An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm

Breast cancer is the second leading cause of death in women; therefore, effective early detection of this cancer can reduce its mortality rate. Breast cancer detection and classification in the early phases of development may allow for optimal therapy. Convolutional neural networks (CNNs) have enhan...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 34; no. 20; pp. 18015 - 18033
Main Authors Houssein, Essam H., Emam, Marwa M., Ali, Abdelmgeid A.
Format Journal Article
LanguageEnglish
Published London Springer London 01.10.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
1433-3058
DOI10.1007/s00521-022-07445-5

Cover

Abstract Breast cancer is the second leading cause of death in women; therefore, effective early detection of this cancer can reduce its mortality rate. Breast cancer detection and classification in the early phases of development may allow for optimal therapy. Convolutional neural networks (CNNs) have enhanced tumor detection and classification efficiency in medical imaging compared to traditional approaches. This paper proposes a novel classification model for breast cancer diagnosis based on a hybridized CNN and an improved optimization algorithm, along with transfer learning, to help radiologists detect abnormalities efficiently. The marine predators algorithm (MPA) is the optimization algorithm we used, and we improve it using the opposition-based learning strategy to cope with the implied weaknesses of the original MPA. The improved marine predators algorithm (IMPA) is used to find the best values for the hyperparameters of the CNN architecture. The proposed method uses a pretrained CNN model called ResNet50 (residual network). This model is hybridized with the IMPA algorithm, resulting in an architecture called IMPA-ResNet50. Our evaluation is performed on two mammographic datasets, the mammographic image analysis society (MIAS) and curated breast imaging subset of DDSM (CBIS-DDSM) datasets. The proposed model was compared with other state-of-the-art approaches. The obtained results showed that the proposed model outperforms the compared state-of-the-art approaches, which are beneficial to classification performance, achieving 98.32% accuracy, 98.56% sensitivity, and 98.68% specificity on the CBIS-DDSM dataset and 98.88% accuracy, 97.61% sensitivity, and 98.40% specificity on the MIAS dataset. To evaluate the performance of IMPA in finding the optimal values for the hyperparameters of ResNet50 architecture, it compared to four other optimization algorithms including gravitational search algorithm (GSA), Harris hawks optimization (HHO), whale optimization algorithm (WOA), and the original MPA algorithm. The counterparts algorithms are also hybrid with the ResNet50 architecture produce models named GSA-ResNet50, HHO-ResNet50, WOA-ResNet50, and MPA-ResNet50, respectively. The results indicated that the proposed IMPA-ResNet50 is achieved a better performance than other counterparts.
AbstractList Breast cancer is the second leading cause of death in women; therefore, effective early detection of this cancer can reduce its mortality rate. Breast cancer detection and classification in the early phases of development may allow for optimal therapy. Convolutional neural networks (CNNs) have enhanced tumor detection and classification efficiency in medical imaging compared to traditional approaches. This paper proposes a novel classification model for breast cancer diagnosis based on a hybridized CNN and an improved optimization algorithm, along with transfer learning, to help radiologists detect abnormalities efficiently. The marine predators algorithm (MPA) is the optimization algorithm we used, and we improve it using the opposition-based learning strategy to cope with the implied weaknesses of the original MPA. The improved marine predators algorithm (IMPA) is used to find the best values for the hyperparameters of the CNN architecture. The proposed method uses a pretrained CNN model called ResNet50 (residual network). This model is hybridized with the IMPA algorithm, resulting in an architecture called IMPA-ResNet50. Our evaluation is performed on two mammographic datasets, the mammographic image analysis society (MIAS) and curated breast imaging subset of DDSM (CBIS-DDSM) datasets. The proposed model was compared with other state-of-the-art approaches. The obtained results showed that the proposed model outperforms the compared state-of-the-art approaches, which are beneficial to classification performance, achieving 98.32% accuracy, 98.56% sensitivity, and 98.68% specificity on the CBIS-DDSM dataset and 98.88% accuracy, 97.61% sensitivity, and 98.40% specificity on the MIAS dataset. To evaluate the performance of IMPA in finding the optimal values for the hyperparameters of ResNet50 architecture, it compared to four other optimization algorithms including gravitational search algorithm (GSA), Harris hawks optimization (HHO), whale optimization algorithm (WOA), and the original MPA algorithm. The counterparts algorithms are also hybrid with the ResNet50 architecture produce models named GSA-ResNet50, HHO-ResNet50, WOA-ResNet50, and MPA-ResNet50, respectively. The results indicated that the proposed IMPA-ResNet50 is achieved a better performance than other counterparts.
Breast cancer is the second leading cause of death in women; therefore, effective early detection of this cancer can reduce its mortality rate. Breast cancer detection and classification in the early phases of development may allow for optimal therapy. Convolutional neural networks (CNNs) have enhanced tumor detection and classification efficiency in medical imaging compared to traditional approaches. This paper proposes a novel classification model for breast cancer diagnosis based on a hybridized CNN and an improved optimization algorithm, along with transfer learning, to help radiologists detect abnormalities efficiently. The marine predators algorithm (MPA) is the optimization algorithm we used, and we improve it using the opposition-based learning strategy to cope with the implied weaknesses of the original MPA. The improved marine predators algorithm (IMPA) is used to find the best values for the hyperparameters of the CNN architecture. The proposed method uses a pretrained CNN model called ResNet50 (residual network). This model is hybridized with the IMPA algorithm, resulting in an architecture called IMPA-ResNet50. Our evaluation is performed on two mammographic datasets, the mammographic image analysis society (MIAS) and curated breast imaging subset of DDSM (CBIS-DDSM) datasets. The proposed model was compared with other state-of-the-art approaches. The obtained results showed that the proposed model outperforms the compared state-of-the-art approaches, which are beneficial to classification performance, achieving 98.32% accuracy, 98.56% sensitivity, and 98.68% specificity on the CBIS-DDSM dataset and 98.88% accuracy, 97.61% sensitivity, and 98.40% specificity on the MIAS dataset. To evaluate the performance of IMPA in finding the optimal values for the hyperparameters of ResNet50 architecture, it compared to four other optimization algorithms including gravitational search algorithm (GSA), Harris hawks optimization (HHO), whale optimization algorithm (WOA), and the original MPA algorithm. The counterparts algorithms are also hybrid with the ResNet50 architecture produce models named GSA-ResNet50, HHO-ResNet50, WOA-ResNet50, and MPA-ResNet50, respectively. The results indicated that the proposed IMPA-ResNet50 is achieved a better performance than other counterparts.Breast cancer is the second leading cause of death in women; therefore, effective early detection of this cancer can reduce its mortality rate. Breast cancer detection and classification in the early phases of development may allow for optimal therapy. Convolutional neural networks (CNNs) have enhanced tumor detection and classification efficiency in medical imaging compared to traditional approaches. This paper proposes a novel classification model for breast cancer diagnosis based on a hybridized CNN and an improved optimization algorithm, along with transfer learning, to help radiologists detect abnormalities efficiently. The marine predators algorithm (MPA) is the optimization algorithm we used, and we improve it using the opposition-based learning strategy to cope with the implied weaknesses of the original MPA. The improved marine predators algorithm (IMPA) is used to find the best values for the hyperparameters of the CNN architecture. The proposed method uses a pretrained CNN model called ResNet50 (residual network). This model is hybridized with the IMPA algorithm, resulting in an architecture called IMPA-ResNet50. Our evaluation is performed on two mammographic datasets, the mammographic image analysis society (MIAS) and curated breast imaging subset of DDSM (CBIS-DDSM) datasets. The proposed model was compared with other state-of-the-art approaches. The obtained results showed that the proposed model outperforms the compared state-of-the-art approaches, which are beneficial to classification performance, achieving 98.32% accuracy, 98.56% sensitivity, and 98.68% specificity on the CBIS-DDSM dataset and 98.88% accuracy, 97.61% sensitivity, and 98.40% specificity on the MIAS dataset. To evaluate the performance of IMPA in finding the optimal values for the hyperparameters of ResNet50 architecture, it compared to four other optimization algorithms including gravitational search algorithm (GSA), Harris hawks optimization (HHO), whale optimization algorithm (WOA), and the original MPA algorithm. The counterparts algorithms are also hybrid with the ResNet50 architecture produce models named GSA-ResNet50, HHO-ResNet50, WOA-ResNet50, and MPA-ResNet50, respectively. The results indicated that the proposed IMPA-ResNet50 is achieved a better performance than other counterparts.
Author Houssein, Essam H.
Emam, Marwa M.
Ali, Abdelmgeid A.
Author_xml – sequence: 1
  givenname: Essam H.
  orcidid: 0000-0002-8127-7233
  surname: Houssein
  fullname: Houssein, Essam H.
  email: essam.halim@mu.edu.eg
  organization: Faculty of Computers and Information, Minia University
– sequence: 2
  givenname: Marwa M.
  surname: Emam
  fullname: Emam, Marwa M.
  organization: Faculty of Computers and Information, Minia University
– sequence: 3
  givenname: Abdelmgeid A.
  surname: Ali
  fullname: Ali, Abdelmgeid A.
  organization: Faculty of Computers and Information, Minia University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35698722$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URKeFP8ACWWLDJuBHbCcbpKriJVViA2vLca5nXCV2sJ2i8uvxMAOFLipWtuTznXvu8Rk6CTEAQs8peU0JUW8yIYLRhjDWENW2ohGP0Ia2nDeciO4EbUjf1mfZ8lN0lvM1IaSVnXiCTrmQfacY26DlIuC4FD_7HzDiEWDBE5gUfNhik-zOF7BlTYBdTHhIYHLB1gQLCY_ebEPMPuPB5ArHgP28pHhT77NJPgBeEoymxJSxmbYx-bKbn6LHzkwZnh3Pc_T1_bsvlx-bq88fPl1eXDW2VW1pqBsEa2lnmOS0k6O01LneODJKZRUhYNjgAIgCbrlojaJK9mRQxgki3Djwc8QPvmtYzO13M016Sb7mutWU6H1_-tCfrv3pX_1pUam3B2pZhxlGC6Ekc0dG4_W_L8Hv9Dbe6J4qITivBq-OBil-WyEXPftsYZpMgLhmzaSSQsg6r0pf3pNexzWFWopmdR3aU8n2hi_-TvQnyu8vrAJ2ENgUc07g_m_P7h5kfTHFx_1WfnoYPRab65ywhXQX-wHqJ69Y0fg
CitedBy_id crossref_primary_10_1680_jbibn_24_00004
crossref_primary_10_62050_fscp2024_430
crossref_primary_10_1007_s11042_023_15176_5
crossref_primary_10_1007_s11227_022_04903_8
crossref_primary_10_1016_j_bspc_2024_106810
crossref_primary_10_1080_21681163_2022_2140074
crossref_primary_10_1007_s41939_024_00487_3
crossref_primary_10_1080_21681163_2023_2242523
crossref_primary_10_1080_21681163_2023_2165161
crossref_primary_10_1615_CritRevBiomedEng_2024051166
crossref_primary_10_1016_j_aanat_2023_152114
crossref_primary_10_1016_j_eij_2024_100457
crossref_primary_10_1080_21681163_2022_2157748
crossref_primary_10_3389_fonc_2022_948557
crossref_primary_10_1007_s11042_023_16394_7
crossref_primary_10_1109_ACCESS_2025_3535844
crossref_primary_10_1007_s10462_023_10589_y
crossref_primary_10_1080_21681163_2024_2420727
crossref_primary_10_1007_s11042_024_20011_6
crossref_primary_10_1016_j_eswa_2024_124581
crossref_primary_10_1007_s43621_024_00725_1
crossref_primary_10_1007_s13721_025_00509_1
crossref_primary_10_1080_21681163_2023_2234054
crossref_primary_10_1080_21681163_2024_2302387
crossref_primary_10_1038_s41598_024_54212_8
crossref_primary_10_1080_21681163_2023_2245925
crossref_primary_10_7717_peerj_cs_1938
crossref_primary_10_1080_13682199_2023_2235113
crossref_primary_10_1038_s41598_023_48479_6
crossref_primary_10_1109_ACCESS_2025_3542989
crossref_primary_10_1007_s41060_024_00662_2
crossref_primary_10_1007_s11082_023_06203_8
crossref_primary_10_1007_s13042_024_02216_1
crossref_primary_10_1016_j_engappai_2024_109152
crossref_primary_10_1007_s11831_024_10142_2
crossref_primary_10_1080_21681163_2023_2199891
crossref_primary_10_1038_s41598_025_88459_6
crossref_primary_10_1080_21681163_2024_2373996
crossref_primary_10_1177_03000605241237867
crossref_primary_10_1007_s11831_023_09968_z
crossref_primary_10_1007_s00521_023_08492_2
crossref_primary_10_1016_j_compbiomed_2024_108329
crossref_primary_10_1016_j_compeleceng_2022_108562
crossref_primary_10_3390_healthcare11182530
crossref_primary_10_1016_j_compbiolchem_2024_108110
crossref_primary_10_1016_j_epsr_2024_111360
crossref_primary_10_1016_j_neucom_2024_129018
crossref_primary_10_26634_jds_2_2_20921
crossref_primary_10_1007_s00521_024_09965_8
crossref_primary_10_1016_j_knosys_2024_111775
crossref_primary_10_1007_s00521_024_09524_1
crossref_primary_10_1051_e3sconf_202561602015
crossref_primary_10_1155_2022_2731364
crossref_primary_10_1016_j_mlwa_2023_100471
crossref_primary_10_1080_21681163_2023_2225639
crossref_primary_10_1007_s10462_023_10585_2
crossref_primary_10_1007_s11042_023_16505_4
crossref_primary_10_1080_21681163_2023_2219772
crossref_primary_10_1080_21681163_2023_2245069
crossref_primary_10_1007_s44268_023_00019_x
crossref_primary_10_3390_diagnostics13081422
crossref_primary_10_3390_math11030707
crossref_primary_10_2174_0115748936333380240816053223
crossref_primary_10_1007_s00542_023_05483_0
crossref_primary_10_34104_ajeit_024_070078
Cites_doi 10.3390/app10051897
10.1109/ICORAS.2017.8308076
10.1016/j.patrec.2017.05.028
10.1007/978-3-540-31865-1_25
10.1016/j.media.2018.12.006
10.1109/ACCESS.2020.3007928
10.1016/j.ins.2020.05.080
10.1016/j.ultrasmedbio.2020.01.001
10.1016/j.mehy.2020.109761
10.1007/s10278-017-9983-4
10.1016/j.ipm.2020.102439
10.1007/978-981-13-6837-0_7
10.1016/j.eswa.2019.113122
10.1016/j.ceh.2020.11.002
10.7717/peerj.6201
10.1016/j.cie.2019.106040
10.1016/j.future.2019.02.028
10.1016/j.eswa.2020.113377
10.1016/j.eswa.2021.115131
10.1016/j.eswa.2018.11.008
10.1109/CVPR.2017.243
10.1515/9780691187563
10.1007/978-3-030-70542-8_2
10.1002/9780470918548
10.1109/JBHI.2017.2731873
10.1016/j.eswa.2020.114161
10.1109/CVPR.2016.90
10.1016/j.media.2021.102147
10.1016/j.media.2018.03.006
10.1016/j.engappai.2021.104155
10.1109/CVPR.2016.308
10.1016/j.asoc.2020.106742
10.1007/s00521-019-04611-0
10.1007/978-981-15-5971-6_77
10.1007/978-3-030-28917-1_1
10.1007/s10278-020-00357-7
10.1016/j.eswa.2021.114689
10.1109/ACCESS.2019.2953318
10.1016/j.procs.2018.08.190
10.1016/j.cmpb.2018.01.017
10.1016/j.cie.2017.06.028
10.1016/j.cmpb.2018.01.011
10.1007/s00521-020-05394-5
10.1016/j.artmed.2018.06.004
10.1016/j.compbiomed.2021.104245
10.1016/j.patrec.2019.03.022
10.1016/j.matpr.2021.03.707
10.1109/CIMCA.2005.1631345
10.1186/s40537-019-0197-0
10.1016/j.cmpb.2021.106045
10.1016/j.advengsoft.2016.01.008
10.1016/j.ins.2009.03.004
10.1016/j.bspc.2020.102192
10.1016/j.swevo.2021.100841
10.1007/s10916-019-1466-3
10.1145/2480741.2480752
10.1016/j.eswa.2021.116235
10.1016/j.swevo.2020.100671
10.1016/j.compbiomed.2021.104407
10.1016/j.neucom.2016.02.060
10.1007/s00521-021-05991-y
10.1109/ACCESS.2020.2986546
10.1117/12.2081576
10.1016/j.neucom.2015.09.116
10.1109/ACCESS.2018.2874767
10.1016/j.ecoinf.2019.02.007
10.1007/s13244-018-0639-9
10.1016/j.eswa.2017.07.043
10.1609/aaai.v31i1.11231
10.1007/s00521-021-06273-3
10.1162/neco.1989.1.4.541
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022.
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022.
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s00521-022-07445-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Advanced Technologies & Aerospace Collection
MEDLINE - Academic


PubMed
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 18033
ExternalDocumentID 10.1007/s00521-022-07445-5
PMC9175533
35698722
10_1007_s00521_022_07445_5
Genre Journal Article
GrantInformation_xml – fundername: Minia University
– fundername: ;
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
NPM
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c474t-1fb52418a263186d6c1ff9af0d67c700ea2bfee07e3c354a717690b7af505fdb3
IEDL.DBID BENPR
ISSN 0941-0643
1433-3058
IngestDate Sun Oct 26 03:09:12 EDT 2025
Tue Sep 30 16:06:51 EDT 2025
Fri Sep 05 13:07:22 EDT 2025
Fri Jul 25 08:28:24 EDT 2025
Wed Feb 19 02:24:55 EST 2025
Wed Oct 01 02:26:14 EDT 2025
Thu Apr 24 23:05:13 EDT 2025
Fri Feb 21 02:45:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords Deep learning
Breast cancer classification
Transfer learning
Marine predators algorithm
Convolutional neural network
Hyperparameters optimization
Opposition-based learning
Language English
License The Author(s) 2022.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-1fb52418a263186d6c1ff9af0d67c700ea2bfee07e3c354a717690b7af505fdb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8127-7233
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s00521-022-07445-5.pdf
PMID 35698722
PQID 2717191623
PQPubID 2043988
PageCount 19
ParticipantIDs unpaywall_primary_10_1007_s00521_022_07445_5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9175533
proquest_miscellaneous_2676556074
proquest_journals_2717191623
pubmed_primary_35698722
crossref_primary_10_1007_s00521_022_07445_5
crossref_citationtrail_10_1007_s00521_022_07445_5
springer_journals_10_1007_s00521_022_07445_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationTitleAlternate Neural Comput Appl
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Ezzat, Hassanien, Ella (CR19) 2020; 98
Hossam, Harb, AbdElKader (CR8) 2018; 46
Desai, Shah (CR34) 2020; 4
Ting, Tan, Sim (CR43) 2019; 120
Song, Li, Wang (CR78) 2020; 8
Xiang, Zeng, Liu, Zhang (CR80) 2019; 30
Houssein, Gad, Wazery, Suganthan (CR24) 2021; 62
CR38
Lee, Gimenez, Hoogi, Rubin (CR71) 2016; 8
CR32
Krizhevsky, Sutskever, Hinton (CR61) 2012; 25
CR73
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (CR83) 2019; 97
Elaziz, Ewees, Yousri, Alwerfali, Awad, Lu, Al-Qaness (CR29) 2020; 8
Qi, Zhang, Chen, Pi, Chen, Lv, Yi (CR9) 2019; 52
CR70
Morales-Castañeda, Zaldivar, Cuevas, Fausto, Rodríguez (CR31) 2020; 54
Wang, Choi, Choi, Zhang, Jin, Ko (CR37) 2020; 46
Jiao, Gao, Wang, Li (CR74) 2016; 197
Al-Masni, Al-Antari, Park, Gi, Kim, Rivera, Valarezo, Choi, Han, Kim (CR75) 2018; 157
CR2
Guo, Liu, Oerlemans, Lao, Wu, Lew (CR58) 2016; 187
CR5
Hassan, Houssein, Mahdy, Kamel (CR27) 2021; 100
Rajinikanth, Satapathy, Fernandes, Nachiappan (CR4) 2017; 94
Houssein, Ibrahim, Neggaz, Hassaballah, Wazery (CR25) 2021; 181
Khan, Sharif, Akram, Yasmin, Nayak (CR6) 2019; 43
CR48
CR46
CR45
Hamidinekoo, Denton, Rampun, Honnor, Zwiggelaar (CR1) 2018; 47
CR44
Lumini, Nanni (CR55) 2019; 51
Ragab, Attallah, Sharkas, Ren, Marshall (CR76) 2021; 131
CR81
Chougrad, Zouaki, Alheyane (CR35) 2018; 157
Tubishat, Idris, Shuib, Abushariah, Mirjalili (CR52) 2020; 145
Wang, Feng, Zhang, Wang, Lv, Yi (CR10) 2021; 73
Sánchez-Cauce, Pérez-Martín, Luque (CR42) 2021; 204
Yap, Pons, Martí, Ganau, Sentís, Zwiggelaar, Davison, Robert (CR13) 2017; 22
Boumaraf, Liu, Zheng, Ma, Ferkous (CR41) 2021; 63
Saranyaraj, Manikandan, Maheswari (CR47) 2020; 79
Hashim, Houssein, Hussain, Mabrouk, Al-Atabany (CR21) 2020; 32
LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (CR54) 1989; 1
Houssein, Emam, Ali, Suganthan (CR7) 2020; 167
CR17
CR59
Shorten, Khoshgoftaar (CR68) 2019; 6
CR57
CR11
CR51
Rojas-Morales, Rojas, Ureta (CR33) 2017; 110
Yamashita, Nishio, Do, Togashi (CR62) 2018; 9
Ucar, Korkmaz (CR16) 2020; 140
Zhang, Han, Chen, Peng, Lin (CR40) 2020; 33
Houssein, Emam, Ali (CR50) 2021; 33
Shahzad, Usman, Muhammad, Anam, Khan Shoab (CR3) 2018; 90
Mirjalili, Lewis (CR84) 2016; 95
Elaziz, Oliva, Xiong (CR53) 2017; 90
Faramarzi, Heidarinejad, Mirjalili, Gandomi (CR28) 2020; 152
Zhang, Renzhong, Yuan, Jiang, Huang, Jinpeng, Hua, Niu, Ji (CR79) 2020; 539
Carneiro, Da Nóbrega, Nepomuceno, Bian, De Albuquerque, Filho (CR72) 2018; 6
Houssein, Saber, Ali, Wazery (CR23) 2021; 191
CR69
Dokeroglu, Sevinc, Kucukyilmaz, Cosar (CR49) 2019; 137
CR67
CR66
Rashedi, Nezamabadi-Pour, Saryazdi (CR82) 2009; 179
Houssein, Mahdy, Blondin, Shebl, Mohamed (CR26) 2021; 174
CR65
CR20
CR64
CR63
Pardamean, Cenggoro, Rahutomo, Budiarto, Karuppiah (CR60) 2018; 135
Črepinšek, Liu, Mernik (CR30) 2013; 45
Wang, Li, Song, Rong (CR56) 2020; 10
Akkus, Galimzianova, Hoogi, Rubin, Erickson (CR12) 2017; 30
Khan, Islam, Jan, Din, Rodrigues (CR15) 2019; 125
Houssein, Neggaz, Hosney, Mohamed, Hassaballah (CR22) 2021; 33
Zhang, Satapathy, Guttery, Górriz, Wang (CR36) 2021; 58
Houssein, Abohashima, Elhoseny, Mohamed (CR14) 2022; 9
Bergstra, Bengio (CR18) 2012; 13
Eroğlu, Yildirim, Çinar (CR39) 2021; 133
Khan, Shahid, Raza, Dar, Alquhayz (CR77) 2019; 7
Z Akkus (7445_CR12) 2017; 30
FF Ting (7445_CR43) 2019; 120
Y LeCun (7445_CR54) 1989; 1
M Desai (7445_CR34) 2020; 4
Y Wang (7445_CR10) 2021; 73
7445_CR70
FA Hashim (7445_CR21) 2020; 32
R Song (7445_CR78) 2020; 8
D Ezzat (7445_CR19) 2020; 98
7445_CR73
Y Wang (7445_CR37) 2020; 46
EH Houssein (7445_CR7) 2020; 167
7445_CR32
EH Houssein (7445_CR14) 2022; 9
H Zhang (7445_CR79) 2020; 539
7445_CR38
S Mirjalili (7445_CR84) 2016; 95
EH Houssein (7445_CR22) 2021; 33
EH Houssein (7445_CR25) 2021; 181
A Hossam (7445_CR8) 2018; 46
S Khan (7445_CR15) 2019; 125
A Hamidinekoo (7445_CR1) 2018; 47
R Yamashita (7445_CR62) 2018; 9
S Boumaraf (7445_CR41) 2021; 63
RS Lee (7445_CR71) 2016; 8
A Faramarzi (7445_CR28) 2020; 152
T Carneiro (7445_CR72) 2018; 6
Y Eroğlu (7445_CR39) 2021; 133
7445_CR81
MA Al-Masni (7445_CR75) 2018; 157
E Rashedi (7445_CR82) 2009; 179
7445_CR44
7445_CR45
HN Khan (7445_CR77) 2019; 7
7445_CR46
7445_CR48
X Qi (7445_CR9) 2019; 52
T Dokeroglu (7445_CR49) 2019; 137
Y Wang (7445_CR56) 2020; 10
Z Jiao (7445_CR74) 2016; 197
EH Houssein (7445_CR50) 2021; 33
M Tubishat (7445_CR52) 2020; 145
Y Guo (7445_CR58) 2016; 187
D Saranyaraj (7445_CR47) 2020; 79
DA Ragab (7445_CR76) 2021; 131
V Rajinikanth (7445_CR4) 2017; 94
J Bergstra (7445_CR18) 2012; 13
A Shahzad (7445_CR3) 2018; 90
7445_CR51
MH Hassan (7445_CR27) 2021; 100
MA Elaziz (7445_CR29) 2020; 8
7445_CR11
7445_CR57
7445_CR59
MH Yap (7445_CR13) 2017; 22
EH Houssein (7445_CR26) 2021; 174
7445_CR17
MA Elaziz (7445_CR53) 2017; 90
H Zhang (7445_CR40) 2020; 33
B Pardamean (7445_CR60) 2018; 135
Yu Xiang (7445_CR80) 2019; 30
EH Houssein (7445_CR23) 2021; 191
AA Heidari (7445_CR83) 2019; 97
B Morales-Castañeda (7445_CR31) 2020; 54
R Sánchez-Cauce (7445_CR42) 2021; 204
7445_CR63
7445_CR20
7445_CR64
MA Khan (7445_CR6) 2019; 43
A Lumini (7445_CR55) 2019; 51
7445_CR65
7445_CR66
7445_CR67
7445_CR5
F Ucar (7445_CR16) 2020; 140
Y-D Zhang (7445_CR36) 2021; 58
7445_CR69
M Črepinšek (7445_CR30) 2013; 45
7445_CR2
A Krizhevsky (7445_CR61) 2012; 25
N Rojas-Morales (7445_CR33) 2017; 110
H Chougrad (7445_CR35) 2018; 157
EH Houssein (7445_CR24) 2021; 62
C Shorten (7445_CR68) 2019; 6
References_xml – ident: CR45
– ident: CR70
– volume: 110
  start-page: 424
  year: 2017
  end-page: 435
  ident: CR33
  article-title: A survey and classification of opposition-based metaheuristics
  publication-title: Comput Ind Eng
– volume: 79
  start-page: 11013
  issue: 15
  year: 2020
  end-page: 11038
  ident: CR47
  article-title: A deep convolutional neural network for the early detection of breast carcinoma with respect to hyper-parameter tuning
  publication-title: Multimed Tools Appl
– volume: 140
  start-page: 109761
  year: 2020
  ident: CR16
  article-title: Covidiagnosis-net: deep bayes-squeezenet based diagnosis of the coronavirus disease 2019 (covid-19) from x-ray images
  publication-title: Med Hypotheses
– volume: 8
  start-page: 75011
  year: 2020
  end-page: 75021
  ident: CR78
  article-title: Mammographic classification based on xgboost and dcnn with multi features
  publication-title: IEEE Access
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: CR61
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv Neural Inf Process Syst
– volume: 22
  start-page: 1218
  issue: 4
  year: 2017
  end-page: 1226
  ident: CR13
  article-title: Automated breast ultrasound lesions detection using convolutional neural networks
  publication-title: IEEE J Biomed Health Inform
– volume: 51
  start-page: 33
  year: 2019
  end-page: 43
  ident: CR55
  article-title: Deep learning and transfer learning features for plankton classification
  publication-title: Ecol Inform
– ident: CR51
– volume: 152
  year: 2020
  ident: CR28
  article-title: Marine predators algorithm: a nature-inspired metaheuristic
  publication-title: Expert Syst Appl
– volume: 73
  year: 2021
  ident: CR10
  article-title: Deep adversarial domain adaptation for breast cancer screening from mammograms
  publication-title: Med Image Anal
– volume: 10
  start-page: 1897
  issue: 5
  year: 2020
  ident: CR56
  article-title: The influence of the activation function in a convolution neural network model of facial expression recognition
  publication-title: Appl Sci
– volume: 90
  start-page: 15
  year: 2018
  end-page: 24
  ident: CR3
  article-title: Decision support system for detection of hypertensive retinopathy using arteriovenous ratio
  publication-title: Artif Intell Med
– volume: 58
  issue: 2
  year: 2021
  ident: CR36
  article-title: Improved breast cancer classification through combining graph convolutional network and convolutional neural network
  publication-title: Inf Process Manag
– volume: 47
  start-page: 45
  year: 2018
  end-page: 67
  ident: CR1
  article-title: Deep learning in mammography and breast histology, an overview and future trends
  publication-title: Med Image Anal
– volume: 6
  start-page: 61677
  year: 2018
  end-page: 61685
  ident: CR72
  article-title: Performance analysis of google colaboratory as a tool for accelerating deep learning applications
  publication-title: IEEE Access
– volume: 135
  start-page: 400
  year: 2018
  end-page: 407
  ident: CR60
  article-title: Transfer learning from chest x-ray pre-trained convolutional neural network for learning mammogram data
  publication-title: Procedia Comput Sci
– volume: 197
  start-page: 221
  year: 2016
  end-page: 231
  ident: CR74
  article-title: A deep feature based framework for breast masses classification
  publication-title: Neurocomputing
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  end-page: 48
  ident: CR68
  article-title: A survey on image data augmentation for deep learning
  publication-title: J Big Data
– volume: 9
  start-page: 611
  issue: 4
  year: 2018
  end-page: 629
  ident: CR62
  article-title: Convolutional neural networks: an overview and application in radiology
  publication-title: Insights Imaging
– volume: 13
  start-page: 281
  issue: 2
  year: 2012
  end-page: 305
  ident: CR18
  article-title: Random search for hyper-parameter optimization
  publication-title: J Mach Learn Res
– volume: 90
  start-page: 484
  year: 2017
  end-page: 500
  ident: CR53
  article-title: An improved opposition-based sine cosine algorithm for global optimization
  publication-title: Expert Syst Appl
– ident: CR46
– volume: 94
  start-page: 87
  year: 2017
  end-page: 95
  ident: CR4
  article-title: Entropy based segmentation of tumor from brain mr images-a study with teaching learning based optimization
  publication-title: Pattern Recogn Lett
– ident: CR67
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  end-page: 551
  ident: CR54
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput
– volume: 54
  year: 2020
  ident: CR31
  article-title: A better balance in metaheuristic algorithms: Does it exist?
  publication-title: Swarm Evolut Comput
– volume: 120
  start-page: 103
  year: 2019
  end-page: 115
  ident: CR43
  article-title: Convolutional neural network improvement for breast cancer classification
  publication-title: Expert Syst Appl
– ident: CR11
– volume: 187
  start-page: 27
  year: 2016
  end-page: 48
  ident: CR58
  article-title: Deep learning for visual understanding: a review
  publication-title: Neurocomputing
– ident: CR57
– ident: CR32
– volume: 539
  start-page: 461
  year: 2020
  end-page: 486
  ident: CR79
  article-title: De-ada*: a novel model for breast mass classification using cross-modal pathological semantic mining and organic integration of multi-feature fusions
  publication-title: Inf Sci
– ident: CR5
– volume: 46
  start-page: 1119
  issue: 5
  year: 2020
  end-page: 1132
  ident: CR37
  article-title: Breast cancer classification in automated breast ultrasound using multiview convolutional neural network with transfer learning
  publication-title: Ultrasound Med Biol
– ident: CR81
– ident: CR64
– volume: 63
  start-page: 102192
  year: 2021
  ident: CR41
  article-title: A new transfer learning based approach to magnification dependent and independent classification of breast cancer in histopathological images
  publication-title: Biomed Signal Process Control
– volume: 98
  year: 2020
  ident: CR19
  article-title: An optimized deep learning architecture for the diagnosis of covid-19 disease based on gravitational search optimization
  publication-title: Appl Soft Comput
– volume: 8
  start-page: 125306
  year: 2020
  end-page: 125330
  ident: CR29
  article-title: An improved marine predators algorithm with fuzzy entropy for multi-level thresholding: real world example of covid-19 ct image segmentation
  publication-title: Ieee Access
– volume: 157
  start-page: 19
  year: 2018
  end-page: 30
  ident: CR35
  article-title: Deep convolutional neural networks for breast cancer screening
  publication-title: Comput Methods Prog Biomed
– volume: 52
  start-page: 185
  year: 2019
  end-page: 198
  ident: CR9
  article-title: Automated diagnosis of breast ultrasonography images using deep neural networks
  publication-title: Med Image Anal
– volume: 181
  year: 2021
  ident: CR25
  article-title: An efficient ecg arrhythmia classification method based on manta ray foraging optimization
  publication-title: Expert Syst Appl
– volume: 45
  start-page: 1
  issue: 3
  year: 2013
  end-page: 33
  ident: CR30
  article-title: Exploration and exploitation in evolutionary algorithms: a survey
  publication-title: ACM Comput Surv (CSUR)
– ident: CR66
– volume: 4
  start-page: 1
  year: 2020
  end-page: 11
  ident: CR34
  article-title: An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (mlp) and convolutional neural network (cnn)
  publication-title: Clin eHealth
– volume: 174
  year: 2021
  ident: CR26
  article-title: Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems
  publication-title: Expert Syst Appl
– ident: CR2
– volume: 9
  start-page: 343
  issue: 2
  year: 2022
  end-page: 363
  ident: CR14
  article-title: Hybrid quantum-classical convolutional neural network model for COVID-19 prediction using chest X-ray images
  publication-title: J Comput Des Eng
– volume: 8
  start-page: 2016
  year: 2016
  ident: CR71
  article-title: Curated breast imaging subset of ddsm
  publication-title: Cancer Imaging Arch
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: CR84
  article-title: The whale optimization algorithm
  publication-title: Adv Eng Softw
– volume: 204
  start-page: 106045
  year: 2021
  ident: CR42
  article-title: Multi-input convolutional neural network for breast cancer detection using thermal images and clinical data
  publication-title: Comput Methods Prog Biomed
– volume: 100
  year: 2021
  ident: CR27
  article-title: An improved manta ray foraging optimizer for cost-effective emission dispatch problems
  publication-title: Eng Appl Artif Intell
– volume: 125
  start-page: 1
  year: 2019
  end-page: 6
  ident: CR15
  article-title: A novel deep learning based framework for the detection and classification of breast cancer using transfer learning
  publication-title: Pattern Recogn Lett
– volume: 33
  start-page: 1
  year: 2021
  end-page: 18
  ident: CR22
  article-title: Enhanced harris hawks optimization with genetic operators for selection chemical descriptors and compounds activities
  publication-title: Neural Comput Appl
– ident: CR63
– volume: 33
  start-page: 1218
  year: 2020
  end-page: 1223
  ident: CR40
  article-title: Diagnostic efficiency of the breast ultrasound computer-aided prediction model based on convolutional neural network in breast cancer
  publication-title: J Digital Imaging
– volume: 32
  start-page: 10759
  issue: 14
  year: 2020
  end-page: 10771
  ident: CR21
  article-title: A modified henry gas solubility optimization for solving motif discovery problem
  publication-title: Neural Comput Appl
– ident: CR69
– volume: 191
  year: 2021
  ident: CR23
  article-title: Centroid mutation-based search and rescue optimization algorithm for feature selection and classification
  publication-title: Expert Syst Appl
– ident: CR44
– volume: 133
  start-page: 104407
  year: 2021
  ident: CR39
  article-title: Convolutional neural networks based classification of breast ultrasonography images by hybrid method with respect to benign, malignant, and normal using mrmr
  publication-title: Comput Biol Med
– ident: CR48
– ident: CR73
– volume: 30
  start-page: 449
  issue: 4
  year: 2017
  end-page: 459
  ident: CR12
  article-title: Deep learning for brain mri segmentation: state of the art and future directions
  publication-title: J Digital Imaging
– ident: CR65
– volume: 33
  start-page: 16899
  issue: 24
  year: 2021
  end-page: 16919
  ident: CR50
  article-title: Improved manta ray foraging optimization for multi-level thresholding using covid-19 ct images
  publication-title: Neural Comput Appl
– ident: CR38
– volume: 7
  start-page: 165724
  year: 2019
  end-page: 165733
  ident: CR77
  article-title: Multi-view feature fusion based four views model for mammogram classification using convolutional neural network
  publication-title: IEEE Access
– ident: CR17
– volume: 30
  start-page: 1135
  issue: 7
  year: 2019
  end-page: 1144
  ident: CR80
  article-title: Utilization of densenet201 for diagnosis of breast abnormality
  publication-title: Mach Vis Appl
– volume: 137
  start-page: 106040
  year: 2019
  ident: CR49
  article-title: A survey on new generation metaheuristic algorithms
  publication-title: Comput Ind Eng
– volume: 131
  year: 2021
  ident: CR76
  article-title: A framework for breast cancer classification using multi-dcnns
  publication-title: Comput Biol Med
– volume: 167
  start-page: 114161
  year: 2020
  ident: CR7
  article-title: Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review
  publication-title: Expert Syst Appl
– volume: 157
  start-page: 85
  year: 2018
  end-page: 94
  ident: CR75
  article-title: Simultaneous detection and classification of breast masses in digital mammograms via a deep learning yolo-based cad system
  publication-title: Comput Methods Prog Biomed
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: CR83
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Fut Gen Comput Syst
– ident: CR59
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  end-page: 2248
  ident: CR82
  article-title: Gsa: a gravitational search algorithm
  publication-title: Inf Sci
– volume: 46
  start-page: 12
  issue: 1
  year: 2018
  end-page: 32
  ident: CR8
  article-title: Automatic image segmentation method for breast cancer analysis using thermography
  publication-title: J Eng Sci
– volume: 145
  year: 2020
  ident: CR52
  article-title: Improved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection
  publication-title: Expert Syst Appl
– ident: CR20
– volume: 43
  start-page: 329
  issue: 12
  year: 2019
  ident: CR6
  article-title: Stomach deformities recognition using rank-based deep features selection
  publication-title: J Med Syst
– volume: 62
  start-page: 100841
  year: 2021
  ident: CR24
  article-title: Task scheduling in cloud computing based on meta-heuristics: review, taxonomy, open challenges, and future trends
  publication-title: Swarm Evolut Comput
– volume: 10
  start-page: 1897
  issue: 5
  year: 2020
  ident: 7445_CR56
  publication-title: Appl Sci
  doi: 10.3390/app10051897
– ident: 7445_CR81
  doi: 10.1109/ICORAS.2017.8308076
– volume: 94
  start-page: 87
  year: 2017
  ident: 7445_CR4
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2017.05.028
– ident: 7445_CR69
  doi: 10.1007/978-3-540-31865-1_25
– volume: 52
  start-page: 185
  year: 2019
  ident: 7445_CR9
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2018.12.006
– volume: 8
  start-page: 125306
  year: 2020
  ident: 7445_CR29
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2020.3007928
– volume: 539
  start-page: 461
  year: 2020
  ident: 7445_CR79
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.05.080
– volume: 46
  start-page: 1119
  issue: 5
  year: 2020
  ident: 7445_CR37
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2020.01.001
– volume: 140
  start-page: 109761
  year: 2020
  ident: 7445_CR16
  publication-title: Med Hypotheses
  doi: 10.1016/j.mehy.2020.109761
– volume: 30
  start-page: 449
  issue: 4
  year: 2017
  ident: 7445_CR12
  publication-title: J Digital Imaging
  doi: 10.1007/s10278-017-9983-4
– volume: 58
  issue: 2
  year: 2021
  ident: 7445_CR36
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2020.102439
– ident: 7445_CR48
  doi: 10.1007/978-981-13-6837-0_7
– volume: 145
  year: 2020
  ident: 7445_CR52
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.113122
– volume: 4
  start-page: 1
  year: 2020
  ident: 7445_CR34
  publication-title: Clin eHealth
  doi: 10.1016/j.ceh.2020.11.002
– ident: 7445_CR46
  doi: 10.7717/peerj.6201
– volume: 137
  start-page: 106040
  year: 2019
  ident: 7445_CR49
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2019.106040
– volume: 97
  start-page: 849
  year: 2019
  ident: 7445_CR83
  publication-title: Fut Gen Comput Syst
  doi: 10.1016/j.future.2019.02.028
– volume: 152
  year: 2020
  ident: 7445_CR28
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113377
– volume: 181
  year: 2021
  ident: 7445_CR25
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115131
– volume: 120
  start-page: 103
  year: 2019
  ident: 7445_CR43
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.11.008
– volume: 8
  start-page: 2016
  year: 2016
  ident: 7445_CR71
  publication-title: Cancer Imaging Arch
– ident: 7445_CR57
– ident: 7445_CR67
  doi: 10.1109/CVPR.2017.243
– ident: 7445_CR51
  doi: 10.1515/9780691187563
– ident: 7445_CR59
  doi: 10.1007/978-3-030-70542-8_2
– ident: 7445_CR11
  doi: 10.1002/9780470918548
– ident: 7445_CR44
– volume: 22
  start-page: 1218
  issue: 4
  year: 2017
  ident: 7445_CR13
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2731873
– volume: 167
  start-page: 114161
  year: 2020
  ident: 7445_CR7
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114161
– ident: 7445_CR65
  doi: 10.1109/CVPR.2016.90
– volume: 73
  year: 2021
  ident: 7445_CR10
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2021.102147
– volume: 47
  start-page: 45
  year: 2018
  ident: 7445_CR1
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2018.03.006
– volume: 100
  year: 2021
  ident: 7445_CR27
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2021.104155
– ident: 7445_CR66
  doi: 10.1109/CVPR.2016.308
– volume: 98
  year: 2020
  ident: 7445_CR19
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106742
– volume: 32
  start-page: 10759
  issue: 14
  year: 2020
  ident: 7445_CR21
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04611-0
– ident: 7445_CR17
  doi: 10.1007/978-981-15-5971-6_77
– ident: 7445_CR20
  doi: 10.1007/978-3-030-28917-1_1
– volume: 33
  start-page: 1218
  year: 2020
  ident: 7445_CR40
  publication-title: J Digital Imaging
  doi: 10.1007/s10278-020-00357-7
– volume: 174
  year: 2021
  ident: 7445_CR26
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.114689
– volume: 30
  start-page: 1135
  issue: 7
  year: 2019
  ident: 7445_CR80
  publication-title: Mach Vis Appl
– volume: 79
  start-page: 11013
  issue: 15
  year: 2020
  ident: 7445_CR47
  publication-title: Multimed Tools Appl
– volume: 7
  start-page: 165724
  year: 2019
  ident: 7445_CR77
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2953318
– volume: 25
  start-page: 1097
  year: 2012
  ident: 7445_CR61
  publication-title: Adv Neural Inf Process Syst
– volume: 135
  start-page: 400
  year: 2018
  ident: 7445_CR60
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2018.08.190
– volume: 157
  start-page: 85
  year: 2018
  ident: 7445_CR75
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2018.01.017
– volume: 110
  start-page: 424
  year: 2017
  ident: 7445_CR33
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2017.06.028
– volume: 157
  start-page: 19
  year: 2018
  ident: 7445_CR35
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2018.01.011
– volume: 13
  start-page: 281
  issue: 2
  year: 2012
  ident: 7445_CR18
  publication-title: J Mach Learn Res
– ident: 7445_CR38
  doi: 10.1007/s00521-020-05394-5
– volume: 90
  start-page: 15
  year: 2018
  ident: 7445_CR3
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2018.06.004
– ident: 7445_CR64
– volume: 131
  year: 2021
  ident: 7445_CR76
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104245
– volume: 125
  start-page: 1
  year: 2019
  ident: 7445_CR15
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2019.03.022
– ident: 7445_CR2
  doi: 10.1016/j.matpr.2021.03.707
– ident: 7445_CR32
  doi: 10.1109/CIMCA.2005.1631345
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 7445_CR68
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 204
  start-page: 106045
  year: 2021
  ident: 7445_CR42
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2021.106045
– volume: 95
  start-page: 51
  year: 2016
  ident: 7445_CR84
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 7445_CR82
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2009.03.004
– volume: 63
  start-page: 102192
  year: 2021
  ident: 7445_CR41
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.102192
– ident: 7445_CR70
– volume: 46
  start-page: 12
  issue: 1
  year: 2018
  ident: 7445_CR8
  publication-title: J Eng Sci
– volume: 62
  start-page: 100841
  year: 2021
  ident: 7445_CR24
  publication-title: Swarm Evolut Comput
  doi: 10.1016/j.swevo.2021.100841
– ident: 7445_CR63
– volume: 43
  start-page: 329
  issue: 12
  year: 2019
  ident: 7445_CR6
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1466-3
– volume: 45
  start-page: 1
  issue: 3
  year: 2013
  ident: 7445_CR30
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/2480741.2480752
– volume: 9
  start-page: 343
  issue: 2
  year: 2022
  ident: 7445_CR14
  publication-title: J Comput Des Eng
– volume: 191
  year: 2021
  ident: 7445_CR23
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.116235
– volume: 54
  year: 2020
  ident: 7445_CR31
  publication-title: Swarm Evolut Comput
  doi: 10.1016/j.swevo.2020.100671
– volume: 133
  start-page: 104407
  year: 2021
  ident: 7445_CR39
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104407
– volume: 197
  start-page: 221
  year: 2016
  ident: 7445_CR74
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.02.060
– volume: 33
  start-page: 1
  year: 2021
  ident: 7445_CR22
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-05991-y
– volume: 8
  start-page: 75011
  year: 2020
  ident: 7445_CR78
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2986546
– ident: 7445_CR5
  doi: 10.1117/12.2081576
– volume: 187
  start-page: 27
  year: 2016
  ident: 7445_CR58
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.116
– volume: 6
  start-page: 61677
  year: 2018
  ident: 7445_CR72
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2874767
– volume: 51
  start-page: 33
  year: 2019
  ident: 7445_CR55
  publication-title: Ecol Inform
  doi: 10.1016/j.ecoinf.2019.02.007
– volume: 9
  start-page: 611
  issue: 4
  year: 2018
  ident: 7445_CR62
  publication-title: Insights Imaging
  doi: 10.1007/s13244-018-0639-9
– volume: 90
  start-page: 484
  year: 2017
  ident: 7445_CR53
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.07.043
– ident: 7445_CR45
  doi: 10.1609/aaai.v31i1.11231
– volume: 33
  start-page: 16899
  issue: 24
  year: 2021
  ident: 7445_CR50
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06273-3
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  ident: 7445_CR54
  publication-title: Neural Comput
  doi: 10.1162/neco.1989.1.4.541
– ident: 7445_CR73
SSID ssj0004685
Score 2.5591705
Snippet Breast cancer is the second leading cause of death in women; therefore, effective early detection of this cancer can reduce its mortality rate. Breast cancer...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18015
SubjectTerms Abnormalities
Accuracy
Artificial Intelligence
Artificial neural networks
Breast cancer
Classification
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Datasets
Deep learning
Diagnosis
Image analysis
Image Processing and Computer Vision
Machine learning
Medical diagnosis
Medical imaging
Optimization
Optimization algorithms
Original
Original Article
Performance evaluation
Predators
Probability and Statistics in Computer Science
Search algorithms
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7a9ND20EfatG7TokBujcEPPbzHEBJCoTklkJuRLCkx7Npm10tpf31ntF53NwmhvRiDZVnSaDzfaF4Ah5PC-0RmPk4rYWLujY11YVBVEZriLhEChKPsHxfy_Ip_vxbXQ5ocioW5Y7-nZJ8oYGLyOUdhx0UsnsIzFFIyGGblyUYMZCi_idoKefLwfAiQebiPbSF0D1ned5AcraQv4fmy6fSvn3o63RBEZ2_g1YAg2fGK5G_hiWt24fW6OgMbmPUddMcNa_GHMKt_O8uscx0bSkTcsE3zAUPYygz5pvesoj0wZ3blf1cvGAk5y9qG1eHwAe9nmuIFWTd3lvT1BdPTm3Ze97ez93B1dnp5ch4P9RXiiivex6k3AgV4oXE100JaWaXeT7RPrFSVShKnM-OdS5TLq1xwjZof6tJGaY-wyVuT78FO0zbuI7Bckh7FLccLz7XTiBIUAYCq4ET2CNL1gpfVkHycamBMyzFtciBSiUQqA5FKEcG38Z1ulXrj0db7azqWAxsuygyHjAopQrwIDsbHyEBkFdGNa5fYRiopEPcpHsGHFdnHz-VCTgqV4fDV1oYYG1By7u0nTX0bknSjGiwQSkdwtN46f4f12CyOxu31D5P-9H-9f4YXGXFB8EXch51-vnRfEFP15mtgpj-y_hY5
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4UN4NFGQkbjTbbOJH9rgCqgqJigMrlVPkZxuxm0S7WVX01zPOiy5FFYhLFMlOYjuf7W_sb8YAb6epcxGPXTjRTIXUKRPKVKGpwqT3u0QK0Cxlfz7lJ3P66Yyd7cCH3hemUbv3W5KtT4OP0lTUR5VxR4Pjm1_NRDM49spJSlnIxph8B3Y5Q0Y-gt356ZfZtybMHvXCnlZnT5MkRHinne_Mn1-0PT_dIJ03tZPDBup9uLspKvnjUi4W1-ao4z2wfe1aacr38aZWY331W-DH_63-Q3jQkVgya1H3CHZs8Rj2-gMiSDdePIFqVpASx6RlfmUNMdZWpDul4pxc38EgyJyJ8vL4mmgPwxUxrQQwXxM_zxpSFiRv1j_wfim9yyKpVtb4JYM1kYvzcpXXF8unMD_--PX9Sdgd8RBqKmgdTpxiyCFSGXMcXLjheuLcVLrIcKFFFFkZK2dtJGyiE0YlGp9ozishHTI3Z1TyDEZFWdh9IAn3phw1FC80kVYiURGeg-iUeuQFMOl_bKa7-Of-GI5FNkRubpo1w2bNmmbNWADvhmeqNvrHrbkPerxk3UiwzmIsMtrEyDIDeDMkYx_2GzOysOUG83DBGVJPQQN43sJr-FzC-DQVMRZfbAFvyODjg2-nFPlFEyccLXGGbD6Awx5Rv4p1Wy0OBxj_RaVf_Fv2l3Av9rht5JAHMKpXG_sKaV2tXne99ifPF0K7
  priority: 102
  providerName: Unpaywall
Title An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm
URI https://link.springer.com/article/10.1007/s00521-022-07445-5
https://www.ncbi.nlm.nih.gov/pubmed/35698722
https://www.proquest.com/docview/2717191623
https://www.proquest.com/docview/2676556074
https://pubmed.ncbi.nlm.nih.gov/PMC9175533
https://link.springer.com/content/pdf/10.1007/s00521-022-07445-5.pdf
UnpaywallVersion publishedVersion
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_a5GHbw74_vHVBg72tZo4tyc7DGF5IWjYWyligfTKyJbWBxPbywdj--t05tptQCHsxRpax5LvT_U66D4D3g8haT_rW7WcidblNtauiFE0VoSjuEiFAtZX9fSLPp_zrpbg8gkkTC0Nulc2aWC3Uushoj_yjj3YH2haorT-Xv1yqGkWnq00JDVWXVtCfqhRjx9D1KTNWB7pfRpOLHzuRklWRTrRpyN-HB3UYTRVMRzuk2OqTNybnwhX7quoO_rzrRtmepT6Ae5u8VH9-q_l8R12NH8PDGmeyeMsYT-DI5E_hUVPDgdUi_QzKOGcFLhuL2V-jmTamZHUhiWu2e8jAENyylDzY1ywjTlkyvfXSm60YqULNipzNqi0KvF8oiipk5dJosupXTM2v8W-ubxbPYToe_Ryeu3UVBjfjIV-7fZsKVPOR8iXKv9Qy61s7UNbTMsxCzzPKT60xXmiCLBBcIZ3Q4k5DZRFcWZ0GL6CTF7l5BSyQZG1xzfHCA2UUYomQYEIWcWIOB_rND0-yOkU5VcqYJ21y5YpICRIpqYiUCAc-tO-U2wQdB3ufNHRMamFdJbes5cC79jGKGZ2dqNwUG-wjQykQHYbcgZdbsrefC4QcRKGPww_3GKLtQCm895_ks5sqlTcaywIBtwOnDevcDuvQLE5b9vqPSb8-POk3cN8nrq88FE-gs15uzFtEWuu0B8fR-KwH3fjs6tuoVwsTtg7lEK9TP8a26eQivvoHyRMp8w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lA48H4YCiwSnKiFY-8jOVSoQKuUthFCrdSbWXt320iJbRJHVflx_DZmN2s3UaWISy-RFW_iXc_szDez8wB43-saE_HYhJ2cZSE1mQplN0NThUmbd4kQwLmyjwe8f0q_n7GzNfjb5MLYsMpGJjpBrcrc-sg_xWh3oG2B2vpz9Tu0XaPs6WrTQkP61gpqx5UY84kdh_rqEk246c7BN6T3hzje3zv52g99l4Ewp4LWYcdkDNVYV8Yc-ZsrnneM6UkTKS5yEUVaxpnROhI6yRNGJc4DLcpMSIPgwagswf-9Axs0oT00_ja-7A1-_FzIzHRNQdGGsvFFNPFpOy55z3pk8dvYRn9SykK2rBpv4N2bYZvt2e092JwVlby6lKPRgnrcfwj3Pa4lu3NGfARrungMD5qeEcSLkCdQ7RakRDE1Hv7RiiitK-IbV5yTxUMNgmCaZDZivia55cwJUfOowOGUWNWrSFmQoXOJ4PVY2ixGUk20sl6EKZGjc6RefTF-Cqe3Qo9nsF6UhX4BJOHWuqOK4gdNpJaIXYSFJXmXWmYMoNO88DT3JdFtZ45R2hZzdkRKkUipI1LKAvjY_qaaFwRZOXqroWPqhcM0vWblAN61t3Fb27MaWehyhmO44AzRqKABPJ-TvX1cwnivK2KcvlhiiHaALRm-fKcYXrjS4WicMwT4AWw3rHM9rVWr2G7Z6z8W_XL1ot_CZv_k-Cg9OhgcvoK7sd0BLjpyC9bryUy_RpRXZ2_8ViLw67Z37z-0JWFx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwEB7BInE8cB-BBYzEGxttmvhIH1eFarlWPLDSvkV2bO9Gap2oTYXg1zN2DlotWsFLFSlO6mRmMt9nzwHwdppbm_DUxpOSqZhapWOZK6QqTPq8S4QAYSn76wk_PqWfztjZVhZ_iHYftiS7nAZfpcm1h422h2Pim1_NRBqc-shJSlnMrsMNit7N9zCY8dlWZmRoyokcxsf30KxPm_n7PXZd0yW8eTlsctw7vQO3Nq6RP3_IxWLLPc3vw90eV5KjThEewDXjHsK9oWcD6U34ETRHjtT4mVhWv4wm2piG9I0jzsn2pgJBMEuUj1hvSek1Y0V0F5VXrYl3fZrUjlRhSQKPl9JnEZJmZbRn8WsiF-f1qmovlo_hdP7h--w47rsuxCUVtI0nVjF067lMOdo717ycWDuVNtFclCJJjEyVNSYRJiszRiXyQWTYSkiLYMpqlT2BPVc78wxIxj27opriD82kkYgdhIcFZU69MkQwGV54UfYlyX1njEUxFlMOQipQSEUQUsEieDde03QFOa4cvT_IseiNc12kOGWkqQj8Ingznkaz8nsl0pl6g2O44AzRoKARPO3EPv5dxvg0FylOX-woxDjAl-zePeOqi1C6G8kxQ4AdwcGgOn-mddVTHIzq9Q8P_fz_7v4abn57Py--fDz5_AJup94gQrDiPuy1q415iaCrVa-CXf0GCo0hbw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4UN4NFGQkbjTbbOJH9rgCqgqJigMrlVPkZxuxm0S7WVX01zPOiy5FFYhLFMlOYjuf7W_sb8YAb6epcxGPXTjRTIXUKRPKVKGpwqT3u0QK0Cxlfz7lJ3P66Yyd7cCH3hemUbv3W5KtT4OP0lTUR5VxR4Pjm1_NRDM49spJSlnIxph8B3Y5Q0Y-gt356ZfZtybMHvXCnlZnT5MkRHinne_Mn1-0PT_dIJ03tZPDBup9uLspKvnjUi4W1-ao4z2wfe1aacr38aZWY331W-DH_63-Q3jQkVgya1H3CHZs8Rj2-gMiSDdePIFqVpASx6RlfmUNMdZWpDul4pxc38EgyJyJ8vL4mmgPwxUxrQQwXxM_zxpSFiRv1j_wfim9yyKpVtb4JYM1kYvzcpXXF8unMD_--PX9Sdgd8RBqKmgdTpxiyCFSGXMcXLjheuLcVLrIcKFFFFkZK2dtJGyiE0YlGp9ozishHTI3Z1TyDEZFWdh9IAn3phw1FC80kVYiURGeg-iUeuQFMOl_bKa7-Of-GI5FNkRubpo1w2bNmmbNWADvhmeqNvrHrbkPerxk3UiwzmIsMtrEyDIDeDMkYx_2GzOysOUG83DBGVJPQQN43sJr-FzC-DQVMRZfbAFvyODjg2-nFPlFEyccLXGGbD6Awx5Rv4p1Wy0OBxj_RaVf_Fv2l3Av9rht5JAHMKpXG_sKaV2tXne99ifPF0K7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+deep+learning+architecture+for+breast+cancer+diagnosis+based+on+improved+marine+predators+algorithm&rft.jtitle=Neural+computing+%26+applications&rft.au=Houssein%2C+Essam+H&rft.au=Emam%2C+Marwa+M&rft.au=Ali%2C+Abdelmgeid+A&rft.date=2022-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=34&rft.issue=20&rft.spage=18015&rft.epage=18033&rft_id=info:doi/10.1007%2Fs00521-022-07445-5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon