzUg1pdTFyV_7rd7Q_Xzmne3Ap6IWxmS7F0uSWU2DVmlK0uNZFB9vCt9sXVaiM9FtioTfWjeweReqLQ8ZeQWqw_6gfW5iLb9p4aSYyaYyR5NJO6-d-fONtuenW6Tzdu5kuYC6B_eWyYyvrvl4fGOO6u6DKnqXpaaMGstUNOT6N-HH_-3-Q3iQk1jSzlD3CHZUcgD7xQYRJPcXB7B3Q-3wMfwcZBquBB_8g8sVuUrIYoLQJdLIuhKxIgLn1pG85NiUlj_9CU8iEisjQUoWZuMeRBPRv5BJj8_RTeHherQgp-j_JnlhKXnb652-I3x8MZ2j4cTcZGJSRxXJ98q4eALDbuf7x56VbwlhSZe5qUUZUj5qx4FqCSalR2MufSmF1h0TPg8cDBh4i0aMuhhI8ohGsQhaymdCujGLhPMUKsk0Uc-BMMoDhT5HOsxxBfI238hYeipiHm8yXgO7AEIoc710vW3HONwoPethCHEYQjMM4boG78trZplayJ3WhwW-wtxzLEItDuQga3S9Grwum_Gb1ws5PFHTpbahPgZ6AaU1eJbBsXycgwTVwai4BmwLqKWB1hPfbkmuLo2uuO_bjDG88qhA4Oa17urFUQn7v-j0i38zfwn3qca5yfo7hEo6X6pXSANTUYddv3tSh2r75PxLB48fOv3BNzw7pO167gF-AbZfWjU
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED8xeGA8sI190I1tnrRJmyBa4yR18oCmfYDCgIImkHjLbMehiDbtaLqq_Bn7g_a37ew4KRVStRee8mDHjnXn-8jd_Q7grZtqK9ZF3wSvg-N7gjqRopHDgyBzm6lqSqmLkw_brfjU_34WnC3A36oWRqdVVjLRCOq0L_U_8o8aNMVDbeoHnwa_HN01SkdXqxYa3LZWSLcNxJgt7NhXkzG6cMPtvW9I73eU7u6cfI0d22XAkT7zC4cytCKom0WqJZiUAc24DKUUGspKhDzy0AblLZoy6qNvwlOaZiJqqZAJ6WcsFR6uew-WfM-P0Plb-rLTPv5RxzFagW2rGzYd1M2uLdspi_dcXRqjs-ldik6Lcz2rGm_Zu7fTNuvY7Qosj_IBn4x5t3tDPe4-hFVr15LPJSM-ggWVr8GDqmcEsSJkDVZuACA-hj_HJawrwR1-czkhFzkZ9pCbiTRIr0RMiEB1eyk7HIeKOg5AeJ6STBlUUjI0vXyQwYj-q0xifoWSCx_jyyE5QpHYs7Wm5H0cH30gvHuOhC06PbNIz2STKmLbZ5w_gdM7od9TWMz7uVoHwiiPFIoh6THPF2jKhQbZMlApC3iT8Qa4FYESaSHUdSePbjIFf9ZETZCoiSFqct2AzfqdQQkgMnf2RkX3xAqTYTJl_Qa8qYdRDOjYDs9Vf6Tn0BB9v4jSBjwr2aTezkOb1UNHuQFshoHqCRpifHYkv-gYqPEwdBlj-OZWxWrTz5p3iq2aHf_j0M_nH_o1LMcnhwfJwV57_wXcp_rGmCTADVgsrkbqJVqFhXhlrx6Bn3d92_8BX_xzeA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgE98CgvQ4FFAglErcbrx9oHhBAluBTaHqjUm9ldr5uqiRMahyj9Gfwcfh2z67XTqFLEpScfdv1Yzdsz8w3AKy_XXqyHsQmKgxv4grqJoonLw7DwOrnqSKmbk7_vRelh8PUoPFqBv00vjC6rbHSiUdT5UOp_5FsaNMVHaxqEW4UtizjY7n4Y_XL1BCmdaW3GadQssqtmUwzfxu93tpHWryntfv7xKXXthAFXBiyoXMrQg6BekahIMClDWnAZSyk0jJWIeeKj_8kjmjMaYFzCc5oXIolUzIQMCpYLH597Da4zjeKuu9S7X9oMRhTagbpxx0Wr7NmGnbptz9NNMbqO3qMYrrjni0bxkqd7uWCzzdquwc1JOeKzKe_3LxjG7l24bT1a8rFmwXuwosp1uNNMiyBWeazD2gXow_vw56AGdCX4ht9czshJScYD5GMiDcYrETMi0NCeyh7HparNABBe5qRQBo-UjM0UH2Qtov8nk5Sfoc7Cy_R0TPZRGQ5slyl5k6b7bwnvHyMZq97APGRg6kgVsYMzjh_A4ZVQ7yGslsNSPQbCKE8UKiDpMz8Q6MTFBtMyVDkLeYdxB7yGQJm04Ol6hkc_m8M-a6JmSNTMEDU7d-Bde8-ohg5ZunujoXtm1cg4mzO9Ay_bZVQAOqvDSzWc6D00xqgvodSBRzWbtK_z0Vv1MUR2gC0wULtBg4svrpQnPQMyHsceYwzv3GxYbf5Zy06x2bLjfxz6yfJDv4AbKOPZt5293adwi2qBMdV_G7BanU3UM3QHK_HcyB2Bn1ct6P8ANW9xEg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH4a3QF22GAwCAxkJA4glq5xfjg5TsAUIbHtQKVximzH2aa2adWmm9o_g7-YZ8dJV4YmEKcc7Pyw_Pn5e_F73wN45-WaxXrom-BycANfUDdRNHF5GBZeL1c9KXVy8reTKO0HX8_D8w343OTCmGj35kiyzmnQKk1ldTjJi8NV4pun00p0JLpHkfC7yy42P4DNKERG3oHN_snZ0Q_ja8U9FzfFWjaV-ZpMejZ35s8PWt-f7pDOu7GT7QHqFjyclxO-uOHD4a096ngHVDO6OjRl0J1XoiuXvwk__u_wH8O2JbHkqEbdE9hQ5S7sNAUiiLUXu7B1S-3wKfw8qzVcCb74mssFuSrJbITQJdLIuhKxIAL31oG85NhUtT_9CS9zUigjQUpmpnAPoonoX8gk5VM0U3i5GczIKdq_kU0sJe_T9PQD4cOL8RQ7jsxDRiZ0VBFbK-PiGfSPv3z_lLq2JIQrAxZULmVI-ahXJCoSTMqQFlzGUgqtOyZinvjoMPCI5owG6EjynOaFSCIVMyGDguXC34NOOS7VCyCM8kShzZE-8wOBvC02MpahylnIe4w74DVAyKTVS9dlO4bZSulZT0OG05CZaciWDnxs75nUaiH39t5v8JVZyzHLtDiQj6wxCB142zbjmtcHObxU47nuQ2N09BJKHXhew7F9nY8E1Uev2AG2BtS2g9YTX28pry6Nrngce4wxvPOgQeDqs-4bxUEL-78Y9Mt_6_4KHlGNcxP1tw-dajpXr5EGVuKNXeW_AChcVTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patient+privacy+in+smart+cities+by+blockchain+technology+and+feature+selection+with+Harris+Hawks+Optimization+%28HHO%29+algorithm+and+machine+learning&rft.jtitle=Multimedia+tools+and+applications&rft.au=Al-Safi%2C+Haedar&rft.au=Munilla%2C+Jorge&rft.au=Rahebi%2C+Javad&rft.date=2022-03-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=6&rft.spage=8719&rft.epage=8743&rft_id=info:doi/10.1007%2Fs11042-022-12164-z&rft_id=info%3Apmid%2F35153619&rft.externalDocID=PMC8817779
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon