An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm
Breast cancer is the second leading cause of death in women; therefore, effective early detection of this cancer can reduce its mortality rate. Breast cancer detection and classification in the early phases of development may allow for optimal therapy. Convolutional neural networks (CNNs) have enhan...
Saved in:
| Published in | Neural computing & applications Vol. 34; no. 20; pp. 18015 - 18033 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.10.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0941-0643 1433-3058 1433-3058 |
| DOI | 10.1007/s00521-022-07445-5 |
Cover
| Abstract | Breast cancer is the second leading cause of death in women; therefore, effective early detection of this cancer can reduce its mortality rate. Breast cancer detection and classification in the early phases of development may allow for optimal therapy. Convolutional neural networks (CNNs) have enhanced tumor detection and classification efficiency in medical imaging compared to traditional approaches. This paper proposes a novel classification model for breast cancer diagnosis based on a hybridized CNN and an improved optimization algorithm, along with transfer learning, to help radiologists detect abnormalities efficiently. The marine predators algorithm (MPA) is the optimization algorithm we used, and we improve it using the opposition-based learning strategy to cope with the implied weaknesses of the original MPA. The improved marine predators algorithm (IMPA) is used to find the best values for the hyperparameters of the CNN architecture. The proposed method uses a pretrained CNN model called ResNet50 (residual network). This model is hybridized with the IMPA algorithm, resulting in an architecture called IMPA-ResNet50. Our evaluation is performed on two mammographic datasets, the mammographic image analysis society (MIAS) and curated breast imaging subset of DDSM (CBIS-DDSM) datasets. The proposed model was compared with other state-of-the-art approaches. The obtained results showed that the proposed model outperforms the compared state-of-the-art approaches, which are beneficial to classification performance, achieving 98.32% accuracy, 98.56% sensitivity, and 98.68% specificity on the CBIS-DDSM dataset and 98.88% accuracy, 97.61% sensitivity, and 98.40% specificity on the MIAS dataset. To evaluate the performance of IMPA in finding the optimal values for the hyperparameters of ResNet50 architecture, it compared to four other optimization algorithms including gravitational search algorithm (GSA), Harris hawks optimization (HHO), whale optimization algorithm (WOA), and the original MPA algorithm. The counterparts algorithms are also hybrid with the ResNet50 architecture produce models named GSA-ResNet50, HHO-ResNet50, WOA-ResNet50, and MPA-ResNet50, respectively. The results indicated that the proposed IMPA-ResNet50 is achieved a better performance than other counterparts. |
|---|---|
| AbstractList | Breast cancer is the second leading cause of death in women; therefore, effective early detection of this cancer can reduce its mortality rate. Breast cancer detection and classification in the early phases of development may allow for optimal therapy. Convolutional neural networks (CNNs) have enhanced tumor detection and classification efficiency in medical imaging compared to traditional approaches. This paper proposes a novel classification model for breast cancer diagnosis based on a hybridized CNN and an improved optimization algorithm, along with transfer learning, to help radiologists detect abnormalities efficiently. The marine predators algorithm (MPA) is the optimization algorithm we used, and we improve it using the opposition-based learning strategy to cope with the implied weaknesses of the original MPA. The improved marine predators algorithm (IMPA) is used to find the best values for the hyperparameters of the CNN architecture. The proposed method uses a pretrained CNN model called ResNet50 (residual network). This model is hybridized with the IMPA algorithm, resulting in an architecture called IMPA-ResNet50. Our evaluation is performed on two mammographic datasets, the mammographic image analysis society (MIAS) and curated breast imaging subset of DDSM (CBIS-DDSM) datasets. The proposed model was compared with other state-of-the-art approaches. The obtained results showed that the proposed model outperforms the compared state-of-the-art approaches, which are beneficial to classification performance, achieving 98.32% accuracy, 98.56% sensitivity, and 98.68% specificity on the CBIS-DDSM dataset and 98.88% accuracy, 97.61% sensitivity, and 98.40% specificity on the MIAS dataset. To evaluate the performance of IMPA in finding the optimal values for the hyperparameters of ResNet50 architecture, it compared to four other optimization algorithms including gravitational search algorithm (GSA), Harris hawks optimization (HHO), whale optimization algorithm (WOA), and the original MPA algorithm. The counterparts algorithms are also hybrid with the ResNet50 architecture produce models named GSA-ResNet50, HHO-ResNet50, WOA-ResNet50, and MPA-ResNet50, respectively. The results indicated that the proposed IMPA-ResNet50 is achieved a better performance than other counterparts. Breast cancer is the second leading cause of death in women; therefore, effective early detection of this cancer can reduce its mortality rate. Breast cancer detection and classification in the early phases of development may allow for optimal therapy. Convolutional neural networks (CNNs) have enhanced tumor detection and classification efficiency in medical imaging compared to traditional approaches. This paper proposes a novel classification model for breast cancer diagnosis based on a hybridized CNN and an improved optimization algorithm, along with transfer learning, to help radiologists detect abnormalities efficiently. The marine predators algorithm (MPA) is the optimization algorithm we used, and we improve it using the opposition-based learning strategy to cope with the implied weaknesses of the original MPA. The improved marine predators algorithm (IMPA) is used to find the best values for the hyperparameters of the CNN architecture. The proposed method uses a pretrained CNN model called ResNet50 (residual network). This model is hybridized with the IMPA algorithm, resulting in an architecture called IMPA-ResNet50. Our evaluation is performed on two mammographic datasets, the mammographic image analysis society (MIAS) and curated breast imaging subset of DDSM (CBIS-DDSM) datasets. The proposed model was compared with other state-of-the-art approaches. The obtained results showed that the proposed model outperforms the compared state-of-the-art approaches, which are beneficial to classification performance, achieving 98.32% accuracy, 98.56% sensitivity, and 98.68% specificity on the CBIS-DDSM dataset and 98.88% accuracy, 97.61% sensitivity, and 98.40% specificity on the MIAS dataset. To evaluate the performance of IMPA in finding the optimal values for the hyperparameters of ResNet50 architecture, it compared to four other optimization algorithms including gravitational search algorithm (GSA), Harris hawks optimization (HHO), whale optimization algorithm (WOA), and the original MPA algorithm. The counterparts algorithms are also hybrid with the ResNet50 architecture produce models named GSA-ResNet50, HHO-ResNet50, WOA-ResNet50, and MPA-ResNet50, respectively. The results indicated that the proposed IMPA-ResNet50 is achieved a better performance than other counterparts.Breast cancer is the second leading cause of death in women; therefore, effective early detection of this cancer can reduce its mortality rate. Breast cancer detection and classification in the early phases of development may allow for optimal therapy. Convolutional neural networks (CNNs) have enhanced tumor detection and classification efficiency in medical imaging compared to traditional approaches. This paper proposes a novel classification model for breast cancer diagnosis based on a hybridized CNN and an improved optimization algorithm, along with transfer learning, to help radiologists detect abnormalities efficiently. The marine predators algorithm (MPA) is the optimization algorithm we used, and we improve it using the opposition-based learning strategy to cope with the implied weaknesses of the original MPA. The improved marine predators algorithm (IMPA) is used to find the best values for the hyperparameters of the CNN architecture. The proposed method uses a pretrained CNN model called ResNet50 (residual network). This model is hybridized with the IMPA algorithm, resulting in an architecture called IMPA-ResNet50. Our evaluation is performed on two mammographic datasets, the mammographic image analysis society (MIAS) and curated breast imaging subset of DDSM (CBIS-DDSM) datasets. The proposed model was compared with other state-of-the-art approaches. The obtained results showed that the proposed model outperforms the compared state-of-the-art approaches, which are beneficial to classification performance, achieving 98.32% accuracy, 98.56% sensitivity, and 98.68% specificity on the CBIS-DDSM dataset and 98.88% accuracy, 97.61% sensitivity, and 98.40% specificity on the MIAS dataset. To evaluate the performance of IMPA in finding the optimal values for the hyperparameters of ResNet50 architecture, it compared to four other optimization algorithms including gravitational search algorithm (GSA), Harris hawks optimization (HHO), whale optimization algorithm (WOA), and the original MPA algorithm. The counterparts algorithms are also hybrid with the ResNet50 architecture produce models named GSA-ResNet50, HHO-ResNet50, WOA-ResNet50, and MPA-ResNet50, respectively. The results indicated that the proposed IMPA-ResNet50 is achieved a better performance than other counterparts. |
| Author | Houssein, Essam H. Emam, Marwa M. Ali, Abdelmgeid A. |
| Author_xml | – sequence: 1 givenname: Essam H. orcidid: 0000-0002-8127-7233 surname: Houssein fullname: Houssein, Essam H. email: essam.halim@mu.edu.eg organization: Faculty of Computers and Information, Minia University – sequence: 2 givenname: Marwa M. surname: Emam fullname: Emam, Marwa M. organization: Faculty of Computers and Information, Minia University – sequence: 3 givenname: Abdelmgeid A. surname: Ali fullname: Ali, Abdelmgeid A. organization: Faculty of Computers and Information, Minia University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35698722$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtv1DAUhS1URKeFP8ACWWLDJuBHbCcbpKriJVViA2vLca5nXCV2sJ2i8uvxMAOFLipWtuTznXvu8Rk6CTEAQs8peU0JUW8yIYLRhjDWENW2ohGP0Ia2nDeciO4EbUjf1mfZ8lN0lvM1IaSVnXiCTrmQfacY26DlIuC4FD_7HzDiEWDBE5gUfNhik-zOF7BlTYBdTHhIYHLB1gQLCY_ebEPMPuPB5ArHgP28pHhT77NJPgBeEoymxJSxmbYx-bKbn6LHzkwZnh3Pc_T1_bsvlx-bq88fPl1eXDW2VW1pqBsEa2lnmOS0k6O01LneODJKZRUhYNjgAIgCbrlojaJK9mRQxgki3Djwc8QPvmtYzO13M016Sb7mutWU6H1_-tCfrv3pX_1pUam3B2pZhxlGC6Ekc0dG4_W_L8Hv9Dbe6J4qITivBq-OBil-WyEXPftsYZpMgLhmzaSSQsg6r0pf3pNexzWFWopmdR3aU8n2hi_-TvQnyu8vrAJ2ENgUc07g_m_P7h5kfTHFx_1WfnoYPRab65ywhXQX-wHqJ69Y0fg |
| CitedBy_id | crossref_primary_10_1680_jbibn_24_00004 crossref_primary_10_62050_fscp2024_430 crossref_primary_10_1007_s11042_023_15176_5 crossref_primary_10_1007_s11227_022_04903_8 crossref_primary_10_1016_j_bspc_2024_106810 crossref_primary_10_1080_21681163_2022_2140074 crossref_primary_10_1007_s41939_024_00487_3 crossref_primary_10_1080_21681163_2023_2242523 crossref_primary_10_1080_21681163_2023_2165161 crossref_primary_10_1615_CritRevBiomedEng_2024051166 crossref_primary_10_1016_j_aanat_2023_152114 crossref_primary_10_1016_j_eij_2024_100457 crossref_primary_10_1080_21681163_2022_2157748 crossref_primary_10_3389_fonc_2022_948557 crossref_primary_10_1007_s11042_023_16394_7 crossref_primary_10_1109_ACCESS_2025_3535844 crossref_primary_10_1007_s10462_023_10589_y crossref_primary_10_1080_21681163_2024_2420727 crossref_primary_10_1007_s11042_024_20011_6 crossref_primary_10_1016_j_eswa_2024_124581 crossref_primary_10_1007_s43621_024_00725_1 crossref_primary_10_1007_s13721_025_00509_1 crossref_primary_10_1080_21681163_2023_2234054 crossref_primary_10_1080_21681163_2024_2302387 crossref_primary_10_1038_s41598_024_54212_8 crossref_primary_10_1080_21681163_2023_2245925 crossref_primary_10_7717_peerj_cs_1938 crossref_primary_10_1080_13682199_2023_2235113 crossref_primary_10_1038_s41598_023_48479_6 crossref_primary_10_1109_ACCESS_2025_3542989 crossref_primary_10_1007_s41060_024_00662_2 crossref_primary_10_1007_s11082_023_06203_8 crossref_primary_10_1007_s13042_024_02216_1 crossref_primary_10_1016_j_engappai_2024_109152 crossref_primary_10_1007_s11831_024_10142_2 crossref_primary_10_1080_21681163_2023_2199891 crossref_primary_10_1038_s41598_025_88459_6 crossref_primary_10_1080_21681163_2024_2373996 crossref_primary_10_1177_03000605241237867 crossref_primary_10_1007_s11831_023_09968_z crossref_primary_10_1007_s00521_023_08492_2 crossref_primary_10_1016_j_compbiomed_2024_108329 crossref_primary_10_1016_j_compeleceng_2022_108562 crossref_primary_10_3390_healthcare11182530 crossref_primary_10_1016_j_compbiolchem_2024_108110 crossref_primary_10_1016_j_epsr_2024_111360 crossref_primary_10_1016_j_neucom_2024_129018 crossref_primary_10_26634_jds_2_2_20921 crossref_primary_10_1007_s00521_024_09965_8 crossref_primary_10_1016_j_knosys_2024_111775 crossref_primary_10_1007_s00521_024_09524_1 crossref_primary_10_1051_e3sconf_202561602015 crossref_primary_10_1155_2022_2731364 crossref_primary_10_1016_j_mlwa_2023_100471 crossref_primary_10_1080_21681163_2023_2225639 crossref_primary_10_1007_s10462_023_10585_2 crossref_primary_10_1007_s11042_023_16505_4 crossref_primary_10_1080_21681163_2023_2219772 crossref_primary_10_1080_21681163_2023_2245069 crossref_primary_10_1007_s44268_023_00019_x crossref_primary_10_3390_diagnostics13081422 crossref_primary_10_3390_math11030707 crossref_primary_10_2174_0115748936333380240816053223 crossref_primary_10_1007_s00542_023_05483_0 crossref_primary_10_34104_ajeit_024_070078 |
| Cites_doi | 10.3390/app10051897 10.1109/ICORAS.2017.8308076 10.1016/j.patrec.2017.05.028 10.1007/978-3-540-31865-1_25 10.1016/j.media.2018.12.006 10.1109/ACCESS.2020.3007928 10.1016/j.ins.2020.05.080 10.1016/j.ultrasmedbio.2020.01.001 10.1016/j.mehy.2020.109761 10.1007/s10278-017-9983-4 10.1016/j.ipm.2020.102439 10.1007/978-981-13-6837-0_7 10.1016/j.eswa.2019.113122 10.1016/j.ceh.2020.11.002 10.7717/peerj.6201 10.1016/j.cie.2019.106040 10.1016/j.future.2019.02.028 10.1016/j.eswa.2020.113377 10.1016/j.eswa.2021.115131 10.1016/j.eswa.2018.11.008 10.1109/CVPR.2017.243 10.1515/9780691187563 10.1007/978-3-030-70542-8_2 10.1002/9780470918548 10.1109/JBHI.2017.2731873 10.1016/j.eswa.2020.114161 10.1109/CVPR.2016.90 10.1016/j.media.2021.102147 10.1016/j.media.2018.03.006 10.1016/j.engappai.2021.104155 10.1109/CVPR.2016.308 10.1016/j.asoc.2020.106742 10.1007/s00521-019-04611-0 10.1007/978-981-15-5971-6_77 10.1007/978-3-030-28917-1_1 10.1007/s10278-020-00357-7 10.1016/j.eswa.2021.114689 10.1109/ACCESS.2019.2953318 10.1016/j.procs.2018.08.190 10.1016/j.cmpb.2018.01.017 10.1016/j.cie.2017.06.028 10.1016/j.cmpb.2018.01.011 10.1007/s00521-020-05394-5 10.1016/j.artmed.2018.06.004 10.1016/j.compbiomed.2021.104245 10.1016/j.patrec.2019.03.022 10.1016/j.matpr.2021.03.707 10.1109/CIMCA.2005.1631345 10.1186/s40537-019-0197-0 10.1016/j.cmpb.2021.106045 10.1016/j.advengsoft.2016.01.008 10.1016/j.ins.2009.03.004 10.1016/j.bspc.2020.102192 10.1016/j.swevo.2021.100841 10.1007/s10916-019-1466-3 10.1145/2480741.2480752 10.1016/j.eswa.2021.116235 10.1016/j.swevo.2020.100671 10.1016/j.compbiomed.2021.104407 10.1016/j.neucom.2016.02.060 10.1007/s00521-021-05991-y 10.1109/ACCESS.2020.2986546 10.1117/12.2081576 10.1016/j.neucom.2015.09.116 10.1109/ACCESS.2018.2874767 10.1016/j.ecoinf.2019.02.007 10.1007/s13244-018-0639-9 10.1016/j.eswa.2017.07.043 10.1609/aaai.v31i1.11231 10.1007/s00521-021-06273-3 10.1162/neco.1989.1.4.541 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 The Author(s) 2022. The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| DOI | 10.1007/s00521-022-07445-5 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 18033 |
| ExternalDocumentID | 10.1007/s00521-022-07445-5 PMC9175533 35698722 10_1007_s00521_022_07445_5 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Minia University – fundername: ; |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO NPM DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c474t-1fb52418a263186d6c1ff9af0d67c700ea2bfee07e3c354a717690b7af505fdb3 |
| IEDL.DBID | BENPR |
| ISSN | 0941-0643 1433-3058 |
| IngestDate | Sun Oct 26 03:09:12 EDT 2025 Tue Sep 30 16:06:51 EDT 2025 Fri Sep 05 13:07:22 EDT 2025 Fri Jul 25 08:28:24 EDT 2025 Wed Feb 19 02:24:55 EST 2025 Wed Oct 01 02:26:14 EDT 2025 Thu Apr 24 23:05:13 EDT 2025 Fri Feb 21 02:45:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Keywords | Deep learning Breast cancer classification Transfer learning Marine predators algorithm Convolutional neural network Hyperparameters optimization Opposition-based learning |
| Language | English |
| License | The Author(s) 2022. Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c474t-1fb52418a263186d6c1ff9af0d67c700ea2bfee07e3c354a717690b7af505fdb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8127-7233 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s00521-022-07445-5.pdf |
| PMID | 35698722 |
| PQID | 2717191623 |
| PQPubID | 2043988 |
| PageCount | 19 |
| ParticipantIDs | unpaywall_primary_10_1007_s00521_022_07445_5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9175533 proquest_miscellaneous_2676556074 proquest_journals_2717191623 pubmed_primary_35698722 crossref_primary_10_1007_s00521_022_07445_5 crossref_citationtrail_10_1007_s00521_022_07445_5 springer_journals_10_1007_s00521_022_07445_5 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationTitleAlternate | Neural Comput Appl |
| PublicationYear | 2022 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Ezzat, Hassanien, Ella (CR19) 2020; 98 Hossam, Harb, AbdElKader (CR8) 2018; 46 Desai, Shah (CR34) 2020; 4 Ting, Tan, Sim (CR43) 2019; 120 Song, Li, Wang (CR78) 2020; 8 Xiang, Zeng, Liu, Zhang (CR80) 2019; 30 Houssein, Gad, Wazery, Suganthan (CR24) 2021; 62 CR38 Lee, Gimenez, Hoogi, Rubin (CR71) 2016; 8 CR32 Krizhevsky, Sutskever, Hinton (CR61) 2012; 25 CR73 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (CR83) 2019; 97 Elaziz, Ewees, Yousri, Alwerfali, Awad, Lu, Al-Qaness (CR29) 2020; 8 Qi, Zhang, Chen, Pi, Chen, Lv, Yi (CR9) 2019; 52 CR70 Morales-Castañeda, Zaldivar, Cuevas, Fausto, Rodríguez (CR31) 2020; 54 Wang, Choi, Choi, Zhang, Jin, Ko (CR37) 2020; 46 Jiao, Gao, Wang, Li (CR74) 2016; 197 Al-Masni, Al-Antari, Park, Gi, Kim, Rivera, Valarezo, Choi, Han, Kim (CR75) 2018; 157 CR2 Guo, Liu, Oerlemans, Lao, Wu, Lew (CR58) 2016; 187 CR5 Hassan, Houssein, Mahdy, Kamel (CR27) 2021; 100 Rajinikanth, Satapathy, Fernandes, Nachiappan (CR4) 2017; 94 Houssein, Ibrahim, Neggaz, Hassaballah, Wazery (CR25) 2021; 181 Khan, Sharif, Akram, Yasmin, Nayak (CR6) 2019; 43 CR48 CR46 CR45 Hamidinekoo, Denton, Rampun, Honnor, Zwiggelaar (CR1) 2018; 47 CR44 Lumini, Nanni (CR55) 2019; 51 Ragab, Attallah, Sharkas, Ren, Marshall (CR76) 2021; 131 CR81 Chougrad, Zouaki, Alheyane (CR35) 2018; 157 Tubishat, Idris, Shuib, Abushariah, Mirjalili (CR52) 2020; 145 Wang, Feng, Zhang, Wang, Lv, Yi (CR10) 2021; 73 Sánchez-Cauce, Pérez-Martín, Luque (CR42) 2021; 204 Yap, Pons, Martí, Ganau, Sentís, Zwiggelaar, Davison, Robert (CR13) 2017; 22 Boumaraf, Liu, Zheng, Ma, Ferkous (CR41) 2021; 63 Saranyaraj, Manikandan, Maheswari (CR47) 2020; 79 Hashim, Houssein, Hussain, Mabrouk, Al-Atabany (CR21) 2020; 32 LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (CR54) 1989; 1 Houssein, Emam, Ali, Suganthan (CR7) 2020; 167 CR17 CR59 Shorten, Khoshgoftaar (CR68) 2019; 6 CR57 CR11 CR51 Rojas-Morales, Rojas, Ureta (CR33) 2017; 110 Yamashita, Nishio, Do, Togashi (CR62) 2018; 9 Ucar, Korkmaz (CR16) 2020; 140 Zhang, Han, Chen, Peng, Lin (CR40) 2020; 33 Houssein, Emam, Ali (CR50) 2021; 33 Shahzad, Usman, Muhammad, Anam, Khan Shoab (CR3) 2018; 90 Mirjalili, Lewis (CR84) 2016; 95 Elaziz, Oliva, Xiong (CR53) 2017; 90 Faramarzi, Heidarinejad, Mirjalili, Gandomi (CR28) 2020; 152 Zhang, Renzhong, Yuan, Jiang, Huang, Jinpeng, Hua, Niu, Ji (CR79) 2020; 539 Carneiro, Da Nóbrega, Nepomuceno, Bian, De Albuquerque, Filho (CR72) 2018; 6 Houssein, Saber, Ali, Wazery (CR23) 2021; 191 CR69 Dokeroglu, Sevinc, Kucukyilmaz, Cosar (CR49) 2019; 137 CR67 CR66 Rashedi, Nezamabadi-Pour, Saryazdi (CR82) 2009; 179 Houssein, Mahdy, Blondin, Shebl, Mohamed (CR26) 2021; 174 CR65 CR20 CR64 CR63 Pardamean, Cenggoro, Rahutomo, Budiarto, Karuppiah (CR60) 2018; 135 Črepinšek, Liu, Mernik (CR30) 2013; 45 Wang, Li, Song, Rong (CR56) 2020; 10 Akkus, Galimzianova, Hoogi, Rubin, Erickson (CR12) 2017; 30 Khan, Islam, Jan, Din, Rodrigues (CR15) 2019; 125 Houssein, Neggaz, Hosney, Mohamed, Hassaballah (CR22) 2021; 33 Zhang, Satapathy, Guttery, Górriz, Wang (CR36) 2021; 58 Houssein, Abohashima, Elhoseny, Mohamed (CR14) 2022; 9 Bergstra, Bengio (CR18) 2012; 13 Eroğlu, Yildirim, Çinar (CR39) 2021; 133 Khan, Shahid, Raza, Dar, Alquhayz (CR77) 2019; 7 Z Akkus (7445_CR12) 2017; 30 FF Ting (7445_CR43) 2019; 120 Y LeCun (7445_CR54) 1989; 1 M Desai (7445_CR34) 2020; 4 Y Wang (7445_CR10) 2021; 73 7445_CR70 FA Hashim (7445_CR21) 2020; 32 R Song (7445_CR78) 2020; 8 D Ezzat (7445_CR19) 2020; 98 7445_CR73 Y Wang (7445_CR37) 2020; 46 EH Houssein (7445_CR7) 2020; 167 7445_CR32 EH Houssein (7445_CR14) 2022; 9 H Zhang (7445_CR79) 2020; 539 7445_CR38 S Mirjalili (7445_CR84) 2016; 95 EH Houssein (7445_CR22) 2021; 33 EH Houssein (7445_CR25) 2021; 181 A Hossam (7445_CR8) 2018; 46 S Khan (7445_CR15) 2019; 125 A Hamidinekoo (7445_CR1) 2018; 47 R Yamashita (7445_CR62) 2018; 9 S Boumaraf (7445_CR41) 2021; 63 RS Lee (7445_CR71) 2016; 8 A Faramarzi (7445_CR28) 2020; 152 T Carneiro (7445_CR72) 2018; 6 Y Eroğlu (7445_CR39) 2021; 133 7445_CR81 MA Al-Masni (7445_CR75) 2018; 157 E Rashedi (7445_CR82) 2009; 179 7445_CR44 7445_CR45 HN Khan (7445_CR77) 2019; 7 7445_CR46 7445_CR48 X Qi (7445_CR9) 2019; 52 T Dokeroglu (7445_CR49) 2019; 137 Y Wang (7445_CR56) 2020; 10 Z Jiao (7445_CR74) 2016; 197 EH Houssein (7445_CR50) 2021; 33 M Tubishat (7445_CR52) 2020; 145 Y Guo (7445_CR58) 2016; 187 D Saranyaraj (7445_CR47) 2020; 79 DA Ragab (7445_CR76) 2021; 131 V Rajinikanth (7445_CR4) 2017; 94 J Bergstra (7445_CR18) 2012; 13 A Shahzad (7445_CR3) 2018; 90 7445_CR51 MH Hassan (7445_CR27) 2021; 100 MA Elaziz (7445_CR29) 2020; 8 7445_CR11 7445_CR57 7445_CR59 MH Yap (7445_CR13) 2017; 22 EH Houssein (7445_CR26) 2021; 174 7445_CR17 MA Elaziz (7445_CR53) 2017; 90 H Zhang (7445_CR40) 2020; 33 B Pardamean (7445_CR60) 2018; 135 Yu Xiang (7445_CR80) 2019; 30 EH Houssein (7445_CR23) 2021; 191 AA Heidari (7445_CR83) 2019; 97 B Morales-Castañeda (7445_CR31) 2020; 54 R Sánchez-Cauce (7445_CR42) 2021; 204 7445_CR63 7445_CR20 7445_CR64 MA Khan (7445_CR6) 2019; 43 A Lumini (7445_CR55) 2019; 51 7445_CR65 7445_CR66 7445_CR67 7445_CR5 F Ucar (7445_CR16) 2020; 140 Y-D Zhang (7445_CR36) 2021; 58 7445_CR69 M Črepinšek (7445_CR30) 2013; 45 7445_CR2 A Krizhevsky (7445_CR61) 2012; 25 N Rojas-Morales (7445_CR33) 2017; 110 H Chougrad (7445_CR35) 2018; 157 EH Houssein (7445_CR24) 2021; 62 C Shorten (7445_CR68) 2019; 6 |
| References_xml | – ident: CR45 – ident: CR70 – volume: 110 start-page: 424 year: 2017 end-page: 435 ident: CR33 article-title: A survey and classification of opposition-based metaheuristics publication-title: Comput Ind Eng – volume: 79 start-page: 11013 issue: 15 year: 2020 end-page: 11038 ident: CR47 article-title: A deep convolutional neural network for the early detection of breast carcinoma with respect to hyper-parameter tuning publication-title: Multimed Tools Appl – volume: 140 start-page: 109761 year: 2020 ident: CR16 article-title: Covidiagnosis-net: deep bayes-squeezenet based diagnosis of the coronavirus disease 2019 (covid-19) from x-ray images publication-title: Med Hypotheses – volume: 8 start-page: 75011 year: 2020 end-page: 75021 ident: CR78 article-title: Mammographic classification based on xgboost and dcnn with multi features publication-title: IEEE Access – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: CR61 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv Neural Inf Process Syst – volume: 22 start-page: 1218 issue: 4 year: 2017 end-page: 1226 ident: CR13 article-title: Automated breast ultrasound lesions detection using convolutional neural networks publication-title: IEEE J Biomed Health Inform – volume: 51 start-page: 33 year: 2019 end-page: 43 ident: CR55 article-title: Deep learning and transfer learning features for plankton classification publication-title: Ecol Inform – ident: CR51 – volume: 152 year: 2020 ident: CR28 article-title: Marine predators algorithm: a nature-inspired metaheuristic publication-title: Expert Syst Appl – volume: 73 year: 2021 ident: CR10 article-title: Deep adversarial domain adaptation for breast cancer screening from mammograms publication-title: Med Image Anal – volume: 10 start-page: 1897 issue: 5 year: 2020 ident: CR56 article-title: The influence of the activation function in a convolution neural network model of facial expression recognition publication-title: Appl Sci – volume: 90 start-page: 15 year: 2018 end-page: 24 ident: CR3 article-title: Decision support system for detection of hypertensive retinopathy using arteriovenous ratio publication-title: Artif Intell Med – volume: 58 issue: 2 year: 2021 ident: CR36 article-title: Improved breast cancer classification through combining graph convolutional network and convolutional neural network publication-title: Inf Process Manag – volume: 47 start-page: 45 year: 2018 end-page: 67 ident: CR1 article-title: Deep learning in mammography and breast histology, an overview and future trends publication-title: Med Image Anal – volume: 6 start-page: 61677 year: 2018 end-page: 61685 ident: CR72 article-title: Performance analysis of google colaboratory as a tool for accelerating deep learning applications publication-title: IEEE Access – volume: 135 start-page: 400 year: 2018 end-page: 407 ident: CR60 article-title: Transfer learning from chest x-ray pre-trained convolutional neural network for learning mammogram data publication-title: Procedia Comput Sci – volume: 197 start-page: 221 year: 2016 end-page: 231 ident: CR74 article-title: A deep feature based framework for breast masses classification publication-title: Neurocomputing – volume: 6 start-page: 1 issue: 1 year: 2019 end-page: 48 ident: CR68 article-title: A survey on image data augmentation for deep learning publication-title: J Big Data – volume: 9 start-page: 611 issue: 4 year: 2018 end-page: 629 ident: CR62 article-title: Convolutional neural networks: an overview and application in radiology publication-title: Insights Imaging – volume: 13 start-page: 281 issue: 2 year: 2012 end-page: 305 ident: CR18 article-title: Random search for hyper-parameter optimization publication-title: J Mach Learn Res – volume: 90 start-page: 484 year: 2017 end-page: 500 ident: CR53 article-title: An improved opposition-based sine cosine algorithm for global optimization publication-title: Expert Syst Appl – ident: CR46 – volume: 94 start-page: 87 year: 2017 end-page: 95 ident: CR4 article-title: Entropy based segmentation of tumor from brain mr images-a study with teaching learning based optimization publication-title: Pattern Recogn Lett – ident: CR67 – volume: 1 start-page: 541 issue: 4 year: 1989 end-page: 551 ident: CR54 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput – volume: 54 year: 2020 ident: CR31 article-title: A better balance in metaheuristic algorithms: Does it exist? publication-title: Swarm Evolut Comput – volume: 120 start-page: 103 year: 2019 end-page: 115 ident: CR43 article-title: Convolutional neural network improvement for breast cancer classification publication-title: Expert Syst Appl – ident: CR11 – volume: 187 start-page: 27 year: 2016 end-page: 48 ident: CR58 article-title: Deep learning for visual understanding: a review publication-title: Neurocomputing – ident: CR57 – ident: CR32 – volume: 539 start-page: 461 year: 2020 end-page: 486 ident: CR79 article-title: De-ada*: a novel model for breast mass classification using cross-modal pathological semantic mining and organic integration of multi-feature fusions publication-title: Inf Sci – ident: CR5 – volume: 46 start-page: 1119 issue: 5 year: 2020 end-page: 1132 ident: CR37 article-title: Breast cancer classification in automated breast ultrasound using multiview convolutional neural network with transfer learning publication-title: Ultrasound Med Biol – ident: CR81 – ident: CR64 – volume: 63 start-page: 102192 year: 2021 ident: CR41 article-title: A new transfer learning based approach to magnification dependent and independent classification of breast cancer in histopathological images publication-title: Biomed Signal Process Control – volume: 98 year: 2020 ident: CR19 article-title: An optimized deep learning architecture for the diagnosis of covid-19 disease based on gravitational search optimization publication-title: Appl Soft Comput – volume: 8 start-page: 125306 year: 2020 end-page: 125330 ident: CR29 article-title: An improved marine predators algorithm with fuzzy entropy for multi-level thresholding: real world example of covid-19 ct image segmentation publication-title: Ieee Access – volume: 157 start-page: 19 year: 2018 end-page: 30 ident: CR35 article-title: Deep convolutional neural networks for breast cancer screening publication-title: Comput Methods Prog Biomed – volume: 52 start-page: 185 year: 2019 end-page: 198 ident: CR9 article-title: Automated diagnosis of breast ultrasonography images using deep neural networks publication-title: Med Image Anal – volume: 181 year: 2021 ident: CR25 article-title: An efficient ecg arrhythmia classification method based on manta ray foraging optimization publication-title: Expert Syst Appl – volume: 45 start-page: 1 issue: 3 year: 2013 end-page: 33 ident: CR30 article-title: Exploration and exploitation in evolutionary algorithms: a survey publication-title: ACM Comput Surv (CSUR) – ident: CR66 – volume: 4 start-page: 1 year: 2020 end-page: 11 ident: CR34 article-title: An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (mlp) and convolutional neural network (cnn) publication-title: Clin eHealth – volume: 174 year: 2021 ident: CR26 article-title: Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems publication-title: Expert Syst Appl – ident: CR2 – volume: 9 start-page: 343 issue: 2 year: 2022 end-page: 363 ident: CR14 article-title: Hybrid quantum-classical convolutional neural network model for COVID-19 prediction using chest X-ray images publication-title: J Comput Des Eng – volume: 8 start-page: 2016 year: 2016 ident: CR71 article-title: Curated breast imaging subset of ddsm publication-title: Cancer Imaging Arch – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: CR84 article-title: The whale optimization algorithm publication-title: Adv Eng Softw – volume: 204 start-page: 106045 year: 2021 ident: CR42 article-title: Multi-input convolutional neural network for breast cancer detection using thermal images and clinical data publication-title: Comput Methods Prog Biomed – volume: 100 year: 2021 ident: CR27 article-title: An improved manta ray foraging optimizer for cost-effective emission dispatch problems publication-title: Eng Appl Artif Intell – volume: 125 start-page: 1 year: 2019 end-page: 6 ident: CR15 article-title: A novel deep learning based framework for the detection and classification of breast cancer using transfer learning publication-title: Pattern Recogn Lett – volume: 33 start-page: 1 year: 2021 end-page: 18 ident: CR22 article-title: Enhanced harris hawks optimization with genetic operators for selection chemical descriptors and compounds activities publication-title: Neural Comput Appl – ident: CR63 – volume: 33 start-page: 1218 year: 2020 end-page: 1223 ident: CR40 article-title: Diagnostic efficiency of the breast ultrasound computer-aided prediction model based on convolutional neural network in breast cancer publication-title: J Digital Imaging – volume: 32 start-page: 10759 issue: 14 year: 2020 end-page: 10771 ident: CR21 article-title: A modified henry gas solubility optimization for solving motif discovery problem publication-title: Neural Comput Appl – ident: CR69 – volume: 191 year: 2021 ident: CR23 article-title: Centroid mutation-based search and rescue optimization algorithm for feature selection and classification publication-title: Expert Syst Appl – ident: CR44 – volume: 133 start-page: 104407 year: 2021 ident: CR39 article-title: Convolutional neural networks based classification of breast ultrasonography images by hybrid method with respect to benign, malignant, and normal using mrmr publication-title: Comput Biol Med – ident: CR48 – ident: CR73 – volume: 30 start-page: 449 issue: 4 year: 2017 end-page: 459 ident: CR12 article-title: Deep learning for brain mri segmentation: state of the art and future directions publication-title: J Digital Imaging – ident: CR65 – volume: 33 start-page: 16899 issue: 24 year: 2021 end-page: 16919 ident: CR50 article-title: Improved manta ray foraging optimization for multi-level thresholding using covid-19 ct images publication-title: Neural Comput Appl – ident: CR38 – volume: 7 start-page: 165724 year: 2019 end-page: 165733 ident: CR77 article-title: Multi-view feature fusion based four views model for mammogram classification using convolutional neural network publication-title: IEEE Access – ident: CR17 – volume: 30 start-page: 1135 issue: 7 year: 2019 end-page: 1144 ident: CR80 article-title: Utilization of densenet201 for diagnosis of breast abnormality publication-title: Mach Vis Appl – volume: 137 start-page: 106040 year: 2019 ident: CR49 article-title: A survey on new generation metaheuristic algorithms publication-title: Comput Ind Eng – volume: 131 year: 2021 ident: CR76 article-title: A framework for breast cancer classification using multi-dcnns publication-title: Comput Biol Med – volume: 167 start-page: 114161 year: 2020 ident: CR7 article-title: Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review publication-title: Expert Syst Appl – volume: 157 start-page: 85 year: 2018 end-page: 94 ident: CR75 article-title: Simultaneous detection and classification of breast masses in digital mammograms via a deep learning yolo-based cad system publication-title: Comput Methods Prog Biomed – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: CR83 article-title: Harris hawks optimization: Algorithm and applications publication-title: Fut Gen Comput Syst – ident: CR59 – volume: 179 start-page: 2232 issue: 13 year: 2009 end-page: 2248 ident: CR82 article-title: Gsa: a gravitational search algorithm publication-title: Inf Sci – volume: 46 start-page: 12 issue: 1 year: 2018 end-page: 32 ident: CR8 article-title: Automatic image segmentation method for breast cancer analysis using thermography publication-title: J Eng Sci – volume: 145 year: 2020 ident: CR52 article-title: Improved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection publication-title: Expert Syst Appl – ident: CR20 – volume: 43 start-page: 329 issue: 12 year: 2019 ident: CR6 article-title: Stomach deformities recognition using rank-based deep features selection publication-title: J Med Syst – volume: 62 start-page: 100841 year: 2021 ident: CR24 article-title: Task scheduling in cloud computing based on meta-heuristics: review, taxonomy, open challenges, and future trends publication-title: Swarm Evolut Comput – volume: 10 start-page: 1897 issue: 5 year: 2020 ident: 7445_CR56 publication-title: Appl Sci doi: 10.3390/app10051897 – ident: 7445_CR81 doi: 10.1109/ICORAS.2017.8308076 – volume: 94 start-page: 87 year: 2017 ident: 7445_CR4 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2017.05.028 – ident: 7445_CR69 doi: 10.1007/978-3-540-31865-1_25 – volume: 52 start-page: 185 year: 2019 ident: 7445_CR9 publication-title: Med Image Anal doi: 10.1016/j.media.2018.12.006 – volume: 8 start-page: 125306 year: 2020 ident: 7445_CR29 publication-title: Ieee Access doi: 10.1109/ACCESS.2020.3007928 – volume: 539 start-page: 461 year: 2020 ident: 7445_CR79 publication-title: Inf Sci doi: 10.1016/j.ins.2020.05.080 – volume: 46 start-page: 1119 issue: 5 year: 2020 ident: 7445_CR37 publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2020.01.001 – volume: 140 start-page: 109761 year: 2020 ident: 7445_CR16 publication-title: Med Hypotheses doi: 10.1016/j.mehy.2020.109761 – volume: 30 start-page: 449 issue: 4 year: 2017 ident: 7445_CR12 publication-title: J Digital Imaging doi: 10.1007/s10278-017-9983-4 – volume: 58 issue: 2 year: 2021 ident: 7445_CR36 publication-title: Inf Process Manag doi: 10.1016/j.ipm.2020.102439 – ident: 7445_CR48 doi: 10.1007/978-981-13-6837-0_7 – volume: 145 year: 2020 ident: 7445_CR52 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.113122 – volume: 4 start-page: 1 year: 2020 ident: 7445_CR34 publication-title: Clin eHealth doi: 10.1016/j.ceh.2020.11.002 – ident: 7445_CR46 doi: 10.7717/peerj.6201 – volume: 137 start-page: 106040 year: 2019 ident: 7445_CR49 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2019.106040 – volume: 97 start-page: 849 year: 2019 ident: 7445_CR83 publication-title: Fut Gen Comput Syst doi: 10.1016/j.future.2019.02.028 – volume: 152 year: 2020 ident: 7445_CR28 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113377 – volume: 181 year: 2021 ident: 7445_CR25 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.115131 – volume: 120 start-page: 103 year: 2019 ident: 7445_CR43 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.11.008 – volume: 8 start-page: 2016 year: 2016 ident: 7445_CR71 publication-title: Cancer Imaging Arch – ident: 7445_CR57 – ident: 7445_CR67 doi: 10.1109/CVPR.2017.243 – ident: 7445_CR51 doi: 10.1515/9780691187563 – ident: 7445_CR59 doi: 10.1007/978-3-030-70542-8_2 – ident: 7445_CR11 doi: 10.1002/9780470918548 – ident: 7445_CR44 – volume: 22 start-page: 1218 issue: 4 year: 2017 ident: 7445_CR13 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2017.2731873 – volume: 167 start-page: 114161 year: 2020 ident: 7445_CR7 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114161 – ident: 7445_CR65 doi: 10.1109/CVPR.2016.90 – volume: 73 year: 2021 ident: 7445_CR10 publication-title: Med Image Anal doi: 10.1016/j.media.2021.102147 – volume: 47 start-page: 45 year: 2018 ident: 7445_CR1 publication-title: Med Image Anal doi: 10.1016/j.media.2018.03.006 – volume: 100 year: 2021 ident: 7445_CR27 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2021.104155 – ident: 7445_CR66 doi: 10.1109/CVPR.2016.308 – volume: 98 year: 2020 ident: 7445_CR19 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106742 – volume: 32 start-page: 10759 issue: 14 year: 2020 ident: 7445_CR21 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04611-0 – ident: 7445_CR17 doi: 10.1007/978-981-15-5971-6_77 – ident: 7445_CR20 doi: 10.1007/978-3-030-28917-1_1 – volume: 33 start-page: 1218 year: 2020 ident: 7445_CR40 publication-title: J Digital Imaging doi: 10.1007/s10278-020-00357-7 – volume: 174 year: 2021 ident: 7445_CR26 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114689 – volume: 30 start-page: 1135 issue: 7 year: 2019 ident: 7445_CR80 publication-title: Mach Vis Appl – volume: 79 start-page: 11013 issue: 15 year: 2020 ident: 7445_CR47 publication-title: Multimed Tools Appl – volume: 7 start-page: 165724 year: 2019 ident: 7445_CR77 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2953318 – volume: 25 start-page: 1097 year: 2012 ident: 7445_CR61 publication-title: Adv Neural Inf Process Syst – volume: 135 start-page: 400 year: 2018 ident: 7445_CR60 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2018.08.190 – volume: 157 start-page: 85 year: 2018 ident: 7445_CR75 publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2018.01.017 – volume: 110 start-page: 424 year: 2017 ident: 7445_CR33 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2017.06.028 – volume: 157 start-page: 19 year: 2018 ident: 7445_CR35 publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2018.01.011 – volume: 13 start-page: 281 issue: 2 year: 2012 ident: 7445_CR18 publication-title: J Mach Learn Res – ident: 7445_CR38 doi: 10.1007/s00521-020-05394-5 – volume: 90 start-page: 15 year: 2018 ident: 7445_CR3 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2018.06.004 – ident: 7445_CR64 – volume: 131 year: 2021 ident: 7445_CR76 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104245 – volume: 125 start-page: 1 year: 2019 ident: 7445_CR15 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2019.03.022 – ident: 7445_CR2 doi: 10.1016/j.matpr.2021.03.707 – ident: 7445_CR32 doi: 10.1109/CIMCA.2005.1631345 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 7445_CR68 publication-title: J Big Data doi: 10.1186/s40537-019-0197-0 – volume: 204 start-page: 106045 year: 2021 ident: 7445_CR42 publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2021.106045 – volume: 95 start-page: 51 year: 2016 ident: 7445_CR84 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 7445_CR82 publication-title: Inf Sci doi: 10.1016/j.ins.2009.03.004 – volume: 63 start-page: 102192 year: 2021 ident: 7445_CR41 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2020.102192 – ident: 7445_CR70 – volume: 46 start-page: 12 issue: 1 year: 2018 ident: 7445_CR8 publication-title: J Eng Sci – volume: 62 start-page: 100841 year: 2021 ident: 7445_CR24 publication-title: Swarm Evolut Comput doi: 10.1016/j.swevo.2021.100841 – ident: 7445_CR63 – volume: 43 start-page: 329 issue: 12 year: 2019 ident: 7445_CR6 publication-title: J Med Syst doi: 10.1007/s10916-019-1466-3 – volume: 45 start-page: 1 issue: 3 year: 2013 ident: 7445_CR30 publication-title: ACM Comput Surv (CSUR) doi: 10.1145/2480741.2480752 – volume: 9 start-page: 343 issue: 2 year: 2022 ident: 7445_CR14 publication-title: J Comput Des Eng – volume: 191 year: 2021 ident: 7445_CR23 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.116235 – volume: 54 year: 2020 ident: 7445_CR31 publication-title: Swarm Evolut Comput doi: 10.1016/j.swevo.2020.100671 – volume: 133 start-page: 104407 year: 2021 ident: 7445_CR39 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104407 – volume: 197 start-page: 221 year: 2016 ident: 7445_CR74 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.02.060 – volume: 33 start-page: 1 year: 2021 ident: 7445_CR22 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-05991-y – volume: 8 start-page: 75011 year: 2020 ident: 7445_CR78 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2986546 – ident: 7445_CR5 doi: 10.1117/12.2081576 – volume: 187 start-page: 27 year: 2016 ident: 7445_CR58 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.116 – volume: 6 start-page: 61677 year: 2018 ident: 7445_CR72 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2874767 – volume: 51 start-page: 33 year: 2019 ident: 7445_CR55 publication-title: Ecol Inform doi: 10.1016/j.ecoinf.2019.02.007 – volume: 9 start-page: 611 issue: 4 year: 2018 ident: 7445_CR62 publication-title: Insights Imaging doi: 10.1007/s13244-018-0639-9 – volume: 90 start-page: 484 year: 2017 ident: 7445_CR53 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.07.043 – ident: 7445_CR45 doi: 10.1609/aaai.v31i1.11231 – volume: 33 start-page: 16899 issue: 24 year: 2021 ident: 7445_CR50 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06273-3 – volume: 1 start-page: 541 issue: 4 year: 1989 ident: 7445_CR54 publication-title: Neural Comput doi: 10.1162/neco.1989.1.4.541 – ident: 7445_CR73 |
| SSID | ssj0004685 |
| Score | 2.5591705 |
| Snippet | Breast cancer is the second leading cause of death in women; therefore, effective early detection of this cancer can reduce its mortality rate. Breast cancer... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 18015 |
| SubjectTerms | Abnormalities Accuracy Artificial Intelligence Artificial neural networks Breast cancer Classification Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Datasets Deep learning Diagnosis Image analysis Image Processing and Computer Vision Machine learning Medical diagnosis Medical imaging Optimization Optimization algorithms Original Original Article Performance evaluation Predators Probability and Statistics in Computer Science Search algorithms |
| SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7a9ND20EfatG7TokBujcEPPbzHEBJCoTklkJuRLCkx7Npm10tpf31ntF53NwmhvRiDZVnSaDzfaF4Ah5PC-0RmPk4rYWLujY11YVBVEZriLhEChKPsHxfy_Ip_vxbXQ5ocioW5Y7-nZJ8oYGLyOUdhx0UsnsIzFFIyGGblyUYMZCi_idoKefLwfAiQebiPbSF0D1ned5AcraQv4fmy6fSvn3o63RBEZ2_g1YAg2fGK5G_hiWt24fW6OgMbmPUddMcNa_GHMKt_O8uscx0bSkTcsE3zAUPYygz5pvesoj0wZ3blf1cvGAk5y9qG1eHwAe9nmuIFWTd3lvT1BdPTm3Ze97ez93B1dnp5ch4P9RXiiivex6k3AgV4oXE100JaWaXeT7RPrFSVShKnM-OdS5TLq1xwjZof6tJGaY-wyVuT78FO0zbuI7Bckh7FLccLz7XTiBIUAYCq4ET2CNL1gpfVkHycamBMyzFtciBSiUQqA5FKEcG38Z1ulXrj0db7azqWAxsuygyHjAopQrwIDsbHyEBkFdGNa5fYRiopEPcpHsGHFdnHz-VCTgqV4fDV1oYYG1By7u0nTX0bknSjGiwQSkdwtN46f4f12CyOxu31D5P-9H-9f4YXGXFB8EXch51-vnRfEFP15mtgpj-y_hY5 priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4UN4NFGQkbjTbbOJH9rgCqgqJigMrlVPkZxuxm0S7WVX01zPOiy5FFYhLFMlOYjuf7W_sb8YAb6epcxGPXTjRTIXUKRPKVKGpwqT3u0QK0Cxlfz7lJ3P66Yyd7cCH3hemUbv3W5KtT4OP0lTUR5VxR4Pjm1_NRDM49spJSlnIxph8B3Y5Q0Y-gt356ZfZtybMHvXCnlZnT5MkRHinne_Mn1-0PT_dIJ03tZPDBup9uLspKvnjUi4W1-ao4z2wfe1aacr38aZWY331W-DH_63-Q3jQkVgya1H3CHZs8Rj2-gMiSDdePIFqVpASx6RlfmUNMdZWpDul4pxc38EgyJyJ8vL4mmgPwxUxrQQwXxM_zxpSFiRv1j_wfim9yyKpVtb4JYM1kYvzcpXXF8unMD_--PX9Sdgd8RBqKmgdTpxiyCFSGXMcXLjheuLcVLrIcKFFFFkZK2dtJGyiE0YlGp9ozishHTI3Z1TyDEZFWdh9IAn3phw1FC80kVYiURGeg-iUeuQFMOl_bKa7-Of-GI5FNkRubpo1w2bNmmbNWADvhmeqNvrHrbkPerxk3UiwzmIsMtrEyDIDeDMkYx_2GzOysOUG83DBGVJPQQN43sJr-FzC-DQVMRZfbAFvyODjg2-nFPlFEyccLXGGbD6Awx5Rv4p1Wy0OBxj_RaVf_Fv2l3Av9rht5JAHMKpXG_sKaV2tXne99ifPF0K7 priority: 102 providerName: Unpaywall |
| Title | An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm |
| URI | https://link.springer.com/article/10.1007/s00521-022-07445-5 https://www.ncbi.nlm.nih.gov/pubmed/35698722 https://www.proquest.com/docview/2717191623 https://www.proquest.com/docview/2676556074 https://pubmed.ncbi.nlm.nih.gov/PMC9175533 https://link.springer.com/content/pdf/10.1007/s00521-022-07445-5.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_a5GHbw74_vHVBg72tZo4tyc7DGF5IWjYWyligfTKyJbWBxPbywdj--t05tptQCHsxRpax5LvT_U66D4D3g8haT_rW7WcidblNtauiFE0VoSjuEiFAtZX9fSLPp_zrpbg8gkkTC0Nulc2aWC3Uushoj_yjj3YH2haorT-Xv1yqGkWnq00JDVWXVtCfqhRjx9D1KTNWB7pfRpOLHzuRklWRTrRpyN-HB3UYTRVMRzuk2OqTNybnwhX7quoO_rzrRtmepT6Ae5u8VH9-q_l8R12NH8PDGmeyeMsYT-DI5E_hUVPDgdUi_QzKOGcFLhuL2V-jmTamZHUhiWu2e8jAENyylDzY1ywjTlkyvfXSm60YqULNipzNqi0KvF8oiipk5dJosupXTM2v8W-ubxbPYToe_Ryeu3UVBjfjIV-7fZsKVPOR8iXKv9Qy61s7UNbTMsxCzzPKT60xXmiCLBBcIZ3Q4k5DZRFcWZ0GL6CTF7l5BSyQZG1xzfHCA2UUYomQYEIWcWIOB_rND0-yOkU5VcqYJ21y5YpICRIpqYiUCAc-tO-U2wQdB3ufNHRMamFdJbes5cC79jGKGZ2dqNwUG-wjQykQHYbcgZdbsrefC4QcRKGPww_3GKLtQCm895_ks5sqlTcaywIBtwOnDevcDuvQLE5b9vqPSb8-POk3cN8nrq88FE-gs15uzFtEWuu0B8fR-KwH3fjs6tuoVwsTtg7lEK9TP8a26eQivvoHyRMp8w |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lA48H4YCiwSnKiFY-8jOVSoQKuUthFCrdSbWXt320iJbRJHVflx_DZmN2s3UaWISy-RFW_iXc_szDez8wB43-saE_HYhJ2cZSE1mQplN0NThUmbd4kQwLmyjwe8f0q_n7GzNfjb5MLYsMpGJjpBrcrc-sg_xWh3oG2B2vpz9Tu0XaPs6WrTQkP61gpqx5UY84kdh_rqEk246c7BN6T3hzje3zv52g99l4Ewp4LWYcdkDNVYV8Yc-ZsrnneM6UkTKS5yEUVaxpnROhI6yRNGJc4DLcpMSIPgwagswf-9Axs0oT00_ja-7A1-_FzIzHRNQdGGsvFFNPFpOy55z3pk8dvYRn9SykK2rBpv4N2bYZvt2e092JwVlby6lKPRgnrcfwj3Pa4lu3NGfARrungMD5qeEcSLkCdQ7RakRDE1Hv7RiiitK-IbV5yTxUMNgmCaZDZivia55cwJUfOowOGUWNWrSFmQoXOJ4PVY2ixGUk20sl6EKZGjc6RefTF-Cqe3Qo9nsF6UhX4BJOHWuqOK4gdNpJaIXYSFJXmXWmYMoNO88DT3JdFtZ45R2hZzdkRKkUipI1LKAvjY_qaaFwRZOXqroWPqhcM0vWblAN61t3Fb27MaWehyhmO44AzRqKABPJ-TvX1cwnivK2KcvlhiiHaALRm-fKcYXrjS4WicMwT4AWw3rHM9rVWr2G7Z6z8W_XL1ot_CZv_k-Cg9OhgcvoK7sd0BLjpyC9bryUy_RpRXZ2_8ViLw67Z37z-0JWFx |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwEB7BInE8cB-BBYzEGxttmvhIH1eFarlWPLDSvkV2bO9Gap2oTYXg1zN2DlotWsFLFSlO6mRmMt9nzwHwdppbm_DUxpOSqZhapWOZK6QqTPq8S4QAYSn76wk_PqWfztjZVhZ_iHYftiS7nAZfpcm1h422h2Pim1_NRBqc-shJSlnMrsMNit7N9zCY8dlWZmRoyokcxsf30KxPm_n7PXZd0yW8eTlsctw7vQO3Nq6RP3_IxWLLPc3vw90eV5KjThEewDXjHsK9oWcD6U34ETRHjtT4mVhWv4wm2piG9I0jzsn2pgJBMEuUj1hvSek1Y0V0F5VXrYl3fZrUjlRhSQKPl9JnEZJmZbRn8WsiF-f1qmovlo_hdP7h--w47rsuxCUVtI0nVjF067lMOdo717ycWDuVNtFclCJJjEyVNSYRJiszRiXyQWTYSkiLYMpqlT2BPVc78wxIxj27opriD82kkYgdhIcFZU69MkQwGV54UfYlyX1njEUxFlMOQipQSEUQUsEieDde03QFOa4cvT_IseiNc12kOGWkqQj8Ingznkaz8nsl0pl6g2O44AzRoKARPO3EPv5dxvg0FylOX-woxDjAl-zePeOqi1C6G8kxQ4AdwcGgOn-mddVTHIzq9Q8P_fz_7v4abn57Py--fDz5_AJup94gQrDiPuy1q415iaCrVa-CXf0GCo0hbw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4UN4NFGQkbjTbbOJH9rgCqgqJigMrlVPkZxuxm0S7WVX01zPOiy5FFYhLFMlOYjuf7W_sb8YAb6epcxGPXTjRTIXUKRPKVKGpwqT3u0QK0Cxlfz7lJ3P66Yyd7cCH3hemUbv3W5KtT4OP0lTUR5VxR4Pjm1_NRDM49spJSlnIxph8B3Y5Q0Y-gt356ZfZtybMHvXCnlZnT5MkRHinne_Mn1-0PT_dIJ03tZPDBup9uLspKvnjUi4W1-ao4z2wfe1aacr38aZWY331W-DH_63-Q3jQkVgya1H3CHZs8Rj2-gMiSDdePIFqVpASx6RlfmUNMdZWpDul4pxc38EgyJyJ8vL4mmgPwxUxrQQwXxM_zxpSFiRv1j_wfim9yyKpVtb4JYM1kYvzcpXXF8unMD_--PX9Sdgd8RBqKmgdTpxiyCFSGXMcXLjheuLcVLrIcKFFFFkZK2dtJGyiE0YlGp9ozishHTI3Z1TyDEZFWdh9IAn3phw1FC80kVYiURGeg-iUeuQFMOl_bKa7-Of-GI5FNkRubpo1w2bNmmbNWADvhmeqNvrHrbkPerxk3UiwzmIsMtrEyDIDeDMkYx_2GzOysOUG83DBGVJPQQN43sJr-FzC-DQVMRZfbAFvyODjg2-nFPlFEyccLXGGbD6Awx5Rv4p1Wy0OBxj_RaVf_Fv2l3Av9rht5JAHMKpXG_sKaV2tXne99ifPF0K7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+deep+learning+architecture+for+breast+cancer+diagnosis+based+on+improved+marine+predators+algorithm&rft.jtitle=Neural+computing+%26+applications&rft.au=Houssein%2C+Essam+H&rft.au=Emam%2C+Marwa+M&rft.au=Ali%2C+Abdelmgeid+A&rft.date=2022-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=34&rft.issue=20&rft.spage=18015&rft.epage=18033&rft_id=info:doi/10.1007%2Fs00521-022-07445-5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |