Patient privacy in smart cities by blockchain technology and feature selection with Harris Hawks Optimization (HHO) algorithm and machine learning
A medical center in the smart cities of the future needs data security and confidentiality to treat patients accurately. One mechanism for sending medical data is to send information to other medical centers without preserving confidentiality. This method is not impressive because in treating people...
Saved in:
| Published in | Multimedia tools and applications Vol. 81; no. 6; pp. 8719 - 8743 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.03.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1380-7501 1573-7721 1573-7721 |
| DOI | 10.1007/s11042-022-12164-z |
Cover
| Abstract | A medical center in the smart cities of the future needs data security and confidentiality to treat patients accurately. One mechanism for sending medical data is to send information to other medical centers without preserving confidentiality. This method is not impressive because in treating people, the privacy of medical information is a principle. In the proposed framework, the opinion of experts from other medical centers for the treatment of patients is received and consider the best therapy. The proposed method has two layers. In the first layer, data transmission uses blockchain. In the second layer, blocks related to patients’ records analyze by machine learning methods. Patient records place in a block of the blockchain. Block of patient sends to other medical centers. Each treatment center can recommend the proposed type of treatment and blockchain attachment and send it to all nodes and treatment centers. Each medical center receiving data of the patients, then predicts the treatment using data mining methods. Sending medical data between medical centers with blockchain and maintaining confidentiality is one of the innovations of this article. The proposed method is a binary version of the HHO algorithm for feature selection. Another innovation of this research is the use of majority voting learning in diagnosing the type of disease in medical centers. Implementation of the proposed system shows that the blockchain preserves data confidentiality of about 100%. The reliability and reliability of the proposed framework are much higher than the centralized method. The result shows that the accuracy, sensitivity, and precision of the proposed method for diagnosing heart disease are 92.75%, 92.15%, and 95.69%, respectively. The proposed method has a lower error in diagnosing heart disease from ANN, SVM, DT, RF, AdaBoost, and BN. |
|---|---|
| AbstractList | A medical center in the smart cities of the future needs data security and confidentiality to treat patients accurately. One mechanism for sending medical data is to send information to other medical centers without preserving confidentiality. This method is not impressive because in treating people, the privacy of medical information is a principle. In the proposed framework, the opinion of experts from other medical centers for the treatment of patients is received and consider the best therapy. The proposed method has two layers. In the first layer, data transmission uses blockchain. In the second layer, blocks related to patients' records analyze by machine learning methods. Patient records place in a block of the blockchain. Block of patient sends to other medical centers. Each treatment center can recommend the proposed type of treatment and blockchain attachment and send it to all nodes and treatment centers. Each medical center receiving data of the patients, then predicts the treatment using data mining methods. Sending medical data between medical centers with blockchain and maintaining confidentiality is one of the innovations of this article. The proposed method is a binary version of the HHO algorithm for feature selection. Another innovation of this research is the use of majority voting learning in diagnosing the type of disease in medical centers. Implementation of the proposed system shows that the blockchain preserves data confidentiality of about 100%. The reliability and reliability of the proposed framework are much higher than the centralized method. The result shows that the accuracy, sensitivity, and precision of the proposed method for diagnosing heart disease are 92.75%, 92.15%, and 95.69%, respectively. The proposed method has a lower error in diagnosing heart disease from ANN, SVM, DT, RF, AdaBoost, and BN.A medical center in the smart cities of the future needs data security and confidentiality to treat patients accurately. One mechanism for sending medical data is to send information to other medical centers without preserving confidentiality. This method is not impressive because in treating people, the privacy of medical information is a principle. In the proposed framework, the opinion of experts from other medical centers for the treatment of patients is received and consider the best therapy. The proposed method has two layers. In the first layer, data transmission uses blockchain. In the second layer, blocks related to patients' records analyze by machine learning methods. Patient records place in a block of the blockchain. Block of patient sends to other medical centers. Each treatment center can recommend the proposed type of treatment and blockchain attachment and send it to all nodes and treatment centers. Each medical center receiving data of the patients, then predicts the treatment using data mining methods. Sending medical data between medical centers with blockchain and maintaining confidentiality is one of the innovations of this article. The proposed method is a binary version of the HHO algorithm for feature selection. Another innovation of this research is the use of majority voting learning in diagnosing the type of disease in medical centers. Implementation of the proposed system shows that the blockchain preserves data confidentiality of about 100%. The reliability and reliability of the proposed framework are much higher than the centralized method. The result shows that the accuracy, sensitivity, and precision of the proposed method for diagnosing heart disease are 92.75%, 92.15%, and 95.69%, respectively. The proposed method has a lower error in diagnosing heart disease from ANN, SVM, DT, RF, AdaBoost, and BN. A medical center in the smart cities of the future needs data security and confidentiality to treat patients accurately. One mechanism for sending medical data is to send information to other medical centers without preserving confidentiality. This method is not impressive because in treating people, the privacy of medical information is a principle. In the proposed framework, the opinion of experts from other medical centers for the treatment of patients is received and consider the best therapy. The proposed method has two layers. In the first layer, data transmission uses blockchain. In the second layer, blocks related to patients’ records analyze by machine learning methods. Patient records place in a block of the blockchain. Block of patient sends to other medical centers. Each treatment center can recommend the proposed type of treatment and blockchain attachment and send it to all nodes and treatment centers. Each medical center receiving data of the patients, then predicts the treatment using data mining methods. Sending medical data between medical centers with blockchain and maintaining confidentiality is one of the innovations of this article. The proposed method is a binary version of the HHO algorithm for feature selection. Another innovation of this research is the use of majority voting learning in diagnosing the type of disease in medical centers. Implementation of the proposed system shows that the blockchain preserves data confidentiality of about 100%. The reliability and reliability of the proposed framework are much higher than the centralized method. The result shows that the accuracy, sensitivity, and precision of the proposed method for diagnosing heart disease are 92.75%, 92.15%, and 95.69%, respectively. The proposed method has a lower error in diagnosing heart disease from ANN, SVM, DT, RF, AdaBoost, and BN. |
| Author | Al-Safi, Haedar Rahebi, Javad Munilla, Jorge |
| Author_xml | – sequence: 1 givenname: Haedar surname: Al-Safi fullname: Al-Safi, Haedar organization: Department of Telecommunication Engineering, Malaga University, Department of Software Engineering, Istanbul Ayvansaray University – sequence: 2 givenname: Jorge surname: Munilla fullname: Munilla, Jorge organization: Department of Telecommunication Engineering, Malaga University, Department of Software Engineering, Istanbul Ayvansaray University – sequence: 3 givenname: Javad orcidid: 0000-0001-9875-4860 surname: Rahebi fullname: Rahebi, Javad email: cevatrahebi@ayvansaray.edu.tr organization: Department of Telecommunication Engineering, Malaga University, Department of Software Engineering, Istanbul Ayvansaray University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35153619$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1u1DAUhSNURH_gBVggS2zaRcB2fuxskKoKGKRKwwLW1o3jZNw69mA7HWUegyfGnRkodFGxsqV7ztG53z3NjqyzKsteE_yOYMzeB0JwSXNMaU4oqct8-yw7IRUrcsYoOUr_guOcVZgcZ6ch3GBM6oqWL7LjoiJVUZPmJPv5FaJWNqK113cgZ6QtCiP4iKROg4DaGbXGyVu5gjSKSq6sM26YEdgO9Qri5BUKyigZtbNoo-MKLcB7HdKzuQ1ouY561FvYjc8Xi-UFAjM4n4TjLmQEudJWIaPAW22Hl9nzHkxQrw7vWfb908dvV4v8evn5y9XldS5LVsacMlKVlPSNqlsmZUV7kFzKlmDCWw5NwTmFmnaMlrxpoKNd3za14qyVZc-6tjjLin3uZNcwb8AYkSCk3WdBsLgnLPaERSIsdoTFNrk-7F3rqR1VJxM7Dw9OB1r8O7F6JQZ3JzgnjLEmBZwfArz7MakQxaiDVMaAVW4KgtaU16xqKE3St4-kN27yNkFJqqIqiqYpq6R683ejP1V-HzkJ-F4gvQvBq16k2-7ukQpq8_S29JH1vxAdwIYktoPyD7WfcP0C8abfLA |
| CitedBy_id | crossref_primary_10_3233_WEB_220118 crossref_primary_10_3390_electronics13122398 crossref_primary_10_3390_healthcare11010081 crossref_primary_10_1007_s11277_024_11050_1 crossref_primary_10_3390_diagnostics13142392 crossref_primary_10_1007_s11760_023_02813_7 crossref_primary_10_3233_JIFS_232902 crossref_primary_10_1016_j_eswa_2022_118741 crossref_primary_10_3390_diagnostics13101728 crossref_primary_10_1007_s11042_022_14238_4 crossref_primary_10_1007_s10462_024_10873_5 crossref_primary_10_1155_2022_7276028 crossref_primary_10_1002_ett_4824 crossref_primary_10_1007_s10489_022_03743_6 crossref_primary_10_1007_s10278_025_01474_x |
| Cites_doi | 10.1007/s11042-021-10860-w 10.1007/s11042-020-10284-y 10.1016/j.compind.2020.103290 10.1155/2021/6649640 10.1016/j.ijmedinf.2021.104399 10.1016/j.jpdc.2021.03.011 10.1155/2020/5345923 10.1109/MNET.011.2000326 10.1109/SIU49456.2020.9302168 10.3390/jcp1010002 10.1007/s11042-020-09646-3 10.1109/JBHI.2020.2999497 10.3390/su12176768 10.1109/ACCESS.2021.3049325 10.1016/j.micpro.2020.103524 10.1016/j.irbm.2021.05.003 10.1007/s11227-021-03637-3 10.1016/j.future.2019.02.028 10.2991/ijcis.d.200915.003 10.1007/s00779-021-01543-2 10.1016/j.techfore.2020.120536 10.1109/LNET.2021.3070270 10.1155/2021/6621540 10.1016/j.matpr.2021.01.475 10.3390/s20102913 10.1016/j.ins.2019.05.025 10.1109/ACCESS.2021.3065440 10.1007/978-981-15-9031-3_25 10.1016/j.chb.2021.106854 10.1186/s13638-020-01858-3 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Copyright Springer Nature B.V. Mar 2022 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. – notice: Copyright Springer Nature B.V. Mar 2022 |
| DBID | AAYXX CITATION NPM 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1007/s11042-022-12164-z |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ABI/INFORM Global (Corporate) PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 8743 |
| ExternalDocumentID | 10.1007/s11042-022-12164-z PMC8817779 35153619 10_1007_s11042_022_12164_z |
| Genre | Journal Article |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AFOHR AHWEU AIXLP ATHPR CITATION PHGZM PQGLB PUEGO -4Z -59 -5G -BR -EM 3V. ADINQ GQ6 GROUPED_ABI_INFORM_COMPLETE M0N NPM Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c474t-2715421f9e6b7cc52fac8ccb1018b8a93882a62d724899ad2dfb96e87bc4f7db3 |
| IEDL.DBID | UNPAY |
| ISSN | 1380-7501 1573-7721 |
| IngestDate | Sun Oct 26 04:05:22 EDT 2025 Tue Sep 30 16:45:56 EDT 2025 Wed Oct 01 13:41:21 EDT 2025 Fri Jul 25 21:00:16 EDT 2025 Wed Feb 19 02:26:31 EST 2025 Wed Oct 01 06:33:49 EDT 2025 Thu Apr 24 23:06:39 EDT 2025 Thu Apr 10 07:12:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Medical data Privacy Disease data Security Blockchain Machine learning |
| Language | English |
| License | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-2715421f9e6b7cc52fac8ccb1018b8a93882a62d724899ad2dfb96e87bc4f7db3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9875-4860 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s11042-022-12164-z.pdf |
| PMID | 35153619 |
| PQID | 2635339945 |
| PQPubID | 54626 |
| PageCount | 25 |
| ParticipantIDs | unpaywall_primary_10_1007_s11042_022_12164_z pubmedcentral_primary_oai_pubmedcentral_nih_gov_8817779 proquest_miscellaneous_2628675922 proquest_journals_2635339945 pubmed_primary_35153619 crossref_citationtrail_10_1007_s11042_022_12164_z crossref_primary_10_1007_s11042_022_12164_z springer_journals_10_1007_s11042_022_12164_z |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationTitleAlternate | Multimed Tools Appl |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Z Ma (12164_CR20) 2019; 496 12164_CR5 12164_CR6 AA Heidari (12164_CR12) 2019; 97 12164_CR1 12164_CR2 AH Mohsin (12164_CR22) 2021; 80 12164_CR3 J Peral (12164_CR26) 2020; 12 12164_CR8 H Mora (12164_CR23) 2021; 122 N Iqbal (12164_CR14) 2021; 9 X Liu (12164_CR19) 2020; 24 12164_CR30 M Kim (12164_CR16) 2020; 20 12164_CR31 12164_CR32 DB Rawat (12164_CR27) 2021; 1 GN Nguyen (12164_CR25) 2021; 153 HM Hussien (12164_CR13) 2021; 22 SMBK Albargathe (12164_CR4) 2021; 80 12164_CR15 A Tandon (12164_CR29) 2020; 122 12164_CR17 G Muhammad (12164_CR24) 2021; 35 PG Shynu (12164_CR28) 2021; 9 12164_CR21 FA Alsarori (12164_CR7) 2020; 13 S Balasubramanian (12164_CR9) 2021; 165 MJ Gul (12164_CR11) 2021; 80 MJ Baucas (12164_CR10) 2021; 3 S Latif (12164_CR18) 2021; 21 |
| References_xml | – ident: 12164_CR6 doi: 10.1007/s11042-021-10860-w – volume: 80 start-page: 14137 issue: 9 year: 2021 ident: 12164_CR22 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-10284-y – volume: 122 start-page: 103290 year: 2020 ident: 12164_CR29 publication-title: Comput Ind doi: 10.1016/j.compind.2020.103290 – ident: 12164_CR32 doi: 10.1155/2021/6649640 – ident: 12164_CR2 doi: 10.1016/j.ijmedinf.2021.104399 – volume: 21 start-page: 100190 year: 2021 ident: 12164_CR18 publication-title: J Ind Inf Integr – volume: 153 start-page: 150 year: 2021 ident: 12164_CR25 publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2021.03.011 – ident: 12164_CR21 doi: 10.1155/2020/5345923 – volume: 35 start-page: 74 issue: 2 year: 2021 ident: 12164_CR24 publication-title: IEEE Netw doi: 10.1109/MNET.011.2000326 – ident: 12164_CR1 doi: 10.1109/SIU49456.2020.9302168 – volume: 1 start-page: 4 issue: 1 year: 2021 ident: 12164_CR27 publication-title: J Cybersecurity Priv doi: 10.3390/jcp1010002 – volume: 80 start-page: 2565 issue: 2 year: 2021 ident: 12164_CR4 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-09646-3 – volume: 24 start-page: 2177 issue: 8 year: 2020 ident: 12164_CR19 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2020.2999497 – volume: 22 start-page: 100217 year: 2021 ident: 12164_CR13 publication-title: J Ind Inf Integr – volume: 12 start-page: 6768 issue: 17 year: 2020 ident: 12164_CR26 publication-title: Sustainability doi: 10.3390/su12176768 – volume: 9 start-page: 8069 year: 2021 ident: 12164_CR14 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3049325 – volume: 80 start-page: 103524 year: 2021 ident: 12164_CR11 publication-title: Microprocess Microsyst doi: 10.1016/j.micpro.2020.103524 – ident: 12164_CR8 doi: 10.1016/j.irbm.2021.05.003 – ident: 12164_CR30 doi: 10.1007/s11227-021-03637-3 – volume: 97 start-page: 849 year: 2019 ident: 12164_CR12 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2019.02.028 – volume: 13 start-page: 1507 issue: 1 year: 2020 ident: 12164_CR7 publication-title: Int J Comput Intell Syst doi: 10.2991/ijcis.d.200915.003 – ident: 12164_CR5 doi: 10.1007/s00779-021-01543-2 – volume: 165 start-page: 120536 year: 2021 ident: 12164_CR9 publication-title: Technol Forecast Soc Chang doi: 10.1016/j.techfore.2020.120536 – volume: 3 start-page: 52 issue: 2 year: 2021 ident: 12164_CR10 publication-title: IEEE Netw Lett doi: 10.1109/LNET.2021.3070270 – ident: 12164_CR3 doi: 10.1155/2021/6621540 – ident: 12164_CR17 doi: 10.1016/j.matpr.2021.01.475 – volume: 20 start-page: 2913 issue: 10 year: 2020 ident: 12164_CR16 publication-title: Sensors doi: 10.3390/s20102913 – volume: 496 start-page: 225 year: 2019 ident: 12164_CR20 publication-title: Inf Sci (Ny) doi: 10.1016/j.ins.2019.05.025 – volume: 9 start-page: 45706 year: 2021 ident: 12164_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3065440 – ident: 12164_CR15 doi: 10.1007/978-981-15-9031-3_25 – volume: 122 start-page: 106854 year: 2021 ident: 12164_CR23 publication-title: Comput Hum Behav doi: 10.1016/j.chb.2021.106854 – ident: 12164_CR31 doi: 10.1186/s13638-020-01858-3 |
| SSID | ssj0016524 |
| Score | 2.412931 |
| Snippet | A medical center in the smart cities of the future needs data security and confidentiality to treat patients accurately. One mechanism for sending medical data... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 8719 |
| SubjectTerms | Algorithms Blockchain Cardiovascular disease Computer Communication Networks Computer Science Confidentiality Cryptography Data mining Data Structures and Information Theory Data transmission Feature selection Health care facilities Health services Heart diseases Innovations Machine learning Multimedia Information Systems Optimization Patients Privacy Reliability Smart cities Special Purpose and Application-Based Systems |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4a3QPsgcu4BQYyEg8gFtE4FycP07ShTRES3YSYtLfIt6zT2rSsKVP3M_jFHDtOumpSxVMebMdxztX2Od8B-Bgo48UGuDdBcfCjUFA_0zTzeRyXQV_pvpQmOfnHIMnPou_n8fkGDNpcGBNW2epEq6jVRJoz8q8GNCVEaxrF-9PfvqkaZW5X2xIa3JVWUHsWYuwBbFKDjNWDzcOjwenP7l4hiV2Z27Tvo60MXBpNk0wXmFQVE92OQ5PIv101Vff8z_thlN1d6hY8nFdTvrjho9Edc3X8FB47P5McNIzxDDZ0tQ1P2hoOxIn0NmzdASR8Dn9PG5hVgjP84XJBLisyGyN3EWmRV4lYEIHm70oOOTbV3bk84ZUipbYooWRma-sgwYk55SU5v0ZNgo-bqxk5QRU1drmf5FOen3wmfHSBP7oeju1Lxja6UxNXzuLiBZwdH_36lvuuaoMvIxbVPmXoldGgzHQimJQxLblMpRQGGkykPAvRp-cJVYxGuNfjiqpSZIlOmZBRyZQIX0KvmlT6NRBGeaZRLciQhZFA1yq1SJOxVizmfcY9CFoCFdJBmpvKGqNiCcZsiFogUQtL1OLWgy_dmGkD6LG2905L98IJ96xYsqIHH7pmFEtz18IrPZmbPjTFvVhGqQevGjbppgvRhwxx4-oBW2GgroOB_F5tqS6HFvo7TQPGGI7cbVlt-VnrVrHbseN_LPrN-kW_hUfUSIkNxNuBXn091-_QM6vFeydu_wAqejXM priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOUAPBcorUNAgcQDRSGvn4eRYVa0iJCgHVuotsh2nrbqbrTa7VNuf0V_M2Otku2pVlVMOfsWaGfuzPfMNwBdWWRTL6GxC5hDGkeJhbngeyiSp2aAyA61tcPLPX2kxjH8cJ8c-KKztvN27J0m3Uq-C3ZgNJbHe54wTyA-vHsOTxNJ5kRYP-V7_dpAmPpVtNghpP2Q-VObuPta3o1sY87arZP9euglP582FXFzK0ejGlnT4ArY8lsS9pfBfwiPTbMPzLk8DerPdhs0bpIOv4Pr3kkoVaYS_Ui_wrMF2TBqE2rGrolqgoi3uXJ9KKpr1d-8omwpr45hAsXX5c0ioaG9ysZBTWi3oc3ne4hEtQ2Mf34lfi-LoG8rRyWRKFceuk7Hz4DToU1acvIbh4cGf_SL0mRlCHYt4FnJByIuzOjepElonvJY601pZ-i-VyTwi3C5TXgke03lOVryqVZ6aTCgd16JS0RvYaCaNeQcouMwNmb6ORBQrgk-ZY5NMTCUSORAyANYJqNSettxmzxiVK8JlK9SShFo6oZZXAXzv21wsSTvurb3Tyb30BtyWlqMnIvAWJwF87ovJ9Ox7imzMZG7r8IzOWznnAbxdqkk_XEQ4MaLDaQBiTYH6CpbWe72kOTt19N5ZxoQQ1HK3U7XVb903i91eHR8w6ff_1_sHeMat1Tjnux3YmE3n5iOhsZn65IzvH3gALJA priority: 102 providerName: Springer Nature |
| Title | Patient privacy in smart cities by blockchain technology and feature selection with Harris Hawks Optimization (HHO) algorithm and machine learning |
| URI | https://link.springer.com/article/10.1007/s11042-022-12164-z https://www.ncbi.nlm.nih.gov/pubmed/35153619 https://www.proquest.com/docview/2635339945 https://www.proquest.com/docview/2628675922 https://pubmed.ncbi.nlm.nih.gov/PMC8817779 https://link.springer.com/content/pdf/10.1007/s11042-022-12164-z.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 81 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-7721 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: ADMLS dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7721 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7721 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD7a2gfYA4NxK4zKSDyAWLrGSerksUC7CkRXISptT5HtONvUNq3alKn9Gfxijp1LV4YmEE-R4pOL5S_H34nP-Qzwxo40i7UxNsHPwXIdQa1A0cDinhfbzUg1pdTFyV_7rd7Q_Xzmne3Ap6IWxmS7F0uSWU2DVmlK0uNZFB9vCt9sXVaiM9FtioTfWjeweReqLQ8ZeQWqw_6gfW5iLb9p4aSYyaYyR5NJO6-d-fONtuenW6Tzdu5kuYC6B_eWyYyvrvl4fGOO6u6DKnqXpaaMGstUNOT6N-HH_-3-Q3iQk1jSzlD3CHZUcgD7xQYRJPcXB7B3Q-3wMfwcZBquBB_8g8sVuUrIYoLQJdLIuhKxIgLn1pG85NiUlj_9CU8iEisjQUoWZuMeRBPRv5BJj8_RTeHherQgp-j_JnlhKXnb652-I3x8MZ2j4cTcZGJSRxXJ98q4eALDbuf7x56VbwlhSZe5qUUZUj5qx4FqCSalR2MufSmF1h0TPg8cDBh4i0aMuhhI8ohGsQhaymdCujGLhPMUKsk0Uc-BMMoDhT5HOsxxBfI238hYeipiHm8yXgO7AEIoc710vW3HONwoPethCHEYQjMM4boG78trZplayJ3WhwW-wtxzLEItDuQga3S9Grwum_Gb1ws5PFHTpbahPgZ6AaU1eJbBsXycgwTVwai4BmwLqKWB1hPfbkmuLo2uuO_bjDG88qhA4Oa17urFUQn7v-j0i38zfwn3qca5yfo7hEo6X6pXSANTUYddv3tSh2r75PxLB48fOv3BNzw7pO167gF-AbZfWjU |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED8xeGA8sI190I1tnrRJmyBa4yR18oCmfYDCgIImkHjLbMehiDbtaLqq_Bn7g_a37ew4KRVStRee8mDHjnXn-8jd_Q7grZtqK9ZF3wSvg-N7gjqRopHDgyBzm6lqSqmLkw_brfjU_34WnC3A36oWRqdVVjLRCOq0L_U_8o8aNMVDbeoHnwa_HN01SkdXqxYa3LZWSLcNxJgt7NhXkzG6cMPtvW9I73eU7u6cfI0d22XAkT7zC4cytCKom0WqJZiUAc24DKUUGspKhDzy0AblLZoy6qNvwlOaZiJqqZAJ6WcsFR6uew-WfM-P0Plb-rLTPv5RxzFagW2rGzYd1M2uLdspi_dcXRqjs-ldik6Lcz2rGm_Zu7fTNuvY7Qosj_IBn4x5t3tDPe4-hFVr15LPJSM-ggWVr8GDqmcEsSJkDVZuACA-hj_HJawrwR1-czkhFzkZ9pCbiTRIr0RMiEB1eyk7HIeKOg5AeJ6STBlUUjI0vXyQwYj-q0xifoWSCx_jyyE5QpHYs7Wm5H0cH30gvHuOhC06PbNIz2STKmLbZ5w_gdM7od9TWMz7uVoHwiiPFIoh6THPF2jKhQbZMlApC3iT8Qa4FYESaSHUdSePbjIFf9ZETZCoiSFqct2AzfqdQQkgMnf2RkX3xAqTYTJl_Qa8qYdRDOjYDs9Vf6Tn0BB9v4jSBjwr2aTezkOb1UNHuQFshoHqCRpifHYkv-gYqPEwdBlj-OZWxWrTz5p3iq2aHf_j0M_nH_o1LMcnhwfJwV57_wXcp_rGmCTADVgsrkbqJVqFhXhlrx6Bn3d92_8BX_xzeA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgE98CgvQ4FFAglErcbrx9oHhBAluBTaHqjUm9ldr5uqiRMahyj9Gfwcfh2z67XTqFLEpScfdv1Yzdsz8w3AKy_XXqyHsQmKgxv4grqJoonLw7DwOrnqSKmbk7_vRelh8PUoPFqBv00vjC6rbHSiUdT5UOp_5FsaNMVHaxqEW4UtizjY7n4Y_XL1BCmdaW3GadQssqtmUwzfxu93tpHWryntfv7xKXXthAFXBiyoXMrQg6BekahIMClDWnAZSyk0jJWIeeKj_8kjmjMaYFzCc5oXIolUzIQMCpYLH597Da4zjeKuu9S7X9oMRhTagbpxx0Wr7NmGnbptz9NNMbqO3qMYrrjni0bxkqd7uWCzzdquwc1JOeKzKe_3LxjG7l24bT1a8rFmwXuwosp1uNNMiyBWeazD2gXow_vw56AGdCX4ht9czshJScYD5GMiDcYrETMi0NCeyh7HparNABBe5qRQBo-UjM0UH2Qtov8nk5Sfoc7Cy_R0TPZRGQ5slyl5k6b7bwnvHyMZq97APGRg6kgVsYMzjh_A4ZVQ7yGslsNSPQbCKE8UKiDpMz8Q6MTFBtMyVDkLeYdxB7yGQJm04Ol6hkc_m8M-a6JmSNTMEDU7d-Bde8-ohg5ZunujoXtm1cg4mzO9Ay_bZVQAOqvDSzWc6D00xqgvodSBRzWbtK_z0Vv1MUR2gC0wULtBg4svrpQnPQMyHsceYwzv3GxYbf5Zy06x2bLjfxz6yfJDv4AbKOPZt5293adwi2qBMdV_G7BanU3UM3QHK_HcyB2Bn1ct6P8ANW9xEg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH4a3QF22GAwCAxkJA4glq5xfjg5TsAUIbHtQKVximzH2aa2adWmm9o_g7-YZ8dJV4YmEKcc7Pyw_Pn5e_F73wN45-WaxXrom-BycANfUDdRNHF5GBZeL1c9KXVy8reTKO0HX8_D8w343OTCmGj35kiyzmnQKk1ldTjJi8NV4pun00p0JLpHkfC7yy42P4DNKERG3oHN_snZ0Q_ja8U9FzfFWjaV-ZpMejZ35s8PWt-f7pDOu7GT7QHqFjyclxO-uOHD4a096ngHVDO6OjRl0J1XoiuXvwk__u_wH8O2JbHkqEbdE9hQ5S7sNAUiiLUXu7B1S-3wKfw8qzVcCb74mssFuSrJbITQJdLIuhKxIAL31oG85NhUtT_9CS9zUigjQUpmpnAPoonoX8gk5VM0U3i5GczIKdq_kU0sJe_T9PQD4cOL8RQ7jsxDRiZ0VBFbK-PiGfSPv3z_lLq2JIQrAxZULmVI-ahXJCoSTMqQFlzGUgqtOyZinvjoMPCI5owG6EjynOaFSCIVMyGDguXC34NOOS7VCyCM8kShzZE-8wOBvC02MpahylnIe4w74DVAyKTVS9dlO4bZSulZT0OG05CZaciWDnxs75nUaiH39t5v8JVZyzHLtDiQj6wxCB142zbjmtcHObxU47nuQ2N09BJKHXhew7F9nY8E1Uev2AG2BtS2g9YTX28pry6Nrngce4wxvPOgQeDqs-4bxUEL-78Y9Mt_6_4KHlGNcxP1tw-dajpXr5EGVuKNXeW_AChcVTg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patient+privacy+in+smart+cities+by+blockchain+technology+and+feature+selection+with+Harris+Hawks+Optimization+%28HHO%29+algorithm+and+machine+learning&rft.jtitle=Multimedia+tools+and+applications&rft.au=Al-Safi%2C+Haedar&rft.au=Munilla%2C+Jorge&rft.au=Rahebi%2C+Javad&rft.date=2022-03-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=6&rft.spage=8719&rft.epage=8743&rft_id=info:doi/10.1007%2Fs11042-022-12164-z&rft_id=info%3Apmid%2F35153619&rft.externalDocID=PMC8817779 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |