Post-imaging pulmonary nodule mathematical prediction models: are they clinically relevant?
Objectives Post-imaging mathematical prediction models (MPMs) provide guidance for the management of solid pulmonary nodules by providing a lung cancer risk score from demographic and radiologists-indicated imaging characteristics. We hypothesized calibrating the MPM risk score threshold to a local...
Saved in:
Published in | European radiology Vol. 29; no. 10; pp. 5367 - 5377 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0938-7994 1432-1084 1432-1084 |
DOI | 10.1007/s00330-019-06168-x |
Cover
Abstract | Objectives
Post-imaging mathematical prediction models (MPMs) provide guidance for the management of solid pulmonary nodules by providing a lung cancer risk score from demographic and radiologists-indicated imaging characteristics. We hypothesized calibrating the MPM risk score threshold to a local study cohort would result in improved performance over the original recommended MPM thresholds. We compared the pre- and post-calibration performance of four MPM models and determined if improvement in MPM prediction occurs as nodules are imaged longitudinally.
Materials and methods
A common cohort of 317 individuals with computed tomography-detected, solid nodules (80 malignant, 237 benign) were used to evaluate the MPM performance. We created a web-based application for this study that allows others to easily calibrate thresholds and analyze the performance of MPMs on their local cohort. Thirty patients with repeated imaging were tested for improved performance longitudinally.
Results
Using calibrated thresholds, Mayo Clinic and Brock University (BU) MPMs performed the best (AUC = 0.63, 0.61) compared to the Veteran’s Affairs (0.51) and Peking University (0.55). Only BU had consensus with the original MPM threshold; the other calibrated thresholds improved MPM accuracy. No significant improvements in accuracy were found longitudinally between time points.
Conclusions
Calibration to a common cohort can select the best-performing MPM for your institution. Without calibration, BU has the most stable performance in solid nodules ≥ 8 mm but has only moderate potential to refine subjects into appropriate workup. Application of MPM is recommended only at initial evaluation as no increase in accuracy was achieved over time.
Key Points
• Post-imaging lung cancer risk mathematical predication models (MPMs) perform poorly on local populations without calibration.
• An application is provided to facilitate calibration to new study cohorts: the Mayo Clinic model, the U.S. Department of Veteran’s Affairs model, the Brock University model, and the Peking University model.
• No significant improvement in risk prediction occurred in nodules with repeated imaging sessions, indicating the potential value of risk prediction application is limited to the initial evaluation. |
---|---|
AbstractList | ObjectivesPost-imaging mathematical prediction models (MPMs) provide guidance for the management of solid pulmonary nodules by providing a lung cancer risk score from demographic and radiologists-indicated imaging characteristics. We hypothesized calibrating the MPM risk score threshold to a local study cohort would result in improved performance over the original recommended MPM thresholds. We compared the pre- and post-calibration performance of four MPM models and determined if improvement in MPM prediction occurs as nodules are imaged longitudinally.Materials and methodsA common cohort of 317 individuals with computed tomography-detected, solid nodules (80 malignant, 237 benign) were used to evaluate the MPM performance. We created a web-based application for this study that allows others to easily calibrate thresholds and analyze the performance of MPMs on their local cohort. Thirty patients with repeated imaging were tested for improved performance longitudinally.ResultsUsing calibrated thresholds, Mayo Clinic and Brock University (BU) MPMs performed the best (AUC = 0.63, 0.61) compared to the Veteran’s Affairs (0.51) and Peking University (0.55). Only BU had consensus with the original MPM threshold; the other calibrated thresholds improved MPM accuracy. No significant improvements in accuracy were found longitudinally between time points.ConclusionsCalibration to a common cohort can select the best-performing MPM for your institution. Without calibration, BU has the most stable performance in solid nodules ≥ 8 mm but has only moderate potential to refine subjects into appropriate workup. Application of MPM is recommended only at initial evaluation as no increase in accuracy was achieved over time.Key Points• Post-imaging lung cancer risk mathematical predication models (MPMs) perform poorly on local populations without calibration.• An application is provided to facilitate calibration to new study cohorts: the Mayo Clinic model, the U.S. Department of Veteran’s Affairs model, the Brock University model, and the Peking University model.• No significant improvement in risk prediction occurred in nodules with repeated imaging sessions, indicating the potential value of risk prediction application is limited to the initial evaluation. Post-imaging mathematical prediction models (MPMs) provide guidance for the management of solid pulmonary nodules by providing a lung cancer risk score from demographic and radiologists-indicated imaging characteristics. We hypothesized calibrating the MPM risk score threshold to a local study cohort would result in improved performance over the original recommended MPM thresholds. We compared the pre- and post-calibration performance of four MPM models and determined if improvement in MPM prediction occurs as nodules are imaged longitudinally.OBJECTIVESPost-imaging mathematical prediction models (MPMs) provide guidance for the management of solid pulmonary nodules by providing a lung cancer risk score from demographic and radiologists-indicated imaging characteristics. We hypothesized calibrating the MPM risk score threshold to a local study cohort would result in improved performance over the original recommended MPM thresholds. We compared the pre- and post-calibration performance of four MPM models and determined if improvement in MPM prediction occurs as nodules are imaged longitudinally.A common cohort of 317 individuals with computed tomography-detected, solid nodules (80 malignant, 237 benign) were used to evaluate the MPM performance. We created a web-based application for this study that allows others to easily calibrate thresholds and analyze the performance of MPMs on their local cohort. Thirty patients with repeated imaging were tested for improved performance longitudinally.MATERIALS AND METHODSA common cohort of 317 individuals with computed tomography-detected, solid nodules (80 malignant, 237 benign) were used to evaluate the MPM performance. We created a web-based application for this study that allows others to easily calibrate thresholds and analyze the performance of MPMs on their local cohort. Thirty patients with repeated imaging were tested for improved performance longitudinally.Using calibrated thresholds, Mayo Clinic and Brock University (BU) MPMs performed the best (AUC = 0.63, 0.61) compared to the Veteran's Affairs (0.51) and Peking University (0.55). Only BU had consensus with the original MPM threshold; the other calibrated thresholds improved MPM accuracy. No significant improvements in accuracy were found longitudinally between time points.RESULTSUsing calibrated thresholds, Mayo Clinic and Brock University (BU) MPMs performed the best (AUC = 0.63, 0.61) compared to the Veteran's Affairs (0.51) and Peking University (0.55). Only BU had consensus with the original MPM threshold; the other calibrated thresholds improved MPM accuracy. No significant improvements in accuracy were found longitudinally between time points.Calibration to a common cohort can select the best-performing MPM for your institution. Without calibration, BU has the most stable performance in solid nodules ≥ 8 mm but has only moderate potential to refine subjects into appropriate workup. Application of MPM is recommended only at initial evaluation as no increase in accuracy was achieved over time.CONCLUSIONSCalibration to a common cohort can select the best-performing MPM for your institution. Without calibration, BU has the most stable performance in solid nodules ≥ 8 mm but has only moderate potential to refine subjects into appropriate workup. Application of MPM is recommended only at initial evaluation as no increase in accuracy was achieved over time.• Post-imaging lung cancer risk mathematical predication models (MPMs) perform poorly on local populations without calibration. • An application is provided to facilitate calibration to new study cohorts: the Mayo Clinic model, the U.S. Department of Veteran's Affairs model, the Brock University model, and the Peking University model. • No significant improvement in risk prediction occurred in nodules with repeated imaging sessions, indicating the potential value of risk prediction application is limited to the initial evaluation.KEY POINTS• Post-imaging lung cancer risk mathematical predication models (MPMs) perform poorly on local populations without calibration. • An application is provided to facilitate calibration to new study cohorts: the Mayo Clinic model, the U.S. Department of Veteran's Affairs model, the Brock University model, and the Peking University model. • No significant improvement in risk prediction occurred in nodules with repeated imaging sessions, indicating the potential value of risk prediction application is limited to the initial evaluation. Post-imaging mathematical prediction models (MPMs) provide guidance for the management of solid pulmonary nodules by providing a lung cancer risk score from demographic and radiologists-indicated imaging characteristics. We hypothesized calibrating the MPM risk score threshold to a local study cohort would result in improved performance over the original recommended MPM thresholds. We compared the pre- and post-calibration performance of four MPM models and determined if improvement in MPM prediction occurs as nodules are imaged longitudinally. A common cohort of 317 individuals with computed tomography-detected, solid nodules (80 malignant, 237 benign) were used to evaluate the MPM performance. We created a web-based application for this study that allows others to easily calibrate thresholds and analyze the performance of MPMs on their local cohort. Thirty patients with repeated imaging were tested for improved performance longitudinally. Using calibrated thresholds, Mayo Clinic and Brock University (BU) MPMs performed the best (AUC = 0.63, 0.61) compared to the Veteran's Affairs (0.51) and Peking University (0.55). Only BU had consensus with the original MPM threshold; the other calibrated thresholds improved MPM accuracy. No significant improvements in accuracy were found longitudinally between time points. Calibration to a common cohort can select the best-performing MPM for your institution. Without calibration, BU has the most stable performance in solid nodules ≥ 8 mm but has only moderate potential to refine subjects into appropriate workup. Application of MPM is recommended only at initial evaluation as no increase in accuracy was achieved over time. • Post-imaging lung cancer risk mathematical predication models (MPMs) perform poorly on local populations without calibration. • An application is provided to facilitate calibration to new study cohorts: the Mayo Clinic model, the U.S. Department of Veteran's Affairs model, the Brock University model, and the Peking University model. • No significant improvement in risk prediction occurred in nodules with repeated imaging sessions, indicating the potential value of risk prediction application is limited to the initial evaluation. Objectives Post-imaging mathematical prediction models (MPMs) provide guidance for the management of solid pulmonary nodules by providing a lung cancer risk score from demographic and radiologists-indicated imaging characteristics. We hypothesized calibrating the MPM risk score threshold to a local study cohort would result in improved performance over the original recommended MPM thresholds. We compared the pre- and post-calibration performance of four MPM models and determined if improvement in MPM prediction occurs as nodules are imaged longitudinally. Materials and methods A common cohort of 317 individuals with computed tomography-detected, solid nodules (80 malignant, 237 benign) were used to evaluate the MPM performance. We created a web-based application for this study that allows others to easily calibrate thresholds and analyze the performance of MPMs on their local cohort. Thirty patients with repeated imaging were tested for improved performance longitudinally. Results Using calibrated thresholds, Mayo Clinic and Brock University (BU) MPMs performed the best (AUC = 0.63, 0.61) compared to the Veteran’s Affairs (0.51) and Peking University (0.55). Only BU had consensus with the original MPM threshold; the other calibrated thresholds improved MPM accuracy. No significant improvements in accuracy were found longitudinally between time points. Conclusions Calibration to a common cohort can select the best-performing MPM for your institution. Without calibration, BU has the most stable performance in solid nodules ≥ 8 mm but has only moderate potential to refine subjects into appropriate workup. Application of MPM is recommended only at initial evaluation as no increase in accuracy was achieved over time. Key Points • Post-imaging lung cancer risk mathematical predication models (MPMs) perform poorly on local populations without calibration. • An application is provided to facilitate calibration to new study cohorts: the Mayo Clinic model, the U.S. Department of Veteran’s Affairs model, the Brock University model, and the Peking University model. • No significant improvement in risk prediction occurred in nodules with repeated imaging sessions, indicating the potential value of risk prediction application is limited to the initial evaluation. |
Author | Koehn, Nicholas Sanchez, Rolando Dilger, Samantha K. N. Hammond, Emily Larson, Jared Hoffman, Richard M. Mullan, Brian Schwartz, Ann Uthoff, Johanna Sieren, Jessica C. |
AuthorAffiliation | 1 Department of Radiology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA 3 Karmanos Cancer Institute, Wayne State University, 4100 John R St, Detroit, 48201, MI 4 Department of Internal Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA 2 Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center, Iowa City, IA, 52242, USA |
AuthorAffiliation_xml | – name: 2 Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center, Iowa City, IA, 52242, USA – name: 3 Karmanos Cancer Institute, Wayne State University, 4100 John R St, Detroit, 48201, MI – name: 1 Department of Radiology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA – name: 4 Department of Internal Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA |
Author_xml | – sequence: 1 givenname: Johanna surname: Uthoff fullname: Uthoff, Johanna organization: Department of Radiology, University of Iowa, Department of Biomedical Engineering, University of Iowa – sequence: 2 givenname: Nicholas surname: Koehn fullname: Koehn, Nicholas organization: Department of Radiology, University of Iowa – sequence: 3 givenname: Jared surname: Larson fullname: Larson, Jared organization: Department of Radiology, University of Iowa – sequence: 4 givenname: Samantha K. N. surname: Dilger fullname: Dilger, Samantha K. N. organization: Department of Radiology, University of Iowa, Department of Biomedical Engineering, University of Iowa – sequence: 5 givenname: Emily surname: Hammond fullname: Hammond, Emily organization: Department of Radiology, University of Iowa, Department of Biomedical Engineering, University of Iowa – sequence: 6 givenname: Ann surname: Schwartz fullname: Schwartz, Ann organization: Karmanos Cancer Institute, Wayne State University – sequence: 7 givenname: Brian surname: Mullan fullname: Mullan, Brian organization: Department of Radiology, University of Iowa – sequence: 8 givenname: Rolando surname: Sanchez fullname: Sanchez, Rolando organization: Department of Internal Medicine, University of Iowa – sequence: 9 givenname: Richard M. surname: Hoffman fullname: Hoffman, Richard M. organization: Department of Internal Medicine, University of Iowa – sequence: 10 givenname: Jessica C. surname: Sieren fullname: Sieren, Jessica C. email: jessica-sieren@uiowa.edu organization: Department of Radiology, University of Iowa, Department of Biomedical Engineering, University of Iowa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30937590$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFv1DAQhS1URLeFP8ABReLCJTCOk9jhQIWqFpAqwQFOHCzHmWxdOXawk9L8e5zuQqGHCskaH-Z7ozdvjsiB8w4JeU7hNQXgbyIAY5ADbXKoaS3ym0dkQ0tW5BREeUA20DCR86YpD8lRjFcA0NCSPyGHLHV41cCGfP_i45SbQW2N22bjbAfvVFgy57vZYjao6RJTMVrZbAzYGT0Z77LBd2jj20wFzBKxZNoat0J2yQJavFZuOnlKHvfKRny2_4_Jt_Ozr6cf84vPHz6dvr_IdcnLKac940hb3TalwFq1yVzNO8EUaKBKia7tUdSFKnm3uu76SoiWQ880VFWNyI4J282d3aiWn8mEHENaKSySglyjkruoZIpK3kYlb5Lq3U41zu2AnUY3BXWn9MrIfzvOXMqtv5Y1p7wqaBrwaj8g-B8zxkkOJmq0Vjn0c5RFAelV_BZ9eQ-98nNwKZSVomXVUKgS9eJvR3-s_L5WAsQO0MHHGLCX2kxqPUgyaOzD2xb3pP8V0T7YmGC3xXBn-wHVL5bVy4Y |
CitedBy_id | crossref_primary_10_1183_13993003_02485_2020 crossref_primary_10_1016_j_lungcan_2020_07_007 crossref_primary_10_1007_s13304_024_01901_8 crossref_primary_10_1016_j_thorsurg_2023_03_002 crossref_primary_10_1111_1759_7714_14333 crossref_primary_10_1016_j_jtocrr_2022_100299 |
Cites_doi | 10.1007/s00268-012-1449-8 10.1117/1.JMI.2.4.041004 10.1148/radiol.2017161659 10.1016/j.cllc.2015.11.007 10.1136/thoraxjnl-2015-207221 10.1016/j.chest.2016.07.028 10.3322/caac.21387 10.1056/NEJMoa1214726 10.1007/s00330-017-4767-2 10.1016/j.lungcan.2015.03.018 10.1007/BF02295996 10.1007/s10278-009-9185-9 10.1378/chest.128.4.2490 10.1136/thoraxjnl-2015-207168 10.1378/chest.12-2351 10.1378/chest.13-0708 10.1016/j.tranon.2015.01.001 10.1007/s11548-017-1605-6 10.4065/74.4.319 10.1007/s10278-015-9857-6 10.7326/M14-2086 10.1001/archinte.1997.00440290031002 10.3109/15412550903499522 10.1118/1.3140589 10.1016/j.compbiomed.2017.04.006 10.1016/j.lungcan.2015.05.015 10.1136/thoraxjnl-2017-211372 10.1001/jamasurg.2017.4878 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 10.1016/j.acra.2016.11.022 10.1158/1055-9965.EPI-16-0176 10.1378/chest.06-1261 10.1067/j.cpradiol.2017.04.003 |
ContentType | Journal Article |
Copyright | European Society of Radiology 2019 European Radiology is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: European Society of Radiology 2019 – notice: European Radiology is a copyright of Springer, (2019). All Rights Reserved. |
CorporateAuthor | for the COPDGene Investigators COPDGene Investigators |
CorporateAuthor_xml | – name: for the COPDGene Investigators – name: COPDGene Investigators |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
DOI | 10.1007/s00330-019-06168-x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1432-1084 |
EndPage | 5377 |
ExternalDocumentID | oai:pubmedcentral.nih.gov:6717521 PMC6717521 30937590 10_1007_s00330_019_06168_x |
Genre | Journal Article Comparative Study Observational Study |
GrantInformation_xml | – fundername: National Heart, Lung, and Blood Institute grantid: U01-HL089897; U01HL089856 funderid: http://dx.doi.org/10.13039/100000050 – fundername: American Cancer Society grantid: IGR-77-004-34 funderid: http://dx.doi.org/10.13039/100000048 – fundername: National Institutes of Health grantid: R01CA141769; P30CA022453; HHSN261201300011I funderid: http://dx.doi.org/10.13039/100000002 – fundername: NIEHS NIH HHS grantid: P30 ES005605 – fundername: NHLBI NIH HHS grantid: U01 HL089897 – fundername: NHLBI NIH HHS grantid: R01 HL089856 – fundername: NIH HHS grantid: HHSN261201300011I – fundername: NCI NIH HHS grantid: R01 CA141769 – fundername: American Cancer Society grantid: IGR-77-004-34 – fundername: NCI NIH HHS grantid: P30 CA086862 – fundername: NHLBI NIH HHS grantid: U01 HL089856 – fundername: NIH HHS grantid: R01CA141769 – fundername: NIH HHS grantid: S10 OD018526 |
GroupedDBID | --- -53 -5E -5G -BR -EM -~C .86 .VR 04C 06C 06D 0R~ 0VY 1N0 203 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 36B 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 6PF 7RV 7X7 8AO 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTKH ABTMW ABUWG ABUWZ ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHVE ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADOJX ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFJLC AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECF ECT EIHBH EIOEI EJD EMB EMOBN ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAS LK8 LLZTM M1P M4Y M7P MA- N9A NAPCQ NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R89 R9I RHV RNS ROL RPX RRX RSV S16 S27 S37 S3B SAP SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Y Z7Z Z82 Z83 Z85 Z87 Z88 Z8M Z8O Z8R Z8S Z8T Z8V Z8W Z8Z Z91 Z92 ZMTXR ZOVNA ~EX -Y2 1SB 2.D 28- 2P1 2VQ 53G 5QI 88E 8FI 8FJ AANXM AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ACUDM ADHKG ADKFA AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CCPQU CITATION COF EN4 GRRUI H13 HMCUK KOW N2Q NDZJH O9- OVD PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO R4E RNI RZK S1Z S26 S28 SCLPG SDE T16 TEORI UDS CGR CUY CVF ECM EIF NPM RIG 3V. 7QO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c474t-1f37e1bcb948e6ab30967d83a0c01aa8dbfe862a47d9375df588b70f3c0556ee3 |
IEDL.DBID | 8FG |
ISSN | 0938-7994 1432-1084 |
IngestDate | Wed Aug 20 00:14:00 EDT 2025 Thu Aug 21 14:05:05 EDT 2025 Fri Sep 05 04:17:07 EDT 2025 Fri Jul 25 19:03:35 EDT 2025 Mon Jul 21 05:43:56 EDT 2025 Wed Oct 01 03:47:28 EDT 2025 Thu Apr 24 23:12:38 EDT 2025 Fri Feb 21 02:33:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Logistic models Tomography, x-ray computed Risk assessment Area under the curve Lung neoplasms |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-1f37e1bcb948e6ab30967d83a0c01aa8dbfe862a47d9375df588b70f3c0556ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6717521 |
PMID | 30937590 |
PQID | 2201459105 |
PQPubID | 54162 |
PageCount | 11 |
ParticipantIDs | unpaywall_primary_10_1007_s00330_019_06168_x pubmedcentral_primary_oai_pubmedcentral_nih_gov_6717521 proquest_miscellaneous_2202205721 proquest_journals_2201459105 pubmed_primary_30937590 crossref_citationtrail_10_1007_s00330_019_06168_x crossref_primary_10_1007_s00330_019_06168_x springer_journals_10_1007_s00330_019_06168_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | European radiology |
PublicationTitleAbbrev | Eur Radiol |
PublicationTitleAlternate | Eur Radiol |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | McNemar (CR26) 1947; 12 Lin, Huang, Wang, Luo, Yang, Liu (CR29) 2017; 24 van Riel, Ciompi, Jacobs (CR7) 2017; 27 Siegel, Miller, Jemal (CR1) 2017; 67 Li, Wang (CR12) 2012; 36 MacMahon, Naidich, Goo (CR2) 2017; 284 CR15 Cummings, Lillington, Richard (CR22) 1986; 134 Dilger, Uthoff, Judisch (CR31) 2015; 2 Herder, van Tinteren, Golding (CR13) 2005; 128 Al-Ameri, Malhotra, Thygesen (CR16) 2015; 89 Pinsky, Gierada, Black (CR6) 2015; 162 CR33 CR10 Zhu, Tan, Hua, Wang, Zhang, Zhang (CR37) 2010; 23 Mehta, Ravenel, Shaftman (CR17) 2014; 145 Youden (CR24) 1950; 3 Mehta, Mohammed, Jantz (CR5) 2017; 151 Maiga, Deppen, Massion (CR30) 2018; 153 Sun, Zheng, Qian (CR35) 2017; 89 Baldwin, Callister (CR14) 2015; 70 Gray, Teare, Stevens, Archer (CR8) 2016; 17 Callister, Baldwin, Akram (CR27) 2015; 70 Swensen, Silverstein, Ilstrup, Schleck, Edell (CR9) 1997; 157 CR3 Dhara, Mukhopadhyay, Dutta, Garg, Khandelwal (CR32) 2016; 29 Way, Sahiner, Chan (CR36) 2009; 36 Swensen, Silverstein, Edell (CR21) 1999; 74 McNitt-Gray, Kim, Zhao (CR28) 2015; 8 Nibali, He, Wollersheim (CR34) 2017; 12 CR25 CR20 Perandini, Soardi, Motton, Montemezzi (CR18) 2015; 90 Gould, Donington, Lynch (CR4) 2013; 143 Regan, Hokanson, Murphy (CR19) 2010; 7 Chung, Mets, Gerke (CR23) 2018; 73 McWilliams, Tammemagi, Mayo (CR11) 2013; 369 PF Pinsky (6168_CR6) 2015; 162 RL Siegel (6168_CR1) 2017; 67 HJ Mehta (6168_CR17) 2014; 145 A Nibali (6168_CR34) 2017; 12 SJ van Riel (6168_CR7) 2017; 27 SJ Swensen (6168_CR21) 1999; 74 EP Gray (6168_CR8) 2016; 17 H Lin (6168_CR29) 2017; 24 S Perandini (6168_CR18) 2015; 90 HJ Mehta (6168_CR5) 2017; 151 6168_CR33 Y Zhu (6168_CR37) 2010; 23 6168_CR10 6168_CR3 ME Callister (6168_CR27) 2015; 70 6168_CR15 EA Regan (6168_CR19) 2010; 7 TW Way (6168_CR36) 2009; 36 AK Dhara (6168_CR32) 2016; 29 A Al-Ameri (6168_CR16) 2015; 89 DR Baldwin (6168_CR14) 2015; 70 SR Cummings (6168_CR22) 1986; 134 W Sun (6168_CR35) 2017; 89 H MacMahon (6168_CR2) 2017; 284 GJ Herder (6168_CR13) 2005; 128 MF McNitt-Gray (6168_CR28) 2015; 8 6168_CR20 WJ Youden (6168_CR24) 1950; 3 MK Gould (6168_CR4) 2013; 143 6168_CR25 Y Li (6168_CR12) 2012; 36 AW Maiga (6168_CR30) 2018; 153 SK Dilger (6168_CR31) 2015; 2 A McWilliams (6168_CR11) 2013; 369 Q McNemar (6168_CR26) 1947; 12 SJ Swensen (6168_CR9) 1997; 157 K Chung (6168_CR23) 2018; 73 |
References_xml | – volume: 36 start-page: 830 year: 2012 end-page: 835 ident: CR12 article-title: A mathematical model for predicting malignancy of solitary pulmonary nodules publication-title: World J Surg doi: 10.1007/s00268-012-1449-8 – volume: 2 start-page: 041004 year: 2015 ident: CR31 article-title: Improved pulmonary nodule classification utilizing quantitative lung parenchyma features publication-title: J Med Imaging (Bellingham) doi: 10.1117/1.JMI.2.4.041004 – volume: 284 start-page: 228 year: 2017 end-page: 243 ident: CR2 article-title: Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society 2017 publication-title: Radiology doi: 10.1148/radiol.2017161659 – volume: 17 start-page: 95 year: 2016 end-page: 106 ident: CR8 article-title: Risk prediction models for lung cancer: a systematic review publication-title: Clin Lung Cancer doi: 10.1016/j.cllc.2015.11.007 – volume: 70 start-page: 794 year: 2015 end-page: 798 ident: CR14 article-title: The British Thoracic Society guidelines on the investigation and management of pulmonary nodules publication-title: Thorax doi: 10.1136/thoraxjnl-2015-207221 – volume: 151 start-page: 539 year: 2017 end-page: 543 ident: CR5 article-title: The American College of Radiology Lung Imaging Reporting and Data System: potential drawbacks and need for revision publication-title: Chest doi: 10.1016/j.chest.2016.07.028 – volume: 67 start-page: 7 year: 2017 end-page: 30 ident: CR1 article-title: Cancer statistics, 2017 publication-title: CA Cancer J Clin doi: 10.3322/caac.21387 – volume: 369 start-page: 910 year: 2013 end-page: 919 ident: CR11 article-title: Probability of cancer in pulmonary nodules detected on first screening CT publication-title: N Engl J Med doi: 10.1056/NEJMoa1214726 – ident: CR10 – volume: 27 start-page: 4019 year: 2017 end-page: 4029 ident: CR7 article-title: Malignancy risk estimation of screen-detected nodules at baseline CT: comparison of the PanCan model, Lung-RADS and NCCN guidelines publication-title: Eur Radiol doi: 10.1007/s00330-017-4767-2 – ident: CR33 – volume: 89 start-page: 27 year: 2015 end-page: 30 ident: CR16 article-title: Risk of malignancy in pulmonary nodules: a validation study of four prediction models publication-title: Lung Cancer doi: 10.1016/j.lungcan.2015.03.018 – volume: 12 start-page: 153 year: 1947 end-page: 157 ident: CR26 article-title: Note on the sampling error of the difference between correlated proportions or percentages publication-title: Psychometrika doi: 10.1007/BF02295996 – volume: 23 start-page: 51 year: 2010 end-page: 65 ident: CR37 article-title: Feature selection and performance evaluation of support vector machine (SVM)-based classifier for differentiating benign and malignant pulmonary nodules by computed tomography publication-title: J Digit Imaging doi: 10.1007/s10278-009-9185-9 – volume: 128 start-page: 2490 year: 2005 end-page: 2496 ident: CR13 article-title: Clinical prediction model to characterize pulmonary nodules: validation and added value of 18F-fluorodeoxyglucose positron emission tomography publication-title: Chest doi: 10.1378/chest.128.4.2490 – volume: 134 start-page: 453 year: 1986 end-page: 460 ident: CR22 article-title: Managing solitary pulmonary nodules. The choice of strategy is a “close call” publication-title: Am Rev Respir Dis – ident: CR25 – volume: 70 start-page: ii1 issue: Suppl 2 year: 2015 end-page: ii54 ident: CR27 article-title: British Thoracic Society guidelines for the investigation and management of pulmonary nodules publication-title: Thorax doi: 10.1136/thoraxjnl-2015-207168 – volume: 143 start-page: e93S year: 2013 end-page: e120S ident: CR4 article-title: Evaluation of individuals with pulmonary nodules: when is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines publication-title: Chest doi: 10.1378/chest.12-2351 – volume: 145 start-page: 464 year: 2014 end-page: 472 ident: CR17 article-title: The utility of nodule volume in the context of malignancy prediction for small pulmonary nodules publication-title: Chest doi: 10.1378/chest.13-0708 – volume: 8 start-page: 55 year: 2015 end-page: 64 ident: CR28 article-title: Determining the variability of lesion size measurements from CT patient data sets acquired under “no change” conditions publication-title: Transl Oncol doi: 10.1016/j.tranon.2015.01.001 – volume: 12 start-page: 1799 year: 2017 end-page: 1808 ident: CR34 article-title: Pulmonary nodule classification with deep residual networks publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-017-1605-6 – volume: 74 start-page: 319 year: 1999 end-page: 329 ident: CR21 article-title: Solitary pulmonary nodules: clinical prediction model versus physicians publication-title: Mayo Clin Proc doi: 10.4065/74.4.319 – ident: CR3 – ident: CR15 – volume: 29 start-page: 466 year: 2016 end-page: 475 ident: CR32 article-title: A combination of shape and texture features for classification of pulmonary nodules in lung CT images publication-title: J Digit Imaging doi: 10.1007/s10278-015-9857-6 – volume: 162 start-page: 485 year: 2015 end-page: 491 ident: CR6 article-title: Performance of Lung-RADS in the National Lung Screening Trial: a retrospective assessment publication-title: Ann Intern Med doi: 10.7326/M14-2086 – volume: 157 start-page: 849 year: 1997 end-page: 855 ident: CR9 article-title: The probability of malignancy in solitary pulmonary nodules. Application to small radiologically indeterminate nodules publication-title: Arch Intern Med doi: 10.1001/archinte.1997.00440290031002 – volume: 7 start-page: 32 year: 2010 end-page: 43 ident: CR19 article-title: Genetic epidemiology of COPD (COPDGene) study design publication-title: COPD doi: 10.3109/15412550903499522 – volume: 36 start-page: 3086 year: 2009 end-page: 3098 ident: CR36 article-title: Computer-aided diagnosis of pulmonary nodules on CT scans: improvement of classification performance with nodule surface features publication-title: Med Phys doi: 10.1118/1.3140589 – volume: 89 start-page: 530 year: 2017 end-page: 539 ident: CR35 article-title: Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.04.006 – volume: 90 start-page: 118 year: 2015 end-page: 119 ident: CR18 article-title: Critique of Al-Ameri et al. (2015) - risk of malignancy in pulmonary nodules: a validation study of four prediction models publication-title: Lung Cancer doi: 10.1016/j.lungcan.2015.05.015 – volume: 73 start-page: 857 year: 2018 end-page: 863 ident: CR23 article-title: Brock malignancy risk calculator for pulmonary nodules: validation outside a lung cancer screening population publication-title: Thorax doi: 10.1136/thoraxjnl-2017-211372 – ident: CR20 – volume: 153 start-page: 353 year: 2018 end-page: 357 ident: CR30 article-title: Communication about the probability of cancer in indeterminate pulmonary nodules publication-title: JAMA Surg doi: 10.1001/jamasurg.2017.4878 – volume: 3 start-page: 32 year: 1950 end-page: 35 ident: CR24 article-title: Index for rating diagnostic tests publication-title: Cancer doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 – volume: 24 start-page: 401 year: 2017 end-page: 410 ident: CR29 article-title: Measuring interobserver disagreement in rating diagnostic characteristics of pulmonary nodule using the lung imaging database consortium and image database resource initiative publication-title: Acad Radiol doi: 10.1016/j.acra.2016.11.022 – volume: 36 start-page: 830 year: 2012 ident: 6168_CR12 publication-title: World J Surg doi: 10.1007/s00268-012-1449-8 – volume: 89 start-page: 530 year: 2017 ident: 6168_CR35 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.04.006 – volume: 12 start-page: 153 year: 1947 ident: 6168_CR26 publication-title: Psychometrika doi: 10.1007/BF02295996 – volume: 27 start-page: 4019 year: 2017 ident: 6168_CR7 publication-title: Eur Radiol doi: 10.1007/s00330-017-4767-2 – volume: 89 start-page: 27 year: 2015 ident: 6168_CR16 publication-title: Lung Cancer doi: 10.1016/j.lungcan.2015.03.018 – volume: 24 start-page: 401 year: 2017 ident: 6168_CR29 publication-title: Acad Radiol doi: 10.1016/j.acra.2016.11.022 – volume: 67 start-page: 7 year: 2017 ident: 6168_CR1 publication-title: CA Cancer J Clin doi: 10.3322/caac.21387 – volume: 3 start-page: 32 year: 1950 ident: 6168_CR24 publication-title: Cancer doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 – volume: 2 start-page: 041004 year: 2015 ident: 6168_CR31 publication-title: J Med Imaging (Bellingham) doi: 10.1117/1.JMI.2.4.041004 – volume: 23 start-page: 51 year: 2010 ident: 6168_CR37 publication-title: J Digit Imaging doi: 10.1007/s10278-009-9185-9 – ident: 6168_CR20 doi: 10.1158/1055-9965.EPI-16-0176 – volume: 17 start-page: 95 year: 2016 ident: 6168_CR8 publication-title: Clin Lung Cancer doi: 10.1016/j.cllc.2015.11.007 – ident: 6168_CR25 – volume: 151 start-page: 539 year: 2017 ident: 6168_CR5 publication-title: Chest doi: 10.1016/j.chest.2016.07.028 – ident: 6168_CR10 doi: 10.1378/chest.06-1261 – volume: 145 start-page: 464 year: 2014 ident: 6168_CR17 publication-title: Chest doi: 10.1378/chest.13-0708 – volume: 90 start-page: 118 year: 2015 ident: 6168_CR18 publication-title: Lung Cancer doi: 10.1016/j.lungcan.2015.05.015 – ident: 6168_CR33 – volume: 12 start-page: 1799 year: 2017 ident: 6168_CR34 publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-017-1605-6 – volume: 128 start-page: 2490 year: 2005 ident: 6168_CR13 publication-title: Chest doi: 10.1378/chest.128.4.2490 – volume: 29 start-page: 466 year: 2016 ident: 6168_CR32 publication-title: J Digit Imaging doi: 10.1007/s10278-015-9857-6 – volume: 7 start-page: 32 year: 2010 ident: 6168_CR19 publication-title: COPD doi: 10.3109/15412550903499522 – volume: 36 start-page: 3086 year: 2009 ident: 6168_CR36 publication-title: Med Phys doi: 10.1118/1.3140589 – volume: 70 start-page: 794 year: 2015 ident: 6168_CR14 publication-title: Thorax doi: 10.1136/thoraxjnl-2015-207221 – ident: 6168_CR3 – volume: 157 start-page: 849 year: 1997 ident: 6168_CR9 publication-title: Arch Intern Med doi: 10.1001/archinte.1997.00440290031002 – volume: 73 start-page: 857 year: 2018 ident: 6168_CR23 publication-title: Thorax doi: 10.1136/thoraxjnl-2017-211372 – volume: 369 start-page: 910 year: 2013 ident: 6168_CR11 publication-title: N Engl J Med doi: 10.1056/NEJMoa1214726 – ident: 6168_CR15 doi: 10.1067/j.cpradiol.2017.04.003 – volume: 74 start-page: 319 year: 1999 ident: 6168_CR21 publication-title: Mayo Clin Proc doi: 10.4065/74.4.319 – volume: 153 start-page: 353 year: 2018 ident: 6168_CR30 publication-title: JAMA Surg doi: 10.1001/jamasurg.2017.4878 – volume: 284 start-page: 228 year: 2017 ident: 6168_CR2 publication-title: Radiology doi: 10.1148/radiol.2017161659 – volume: 143 start-page: e93S year: 2013 ident: 6168_CR4 publication-title: Chest doi: 10.1378/chest.12-2351 – volume: 134 start-page: 453 year: 1986 ident: 6168_CR22 publication-title: Am Rev Respir Dis – volume: 8 start-page: 55 year: 2015 ident: 6168_CR28 publication-title: Transl Oncol doi: 10.1016/j.tranon.2015.01.001 – volume: 162 start-page: 485 year: 2015 ident: 6168_CR6 publication-title: Ann Intern Med doi: 10.7326/M14-2086 – volume: 70 start-page: ii1 issue: Suppl 2 year: 2015 ident: 6168_CR27 publication-title: Thorax doi: 10.1136/thoraxjnl-2015-207168 |
SSID | ssj0009147 |
Score | 2.3294113 |
Snippet | Objectives
Post-imaging mathematical prediction models (MPMs) provide guidance for the management of solid pulmonary nodules by providing a lung cancer risk... Post-imaging mathematical prediction models (MPMs) provide guidance for the management of solid pulmonary nodules by providing a lung cancer risk score from... ObjectivesPost-imaging mathematical prediction models (MPMs) provide guidance for the management of solid pulmonary nodules by providing a lung cancer risk... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5367 |
SubjectTerms | Accuracy Adult Aged Aged, 80 and over Calibration Cancer Chest Cohort Studies Computed tomography Demographics Diagnostic Radiology Evaluation Federal agencies Female Health risks Humans Imaging Internal Medicine Interventional Radiology Local population Lung - pathology Lung cancer Lung Neoplasms - diagnostic imaging Lung Neoplasms - pathology Lung nodules Male Mathematical analysis Mathematical models Medical imaging Medicine Medicine & Public Health Middle Aged Models, Theoretical Neuroradiology Nodules Precancerous Conditions - diagnostic imaging Precancerous Conditions - pathology Prediction models Radiology Risk Solitary Pulmonary Nodule - diagnostic imaging Solitary Pulmonary Nodule - pathology Thresholds Tomography, X-Ray Computed - methods Ultrasound |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2hrQT0wDc0UJCRuFFX-bDjhAuqUEsFKidWKuIQ2YktKtLsajcRLL-eGW-SshRV9Bzbie3n-I1m5g3AK0RJmuvScVel5GYUEUfWWnLhtAljJ6xxlO988ik9nooPp_K0TwpbDtHug0vS_6nHZDcqO0ZBVJQ1H6UZR-a4JclAmcDWwfsvHw8vxHYjX1gMjfWMqzwXfbLMv0fZvJAusczLwZKjx3QbbnXNXK9-6Lr-41I6ugvTYTrrWJTv-11r9stffyk9Xne-9-BOz1LZwRpW9-GGbR7AzZPeD_8QvlKNX3527kscsXlXI5j1YsWaWdXVlp2PWrA4yHxB3Wj_mS-7s3zD9MIybLFiQ15mvWJUvAVZffv2EUyPDj-_O-Z9mQZeCiVaHrlE2ciUJheZTbVJ0CpSVZbosAwjrbPKOIt2kxaqQi4kKyezzKjQJSUJ-VibPIZJM2vsDjCjpItCU9k0rERWOo32ncTrNBaex-kAomGvirLXMKdSGnUxqi_7VStw1Qq_asXPAF6PfeZrBY8rW-8OECj607ws4picr0isZAAvx8d4Dsm5ohs763wbyllGgzqAJ2vEjK8jb7OSeRiA2sDS2IA0vjefNGffvNZ3iua2pDH3BpBcfNZVs9gbkfkfk356vdGfwe2YYOlDGndh0i46-xypWWte9CfxN-UKL-Q priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_KFfx4sH4bW2UF32yu-dhkc76UIpYitIh4UPEh7G528TCXC9cEe_71zuwlqWeh2OedTbLMTPY3zMxvAN6ilaQTqa1vi5TSjDz0EbVqn1upgshyoyz1O5-epSdT_uk8Od-CsO-FcUX7Ws3GVTkfV7MfrraynuuDvk7sIMUAJKHW8e2Uckoj2J6efT765jj10HnFxA0_RBgQ4S8m412jjGuXo8FlVIZFffdhmvmXm5fRNYR5vVByyJbeh7ttVcvVL1mWf11IxzvwpT_Kug7l57ht1Fj__ofl8VZnfQgPOnjKjtZLj2DLVI_hzmmXgH8C32m4rz-bu9lGrG5LtGK5XLFqUbSlYfOBBBYfUi9pGymeuXk7F--ZXBqGEivWN2SWK0ZTWxDON4dPYXr88euHE7-bz-BrLnjjhzYWJlRaTXhmUqliDIdEkcUy0EEoZVYoazBgklwUCIKSwiZZpkRgY00MPsbEz2BULSrzApgSiQ0DVZg0KHimrcTALsF7NOIOwEkPwl5Rue7Iy2mGRpkPtMtOuTkqN3fKzS89eDfsqdfUHTdK7_X6zzs3vsijiLKuiKgSD94My-iAlFWRlVm0ToaalTGS9uD52lyG11GaWSSTwAOxYUiDAJF7b66gHTiS7071Huz3Jnf1WTedYn8wy_849Mvbie_CvYi8x9Uy7sGoWbbmFWKyRr3uvPAPFXAyhA priority: 102 providerName: Unpaywall |
Title | Post-imaging pulmonary nodule mathematical prediction models: are they clinically relevant? |
URI | https://link.springer.com/article/10.1007/s00330-019-06168-x https://www.ncbi.nlm.nih.gov/pubmed/30937590 https://www.proquest.com/docview/2201459105 https://www.proquest.com/docview/2202205721 https://pubmed.ncbi.nlm.nih.gov/PMC6717521 https://www.ncbi.nlm.nih.gov/pmc/articles/6717521 |
UnpaywallVersion | submittedVersion |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-1084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1432-1084 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-1084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-1084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_WFrb1Yeyrm7cuaLC31cwfsmXvpWQjadloKGOBlD0YyZZYwXXcJGbNf787xXEWCmFPxtaHLd9Jd6fT3Q_gA3JJnMrcuKaIyc3IfRe11tzlRiovMFwrQ_HOF6P4fMy_TaJJu-E2b49VrtdEu1AX05z2yD8FATnAULhFp_WtS6hR5F1tITT24MAPkJMoUnx4tkm661uAMTTaE1ekKW-DZmzoHIGY0ZEsisH348S92xZM97TN-4cmO8_pITxqqlou_8iy_Ec4DZ_Ck1arZP0VGzyDB7p6Dg8vWr_5C_hFmLzu9Y2FJGJ1U-Jo5GzJqmnRlJrddLlbsZN6Rs2IXszC5Mw_MznTDGss2TqOslwyAltBLXxx-hLGw8HPr-duC6vg5lzwheubUGhf5SrliY6lCtGKEUUSSi_3fCmTQhmNdo7kokDdJSpMlCRKeCbMKfGO1uER7FfTSr8GpkRkfE8VOvYKnuRGoj0WofgLuNW7pAP--p9meZtznKAvyqzLlmzpkCEdMkuH7M6Bj12bepVxY2ft4zWpsnb2zbMNrzjwvivGeUPOEFnpaWPrUIwxGsAOvFpRtnsdeYdFlHoOiC2adxUoJ_d2SXX92-bmjtE8jqjPkzV3bD5r1yhOOg76j0G_2T3ot_A4IMa2Rw6PYX8xa_Q7VJ0Wqgd7YiJ6dpb04KB_dvV9gNcvg9HlD3w6Dvp4Nx5d9q_-AoSgG9M |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VItFyQLwbKGAkONGIPJw4QUIVAqot7fbUSitxSO3EFpXS7LK7UZs_xW9kxptkWVVacek5thN7xp5xZub7AN6hlsSpzI1ripjCjNx30WvNXW6k8gLDtTJU7zw8iQdn_McoGm3An64WhtIquzPRHtTFOKd_5B-DgAJgaNyi_clvl1ijKLraUWgs1OJIN1d4ZZt9PvyG8n0fBAffT78O3JZVwM254HPXN6HQvspVyhMdSxWiEy-KJJRe7vlSJoUyGt18yUWBpjsqTJQkSngmzAl3RusQx70Dd3noccLqFyOxBPn1LaGZl-IhItKUt0U6tlSPSNMoBYxq_v04ca9XDeEN7_ZmkmYfqb0PW3U1kc2VLMt_jOHBQ3jQerHsy0LtHsGGrh7DvWEbp38CP4kD2L24tBRIbFKXuHpy2rBqXNSlZpc9ViwOMplSN9IPZml5Zp-YnGqGLRrW1W2WDSNyF_T65_tP4exWFvwZbFbjSu8AUyIyvqcKHXsFT3Ij8f4XobkNuPXzpAN-t6ZZ3mKcE9VGmfXozFYOGcohs3LIrh340PeZLBA-1rbe7USVtbt9li1104G3_WPcpxR8kZUe17YN1TTjhduB5wvJ9q-jaLSIUs8BsSLzvgFhgK8-qS5-WSzwGK_jEY2512nH8rPWzWKv16D_mPSL9ZN-A1uD0-Fxdnx4cvQStgNScpvuuAub82mtX6HbNlev7V5hcH7bm_MvkyhSpQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhU4IN4EChgJTjRqHk6cIKEKUVYtpRUHKq3EIdiJLSql2bC7UZu_xq9jxptkWVVacek5thN7ZjwzmccH8Aa5JE5lblxTxBRm5L6LVmvuciOVFxiulaF65-OT-OCUfxlH4w3409fCUFplfyfai7qY5PSPfDcIKACGyi3aNV1axLf90V792yUEKYq09nAaCxY50u0Fum-zD4f7SOu3QTD6_P3TgdshDLg5F3zu-iYU2le5SnmiY6lCNOhFkYTSyz1fyqRQRqPJL7koUI1HhYmSRAnPhDn1oNE6xHVvwE0R8pDSycRYLBv--hbczEvxQhFpyruCHVu2RwBqlA5G9f9-nLiXq0rxiqV7NWFziNregVtNVcv2QpblP4pxdA_udhYt-7hgwfuwoasHsHXcxewfwg_CA3bPzi0cEqubEk9PTltWTYqm1Ox86BuLi9RTmka8wixEz-w9k1PNcETL-hrOsmUE9IIewHzvEZxey4E_hs1qUumnwJSIjO-pQsdewZPcSPQFI1S9Abc2n3TA7880y7t-5wS7UWZDp2ZLhwzpkFk6ZJcOvBvm1ItuH2tHb_ekyjrJn2VLPnXg9fAYZZYCMbLSk8aOofpmdL4deLKg7PA6ikyLKPUcECs0HwZQP_DVJ9XZL9sXPEbXPKI1d3ruWH7Wul3sDBz0H5t-tn7Tr2ALxTL7enhy9BxuB8TjNvNxGzbn00a_QAturl5aUWHw87pl8y-KAFbg |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_KFfx4sH4bW2UF32yu-dhkc76UIpYitIh4UPEh7G528TCXC9cEe_71zuwlqWeh2OedTbLMTPY3zMxvAN6ilaQTqa1vi5TSjDz0EbVqn1upgshyoyz1O5-epSdT_uk8Od-CsO-FcUX7Ws3GVTkfV7MfrraynuuDvk7sIMUAJKHW8e2Uckoj2J6efT765jj10HnFxA0_RBgQ4S8m412jjGuXo8FlVIZFffdhmvmXm5fRNYR5vVByyJbeh7ttVcvVL1mWf11IxzvwpT_Kug7l57ht1Fj__ofl8VZnfQgPOnjKjtZLj2DLVI_hzmmXgH8C32m4rz-bu9lGrG5LtGK5XLFqUbSlYfOBBBYfUi9pGymeuXk7F--ZXBqGEivWN2SWK0ZTWxDON4dPYXr88euHE7-bz-BrLnjjhzYWJlRaTXhmUqliDIdEkcUy0EEoZVYoazBgklwUCIKSwiZZpkRgY00MPsbEz2BULSrzApgSiQ0DVZg0KHimrcTALsF7NOIOwEkPwl5Rue7Iy2mGRpkPtMtOuTkqN3fKzS89eDfsqdfUHTdK7_X6zzs3vsijiLKuiKgSD94My-iAlFWRlVm0ToaalTGS9uD52lyG11GaWSSTwAOxYUiDAJF7b66gHTiS7071Huz3Jnf1WTedYn8wy_849Mvbie_CvYi8x9Uy7sGoWbbmFWKyRr3uvPAPFXAyhA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Post-imaging+pulmonary+nodule+mathematical+prediction+models%3A+are+they+clinically+relevant%3F&rft.jtitle=European+radiology&rft.au=Uthoff%2C+Johanna&rft.au=Koehn%2C+Nicholas&rft.au=Larson%2C+Jared&rft.au=Dilger%2C+Samantha+K+N&rft.date=2019-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=29&rft.issue=10&rft.spage=5367&rft.epage=5377&rft_id=info:doi/10.1007%2Fs00330-019-06168-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon |