Post-imaging pulmonary nodule mathematical prediction models: are they clinically relevant?

Objectives Post-imaging mathematical prediction models (MPMs) provide guidance for the management of solid pulmonary nodules by providing a lung cancer risk score from demographic and radiologists-indicated imaging characteristics. We hypothesized calibrating the MPM risk score threshold to a local...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 29; no. 10; pp. 5367 - 5377
Main Authors Uthoff, Johanna, Koehn, Nicholas, Larson, Jared, Dilger, Samantha K. N., Hammond, Emily, Schwartz, Ann, Mullan, Brian, Sanchez, Rolando, Hoffman, Richard M., Sieren, Jessica C.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0938-7994
1432-1084
1432-1084
DOI10.1007/s00330-019-06168-x

Cover

Abstract Objectives Post-imaging mathematical prediction models (MPMs) provide guidance for the management of solid pulmonary nodules by providing a lung cancer risk score from demographic and radiologists-indicated imaging characteristics. We hypothesized calibrating the MPM risk score threshold to a local study cohort would result in improved performance over the original recommended MPM thresholds. We compared the pre- and post-calibration performance of four MPM models and determined if improvement in MPM prediction occurs as nodules are imaged longitudinally. Materials and methods A common cohort of 317 individuals with computed tomography-detected, solid nodules (80 malignant, 237 benign) were used to evaluate the MPM performance. We created a web-based application for this study that allows others to easily calibrate thresholds and analyze the performance of MPMs on their local cohort. Thirty patients with repeated imaging were tested for improved performance longitudinally. Results Using calibrated thresholds, Mayo Clinic and Brock University (BU) MPMs performed the best (AUC = 0.63, 0.61) compared to the Veteran’s Affairs (0.51) and Peking University (0.55). Only BU had consensus with the original MPM threshold; the other calibrated thresholds improved MPM accuracy. No significant improvements in accuracy were found longitudinally between time points. Conclusions Calibration to a common cohort can select the best-performing MPM for your institution. Without calibration, BU has the most stable performance in solid nodules ≥ 8 mm but has only moderate potential to refine subjects into appropriate workup. Application of MPM is recommended only at initial evaluation as no increase in accuracy was achieved over time. Key Points • Post-imaging lung cancer risk mathematical predication models (MPMs) perform poorly on local populations without calibration. • An application is provided to facilitate calibration to new study cohorts: the Mayo Clinic model, the U.S. Department of Veteran’s Affairs model, the Brock University model, and the Peking University model. • No significant improvement in risk prediction occurred in nodules with repeated imaging sessions, indicating the potential value of risk prediction application is limited to the initial evaluation.
AbstractList ObjectivesPost-imaging mathematical prediction models (MPMs) provide guidance for the management of solid pulmonary nodules by providing a lung cancer risk score from demographic and radiologists-indicated imaging characteristics. We hypothesized calibrating the MPM risk score threshold to a local study cohort would result in improved performance over the original recommended MPM thresholds. We compared the pre- and post-calibration performance of four MPM models and determined if improvement in MPM prediction occurs as nodules are imaged longitudinally.Materials and methodsA common cohort of 317 individuals with computed tomography-detected, solid nodules (80 malignant, 237 benign) were used to evaluate the MPM performance. We created a web-based application for this study that allows others to easily calibrate thresholds and analyze the performance of MPMs on their local cohort. Thirty patients with repeated imaging were tested for improved performance longitudinally.ResultsUsing calibrated thresholds, Mayo Clinic and Brock University (BU) MPMs performed the best (AUC = 0.63, 0.61) compared to the Veteran’s Affairs (0.51) and Peking University (0.55). Only BU had consensus with the original MPM threshold; the other calibrated thresholds improved MPM accuracy. No significant improvements in accuracy were found longitudinally between time points.ConclusionsCalibration to a common cohort can select the best-performing MPM for your institution. Without calibration, BU has the most stable performance in solid nodules ≥ 8 mm but has only moderate potential to refine subjects into appropriate workup. Application of MPM is recommended only at initial evaluation as no increase in accuracy was achieved over time.Key Points• Post-imaging lung cancer risk mathematical predication models (MPMs) perform poorly on local populations without calibration.• An application is provided to facilitate calibration to new study cohorts: the Mayo Clinic model, the U.S. Department of Veteran’s Affairs model, the Brock University model, and the Peking University model.• No significant improvement in risk prediction occurred in nodules with repeated imaging sessions, indicating the potential value of risk prediction application is limited to the initial evaluation.
Post-imaging mathematical prediction models (MPMs) provide guidance for the management of solid pulmonary nodules by providing a lung cancer risk score from demographic and radiologists-indicated imaging characteristics. We hypothesized calibrating the MPM risk score threshold to a local study cohort would result in improved performance over the original recommended MPM thresholds. We compared the pre- and post-calibration performance of four MPM models and determined if improvement in MPM prediction occurs as nodules are imaged longitudinally.OBJECTIVESPost-imaging mathematical prediction models (MPMs) provide guidance for the management of solid pulmonary nodules by providing a lung cancer risk score from demographic and radiologists-indicated imaging characteristics. We hypothesized calibrating the MPM risk score threshold to a local study cohort would result in improved performance over the original recommended MPM thresholds. We compared the pre- and post-calibration performance of four MPM models and determined if improvement in MPM prediction occurs as nodules are imaged longitudinally.A common cohort of 317 individuals with computed tomography-detected, solid nodules (80 malignant, 237 benign) were used to evaluate the MPM performance. We created a web-based application for this study that allows others to easily calibrate thresholds and analyze the performance of MPMs on their local cohort. Thirty patients with repeated imaging were tested for improved performance longitudinally.MATERIALS AND METHODSA common cohort of 317 individuals with computed tomography-detected, solid nodules (80 malignant, 237 benign) were used to evaluate the MPM performance. We created a web-based application for this study that allows others to easily calibrate thresholds and analyze the performance of MPMs on their local cohort. Thirty patients with repeated imaging were tested for improved performance longitudinally.Using calibrated thresholds, Mayo Clinic and Brock University (BU) MPMs performed the best (AUC = 0.63, 0.61) compared to the Veteran's Affairs (0.51) and Peking University (0.55). Only BU had consensus with the original MPM threshold; the other calibrated thresholds improved MPM accuracy. No significant improvements in accuracy were found longitudinally between time points.RESULTSUsing calibrated thresholds, Mayo Clinic and Brock University (BU) MPMs performed the best (AUC = 0.63, 0.61) compared to the Veteran's Affairs (0.51) and Peking University (0.55). Only BU had consensus with the original MPM threshold; the other calibrated thresholds improved MPM accuracy. No significant improvements in accuracy were found longitudinally between time points.Calibration to a common cohort can select the best-performing MPM for your institution. Without calibration, BU has the most stable performance in solid nodules ≥ 8 mm but has only moderate potential to refine subjects into appropriate workup. Application of MPM is recommended only at initial evaluation as no increase in accuracy was achieved over time.CONCLUSIONSCalibration to a common cohort can select the best-performing MPM for your institution. Without calibration, BU has the most stable performance in solid nodules ≥ 8 mm but has only moderate potential to refine subjects into appropriate workup. Application of MPM is recommended only at initial evaluation as no increase in accuracy was achieved over time.• Post-imaging lung cancer risk mathematical predication models (MPMs) perform poorly on local populations without calibration. • An application is provided to facilitate calibration to new study cohorts: the Mayo Clinic model, the U.S. Department of Veteran's Affairs model, the Brock University model, and the Peking University model. • No significant improvement in risk prediction occurred in nodules with repeated imaging sessions, indicating the potential value of risk prediction application is limited to the initial evaluation.KEY POINTS• Post-imaging lung cancer risk mathematical predication models (MPMs) perform poorly on local populations without calibration. • An application is provided to facilitate calibration to new study cohorts: the Mayo Clinic model, the U.S. Department of Veteran's Affairs model, the Brock University model, and the Peking University model. • No significant improvement in risk prediction occurred in nodules with repeated imaging sessions, indicating the potential value of risk prediction application is limited to the initial evaluation.
Post-imaging mathematical prediction models (MPMs) provide guidance for the management of solid pulmonary nodules by providing a lung cancer risk score from demographic and radiologists-indicated imaging characteristics. We hypothesized calibrating the MPM risk score threshold to a local study cohort would result in improved performance over the original recommended MPM thresholds. We compared the pre- and post-calibration performance of four MPM models and determined if improvement in MPM prediction occurs as nodules are imaged longitudinally. A common cohort of 317 individuals with computed tomography-detected, solid nodules (80 malignant, 237 benign) were used to evaluate the MPM performance. We created a web-based application for this study that allows others to easily calibrate thresholds and analyze the performance of MPMs on their local cohort. Thirty patients with repeated imaging were tested for improved performance longitudinally. Using calibrated thresholds, Mayo Clinic and Brock University (BU) MPMs performed the best (AUC = 0.63, 0.61) compared to the Veteran's Affairs (0.51) and Peking University (0.55). Only BU had consensus with the original MPM threshold; the other calibrated thresholds improved MPM accuracy. No significant improvements in accuracy were found longitudinally between time points. Calibration to a common cohort can select the best-performing MPM for your institution. Without calibration, BU has the most stable performance in solid nodules ≥ 8 mm but has only moderate potential to refine subjects into appropriate workup. Application of MPM is recommended only at initial evaluation as no increase in accuracy was achieved over time. • Post-imaging lung cancer risk mathematical predication models (MPMs) perform poorly on local populations without calibration. • An application is provided to facilitate calibration to new study cohorts: the Mayo Clinic model, the U.S. Department of Veteran's Affairs model, the Brock University model, and the Peking University model. • No significant improvement in risk prediction occurred in nodules with repeated imaging sessions, indicating the potential value of risk prediction application is limited to the initial evaluation.
Objectives Post-imaging mathematical prediction models (MPMs) provide guidance for the management of solid pulmonary nodules by providing a lung cancer risk score from demographic and radiologists-indicated imaging characteristics. We hypothesized calibrating the MPM risk score threshold to a local study cohort would result in improved performance over the original recommended MPM thresholds. We compared the pre- and post-calibration performance of four MPM models and determined if improvement in MPM prediction occurs as nodules are imaged longitudinally. Materials and methods A common cohort of 317 individuals with computed tomography-detected, solid nodules (80 malignant, 237 benign) were used to evaluate the MPM performance. We created a web-based application for this study that allows others to easily calibrate thresholds and analyze the performance of MPMs on their local cohort. Thirty patients with repeated imaging were tested for improved performance longitudinally. Results Using calibrated thresholds, Mayo Clinic and Brock University (BU) MPMs performed the best (AUC = 0.63, 0.61) compared to the Veteran’s Affairs (0.51) and Peking University (0.55). Only BU had consensus with the original MPM threshold; the other calibrated thresholds improved MPM accuracy. No significant improvements in accuracy were found longitudinally between time points. Conclusions Calibration to a common cohort can select the best-performing MPM for your institution. Without calibration, BU has the most stable performance in solid nodules ≥ 8 mm but has only moderate potential to refine subjects into appropriate workup. Application of MPM is recommended only at initial evaluation as no increase in accuracy was achieved over time. Key Points • Post-imaging lung cancer risk mathematical predication models (MPMs) perform poorly on local populations without calibration. • An application is provided to facilitate calibration to new study cohorts: the Mayo Clinic model, the U.S. Department of Veteran’s Affairs model, the Brock University model, and the Peking University model. • No significant improvement in risk prediction occurred in nodules with repeated imaging sessions, indicating the potential value of risk prediction application is limited to the initial evaluation.
Author Koehn, Nicholas
Sanchez, Rolando
Dilger, Samantha K. N.
Hammond, Emily
Larson, Jared
Hoffman, Richard M.
Mullan, Brian
Schwartz, Ann
Uthoff, Johanna
Sieren, Jessica C.
AuthorAffiliation 1 Department of Radiology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
3 Karmanos Cancer Institute, Wayne State University, 4100 John R St, Detroit, 48201, MI
4 Department of Internal Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
2 Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center, Iowa City, IA, 52242, USA
AuthorAffiliation_xml – name: 2 Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center, Iowa City, IA, 52242, USA
– name: 3 Karmanos Cancer Institute, Wayne State University, 4100 John R St, Detroit, 48201, MI
– name: 1 Department of Radiology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
– name: 4 Department of Internal Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
Author_xml – sequence: 1
  givenname: Johanna
  surname: Uthoff
  fullname: Uthoff, Johanna
  organization: Department of Radiology, University of Iowa, Department of Biomedical Engineering, University of Iowa
– sequence: 2
  givenname: Nicholas
  surname: Koehn
  fullname: Koehn, Nicholas
  organization: Department of Radiology, University of Iowa
– sequence: 3
  givenname: Jared
  surname: Larson
  fullname: Larson, Jared
  organization: Department of Radiology, University of Iowa
– sequence: 4
  givenname: Samantha K. N.
  surname: Dilger
  fullname: Dilger, Samantha K. N.
  organization: Department of Radiology, University of Iowa, Department of Biomedical Engineering, University of Iowa
– sequence: 5
  givenname: Emily
  surname: Hammond
  fullname: Hammond, Emily
  organization: Department of Radiology, University of Iowa, Department of Biomedical Engineering, University of Iowa
– sequence: 6
  givenname: Ann
  surname: Schwartz
  fullname: Schwartz, Ann
  organization: Karmanos Cancer Institute, Wayne State University
– sequence: 7
  givenname: Brian
  surname: Mullan
  fullname: Mullan, Brian
  organization: Department of Radiology, University of Iowa
– sequence: 8
  givenname: Rolando
  surname: Sanchez
  fullname: Sanchez, Rolando
  organization: Department of Internal Medicine, University of Iowa
– sequence: 9
  givenname: Richard M.
  surname: Hoffman
  fullname: Hoffman, Richard M.
  organization: Department of Internal Medicine, University of Iowa
– sequence: 10
  givenname: Jessica C.
  surname: Sieren
  fullname: Sieren, Jessica C.
  email: jessica-sieren@uiowa.edu
  organization: Department of Radiology, University of Iowa, Department of Biomedical Engineering, University of Iowa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30937590$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFv1DAQhS1URLeFP8ABReLCJTCOk9jhQIWqFpAqwQFOHCzHmWxdOXawk9L8e5zuQqGHCskaH-Z7ozdvjsiB8w4JeU7hNQXgbyIAY5ADbXKoaS3ym0dkQ0tW5BREeUA20DCR86YpD8lRjFcA0NCSPyGHLHV41cCGfP_i45SbQW2N22bjbAfvVFgy57vZYjao6RJTMVrZbAzYGT0Z77LBd2jj20wFzBKxZNoat0J2yQJavFZuOnlKHvfKRny2_4_Jt_Ozr6cf84vPHz6dvr_IdcnLKac940hb3TalwFq1yVzNO8EUaKBKia7tUdSFKnm3uu76SoiWQ880VFWNyI4J282d3aiWn8mEHENaKSySglyjkruoZIpK3kYlb5Lq3U41zu2AnUY3BXWn9MrIfzvOXMqtv5Y1p7wqaBrwaj8g-B8zxkkOJmq0Vjn0c5RFAelV_BZ9eQ-98nNwKZSVomXVUKgS9eJvR3-s_L5WAsQO0MHHGLCX2kxqPUgyaOzD2xb3pP8V0T7YmGC3xXBn-wHVL5bVy4Y
CitedBy_id crossref_primary_10_1183_13993003_02485_2020
crossref_primary_10_1016_j_lungcan_2020_07_007
crossref_primary_10_1007_s13304_024_01901_8
crossref_primary_10_1016_j_thorsurg_2023_03_002
crossref_primary_10_1111_1759_7714_14333
crossref_primary_10_1016_j_jtocrr_2022_100299
Cites_doi 10.1007/s00268-012-1449-8
10.1117/1.JMI.2.4.041004
10.1148/radiol.2017161659
10.1016/j.cllc.2015.11.007
10.1136/thoraxjnl-2015-207221
10.1016/j.chest.2016.07.028
10.3322/caac.21387
10.1056/NEJMoa1214726
10.1007/s00330-017-4767-2
10.1016/j.lungcan.2015.03.018
10.1007/BF02295996
10.1007/s10278-009-9185-9
10.1378/chest.128.4.2490
10.1136/thoraxjnl-2015-207168
10.1378/chest.12-2351
10.1378/chest.13-0708
10.1016/j.tranon.2015.01.001
10.1007/s11548-017-1605-6
10.4065/74.4.319
10.1007/s10278-015-9857-6
10.7326/M14-2086
10.1001/archinte.1997.00440290031002
10.3109/15412550903499522
10.1118/1.3140589
10.1016/j.compbiomed.2017.04.006
10.1016/j.lungcan.2015.05.015
10.1136/thoraxjnl-2017-211372
10.1001/jamasurg.2017.4878
10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
10.1016/j.acra.2016.11.022
10.1158/1055-9965.EPI-16-0176
10.1378/chest.06-1261
10.1067/j.cpradiol.2017.04.003
ContentType Journal Article
Copyright European Society of Radiology 2019
European Radiology is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: European Society of Radiology 2019
– notice: European Radiology is a copyright of Springer, (2019). All Rights Reserved.
CorporateAuthor for the COPDGene Investigators
COPDGene Investigators
CorporateAuthor_xml – name: for the COPDGene Investigators
– name: COPDGene Investigators
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s00330-019-06168-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1084
EndPage 5377
ExternalDocumentID oai:pubmedcentral.nih.gov:6717521
PMC6717521
30937590
10_1007_s00330_019_06168_x
Genre Journal Article
Comparative Study
Observational Study
GrantInformation_xml – fundername: National Heart, Lung, and Blood Institute
  grantid: U01-HL089897; U01HL089856
  funderid: http://dx.doi.org/10.13039/100000050
– fundername: American Cancer Society
  grantid: IGR-77-004-34
  funderid: http://dx.doi.org/10.13039/100000048
– fundername: National Institutes of Health
  grantid: R01CA141769; P30CA022453; HHSN261201300011I
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: NIEHS NIH HHS
  grantid: P30 ES005605
– fundername: NHLBI NIH HHS
  grantid: U01 HL089897
– fundername: NHLBI NIH HHS
  grantid: R01 HL089856
– fundername: NIH HHS
  grantid: HHSN261201300011I
– fundername: NCI NIH HHS
  grantid: R01 CA141769
– fundername: American Cancer Society
  grantid: IGR-77-004-34
– fundername: NCI NIH HHS
  grantid: P30 CA086862
– fundername: NHLBI NIH HHS
  grantid: U01 HL089856
– fundername: NIH HHS
  grantid: R01CA141769
– fundername: NIH HHS
  grantid: S10 OD018526
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-~C
.86
.VR
04C
06C
06D
0R~
0VY
1N0
203
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
36B
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
6PF
7RV
7X7
8AO
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N9A
NAPCQ
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RHV
RNS
ROL
RPX
RRX
RSV
S16
S27
S37
S3B
SAP
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z82
Z83
Z85
Z87
Z88
Z8M
Z8O
Z8R
Z8S
Z8T
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
ZOVNA
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
53G
5QI
88E
8FI
8FJ
AANXM
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ACUDM
ADHKG
ADKFA
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CCPQU
CITATION
COF
EN4
GRRUI
H13
HMCUK
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
R4E
RNI
RZK
S1Z
S26
S28
SCLPG
SDE
T16
TEORI
UDS
CGR
CUY
CVF
ECM
EIF
NPM
RIG
3V.
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c474t-1f37e1bcb948e6ab30967d83a0c01aa8dbfe862a47d9375df588b70f3c0556ee3
IEDL.DBID 8FG
ISSN 0938-7994
1432-1084
IngestDate Wed Aug 20 00:14:00 EDT 2025
Thu Aug 21 14:05:05 EDT 2025
Fri Sep 05 04:17:07 EDT 2025
Fri Jul 25 19:03:35 EDT 2025
Mon Jul 21 05:43:56 EDT 2025
Wed Oct 01 03:47:28 EDT 2025
Thu Apr 24 23:12:38 EDT 2025
Fri Feb 21 02:33:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Logistic models
Tomography, x-ray computed
Risk assessment
Area under the curve
Lung neoplasms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-1f37e1bcb948e6ab30967d83a0c01aa8dbfe862a47d9375df588b70f3c0556ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6717521
PMID 30937590
PQID 2201459105
PQPubID 54162
PageCount 11
ParticipantIDs unpaywall_primary_10_1007_s00330_019_06168_x
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6717521
proquest_miscellaneous_2202205721
proquest_journals_2201459105
pubmed_primary_30937590
crossref_citationtrail_10_1007_s00330_019_06168_x
crossref_primary_10_1007_s00330_019_06168_x
springer_journals_10_1007_s00330_019_06168_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle European radiology
PublicationTitleAbbrev Eur Radiol
PublicationTitleAlternate Eur Radiol
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References McNemar (CR26) 1947; 12
Lin, Huang, Wang, Luo, Yang, Liu (CR29) 2017; 24
van Riel, Ciompi, Jacobs (CR7) 2017; 27
Siegel, Miller, Jemal (CR1) 2017; 67
Li, Wang (CR12) 2012; 36
MacMahon, Naidich, Goo (CR2) 2017; 284
CR15
Cummings, Lillington, Richard (CR22) 1986; 134
Dilger, Uthoff, Judisch (CR31) 2015; 2
Herder, van Tinteren, Golding (CR13) 2005; 128
Al-Ameri, Malhotra, Thygesen (CR16) 2015; 89
Pinsky, Gierada, Black (CR6) 2015; 162
CR33
CR10
Zhu, Tan, Hua, Wang, Zhang, Zhang (CR37) 2010; 23
Mehta, Ravenel, Shaftman (CR17) 2014; 145
Youden (CR24) 1950; 3
Mehta, Mohammed, Jantz (CR5) 2017; 151
Maiga, Deppen, Massion (CR30) 2018; 153
Sun, Zheng, Qian (CR35) 2017; 89
Baldwin, Callister (CR14) 2015; 70
Gray, Teare, Stevens, Archer (CR8) 2016; 17
Callister, Baldwin, Akram (CR27) 2015; 70
Swensen, Silverstein, Ilstrup, Schleck, Edell (CR9) 1997; 157
CR3
Dhara, Mukhopadhyay, Dutta, Garg, Khandelwal (CR32) 2016; 29
Way, Sahiner, Chan (CR36) 2009; 36
Swensen, Silverstein, Edell (CR21) 1999; 74
McNitt-Gray, Kim, Zhao (CR28) 2015; 8
Nibali, He, Wollersheim (CR34) 2017; 12
CR25
CR20
Perandini, Soardi, Motton, Montemezzi (CR18) 2015; 90
Gould, Donington, Lynch (CR4) 2013; 143
Regan, Hokanson, Murphy (CR19) 2010; 7
Chung, Mets, Gerke (CR23) 2018; 73
McWilliams, Tammemagi, Mayo (CR11) 2013; 369
PF Pinsky (6168_CR6) 2015; 162
RL Siegel (6168_CR1) 2017; 67
HJ Mehta (6168_CR17) 2014; 145
A Nibali (6168_CR34) 2017; 12
SJ van Riel (6168_CR7) 2017; 27
SJ Swensen (6168_CR21) 1999; 74
EP Gray (6168_CR8) 2016; 17
H Lin (6168_CR29) 2017; 24
S Perandini (6168_CR18) 2015; 90
HJ Mehta (6168_CR5) 2017; 151
6168_CR33
Y Zhu (6168_CR37) 2010; 23
6168_CR10
6168_CR3
ME Callister (6168_CR27) 2015; 70
6168_CR15
EA Regan (6168_CR19) 2010; 7
TW Way (6168_CR36) 2009; 36
AK Dhara (6168_CR32) 2016; 29
A Al-Ameri (6168_CR16) 2015; 89
DR Baldwin (6168_CR14) 2015; 70
SR Cummings (6168_CR22) 1986; 134
W Sun (6168_CR35) 2017; 89
H MacMahon (6168_CR2) 2017; 284
GJ Herder (6168_CR13) 2005; 128
MF McNitt-Gray (6168_CR28) 2015; 8
6168_CR20
WJ Youden (6168_CR24) 1950; 3
MK Gould (6168_CR4) 2013; 143
6168_CR25
Y Li (6168_CR12) 2012; 36
AW Maiga (6168_CR30) 2018; 153
SK Dilger (6168_CR31) 2015; 2
A McWilliams (6168_CR11) 2013; 369
Q McNemar (6168_CR26) 1947; 12
SJ Swensen (6168_CR9) 1997; 157
K Chung (6168_CR23) 2018; 73
References_xml – volume: 36
  start-page: 830
  year: 2012
  end-page: 835
  ident: CR12
  article-title: A mathematical model for predicting malignancy of solitary pulmonary nodules
  publication-title: World J Surg
  doi: 10.1007/s00268-012-1449-8
– volume: 2
  start-page: 041004
  year: 2015
  ident: CR31
  article-title: Improved pulmonary nodule classification utilizing quantitative lung parenchyma features
  publication-title: J Med Imaging (Bellingham)
  doi: 10.1117/1.JMI.2.4.041004
– volume: 284
  start-page: 228
  year: 2017
  end-page: 243
  ident: CR2
  article-title: Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society 2017
  publication-title: Radiology
  doi: 10.1148/radiol.2017161659
– volume: 17
  start-page: 95
  year: 2016
  end-page: 106
  ident: CR8
  article-title: Risk prediction models for lung cancer: a systematic review
  publication-title: Clin Lung Cancer
  doi: 10.1016/j.cllc.2015.11.007
– volume: 70
  start-page: 794
  year: 2015
  end-page: 798
  ident: CR14
  article-title: The British Thoracic Society guidelines on the investigation and management of pulmonary nodules
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2015-207221
– volume: 151
  start-page: 539
  year: 2017
  end-page: 543
  ident: CR5
  article-title: The American College of Radiology Lung Imaging Reporting and Data System: potential drawbacks and need for revision
  publication-title: Chest
  doi: 10.1016/j.chest.2016.07.028
– volume: 67
  start-page: 7
  year: 2017
  end-page: 30
  ident: CR1
  article-title: Cancer statistics, 2017
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21387
– volume: 369
  start-page: 910
  year: 2013
  end-page: 919
  ident: CR11
  article-title: Probability of cancer in pulmonary nodules detected on first screening CT
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1214726
– ident: CR10
– volume: 27
  start-page: 4019
  year: 2017
  end-page: 4029
  ident: CR7
  article-title: Malignancy risk estimation of screen-detected nodules at baseline CT: comparison of the PanCan model, Lung-RADS and NCCN guidelines
  publication-title: Eur Radiol
  doi: 10.1007/s00330-017-4767-2
– ident: CR33
– volume: 89
  start-page: 27
  year: 2015
  end-page: 30
  ident: CR16
  article-title: Risk of malignancy in pulmonary nodules: a validation study of four prediction models
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2015.03.018
– volume: 12
  start-page: 153
  year: 1947
  end-page: 157
  ident: CR26
  article-title: Note on the sampling error of the difference between correlated proportions or percentages
  publication-title: Psychometrika
  doi: 10.1007/BF02295996
– volume: 23
  start-page: 51
  year: 2010
  end-page: 65
  ident: CR37
  article-title: Feature selection and performance evaluation of support vector machine (SVM)-based classifier for differentiating benign and malignant pulmonary nodules by computed tomography
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-009-9185-9
– volume: 128
  start-page: 2490
  year: 2005
  end-page: 2496
  ident: CR13
  article-title: Clinical prediction model to characterize pulmonary nodules: validation and added value of 18F-fluorodeoxyglucose positron emission tomography
  publication-title: Chest
  doi: 10.1378/chest.128.4.2490
– volume: 134
  start-page: 453
  year: 1986
  end-page: 460
  ident: CR22
  article-title: Managing solitary pulmonary nodules. The choice of strategy is a “close call”
  publication-title: Am Rev Respir Dis
– ident: CR25
– volume: 70
  start-page: ii1
  issue: Suppl 2
  year: 2015
  end-page: ii54
  ident: CR27
  article-title: British Thoracic Society guidelines for the investigation and management of pulmonary nodules
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2015-207168
– volume: 143
  start-page: e93S
  year: 2013
  end-page: e120S
  ident: CR4
  article-title: Evaluation of individuals with pulmonary nodules: when is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines
  publication-title: Chest
  doi: 10.1378/chest.12-2351
– volume: 145
  start-page: 464
  year: 2014
  end-page: 472
  ident: CR17
  article-title: The utility of nodule volume in the context of malignancy prediction for small pulmonary nodules
  publication-title: Chest
  doi: 10.1378/chest.13-0708
– volume: 8
  start-page: 55
  year: 2015
  end-page: 64
  ident: CR28
  article-title: Determining the variability of lesion size measurements from CT patient data sets acquired under “no change” conditions
  publication-title: Transl Oncol
  doi: 10.1016/j.tranon.2015.01.001
– volume: 12
  start-page: 1799
  year: 2017
  end-page: 1808
  ident: CR34
  article-title: Pulmonary nodule classification with deep residual networks
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-017-1605-6
– volume: 74
  start-page: 319
  year: 1999
  end-page: 329
  ident: CR21
  article-title: Solitary pulmonary nodules: clinical prediction model versus physicians
  publication-title: Mayo Clin Proc
  doi: 10.4065/74.4.319
– ident: CR3
– ident: CR15
– volume: 29
  start-page: 466
  year: 2016
  end-page: 475
  ident: CR32
  article-title: A combination of shape and texture features for classification of pulmonary nodules in lung CT images
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-015-9857-6
– volume: 162
  start-page: 485
  year: 2015
  end-page: 491
  ident: CR6
  article-title: Performance of Lung-RADS in the National Lung Screening Trial: a retrospective assessment
  publication-title: Ann Intern Med
  doi: 10.7326/M14-2086
– volume: 157
  start-page: 849
  year: 1997
  end-page: 855
  ident: CR9
  article-title: The probability of malignancy in solitary pulmonary nodules. Application to small radiologically indeterminate nodules
  publication-title: Arch Intern Med
  doi: 10.1001/archinte.1997.00440290031002
– volume: 7
  start-page: 32
  year: 2010
  end-page: 43
  ident: CR19
  article-title: Genetic epidemiology of COPD (COPDGene) study design
  publication-title: COPD
  doi: 10.3109/15412550903499522
– volume: 36
  start-page: 3086
  year: 2009
  end-page: 3098
  ident: CR36
  article-title: Computer-aided diagnosis of pulmonary nodules on CT scans: improvement of classification performance with nodule surface features
  publication-title: Med Phys
  doi: 10.1118/1.3140589
– volume: 89
  start-page: 530
  year: 2017
  end-page: 539
  ident: CR35
  article-title: Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.04.006
– volume: 90
  start-page: 118
  year: 2015
  end-page: 119
  ident: CR18
  article-title: Critique of Al-Ameri et al. (2015) - risk of malignancy in pulmonary nodules: a validation study of four prediction models
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2015.05.015
– volume: 73
  start-page: 857
  year: 2018
  end-page: 863
  ident: CR23
  article-title: Brock malignancy risk calculator for pulmonary nodules: validation outside a lung cancer screening population
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2017-211372
– ident: CR20
– volume: 153
  start-page: 353
  year: 2018
  end-page: 357
  ident: CR30
  article-title: Communication about the probability of cancer in indeterminate pulmonary nodules
  publication-title: JAMA Surg
  doi: 10.1001/jamasurg.2017.4878
– volume: 3
  start-page: 32
  year: 1950
  end-page: 35
  ident: CR24
  article-title: Index for rating diagnostic tests
  publication-title: Cancer
  doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
– volume: 24
  start-page: 401
  year: 2017
  end-page: 410
  ident: CR29
  article-title: Measuring interobserver disagreement in rating diagnostic characteristics of pulmonary nodule using the lung imaging database consortium and image database resource initiative
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2016.11.022
– volume: 36
  start-page: 830
  year: 2012
  ident: 6168_CR12
  publication-title: World J Surg
  doi: 10.1007/s00268-012-1449-8
– volume: 89
  start-page: 530
  year: 2017
  ident: 6168_CR35
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.04.006
– volume: 12
  start-page: 153
  year: 1947
  ident: 6168_CR26
  publication-title: Psychometrika
  doi: 10.1007/BF02295996
– volume: 27
  start-page: 4019
  year: 2017
  ident: 6168_CR7
  publication-title: Eur Radiol
  doi: 10.1007/s00330-017-4767-2
– volume: 89
  start-page: 27
  year: 2015
  ident: 6168_CR16
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2015.03.018
– volume: 24
  start-page: 401
  year: 2017
  ident: 6168_CR29
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2016.11.022
– volume: 67
  start-page: 7
  year: 2017
  ident: 6168_CR1
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21387
– volume: 3
  start-page: 32
  year: 1950
  ident: 6168_CR24
  publication-title: Cancer
  doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
– volume: 2
  start-page: 041004
  year: 2015
  ident: 6168_CR31
  publication-title: J Med Imaging (Bellingham)
  doi: 10.1117/1.JMI.2.4.041004
– volume: 23
  start-page: 51
  year: 2010
  ident: 6168_CR37
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-009-9185-9
– ident: 6168_CR20
  doi: 10.1158/1055-9965.EPI-16-0176
– volume: 17
  start-page: 95
  year: 2016
  ident: 6168_CR8
  publication-title: Clin Lung Cancer
  doi: 10.1016/j.cllc.2015.11.007
– ident: 6168_CR25
– volume: 151
  start-page: 539
  year: 2017
  ident: 6168_CR5
  publication-title: Chest
  doi: 10.1016/j.chest.2016.07.028
– ident: 6168_CR10
  doi: 10.1378/chest.06-1261
– volume: 145
  start-page: 464
  year: 2014
  ident: 6168_CR17
  publication-title: Chest
  doi: 10.1378/chest.13-0708
– volume: 90
  start-page: 118
  year: 2015
  ident: 6168_CR18
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2015.05.015
– ident: 6168_CR33
– volume: 12
  start-page: 1799
  year: 2017
  ident: 6168_CR34
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-017-1605-6
– volume: 128
  start-page: 2490
  year: 2005
  ident: 6168_CR13
  publication-title: Chest
  doi: 10.1378/chest.128.4.2490
– volume: 29
  start-page: 466
  year: 2016
  ident: 6168_CR32
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-015-9857-6
– volume: 7
  start-page: 32
  year: 2010
  ident: 6168_CR19
  publication-title: COPD
  doi: 10.3109/15412550903499522
– volume: 36
  start-page: 3086
  year: 2009
  ident: 6168_CR36
  publication-title: Med Phys
  doi: 10.1118/1.3140589
– volume: 70
  start-page: 794
  year: 2015
  ident: 6168_CR14
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2015-207221
– ident: 6168_CR3
– volume: 157
  start-page: 849
  year: 1997
  ident: 6168_CR9
  publication-title: Arch Intern Med
  doi: 10.1001/archinte.1997.00440290031002
– volume: 73
  start-page: 857
  year: 2018
  ident: 6168_CR23
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2017-211372
– volume: 369
  start-page: 910
  year: 2013
  ident: 6168_CR11
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1214726
– ident: 6168_CR15
  doi: 10.1067/j.cpradiol.2017.04.003
– volume: 74
  start-page: 319
  year: 1999
  ident: 6168_CR21
  publication-title: Mayo Clin Proc
  doi: 10.4065/74.4.319
– volume: 153
  start-page: 353
  year: 2018
  ident: 6168_CR30
  publication-title: JAMA Surg
  doi: 10.1001/jamasurg.2017.4878
– volume: 284
  start-page: 228
  year: 2017
  ident: 6168_CR2
  publication-title: Radiology
  doi: 10.1148/radiol.2017161659
– volume: 143
  start-page: e93S
  year: 2013
  ident: 6168_CR4
  publication-title: Chest
  doi: 10.1378/chest.12-2351
– volume: 134
  start-page: 453
  year: 1986
  ident: 6168_CR22
  publication-title: Am Rev Respir Dis
– volume: 8
  start-page: 55
  year: 2015
  ident: 6168_CR28
  publication-title: Transl Oncol
  doi: 10.1016/j.tranon.2015.01.001
– volume: 162
  start-page: 485
  year: 2015
  ident: 6168_CR6
  publication-title: Ann Intern Med
  doi: 10.7326/M14-2086
– volume: 70
  start-page: ii1
  issue: Suppl 2
  year: 2015
  ident: 6168_CR27
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2015-207168
SSID ssj0009147
Score 2.3294113
Snippet Objectives Post-imaging mathematical prediction models (MPMs) provide guidance for the management of solid pulmonary nodules by providing a lung cancer risk...
Post-imaging mathematical prediction models (MPMs) provide guidance for the management of solid pulmonary nodules by providing a lung cancer risk score from...
ObjectivesPost-imaging mathematical prediction models (MPMs) provide guidance for the management of solid pulmonary nodules by providing a lung cancer risk...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5367
SubjectTerms Accuracy
Adult
Aged
Aged, 80 and over
Calibration
Cancer
Chest
Cohort Studies
Computed tomography
Demographics
Diagnostic Radiology
Evaluation
Federal agencies
Female
Health risks
Humans
Imaging
Internal Medicine
Interventional Radiology
Local population
Lung - pathology
Lung cancer
Lung Neoplasms - diagnostic imaging
Lung Neoplasms - pathology
Lung nodules
Male
Mathematical analysis
Mathematical models
Medical imaging
Medicine
Medicine & Public Health
Middle Aged
Models, Theoretical
Neuroradiology
Nodules
Precancerous Conditions - diagnostic imaging
Precancerous Conditions - pathology
Prediction models
Radiology
Risk
Solitary Pulmonary Nodule - diagnostic imaging
Solitary Pulmonary Nodule - pathology
Thresholds
Tomography, X-Ray Computed - methods
Ultrasound
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2hrQT0wDc0UJCRuFFX-bDjhAuqUEsFKidWKuIQ2YktKtLsajcRLL-eGW-SshRV9Bzbie3n-I1m5g3AK0RJmuvScVel5GYUEUfWWnLhtAljJ6xxlO988ik9nooPp_K0TwpbDtHug0vS_6nHZDcqO0ZBVJQ1H6UZR-a4JclAmcDWwfsvHw8vxHYjX1gMjfWMqzwXfbLMv0fZvJAusczLwZKjx3QbbnXNXK9-6Lr-41I6ugvTYTrrWJTv-11r9stffyk9Xne-9-BOz1LZwRpW9-GGbR7AzZPeD_8QvlKNX3527kscsXlXI5j1YsWaWdXVlp2PWrA4yHxB3Wj_mS-7s3zD9MIybLFiQ15mvWJUvAVZffv2EUyPDj-_O-Z9mQZeCiVaHrlE2ciUJheZTbVJ0CpSVZbosAwjrbPKOIt2kxaqQi4kKyezzKjQJSUJ-VibPIZJM2vsDjCjpItCU9k0rERWOo32ncTrNBaex-kAomGvirLXMKdSGnUxqi_7VStw1Qq_asXPAF6PfeZrBY8rW-8OECj607ws4picr0isZAAvx8d4Dsm5ohs763wbyllGgzqAJ2vEjK8jb7OSeRiA2sDS2IA0vjefNGffvNZ3iua2pDH3BpBcfNZVs9gbkfkfk356vdGfwe2YYOlDGndh0i46-xypWWte9CfxN-UKL-Q
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_KFfx4sH4bW2UF32yu-dhkc76UIpYitIh4UPEh7G528TCXC9cEe_71zuwlqWeh2OedTbLMTPY3zMxvAN6ilaQTqa1vi5TSjDz0EbVqn1upgshyoyz1O5-epSdT_uk8Od-CsO-FcUX7Ws3GVTkfV7MfrraynuuDvk7sIMUAJKHW8e2Uckoj2J6efT765jj10HnFxA0_RBgQ4S8m412jjGuXo8FlVIZFffdhmvmXm5fRNYR5vVByyJbeh7ttVcvVL1mWf11IxzvwpT_Kug7l57ht1Fj__ofl8VZnfQgPOnjKjtZLj2DLVI_hzmmXgH8C32m4rz-bu9lGrG5LtGK5XLFqUbSlYfOBBBYfUi9pGymeuXk7F--ZXBqGEivWN2SWK0ZTWxDON4dPYXr88euHE7-bz-BrLnjjhzYWJlRaTXhmUqliDIdEkcUy0EEoZVYoazBgklwUCIKSwiZZpkRgY00MPsbEz2BULSrzApgSiQ0DVZg0KHimrcTALsF7NOIOwEkPwl5Rue7Iy2mGRpkPtMtOuTkqN3fKzS89eDfsqdfUHTdK7_X6zzs3vsijiLKuiKgSD94My-iAlFWRlVm0ToaalTGS9uD52lyG11GaWSSTwAOxYUiDAJF7b66gHTiS7071Huz3Jnf1WTedYn8wy_849Mvbie_CvYi8x9Uy7sGoWbbmFWKyRr3uvPAPFXAyhA
  priority: 102
  providerName: Unpaywall
Title Post-imaging pulmonary nodule mathematical prediction models: are they clinically relevant?
URI https://link.springer.com/article/10.1007/s00330-019-06168-x
https://www.ncbi.nlm.nih.gov/pubmed/30937590
https://www.proquest.com/docview/2201459105
https://www.proquest.com/docview/2202205721
https://pubmed.ncbi.nlm.nih.gov/PMC6717521
https://www.ncbi.nlm.nih.gov/pmc/articles/6717521
UnpaywallVersion submittedVersion
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241003
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_WFrb1Yeyrm7cuaLC31cwfsmXvpWQjadloKGOBlD0YyZZYwXXcJGbNf787xXEWCmFPxtaHLd9Jd6fT3Q_gA3JJnMrcuKaIyc3IfRe11tzlRiovMFwrQ_HOF6P4fMy_TaJJu-E2b49VrtdEu1AX05z2yD8FATnAULhFp_WtS6hR5F1tITT24MAPkJMoUnx4tkm661uAMTTaE1ekKW-DZmzoHIGY0ZEsisH348S92xZM97TN-4cmO8_pITxqqlou_8iy_Ec4DZ_Ck1arZP0VGzyDB7p6Dg8vWr_5C_hFmLzu9Y2FJGJ1U-Jo5GzJqmnRlJrddLlbsZN6Rs2IXszC5Mw_MznTDGss2TqOslwyAltBLXxx-hLGw8HPr-duC6vg5lzwheubUGhf5SrliY6lCtGKEUUSSi_3fCmTQhmNdo7kokDdJSpMlCRKeCbMKfGO1uER7FfTSr8GpkRkfE8VOvYKnuRGoj0WofgLuNW7pAP--p9meZtznKAvyqzLlmzpkCEdMkuH7M6Bj12bepVxY2ft4zWpsnb2zbMNrzjwvivGeUPOEFnpaWPrUIwxGsAOvFpRtnsdeYdFlHoOiC2adxUoJ_d2SXX92-bmjtE8jqjPkzV3bD5r1yhOOg76j0G_2T3ot_A4IMa2Rw6PYX8xa_Q7VJ0Wqgd7YiJ6dpb04KB_dvV9gNcvg9HlD3w6Dvp4Nx5d9q_-AoSgG9M
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VItFyQLwbKGAkONGIPJw4QUIVAqot7fbUSitxSO3EFpXS7LK7UZs_xW9kxptkWVVacek5thN7xp5xZub7AN6hlsSpzI1ripjCjNx30WvNXW6k8gLDtTJU7zw8iQdn_McoGm3An64WhtIquzPRHtTFOKd_5B-DgAJgaNyi_clvl1ijKLraUWgs1OJIN1d4ZZt9PvyG8n0fBAffT78O3JZVwM254HPXN6HQvspVyhMdSxWiEy-KJJRe7vlSJoUyGt18yUWBpjsqTJQkSngmzAl3RusQx70Dd3noccLqFyOxBPn1LaGZl-IhItKUt0U6tlSPSNMoBYxq_v04ca9XDeEN7_ZmkmYfqb0PW3U1kc2VLMt_jOHBQ3jQerHsy0LtHsGGrh7DvWEbp38CP4kD2L24tBRIbFKXuHpy2rBqXNSlZpc9ViwOMplSN9IPZml5Zp-YnGqGLRrW1W2WDSNyF_T65_tP4exWFvwZbFbjSu8AUyIyvqcKHXsFT3Ij8f4XobkNuPXzpAN-t6ZZ3mKcE9VGmfXozFYOGcohs3LIrh340PeZLBA-1rbe7USVtbt9li1104G3_WPcpxR8kZUe17YN1TTjhduB5wvJ9q-jaLSIUs8BsSLzvgFhgK8-qS5-WSzwGK_jEY2512nH8rPWzWKv16D_mPSL9ZN-A1uD0-Fxdnx4cvQStgNScpvuuAub82mtX6HbNlev7V5hcH7bm_MvkyhSpQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhU4IN4EChgJTjRqHk6cIKEKUVYtpRUHKq3EIdiJLSql2bC7UZu_xq9jxptkWVVacek5thN7ZjwzmccH8Aa5JE5lblxTxBRm5L6LVmvuciOVFxiulaF65-OT-OCUfxlH4w3409fCUFplfyfai7qY5PSPfDcIKACGyi3aNV1axLf90V792yUEKYq09nAaCxY50u0Fum-zD4f7SOu3QTD6_P3TgdshDLg5F3zu-iYU2le5SnmiY6lCNOhFkYTSyz1fyqRQRqPJL7koUI1HhYmSRAnPhDn1oNE6xHVvwE0R8pDSycRYLBv--hbczEvxQhFpyruCHVu2RwBqlA5G9f9-nLiXq0rxiqV7NWFziNregVtNVcv2QpblP4pxdA_udhYt-7hgwfuwoasHsHXcxewfwg_CA3bPzi0cEqubEk9PTltWTYqm1Ox86BuLi9RTmka8wixEz-w9k1PNcETL-hrOsmUE9IIewHzvEZxey4E_hs1qUumnwJSIjO-pQsdewZPcSPQFI1S9Abc2n3TA7880y7t-5wS7UWZDp2ZLhwzpkFk6ZJcOvBvm1ItuH2tHb_ekyjrJn2VLPnXg9fAYZZYCMbLSk8aOofpmdL4deLKg7PA6ikyLKPUcECs0HwZQP_DVJ9XZL9sXPEbXPKI1d3ruWH7Wul3sDBz0H5t-tn7Tr2ALxTL7enhy9BxuB8TjNvNxGzbn00a_QAturl5aUWHw87pl8y-KAFbg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_KFfx4sH4bW2UF32yu-dhkc76UIpYitIh4UPEh7G528TCXC9cEe_71zuwlqWeh2OedTbLMTPY3zMxvAN6ilaQTqa1vi5TSjDz0EbVqn1upgshyoyz1O5-epSdT_uk8Od-CsO-FcUX7Ws3GVTkfV7MfrraynuuDvk7sIMUAJKHW8e2Uckoj2J6efT765jj10HnFxA0_RBgQ4S8m412jjGuXo8FlVIZFffdhmvmXm5fRNYR5vVByyJbeh7ttVcvVL1mWf11IxzvwpT_Kug7l57ht1Fj__ofl8VZnfQgPOnjKjtZLj2DLVI_hzmmXgH8C32m4rz-bu9lGrG5LtGK5XLFqUbSlYfOBBBYfUi9pGymeuXk7F--ZXBqGEivWN2SWK0ZTWxDON4dPYXr88euHE7-bz-BrLnjjhzYWJlRaTXhmUqliDIdEkcUy0EEoZVYoazBgklwUCIKSwiZZpkRgY00MPsbEz2BULSrzApgSiQ0DVZg0KHimrcTALsF7NOIOwEkPwl5Rue7Iy2mGRpkPtMtOuTkqN3fKzS89eDfsqdfUHTdK7_X6zzs3vsijiLKuiKgSD94My-iAlFWRlVm0ToaalTGS9uD52lyG11GaWSSTwAOxYUiDAJF7b66gHTiS7071Huz3Jnf1WTedYn8wy_849Mvbie_CvYi8x9Uy7sGoWbbmFWKyRr3uvPAPFXAyhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Post-imaging+pulmonary+nodule+mathematical+prediction+models%3A+are+they+clinically+relevant%3F&rft.jtitle=European+radiology&rft.au=Uthoff%2C+Johanna&rft.au=Koehn%2C+Nicholas&rft.au=Larson%2C+Jared&rft.au=Dilger%2C+Samantha+K+N&rft.date=2019-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=29&rft.issue=10&rft.spage=5367&rft.epage=5377&rft_id=info:doi/10.1007%2Fs00330-019-06168-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon