Population Pharmacokinetics of Imipenem in Critically Ill Patients: A Parametric and Nonparametric Model Converge on CKD-EPI Estimated Glomerular Filtration Rate as an Impactful Covariate
Background Population pharmacokinetic (popPK) models for antibiotics are used to improve dosing strategies and individualize dosing by therapeutic drug monitoring. Little is known about the differences in results of parametric versus nonparametric popPK models and their potential consequences in cli...
        Saved in:
      
    
          | Published in | Clinical pharmacokinetics Vol. 59; no. 7; pp. 885 - 898 | 
|---|---|
| Main Authors | , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        01.07.2020
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0312-5963 1179-1926 1179-1926  | 
| DOI | 10.1007/s40262-020-00859-1 | 
Cover
| Abstract | Background
Population pharmacokinetic (popPK) models for antibiotics are used to improve dosing strategies and individualize dosing by therapeutic drug monitoring. Little is known about the differences in results of parametric versus nonparametric popPK models and their potential consequences in clinical practice. We developed both parametric and nonparametric models of imipenem using data from critically ill patients and compared their results.
Methods
Twenty-six critically ill patients treated with intravenous imipenem/cilastatin were included in this study. Median estimated glomerular filtration rate (eGFR) measured by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation was 116 mL/min/1.73 m
2
(interquartile range 104–124) at inclusion. The usual dosing regimen was 500 mg/500 mg four times daily. On average, five imipenem levels per patient (138 levels in total) were drawn as peak, intermediate, and trough levels. Imipenem concentration-time profiles were analyzed using parametric (NONMEM 7.2) and nonparametric (Pmetrics 1.5.2) popPK software.
Results
For both methods, data were best described by a model with two distribution compartments and the CKD-EPI eGFR equation unadjusted for body surface area as a covariate on the elimination rate constant (
K
e
). The parametric population parameter estimates were
K
e
0.637 h
−1
(between-subject variability [BSV]: 19.0% coefficient of variation [CV]) and central distribution volume (
V
c
) 29.6 L (without BSV). The nonparametric values were
K
e
0.681 h
−1
(34.0% CV) and
V
c
31.1 L (42.6% CV).
Conclusions
Both models described imipenem popPK well; the parameter estimates were comparable and the included covariate was identical. However, estimated BSV was higher in the nonparametric model. This may have consequences for estimated exposure during dosing simulations and should be further investigated in simulation studies. | 
    
|---|---|
| AbstractList | Population pharmacokinetic (popPK) models for antibiotics are used to improve dosing strategies and individualize dosing by therapeutic drug monitoring. Little is known about the differences in results of parametric versus nonparametric popPK models and their potential consequences in clinical practice. We developed both parametric and nonparametric models of imipenem using data from critically ill patients and compared their results.
Twenty-six critically ill patients treated with intravenous imipenem/cilastatin were included in this study. Median estimated glomerular filtration rate (eGFR) measured by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation was 116 mL/min/1.73 m
(interquartile range 104-124) at inclusion. The usual dosing regimen was 500 mg/500 mg four times daily. On average, five imipenem levels per patient (138 levels in total) were drawn as peak, intermediate, and trough levels. Imipenem concentration-time profiles were analyzed using parametric (NONMEM 7.2) and nonparametric (Pmetrics 1.5.2) popPK software.
For both methods, data were best described by a model with two distribution compartments and the CKD-EPI eGFR equation unadjusted for body surface area as a covariate on the elimination rate constant (K
). The parametric population parameter estimates were K
0.637 h
(between-subject variability [BSV]: 19.0% coefficient of variation [CV]) and central distribution volume (V
) 29.6 L (without BSV). The nonparametric values were K
0.681 h
(34.0% CV) and V
31.1 L (42.6% CV).
Both models described imipenem popPK well; the parameter estimates were comparable and the included covariate was identical. However, estimated BSV was higher in the nonparametric model. This may have consequences for estimated exposure during dosing simulations and should be further investigated in simulation studies. Background Population pharmacokinetic (popPK) models for antibiotics are used to improve dosing strategies and individualize dosing by therapeutic drug monitoring. Little is known about the differences in results of parametric versus nonparametric popPK models and their potential consequences in clinical practice. We developed both parametric and nonparametric models of imipenem using data from critically ill patients and compared their results. Methods Twenty-six critically ill patients treated with intravenous imipenem/cilastatin were included in this study. Median estimated glomerular filtration rate (eGFR) measured by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation was 116 mL/min/1.73 m 2 (interquartile range 104–124) at inclusion. The usual dosing regimen was 500 mg/500 mg four times daily. On average, five imipenem levels per patient (138 levels in total) were drawn as peak, intermediate, and trough levels. Imipenem concentration-time profiles were analyzed using parametric (NONMEM 7.2) and nonparametric (Pmetrics 1.5.2) popPK software. Results For both methods, data were best described by a model with two distribution compartments and the CKD-EPI eGFR equation unadjusted for body surface area as a covariate on the elimination rate constant ( K e ). The parametric population parameter estimates were K e 0.637 h −1 (between-subject variability [BSV]: 19.0% coefficient of variation [CV]) and central distribution volume ( V c ) 29.6 L (without BSV). The nonparametric values were K e 0.681 h −1 (34.0% CV) and V c 31.1 L (42.6% CV). Conclusions Both models described imipenem popPK well; the parameter estimates were comparable and the included covariate was identical. However, estimated BSV was higher in the nonparametric model. This may have consequences for estimated exposure during dosing simulations and should be further investigated in simulation studies. Background Population pharmacokinetic (popPK) models for antibiotics are used to improve dosing strategies and individualize dosing by therapeutic drug monitoring. Little is known about the differences in results of parametric versus nonparametric popPK models and their potential consequences in clinical practice. We developed both parametric and nonparametric models of imipenem using data from critically ill patients and compared their results.Methods Twenty-six critically ill patients treated with intravenous imipenem/cilastatin were included in this study. Median estimated glomerular filtration rate (eGFR) measured by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation was 116 mL/min/1.73 m2 (interquartile range 104-124) at inclusion. The usual dosing regimen was 500 mg/500 mg four times daily. On average, five imipenem levels per patient (138 levels in total) were drawn as peak, intermediate, and trough levels. Imipenem concentration-time profiles were analyzed using parametric (NONMEM 7.2) and nonparametric (Pmetrics 1.5.2) popPK software.Results For both methods, data were best described by a model with two distribution compartments and the CKD-EPI eGFR equation unadjusted for body surface area as a covariate on the elimination rate constant (Ke). The parametric population parameter estimates were Ke 0.637 h-1 (between-subject variability [BSV]: 19.0% coefficient of variation [CV]) and central distribution volume (Vc) 29.6 L (without BSV). The nonparametric values were Ke 0.681 h-1 (34.0% CV) and Vc 31.1 L (42.6% CV). c e cConclusions Both models described imipenem popPK well; the parameter estimates were comparable and the included covariate was identical. However, estimated BSV was higher in the nonparametric model. This may have consequences for estimated exposure during dosing simulations and should be further investigated in simulation studies. Population pharmacokinetic (popPK) models for antibiotics are used to improve dosing strategies and individualize dosing by therapeutic drug monitoring. Little is known about the differences in results of parametric versus nonparametric popPK models and their potential consequences in clinical practice. We developed both parametric and nonparametric models of imipenem using data from critically ill patients and compared their results.BACKGROUNDPopulation pharmacokinetic (popPK) models for antibiotics are used to improve dosing strategies and individualize dosing by therapeutic drug monitoring. Little is known about the differences in results of parametric versus nonparametric popPK models and their potential consequences in clinical practice. We developed both parametric and nonparametric models of imipenem using data from critically ill patients and compared their results.Twenty-six critically ill patients treated with intravenous imipenem/cilastatin were included in this study. Median estimated glomerular filtration rate (eGFR) measured by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation was 116 mL/min/1.73 m2 (interquartile range 104-124) at inclusion. The usual dosing regimen was 500 mg/500 mg four times daily. On average, five imipenem levels per patient (138 levels in total) were drawn as peak, intermediate, and trough levels. Imipenem concentration-time profiles were analyzed using parametric (NONMEM 7.2) and nonparametric (Pmetrics 1.5.2) popPK software.METHODSTwenty-six critically ill patients treated with intravenous imipenem/cilastatin were included in this study. Median estimated glomerular filtration rate (eGFR) measured by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation was 116 mL/min/1.73 m2 (interquartile range 104-124) at inclusion. The usual dosing regimen was 500 mg/500 mg four times daily. On average, five imipenem levels per patient (138 levels in total) were drawn as peak, intermediate, and trough levels. Imipenem concentration-time profiles were analyzed using parametric (NONMEM 7.2) and nonparametric (Pmetrics 1.5.2) popPK software.For both methods, data were best described by a model with two distribution compartments and the CKD-EPI eGFR equation unadjusted for body surface area as a covariate on the elimination rate constant (Ke). The parametric population parameter estimates were Ke 0.637 h-1 (between-subject variability [BSV]: 19.0% coefficient of variation [CV]) and central distribution volume (Vc) 29.6 L (without BSV). The nonparametric values were Ke 0.681 h-1 (34.0% CV) and Vc 31.1 L (42.6% CV).RESULTSFor both methods, data were best described by a model with two distribution compartments and the CKD-EPI eGFR equation unadjusted for body surface area as a covariate on the elimination rate constant (Ke). The parametric population parameter estimates were Ke 0.637 h-1 (between-subject variability [BSV]: 19.0% coefficient of variation [CV]) and central distribution volume (Vc) 29.6 L (without BSV). The nonparametric values were Ke 0.681 h-1 (34.0% CV) and Vc 31.1 L (42.6% CV).Both models described imipenem popPK well; the parameter estimates were comparable and the included covariate was identical. However, estimated BSV was higher in the nonparametric model. This may have consequences for estimated exposure during dosing simulations and should be further investigated in simulation studies.CONCLUSIONSBoth models described imipenem popPK well; the parameter estimates were comparable and the included covariate was identical. However, estimated BSV was higher in the nonparametric model. This may have consequences for estimated exposure during dosing simulations and should be further investigated in simulation studies.  | 
    
| Author | de Winter, Brenda C. M. Neely, Michael N. Koch, Birgit C. P. Harbarth, Stephan de Velde, Femke Mouton, Johan W. Yamada, Walter M. von Dach, Elodie van Gelder, Teun Huttner, Angela  | 
    
| Author_xml | – sequence: 1 givenname: Femke orcidid: 0000-0003-4581-9688 surname: de Velde fullname: de Velde, Femke email: f.develde@erasmusmc.nl organization: Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center – sequence: 2 givenname: Brenda C. M. surname: de Winter fullname: de Winter, Brenda C. M. organization: Department of Hospital Pharmacy, Erasmus University Medical Center – sequence: 3 givenname: Michael N. surname: Neely fullname: Neely, Michael N. organization: Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine – sequence: 4 givenname: Walter M. surname: Yamada fullname: Yamada, Walter M. organization: Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine – sequence: 5 givenname: Birgit C. P. surname: Koch fullname: Koch, Birgit C. P. organization: Department of Hospital Pharmacy, Erasmus University Medical Center – sequence: 6 givenname: Stephan surname: Harbarth fullname: Harbarth, Stephan organization: Division of Infectious Diseases, Geneva University Hospitals, Faculty of Medicine, Infection Control Program, Geneva University Hospitals, Faculty of Medicine – sequence: 7 givenname: Elodie surname: von Dach fullname: von Dach, Elodie organization: Division of Infectious Diseases, Geneva University Hospitals, Faculty of Medicine – sequence: 8 givenname: Teun surname: van Gelder fullname: van Gelder, Teun organization: Department of Hospital Pharmacy, Erasmus University Medical Center – sequence: 9 givenname: Angela surname: Huttner fullname: Huttner, Angela organization: Division of Infectious Diseases, Geneva University Hospitals, Faculty of Medicine – sequence: 10 givenname: Johan W. surname: Mouton fullname: Mouton, Johan W. organization: Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31956969$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNUstuEzEUHaEimhZ-gAWyxIbNgB_zZIFUhbREFIgQrC2P507q4rEHeyYo38bPcdsEAl1ULCxbvuccn3uPT5Ij5x0kyVNGXzJKy1cxo7zgKeU0pbTK65Q9SGaMlXioeXGUzKhgPM3rQhwnJzFeU0RxSh8lx4LVeVEX9Sz5ufLDZNVovCOrKxV6pf0342A0OhLfkWVvBnDQE-PIPBi8VtZuydJaskIWuDG-Jmd4DqqHMRhNlGvJR--Gw80H34Ilc-82ENZA8KX5-7fpYrUkiziaXo3QkgvrewjoJJBzY8ewc_QZa0RF1EQjg9JjN90IbVQwWHmcPOyUjfBkv58mX88XX-bv0stPF8v52WWqszIbU55z3SrdNIwWdVl0NYWmgAaaNtdVzsqmrlvWdpBXIPKuoipvRKXLEhoFXEAmThOx052wq-0PHIAcAvoOW8movIlC7qKQGIW8jUIyZL3ZsYap6aHVOKqgDkyvjPy34syVXPuNLAWvy7xCgRd7geC_TxBH2ZuowVrlwE9RcpFxkRdlJRD6_A702k_B4VAkzzjPaIYLUc_-dvTHyu_fgAC-A-jgYwzQ_V-f1R2SNuNtfNiVsfdT94ON-I5bQzjYvof1C9Wc7Ls | 
    
| CitedBy_id | crossref_primary_10_1186_s12879_024_09774_3 crossref_primary_10_1002_jcph_1865 crossref_primary_10_1007_s00228_024_03697_3 crossref_primary_10_1002_jcph_1993 crossref_primary_10_1097_FTD_0000000000001214 crossref_primary_10_1128_AAC_02629_20 crossref_primary_10_1007_s13318_020_00643_3 crossref_primary_10_1093_jac_dkaa549 crossref_primary_10_1136_ejhpharm_2022_003403 crossref_primary_10_3390_pharmaceutics13122170 crossref_primary_10_3390_pharmaceutics12070638 crossref_primary_10_3390_pharmaceutics13010042  | 
    
| Cites_doi | 10.1016/j.ejps.2008.12.014 10.1080/01621459.1993.10476408 10.1128/AAC.01318-06 10.1208/s12248-009-9138-8 10.1128/AAC.00936-09 10.1016/j.ijantimicag.2016.12.005 10.1016/j.drup.2011.02.005 10.3109/03602538409033558 10.1128/AAC.00054-09 10.1093/jac/dkq449 10.1007/s10928-010-9177-x 10.1111/j.1469-0691.2011.03752.x 10.1111/bcp.12394 10.1016/j.ijantimicag.2016.01.009 10.2165/00003088-200645040-00003 10.1038/psp.2013.14 10.2165/11318140-000000000-00000 10.1097/00007691-200206000-00006 10.1111/bcp.12435 10.1007/BF00685628 10.1373/clinchem.2006.077180 10.1007/s10928-013-9302-8 10.1097/ccm.0b013e3181961bff 10.1097/00007691-200012000-00006 10.1159/000180580 10.1007/s11095-007-9361-x 10.1097/ta.0000000000001211 10.1016/j.phrs.2010.10.017 10.1093/jac/dkx526 10.1097/FTD.0000000000000381 10.1016/j.phrs.2018.07.005 10.1007/s002280100306 10.1177/096228029800700106 10.1007/s10928-009-9122-z 10.1038/psp.2013.24 10.2165/00003495-199244030-00008 10.1007/s40620-013-0036-x 10.1159/000065221 10.1208/s12248-011-9255-z 10.1016/j.ijantimicag.2014.12.017 10.1208/s12248-013-9526-y 10.1038/psp.2013.26 10.1002/phar.1653 10.1016/j.jchromb.2008.09.020 10.1097/FTD.0b013e318194767d 10.1111/bcp.12451 10.1097/FTD.0b013e31825c4ba6 10.1038/psp.2012.4 10.7326/0003-4819-150-9-200905050-00006  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2020 Copyright Springer Nature B.V. Jul 2020  | 
    
| Copyright_xml | – notice: The Author(s) 2020 – notice: Copyright Springer Nature B.V. Jul 2020  | 
    
| CorporateAuthor | COMBACTE-NET consortium | 
    
| CorporateAuthor_xml | – name: COMBACTE-NET consortium | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 4T- 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1007/s40262-020-00859-1 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Docstoc Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) Docstoc Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE ProQuest One Academic Middle East (New) MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Pharmacy, Therapeutics, & Pharmacology  | 
    
| EISSN | 1179-1926 | 
    
| EndPage | 898 | 
    
| ExternalDocumentID | 10.1007/s40262-020-00859-1 PMC7329758 31956969 10_1007_s40262_020_00859_1  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: Innovative Medicines Initiative grantid: 115523 funderid: http://dx.doi.org/10.13039/501100010767 – fundername: FP7 Science in Society grantid: Health-F3-2011-278348 funderid: http://dx.doi.org/10.13039/100011201 – fundername: Université de Genève grantid: PRD 09-II-025 funderid: http://dx.doi.org/10.13039/501100006389 – fundername: ; grantid: 115523 – fundername: ; grantid: PRD 09-II-025 – fundername: ; grantid: Health-F3-2011-278348  | 
    
| GroupedDBID | --- -5G -BR -EM .GJ .XZ 0R~ 0VX 199 29B 2JY 34G 36B 39C 3V. 4.4 406 53G 5GY 5RE 6I2 6J9 6PF 7X7 88E 8FI 8FJ 8R4 8R5 8UJ 95. AAAUJ AABHQ AACDK AADNT AAIAL AAIKX AAJKR AAKAS AANZL AARHV AASML AATNV AAWTL AAYQN AAYTO AAYZH ABAKF ABDZT ABFTV ABIPD ABJNI ABJOX ABKCH ABKMS ABKTR ABOCM ABPLI ABTKH ABTMW ABUWG ABWHX ABXPI ACAOD ACCOQ ACCUX ACDTI ACGFO ACGFS ACMJI ACMLO ACOKC ACPIV ACREN ACZOJ ADBBV ADFRT ADFZG ADHHG ADJJI ADQRH ADRFC ADURQ ADYOE ADZCM ADZKW AEBTG AEFQL AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AEYRQ AFALF AFBBN AFFNX AFKRA AFWTZ AFZKB AGAYW AGDGC AGQEE AGQMX AGRTI AHIZS AHMBA AHSBF AIAKS AIGIU AILAN AIZAD AJRNO ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF ASPBG AVWKF AWSVR AXYYD AZFZN A~4 BENPR BGNMA BPHCQ BVXVI BYPQX C6C CAG CCPQU COF CS3 DCUDU DNIVK DPUIP DU5 EBLON EBS EJD EMOBN ESX F5P F8P FERAY FIGPU FLLZZ FNLPD FSGXE FYUFA HF~ HMCUK IAO IEA IHR IMOTQ INH INR ITC IWAJR J-C JZLTJ LGEZI LLZTM LOTEE M1P M4Y NADUK NQJWS NU0 NXXTH OAC OPC OVD P2P PQQKQ PROAC PSQYO Q2X ROL RSV RZALA SISQX SJYHP SNPRN SNX SOHCF SOJ SPKJE SRMVM SSLCW TEORI TSG U5U U9L UAX UG4 UKHRP UNMZH UTJUX VDBLX VFIZW W48 WAF YQY Z0Y Z7U ZGI ZMTXR ZXP ~JE AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PUEGO CGR CUY CVF ECM EIF NPM 4T- 7XB 8FK K9. PKEHL PQEST PQUKI PRINS 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c474t-252cdacbb106976f90eb6ebebd5c8517b99d1dfe58e35f80a5b38c77ebae23e43 | 
    
| IEDL.DBID | C6C | 
    
| ISSN | 0312-5963 1179-1926  | 
    
| IngestDate | Sun Oct 26 04:15:13 EDT 2025 Tue Sep 30 16:44:57 EDT 2025 Wed Oct 01 14:44:44 EDT 2025 Mon Oct 06 17:13:43 EDT 2025 Mon Jul 21 05:58:23 EDT 2025 Thu Apr 24 23:02:54 EDT 2025 Wed Oct 01 02:15:52 EDT 2025 Fri Feb 21 02:37:05 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 7 | 
    
| Language | English | 
    
| License | Open AccessThis article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/4.0/. cc-by-nc  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c474t-252cdacbb106976f90eb6ebebd5c8517b99d1dfe58e35f80a5b38c77ebae23e43 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-4581-9688 | 
    
| OpenAccessLink | https://doi.org/10.1007/s40262-020-00859-1 | 
    
| PMID | 31956969 | 
    
| PQID | 2422404240 | 
    
| PQPubID | 32335 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s40262_020_00859_1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7329758 proquest_miscellaneous_2342356783 proquest_journals_2422404240 pubmed_primary_31956969 crossref_primary_10_1007_s40262_020_00859_1 crossref_citationtrail_10_1007_s40262_020_00859_1 springer_journals_10_1007_s40262_020_00859_1  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-07-01 | 
    
| PublicationDateYYYYMMDD | 2020-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham – name: Switzerland – name: Auckland  | 
    
| PublicationTitle | Clinical pharmacokinetics | 
    
| PublicationTitleAbbrev | Clin Pharmacokinet | 
    
| PublicationTitleAlternate | Clin Pharmacokinet | 
    
| PublicationYear | 2020 | 
    
| Publisher | Springer International Publishing Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V  | 
    
| References | Carlsson, van de Schootbrugge, Eriksen, Moberg, Karlsson, Hoem (CR13) 2009; 31 Mouton, Ambrose, Canton, Drusano, Harbarth, MacGowan (CR1) 2011; 14 Levey, Coresh, Greene, Marsh, Stevens, Kusek (CR38) 2007; 53 Baverel, Savic, Wilkins, Karlsson (CR19) 2009; 36 Roberts, Lipman (CR20) 2009; 37 Baptista, Neves, Rodrigues, Teixeira, Pinho, Pimentel (CR23) 2014; 27 CR35 CR33 Minichmayr, Roberts, Frey, Roehr, Kloft, Brinkmann (CR55) 2018; 73 Tatarinova, Neely, Bartroff, van Guilder, Yamada, Bayard (CR7) 2013; 40 Byon, Smith, Chan, Tortorici, Riley, Dai (CR30) 2013; 2 Launay-Iliadis, Bruno, Cosson, Vergniol, Oulid-Aissa, Marty (CR8) 1995; 37 Suchankova, Lips, Urbanek, Neely, Strojil (CR47) 2017; 49 Bergstrand, Hooker, Wallin, Karlsson (CR51) 2011; 13 Legrand, Chhun, Rey, Blanchet, Zahar, Lanternier (CR27) 2008; 875 Buckley, Brogden, Barradell, Goa (CR22) 1992; 44 Hutmacher, Kowalski (CR34) 2015; 79 Hobbs, Shea, Roberts, Daley (CR48) 2015; 35 CR2 Premaud, Weber, Tonshoff, Armstrong, Oellerich, Urien (CR16) 2011; 63 Hooker, Staatz, Karlsson (CR50) 2007; 24 Patoux, Bleyzac, Boddy, Doz, Rubie, Bastian (CR10) 2001; 57 Cockcroft, Gault (CR25) 1976; 16 Bulitta, Landersdorfer, Kinzig, Holzgrabe, Sorgel (CR14) 2009; 53 Bulitta, Landersdorfer, Huttner, Drusano, Kinzig, Holzgrabe (CR15) 2010; 54 Barletta, Mangram, Byrne, Hollingworth, Sucher, Ali-Osman (CR54) 2016; 81 Johansson, Karlsson (CR26) 2013; 15 Couffignal, Pajot, Laouenan, Burdet, Foucrier, Wolff (CR45) 2014; 78 de Velde, Mouton, de Winter, van Gelder, Koch (CR3) 2018; 134 Sakka, Glauner, Bulitta, Kinzig-Schippers, Pfister, Drusano (CR46) 2007; 51 Neely, van Guilder, Yamada, Schumitzky, Jelliffe (CR6) 2012; 34 CR53 CR52 de Hoog, Schoemaker, van den Anker, Vinks (CR11) 2002; 24 Vermes, Mathot, van der Sijs, Dankert, Guchelaar (CR9) 2000; 22 Du Bois, Du Bois (CR41) 1989; 5 Mouton, Brown, Apfalter, Canton, Giske, Ivanova (CR4) 2012; 18 Levey, Stevens, Schmid, Zhang, Castro, Feldman (CR39) 2009; 150 Boxenbaum (CR42) 1984; 15 Mould, Upton (CR32) 2012; 1 Mould, Upton (CR31) 2013; 2 Jelliffe (CR40) 2002; 22 Roberts, Kirkpatrick, Lipman (CR44) 2011; 66 Baverel, Savic, Karlsson (CR56) 2011; 38 Woillard, Debord, Benz-de-Bretagne, Saint-Marcoux, Turlure, Girault (CR17) 2017; 39 Huttner, Von Dach, Renzoni, Huttner, Affaticati, Pagani (CR24) 2015; 45 Willett, Singer (CR43) 1988; 42 Bustad, Terziivanov, Leary, Port, Schumitzky, Jelliffe (CR12) 2006; 45 CR29 Racine-Poon, Wakefield (CR5) 1998; 7 Keizer, Karlsson, Hooker (CR28) 2013; 2 Rousseeuw, Croux (CR36) 1993; 88 CR21 Savic, Karlsson (CR57) 2009; 11 Woillard, Lebreton, Neely, Turlure, Girault, Debord (CR18) 2014; 78 Alobaid, Hites, Lipman, Taccone, Roberts (CR37) 2016; 47 Udy, Roberts, Boots, Paterson, Lipman (CR49) 2010; 49 Savic, Kjellsson, Karlsson (CR58) 2009; 37 A Vermes (859_CR9) 2000; 22 JB Willett (859_CR43) 1988; 42 C Couffignal (859_CR45) 2014; 78 JF Barletta (859_CR54) 2016; 81 IK Minichmayr (859_CR55) 2018; 73 AL Hobbs (859_CR48) 2015; 35 A Bustad (859_CR12) 2006; 45 A Patoux (859_CR10) 2001; 57 859_CR33 859_CR35 AS Levey (859_CR39) 2009; 150 PG Baverel (859_CR56) 2011; 38 DR Mould (859_CR32) 2012; 1 PJ Rousseeuw (859_CR36) 1993; 88 PG Baverel (859_CR19) 2009; 36 RJ Keizer (859_CR28) 2013; 2 H Suchankova (859_CR47) 2017; 49 MN Neely (859_CR6) 2012; 34 SG Sakka (859_CR46) 2007; 51 JB Bulitta (859_CR14) 2009; 53 JP Baptista (859_CR23) 2014; 27 MC Launay-Iliadis (859_CR8) 1995; 37 W Byon (859_CR30) 2013; 2 JB Woillard (859_CR17) 2017; 39 A Huttner (859_CR24) 2015; 45 R Jelliffe (859_CR40) 2002; 22 JB Woillard (859_CR18) 2014; 78 RM Savic (859_CR58) 2009; 37 T Tatarinova (859_CR7) 2013; 40 DW Cockcroft (859_CR25) 1976; 16 859_CR52 AS Alobaid (859_CR37) 2016; 47 AS Levey (859_CR38) 2007; 53 M de Hoog (859_CR11) 2002; 24 JB Bulitta (859_CR15) 2010; 54 DR Mould (859_CR31) 2013; 2 MM Hutmacher (859_CR34) 2015; 79 M Bergstrand (859_CR51) 2011; 13 H Boxenbaum (859_CR42) 1984; 15 JA Roberts (859_CR44) 2011; 66 MM Buckley (859_CR22) 1992; 44 AC Hooker (859_CR50) 2007; 24 859_CR53 859_CR2 JW Mouton (859_CR4) 2012; 18 D Du Bois (859_CR41) 1989; 5 RM Savic (859_CR57) 2009; 11 JW Mouton (859_CR1) 2011; 14 AM Johansson (859_CR26) 2013; 15 T Legrand (859_CR27) 2008; 875 859_CR29 A Racine-Poon (859_CR5) 1998; 7 AA Udy (859_CR49) 2010; 49 KC Carlsson (859_CR13) 2009; 31 JA Roberts (859_CR20) 2009; 37 F de Velde (859_CR3) 2018; 134 859_CR21 A Premaud (859_CR16) 2011; 63  | 
    
| References_xml | – volume: 42 start-page: 236 issue: 3 year: 1988 end-page: 238 ident: CR43 article-title: Another cautionary note about : its use in weighted least-squares regression analysis publication-title: Am Stat. – volume: 37 start-page: 27 issue: 1 year: 2009 end-page: 35 ident: CR58 article-title: Evaluation of the nonparametric estimation method in NONMEM VI publication-title: Eur J Pharm Sci. doi: 10.1016/j.ejps.2008.12.014 – volume: 88 start-page: 1273 issue: 424 year: 1993 end-page: 1283 ident: CR36 article-title: Alternatives to the median absolute deviation publication-title: J Am Stat Assoc. doi: 10.1080/01621459.1993.10476408 – volume: 51 start-page: 3304 issue: 9 year: 2007 end-page: 3310 ident: CR46 article-title: Population pharmacokinetics and pharmacodynamics of continuous versus short-term infusion of imipenem–cilastatin in critically ill patients in a randomized, controlled trial publication-title: Antimicrob Agents Chemother. doi: 10.1128/AAC.01318-06 – volume: 11 start-page: 615 issue: 3 year: 2009 end-page: 627 ident: CR57 article-title: Evaluation of an extended grid method for estimation using nonparametric distributions publication-title: AAPS J. doi: 10.1208/s12248-009-9138-8 – volume: 54 start-page: 1275 issue: 3 year: 2010 end-page: 1282 ident: CR15 article-title: Population pharmacokinetic comparison and pharmacodynamic breakpoints of ceftazidime in cystic fibrosis patients and healthy volunteers publication-title: Antimicrob Agents Chemother. doi: 10.1128/AAC.00936-09 – volume: 49 start-page: 348 issue: 3 year: 2017 end-page: 354 ident: CR47 article-title: Is continuous infusion of imipenem always the best choice? publication-title: Int J Antimicrob Agents. doi: 10.1016/j.ijantimicag.2016.12.005 – ident: CR35 – ident: CR29 – volume: 14 start-page: 107 issue: 2 year: 2011 end-page: 117 ident: CR1 article-title: Conserving antibiotics for the future: new ways to use old and new drugs from a pharmacokinetic and pharmacodynamic perspective publication-title: Drug Resist Updat. doi: 10.1016/j.drup.2011.02.005 – volume: 15 start-page: 1071 issue: 5–6 year: 1984 end-page: 1121 ident: CR42 article-title: Interspecies pharmacokinetic scaling and the evolutionary-comparative paradigm publication-title: Drug Metab Rev. doi: 10.3109/03602538409033558 – volume: 53 start-page: 3462 issue: 8 year: 2009 end-page: 3471 ident: CR14 article-title: New semiphysiological absorption model to assess the pharmacodynamic profile of cefuroxime axetil using nonparametric and parametric population pharmacokinetics publication-title: Antimicrob Agents Chemother. doi: 10.1128/AAC.00054-09 – volume: 66 start-page: 227 issue: 2 year: 2011 end-page: 231 ident: CR44 article-title: Monte Carlo simulations: maximizing antibiotic pharmacokinetic data to optimize clinical practice for critically ill patients publication-title: J Antimicrob Chemother. doi: 10.1093/jac/dkq449 – volume: 38 start-page: 63 issue: 1 year: 2011 end-page: 82 ident: CR56 article-title: Two bootstrapping routines for obtaining imprecision estimates for nonparametric parameter distributions in nonlinear mixed effects models publication-title: J Pharmacokinet Pharmacodyn. doi: 10.1007/s10928-010-9177-x – volume: 18 start-page: E37 issue: 3 year: 2012 end-page: E45 ident: CR4 article-title: The role of pharmacokinetics/pharmacodynamics in setting clinical MIC breakpoints: the EUCAST approach publication-title: Clin Microbiol Infect. doi: 10.1111/j.1469-0691.2011.03752.x – volume: 78 start-page: 836 issue: 4 year: 2014 end-page: 846 ident: CR18 article-title: Pharmacokinetic tools for the dose adjustment of ciclosporin in haematopoietic stem cell transplant patients publication-title: Br J Clin Pharmacol. doi: 10.1111/bcp.12394 – ident: CR21 – volume: 47 start-page: 259 issue: 4 year: 2016 end-page: 268 ident: CR37 article-title: Effect of obesity on the pharmacokinetics of antimicrobials in critically ill patients: a structured review publication-title: Int J Antimicrob Agents. doi: 10.1016/j.ijantimicag.2016.01.009 – volume: 5 start-page: 303 issue: 5 year: 1989 end-page: 311 ident: CR41 article-title: A formula to estimate the approximate surface area if height and weight be known publication-title: Nutrition – volume: 45 start-page: 365 issue: 4 year: 2006 end-page: 383 ident: CR12 article-title: Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies publication-title: Clin Pharmacokinet. doi: 10.2165/00003088-200645040-00003 – volume: 2 start-page: e38 year: 2013 ident: CR31 article-title: Basic concepts in population modeling, simulation, and model-based drug development—part 2: introduction to pharmacokinetic modeling methods publication-title: CPT Pharmacometr Syst Pharmacol. doi: 10.1038/psp.2013.14 – volume: 49 start-page: 1 issue: 1 year: 2010 end-page: 16 ident: CR49 article-title: Augmented renal clearance: implications for antibacterial dosing in the critically ill publication-title: Clin Pharmacokinet. doi: 10.2165/11318140-000000000-00000 – volume: 24 start-page: 359 issue: 3 year: 2002 end-page: 365 ident: CR11 article-title: NONMEM and NPEM2 population modeling: a comparison using tobramycin data in neonates publication-title: Ther Drug Monit. doi: 10.1097/00007691-200206000-00006 – volume: 78 start-page: 1022 issue: 5 year: 2014 end-page: 1034 ident: CR45 article-title: Population pharmacokinetics of imipenem in critically ill patients with suspected ventilator-associated pneumonia and evaluation of dosage regimens publication-title: Br J Clin Pharmacol. doi: 10.1111/bcp.12435 – volume: 37 start-page: 47 issue: 1–2 year: 1995 end-page: 54 ident: CR8 article-title: Population pharmacokinetics of docetaxel during phase I studies using nonlinear mixed-effect modeling and nonparametric maximum-likelihood estimation publication-title: Cancer Chemother Pharmacol. doi: 10.1007/BF00685628 – volume: 53 start-page: 766 issue: 4 year: 2007 end-page: 772 ident: CR38 article-title: Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values publication-title: Clin Chem. doi: 10.1373/clinchem.2006.077180 – volume: 40 start-page: 189 issue: 2 year: 2013 end-page: 199 ident: CR7 article-title: Two general methods for population pharmacokinetic modeling: non-parametric adaptive grid and non-parametric Bayesian publication-title: J Pharmacokinet Pharmacodyn. doi: 10.1007/s10928-013-9302-8 – volume: 37 start-page: 840 issue: 3 year: 2009 end-page: 851 ident: CR20 article-title: Pharmacokinetic issues for antibiotics in the critically ill patient publication-title: Crit Care Med. doi: 10.1097/ccm.0b013e3181961bff – volume: 22 start-page: 676 issue: 6 year: 2000 end-page: 687 ident: CR9 article-title: Population pharmacokinetics of flucytosine: comparison and validation of three models using STS, NPEM, and NONMEM publication-title: Ther Drug Monit. doi: 10.1097/00007691-200012000-00006 – volume: 16 start-page: 31 issue: 1 year: 1976 end-page: 41 ident: CR25 article-title: Prediction of creatinine clearance from serum creatinine publication-title: Nephron. doi: 10.1159/000180580 – ident: CR2 – ident: CR53 – volume: 24 start-page: 2187 issue: 12 year: 2007 end-page: 2197 ident: CR50 article-title: Conditional weighted residuals (CWRES): a model diagnostic for the FOCE method publication-title: Pharm Res. doi: 10.1007/s11095-007-9361-x – ident: CR33 – volume: 81 start-page: 1115 issue: 6 year: 2016 end-page: 1121 ident: CR54 article-title: The importance of empiric antibiotic dosing in critically ill trauma patients: are we under-dosing based on augmented renal clearance and inaccurate renal clearance estimates? publication-title: J Trauma Acute Care Surg. doi: 10.1097/ta.0000000000001211 – volume: 63 start-page: 216 issue: 3 year: 2011 end-page: 224 ident: CR16 article-title: Population pharmacokinetics of mycophenolic acid in pediatric renal transplant patients using parametric and nonparametric approaches publication-title: Pharmacol Res. doi: 10.1016/j.phrs.2010.10.017 – volume: 73 start-page: 1330 issue: 5 year: 2018 end-page: 1339 ident: CR55 article-title: Development of a dosing nomogram for continuous-infusion meropenem in critically ill patients based on a validated population pharmacokinetic model publication-title: J Antimicrob Chemother. doi: 10.1093/jac/dkx526 – volume: 39 start-page: 145 issue: 2 year: 2017 end-page: 156 ident: CR17 article-title: A time-dependent model describes methotrexate elimination and supports dynamic modification of MRP2/ABCC2 activity publication-title: Ther Drug Monit. doi: 10.1097/FTD.0000000000000381 – volume: 134 start-page: 280 year: 2018 end-page: 288 ident: CR3 article-title: Clinical applications of population pharmacokinetic models of antibiotics: Challenges and perspectives publication-title: Pharmacol Res. doi: 10.1016/j.phrs.2018.07.005 – volume: 57 start-page: 297 issue: 4 year: 2001 end-page: 303 ident: CR10 article-title: Comparison of nonlinear mixed-effect and non-parametric expectation maximisation modelling for Bayesian estimation of carboplatin clearance in children publication-title: Eur J Clin Pharmacol. doi: 10.1007/s002280100306 – volume: 7 start-page: 63 issue: 1 year: 1998 end-page: 84 ident: CR5 article-title: Statistical methods for population pharmacokinetic modelling publication-title: Stat Methods Med Res. doi: 10.1177/096228029800700106 – volume: 36 start-page: 297 issue: 4 year: 2009 end-page: 315 ident: CR19 article-title: Evaluation of the nonparametric estimation method in NONMEM VI: application to real data publication-title: J Pharmacokinet Pharmacodyn. doi: 10.1007/s10928-009-9122-z – volume: 2 start-page: e50 year: 2013 ident: CR28 article-title: Modeling and simulation workbench for NONMEM: tutorial on Pirana, PsN, and Xpose publication-title: CPT Pharmacometr Syst Pharmacol. doi: 10.1038/psp.2013.24 – volume: 44 start-page: 408 issue: 3 year: 1992 end-page: 444 ident: CR22 article-title: Imipenem/cilastatin. A reappraisal of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy publication-title: Drugs doi: 10.2165/00003495-199244030-00008 – volume: 27 start-page: 403 issue: 4 year: 2014 end-page: 410 ident: CR23 article-title: Accuracy of the estimation of glomerular filtration rate within a population of critically ill patients publication-title: J Nephrol. doi: 10.1007/s40620-013-0036-x – volume: 22 start-page: 320 issue: 4 year: 2002 end-page: 324 ident: CR40 article-title: Estimation of creatinine clearance in patients with unstable renal function, without a urine specimen publication-title: Am J Nephrol. doi: 10.1159/000065221 – volume: 13 start-page: 143 issue: 2 year: 2011 end-page: 151 ident: CR51 article-title: Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models publication-title: AAPS J. doi: 10.1208/s12248-011-9255-z – volume: 45 start-page: 385 issue: 4 year: 2015 end-page: 392 ident: CR24 article-title: Augmented renal clearance, low beta-lactam concentrations and clinical outcomes in the critically ill: an observational prospective cohort study publication-title: Int J Antimicrob Agents. doi: 10.1016/j.ijantimicag.2014.12.017 – volume: 15 start-page: 1232 issue: 4 year: 2013 end-page: 1241 ident: CR26 article-title: Comparison of methods for handling missing covariate data publication-title: AAPS J. doi: 10.1208/s12248-013-9526-y – ident: CR52 – volume: 2 start-page: e51 year: 2013 ident: CR30 article-title: Establishing best practices and guidance in population modeling: an experience with an internal population pharmacokinetic analysis guidance publication-title: CPT Pharmacometr Syst Pharmacol. doi: 10.1038/psp.2013.26 – volume: 35 start-page: 1063 issue: 11 year: 2015 end-page: 1075 ident: CR48 article-title: Implications of augmented renal clearance on drug dosing in critically ill patients: a focus on antibiotics publication-title: Pharmacotherapy. doi: 10.1002/phar.1653 – volume: 875 start-page: 551 issue: 2 year: 2008 end-page: 556 ident: CR27 article-title: Simultaneous determination of three carbapenem antibiotics in plasma by HPLC with ultraviolet detection publication-title: J Chromatogr B Analyt Technol Biomed Life Sci. doi: 10.1016/j.jchromb.2008.09.020 – volume: 31 start-page: 86 issue: 1 year: 2009 end-page: 94 ident: CR13 article-title: A population pharmacokinetic model of gabapentin developed in nonparametric adaptive grid and nonlinear mixed effects modeling publication-title: Ther Drug Monit. doi: 10.1097/FTD.0b013e318194767d – volume: 79 start-page: 132 issue: 1 year: 2015 end-page: 147 ident: CR34 article-title: Covariate selection in pharmacometric analyses: a review of methods publication-title: Br J Clin Pharmacol. doi: 10.1111/bcp.12451 – volume: 34 start-page: 467 issue: 4 year: 2012 end-page: 476 ident: CR6 article-title: Accurate detection of outliers and subpopulations with Pmetrics, a nonparametric and parametric pharmacometric modeling and simulation package for R publication-title: Ther Drug Monit. doi: 10.1097/FTD.0b013e31825c4ba6 – volume: 1 start-page: e6 year: 2012 ident: CR32 article-title: Basic concepts in population modeling, simulation, and model-based drug development publication-title: CPT Pharmacometr Syst Pharmacol. doi: 10.1038/psp.2012.4 – volume: 150 start-page: 604 issue: 9 year: 2009 end-page: 612 ident: CR39 article-title: A new equation to estimate glomerular filtration rate publication-title: Ann Intern Med. doi: 10.7326/0003-4819-150-9-200905050-00006 – volume: 14 start-page: 107 issue: 2 year: 2011 ident: 859_CR1 publication-title: Drug Resist Updat. doi: 10.1016/j.drup.2011.02.005 – volume: 37 start-page: 47 issue: 1–2 year: 1995 ident: 859_CR8 publication-title: Cancer Chemother Pharmacol. doi: 10.1007/BF00685628 – volume: 66 start-page: 227 issue: 2 year: 2011 ident: 859_CR44 publication-title: J Antimicrob Chemother. doi: 10.1093/jac/dkq449 – volume: 44 start-page: 408 issue: 3 year: 1992 ident: 859_CR22 publication-title: Drugs doi: 10.2165/00003495-199244030-00008 – volume: 49 start-page: 1 issue: 1 year: 2010 ident: 859_CR49 publication-title: Clin Pharmacokinet. doi: 10.2165/11318140-000000000-00000 – volume: 45 start-page: 365 issue: 4 year: 2006 ident: 859_CR12 publication-title: Clin Pharmacokinet. doi: 10.2165/00003088-200645040-00003 – volume: 78 start-page: 1022 issue: 5 year: 2014 ident: 859_CR45 publication-title: Br J Clin Pharmacol. doi: 10.1111/bcp.12435 – volume: 73 start-page: 1330 issue: 5 year: 2018 ident: 859_CR55 publication-title: J Antimicrob Chemother. doi: 10.1093/jac/dkx526 – ident: 859_CR2 – volume: 88 start-page: 1273 issue: 424 year: 1993 ident: 859_CR36 publication-title: J Am Stat Assoc. doi: 10.1080/01621459.1993.10476408 – volume: 24 start-page: 359 issue: 3 year: 2002 ident: 859_CR11 publication-title: Ther Drug Monit. doi: 10.1097/00007691-200206000-00006 – volume: 37 start-page: 840 issue: 3 year: 2009 ident: 859_CR20 publication-title: Crit Care Med. doi: 10.1097/ccm.0b013e3181961bff – volume: 31 start-page: 86 issue: 1 year: 2009 ident: 859_CR13 publication-title: Ther Drug Monit. doi: 10.1097/FTD.0b013e318194767d – volume: 150 start-page: 604 issue: 9 year: 2009 ident: 859_CR39 publication-title: Ann Intern Med. doi: 10.7326/0003-4819-150-9-200905050-00006 – volume: 35 start-page: 1063 issue: 11 year: 2015 ident: 859_CR48 publication-title: Pharmacotherapy. doi: 10.1002/phar.1653 – volume: 39 start-page: 145 issue: 2 year: 2017 ident: 859_CR17 publication-title: Ther Drug Monit. doi: 10.1097/FTD.0000000000000381 – volume: 36 start-page: 297 issue: 4 year: 2009 ident: 859_CR19 publication-title: J Pharmacokinet Pharmacodyn. doi: 10.1007/s10928-009-9122-z – volume: 24 start-page: 2187 issue: 12 year: 2007 ident: 859_CR50 publication-title: Pharm Res. doi: 10.1007/s11095-007-9361-x – volume: 38 start-page: 63 issue: 1 year: 2011 ident: 859_CR56 publication-title: J Pharmacokinet Pharmacodyn. doi: 10.1007/s10928-010-9177-x – volume: 15 start-page: 1071 issue: 5–6 year: 1984 ident: 859_CR42 publication-title: Drug Metab Rev. doi: 10.3109/03602538409033558 – volume: 13 start-page: 143 issue: 2 year: 2011 ident: 859_CR51 publication-title: AAPS J. doi: 10.1208/s12248-011-9255-z – volume: 54 start-page: 1275 issue: 3 year: 2010 ident: 859_CR15 publication-title: Antimicrob Agents Chemother. doi: 10.1128/AAC.00936-09 – volume: 63 start-page: 216 issue: 3 year: 2011 ident: 859_CR16 publication-title: Pharmacol Res. doi: 10.1016/j.phrs.2010.10.017 – volume: 2 start-page: e50 year: 2013 ident: 859_CR28 publication-title: CPT Pharmacometr Syst Pharmacol. doi: 10.1038/psp.2013.24 – volume: 2 start-page: e38 year: 2013 ident: 859_CR31 publication-title: CPT Pharmacometr Syst Pharmacol. doi: 10.1038/psp.2013.14 – volume: 22 start-page: 676 issue: 6 year: 2000 ident: 859_CR9 publication-title: Ther Drug Monit. doi: 10.1097/00007691-200012000-00006 – volume: 47 start-page: 259 issue: 4 year: 2016 ident: 859_CR37 publication-title: Int J Antimicrob Agents. doi: 10.1016/j.ijantimicag.2016.01.009 – ident: 859_CR33 – volume: 7 start-page: 63 issue: 1 year: 1998 ident: 859_CR5 publication-title: Stat Methods Med Res. doi: 10.1177/096228029800700106 – volume: 81 start-page: 1115 issue: 6 year: 2016 ident: 859_CR54 publication-title: J Trauma Acute Care Surg. doi: 10.1097/ta.0000000000001211 – volume: 53 start-page: 3462 issue: 8 year: 2009 ident: 859_CR14 publication-title: Antimicrob Agents Chemother. doi: 10.1128/AAC.00054-09 – volume: 15 start-page: 1232 issue: 4 year: 2013 ident: 859_CR26 publication-title: AAPS J. doi: 10.1208/s12248-013-9526-y – ident: 859_CR21 – volume: 11 start-page: 615 issue: 3 year: 2009 ident: 859_CR57 publication-title: AAPS J. doi: 10.1208/s12248-009-9138-8 – ident: 859_CR29 – volume: 34 start-page: 467 issue: 4 year: 2012 ident: 859_CR6 publication-title: Ther Drug Monit. doi: 10.1097/FTD.0b013e31825c4ba6 – volume: 42 start-page: 236 issue: 3 year: 1988 ident: 859_CR43 publication-title: Am Stat. – volume: 45 start-page: 385 issue: 4 year: 2015 ident: 859_CR24 publication-title: Int J Antimicrob Agents. doi: 10.1016/j.ijantimicag.2014.12.017 – volume: 18 start-page: E37 issue: 3 year: 2012 ident: 859_CR4 publication-title: Clin Microbiol Infect. doi: 10.1111/j.1469-0691.2011.03752.x – volume: 875 start-page: 551 issue: 2 year: 2008 ident: 859_CR27 publication-title: J Chromatogr B Analyt Technol Biomed Life Sci. doi: 10.1016/j.jchromb.2008.09.020 – volume: 22 start-page: 320 issue: 4 year: 2002 ident: 859_CR40 publication-title: Am J Nephrol. doi: 10.1159/000065221 – volume: 5 start-page: 303 issue: 5 year: 1989 ident: 859_CR41 publication-title: Nutrition – volume: 53 start-page: 766 issue: 4 year: 2007 ident: 859_CR38 publication-title: Clin Chem. doi: 10.1373/clinchem.2006.077180 – volume: 1 start-page: e6 year: 2012 ident: 859_CR32 publication-title: CPT Pharmacometr Syst Pharmacol. doi: 10.1038/psp.2012.4 – volume: 78 start-page: 836 issue: 4 year: 2014 ident: 859_CR18 publication-title: Br J Clin Pharmacol. doi: 10.1111/bcp.12394 – volume: 49 start-page: 348 issue: 3 year: 2017 ident: 859_CR47 publication-title: Int J Antimicrob Agents. doi: 10.1016/j.ijantimicag.2016.12.005 – volume: 134 start-page: 280 year: 2018 ident: 859_CR3 publication-title: Pharmacol Res. doi: 10.1016/j.phrs.2018.07.005 – ident: 859_CR53 – volume: 2 start-page: e51 year: 2013 ident: 859_CR30 publication-title: CPT Pharmacometr Syst Pharmacol. doi: 10.1038/psp.2013.26 – volume: 16 start-page: 31 issue: 1 year: 1976 ident: 859_CR25 publication-title: Nephron. doi: 10.1159/000180580 – volume: 79 start-page: 132 issue: 1 year: 2015 ident: 859_CR34 publication-title: Br J Clin Pharmacol. doi: 10.1111/bcp.12451 – volume: 57 start-page: 297 issue: 4 year: 2001 ident: 859_CR10 publication-title: Eur J Clin Pharmacol. doi: 10.1007/s002280100306 – volume: 37 start-page: 27 issue: 1 year: 2009 ident: 859_CR58 publication-title: Eur J Pharm Sci. doi: 10.1016/j.ejps.2008.12.014 – volume: 51 start-page: 3304 issue: 9 year: 2007 ident: 859_CR46 publication-title: Antimicrob Agents Chemother. doi: 10.1128/AAC.01318-06 – ident: 859_CR35 – ident: 859_CR52 – volume: 40 start-page: 189 issue: 2 year: 2013 ident: 859_CR7 publication-title: J Pharmacokinet Pharmacodyn. doi: 10.1007/s10928-013-9302-8 – volume: 27 start-page: 403 issue: 4 year: 2014 ident: 859_CR23 publication-title: J Nephrol. doi: 10.1007/s40620-013-0036-x  | 
    
| SSID | ssj0008200 | 
    
| Score | 2.3913412 | 
    
| Snippet | Background
Population pharmacokinetic (popPK) models for antibiotics are used to improve dosing strategies and individualize dosing by therapeutic drug... Population pharmacokinetic (popPK) models for antibiotics are used to improve dosing strategies and individualize dosing by therapeutic drug monitoring. Little... Background Population pharmacokinetic (popPK) models for antibiotics are used to improve dosing strategies and individualize dosing by therapeutic drug...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 885 | 
    
| SubjectTerms | Adult Anti-Bacterial Agents - pharmacokinetics Anti-Bacterial Agents - therapeutic use Antibiotics Antimicrobial agents Creatinine Critical Illness Drug dosages Female Glomerular Filtration Rate Humans Imipenem - pharmacokinetics Imipenem - therapeutic use Internal Medicine Male Medicine Medicine & Public Health Middle Aged Nonparametric statistics Original Original Research Article Pharmacokinetics Pharmacology/Toxicology Pharmacotherapy Population Renal Insufficiency, Chronic - drug therapy Therapeutic drug monitoring  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bihNBEG3W7IP6IN6NrlKC7IsZzNynBZE1Jm4UwrDswr4N3dM9GpzMjLkoefMX_CB_xi-xaq6GheBDIKQ6M9PkdPWpdNUpxl54bqJiaXFDmYltOMJzDCkxcEVmO5QYtSALLrN8Z97phfPx0r08YLOmFobSKhufWDpqlcf0H_kr3Epw83Hw9bb4ZlDXKDpdbVpoiLq1gnpTSoxdY4cWKWP12OG78Sw8a30z7nfDqnQHQzDEXl1GUxbTYSTlWQaFU8RDuGHublVX-OfVNMr2LPUmu77JCrH9IdL0n-1qcpvdqnkmnFTAuMMOdHaXHYeVUPV2AOdd3dVqAMcQdhLW23vsd9j29WotX5GP0mjIE5gu5gU6yQXMM2iaJaRbmKYphJVQ6-o1nOB7Sv2iHgAgMgWzPCu6T6gLWwojynpfftaAdxp9ev_n569xOIUxOh6k0lrBhzRf6CXlysJkntYav3CGNhArvCo-CpV5Jhu61HcM_NFyn11MxuejU6Nu9GDEju-sDcu1YiViKTE-RXqU8KGWHqJLKjdGRuhLzpWpEu0G2naTYChcaQex72sptGVrx37Aelme6UcMPMUTqUwhBfecWATC8Vxuc62HQRxgMNVnZvObRnGtgk7NONKo1W8ucRAhDqISB5HZZy_b7xSVBsje0UcNVKLaH6yiDr199rw140qm4xmR6XyDY0iM0UXyYPfZwwpZ7e1sKuvkHu8zfwdz7QBSCd-1ZPMvpVq4b1PxNE580KCze6x9sxi0CP6PST_eP-kn7IZVLixKcz5ivfVyo58imVvLZ_UK_Quia0lJ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9AA98IYGChok1AtxG7-93KI0oQEpslAjlZO1611DVMeJEgcU_hp_jlm_QiiqQBwsRd7J2qOdHX-jnfkG4LXnJjIWFjOkmdiGwz3HEIICV0K2XUFRC6HgIst37J1PnPeX7uUenNW1MEW2e30kWdY0aJamLD9dyOS0KXyjqMezDB36aMzADPI3MrkF-55LiLwF-5Nx2PtU1uhQrMWKhmqa_MwgQONVtTN_nmj3-3QNdF7PnWwOUA_g9jpb8M03nqa_fKOG90DV2pWpKVcn61ycxN9_I378X_Xvw90KxGKvtLoHsKeyh3AclizYmw5ebIu6Vh08xnDLj715BD_CpmlYM3JFYFdL4zzB0Wy6IA88w2mGdSeGdIOjNMWwZIFdvcUe_dZ5ZbrBAPJM4nieLbZ3dIu3FPs6pX75WSE9qf_hzBiEIxyQTyOUriS-S-cztdRpuDicphV9MH6kMeQrmpNeRFeQJms90VdOOzVXj2EyHFz0z42qh4QRO76TG5ZrxZLHQlDoS8grYV0lPDJcId2YwKYvGJOmTJQbKNtNgi53hR3Evq8EV5atHPsJtLJ5pg4BPckSIU0uOPOcmAfcIWuzmVLdIA4oTmuDWVtOFFcE67rPRxo11NDFukW0blGxbpHZhjfNfxYlvciN0ke1QUaVq1lFhLEIlTl0teFVM0xOQp_88EzN1ySjeR5dwiV2G56W9ts8ztYVo8xjbfB3LLsR0ATkuyPZ9EtBRO7bui6bFO_UJrt9rZu06DT75C-UfvZv4s_hjlVsDJ1RfQStfLlWLwg35uJl5RZ-AkmFZnM priority: 102 providerName: Unpaywall  | 
    
| Title | Population Pharmacokinetics of Imipenem in Critically Ill Patients: A Parametric and Nonparametric Model Converge on CKD-EPI Estimated Glomerular Filtration Rate as an Impactful Covariate | 
    
| URI | https://link.springer.com/article/10.1007/s40262-020-00859-1 https://www.ncbi.nlm.nih.gov/pubmed/31956969 https://www.proquest.com/docview/2422404240 https://www.proquest.com/docview/2342356783 https://pubmed.ncbi.nlm.nih.gov/PMC7329758 https://link.springer.com/content/pdf/10.1007/s40262-020-00859-1.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 59 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1179-1926 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008200 issn: 1179-1926 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1179-1926 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0008200 issn: 1179-1926 databaseCode: 7X7 dateStart: 20070601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1179-1926 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0008200 issn: 1179-1926 databaseCode: BENPR dateStart: 20070601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgV-JxQLC8Cks1SGgvNCJPJ-bWlpYtiChabaVyiuzYgYo0qZoW1N_Gn2OcpCll0QoOVR_jTmJlbH-jmfmGkFfUS2UibGZIK3UMl1PXEAIdV0S2pkCvBVFwleUb0vOp-2HmzRqaHF0L80f8_k2J_g21De3kaHTADPR0jvGQolVglg7bXRdPMrMuykHnCq2qKZD5u47DQ-gKsryaINlGSe-S25t8ybc_eJb9dhCN75N7DYKEfv3IH5AbKj8htz41MfITchbVbNTbHlzui6vKHpxBtOep3j4kP6O2eVcr-YYq9GgoUpgs5kvcCRcwz2HXESHbwiTLIKrZWMu30MfPOr9LE_0DzyWERb7c_6JbrWUw1Kntqy8K8ErDj--MUTSBEe4tiJaVhPdZsVArnQ4L43nW0PjCBcqAl6gTb0RXcqYbreg7-vYoeUSm49Hl8NxoejkYieu7a8P27ETyRAh0QREBpcxUgqIBCeklCPp8wZi0ZKq8QDleGpjcE06Q-L4SXNmOcp3H5CgvcvWUAJUsFdLigjPqJjzgLvWYw5QygyRAf6lDrN3DjZOG6Fz328jilqK5MogYDSKuDCK2OuR1-59lTfNx7ejTnc3EzZIvY8Q6iI5cfHXIy1aMi1VHYHiuig2O0XyLHuIDp0Oe1CbWXs7RlZuMsg7xD4yvHaCJwA8l-fxrRQjuO7o-Gife25np_raum0WvNeV_mPSz_9P-nNyxqxWnM5tPydF6tVEvEL-tRZfc9Gd-lxz3x4NBiO-DURhddKvljN-mYdT__AtEEUK_ | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbG9jD2gLhTGGAk2AuNaBInjZEmNLqWlo4qmjppb8GOnVGRJqUXpr7xF_hB8GP4JZyTW6kmVbzsoVJUO04sfz6X-JzvEPLSdSIVSosbyoxsgwmXGVKC4wqWbUOC1wJWcBblO3C7Z-zjuXO-RX6XuTAYVlnKxExQqzTEb-RvQJWA8mHwezf5ZmDVKDxdLUtoiKK0gjrMKMaKxI6-Xl6CCzc77B3Der-yrE572OoaRZUBI2RNNjcsxwqVCKUE5wh0c8QbWrowNamcEAvXS86VqSLteNp2Iq8hHGl7YbOppdCWrZkN494gO8xmHJy_nfftgX9a6QLQr408VQhcPsB6kbaTJe-B5-ZaBrpvaPdww1xXjVfs3athm9XZ7R7ZXSQTsbwUcfyPeuzcJrcKu5Ye5UC8Q7Z0cpcc-Dkx9rJOh6s8r1mdHlB_RZm9vEd--VUdsarlK9i_2JumEe2NRxMQymM6SmhZnCFe0l4cUz8nhp29pUdwjaFmWHOAikTRQZpMVv9g1beYtjDKfnqhKTyp1T_-8-Nn2-_RNgg6MN21oh_idKynGJtLO6O44BSmp9BGxQxGhVfBtNJogUN9F7B95_o-ObuWJX9AtpM00Y8IdRWPpDKFFNxlofAEcx1uc60bXuiB81YjZrmmQViwrmPxjzio-KIzHASAgyDDQWDWyOvqnknOObKx934JlaCQP7NgtVtq5EXVDJIDj4NEotMF9EHyRweMFbtGHubIqh5nYxopd3mNNNcwV3VAVvL1lmT0JWMnb9qYrA0Tr5foXL3WplnUKwT_x6Qfb570c7LbHX46CU56g_4TctPKNhmGWO-T7fl0oZ-CITmXz4rdSsnn6xYQfwELXYhh | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkLg8IO4rDDAS7IVGa-LcjITQ1AsrRVWENqlvmR07rCJNSi9MfeMv8HeQ-DP8Es7JrVSTKl72UCmqHSeWP59LfM53CHnlOrGKpMUNZcbMsIVrG1KC4wqWbUuC1wJWcB7lO3SPT-2PI2e0Q35VuTAYVlnJxFxQqyzCb-SHoEpA-djwO4zLsIig03s__WZgBSk8aa3KaRQQGejVBbhv83f9Dqz1a8vqdU_ax0ZZYcCIbM9eGJZjRUpEUoJjBHo55i0tXZiWVE6EResl58pUsXZ8zZzYbwlHMj_yPC2Ftpi2GYx7jVz3GOMYTuiNamcPNWurSBICZw9QXibs5Gl74LO5loGOG1o83DA3leIlS_dywGZ9anub3FymU7G6EEnyj2Ls3SV3SouWHhUQvEd2dHqfHAQFJfaqSU_WGV7zJj2gwZose_WA_A7qCmJ1y1ewfLE3zWLan4ynII4ndJzSqixDsqL9JKFBQQk7f0uP4BqDzLDaABWposMsna7_wXpvCW1jfP3si6bwpPag8-fHz27Qp10QcWC0a0U_JNlEzzAql_bGSckmTD9DGxVzGBVeBRNKARYw1HcBG3ehH5LTK1nwR2Q3zVK9R6ireCyVKaTgrh0JX9iuwxnXuuVHPrhtDWJWaxpGJd86lv1IwpopOsdBCDgIcxyEZoO8qe-ZFmwjW3vvV1AJS8kzD9f7pEFe1s0gM_AgSKQ6W0IfpH10wExhDfK4QFb9OIYJpNzlDeJtYK7ugHzkmy3p-DznJfcYpmnDxJsVOtevtW0WzRrB_zHpJ9sn_YLcALEQfuoPB0_JLSvfYxhbvU92F7OlfgYW5EI-z7cqJWdXLRv-AlsMhfs | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9AA98IYGChok1AtxG7-93KI0oQEpslAjlZO1611DVMeJEgcU_hp_jlm_QiiqQBwsRd7J2qOdHX-jnfkG4LXnJjIWFjOkmdiGwz3HEIICV0K2XUFRC6HgIst37J1PnPeX7uUenNW1MEW2e30kWdY0aJamLD9dyOS0KXyjqMezDB36aMzADPI3MrkF-55LiLwF-5Nx2PtU1uhQrMWKhmqa_MwgQONVtTN_nmj3-3QNdF7PnWwOUA_g9jpb8M03nqa_fKOG90DV2pWpKVcn61ycxN9_I378X_Xvw90KxGKvtLoHsKeyh3AclizYmw5ebIu6Vh08xnDLj715BD_CpmlYM3JFYFdL4zzB0Wy6IA88w2mGdSeGdIOjNMWwZIFdvcUe_dZ5ZbrBAPJM4nieLbZ3dIu3FPs6pX75WSE9qf_hzBiEIxyQTyOUriS-S-cztdRpuDicphV9MH6kMeQrmpNeRFeQJms90VdOOzVXj2EyHFz0z42qh4QRO76TG5ZrxZLHQlDoS8grYV0lPDJcId2YwKYvGJOmTJQbKNtNgi53hR3Evq8EV5atHPsJtLJ5pg4BPckSIU0uOPOcmAfcIWuzmVLdIA4oTmuDWVtOFFcE67rPRxo11NDFukW0blGxbpHZhjfNfxYlvciN0ke1QUaVq1lFhLEIlTl0teFVM0xOQp_88EzN1ySjeR5dwiV2G56W9ts8ztYVo8xjbfB3LLsR0ATkuyPZ9EtBRO7bui6bFO_UJrt9rZu06DT75C-UfvZv4s_hjlVsDJ1RfQStfLlWLwg35uJl5RZ-AkmFZnM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population+Pharmacokinetics+of+Imipenem+in+Critically+Ill+Patients%3A+A+Parametric+and+Nonparametric+Model+Converge+on+CKD-EPI+Estimated+Glomerular+Filtration+Rate+as+an+Impactful+Covariate&rft.jtitle=Clinical+pharmacokinetics&rft.au=de+Velde%2C+Femke&rft.au=de+Winter%2C+Brenda+C.+M.&rft.au=Neely%2C+Michael+N.&rft.au=Yamada%2C+Walter+M.&rft.date=2020-07-01&rft.pub=Springer+International+Publishing&rft.issn=0312-5963&rft.eissn=1179-1926&rft.volume=59&rft.issue=7&rft.spage=885&rft.epage=898&rft_id=info:doi/10.1007%2Fs40262-020-00859-1&rft_id=info%3Apmid%2F31956969&rft.externalDocID=PMC7329758 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0312-5963&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0312-5963&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0312-5963&client=summon |