Induction of Fetal Globin in β-Thalassemia: Cellular Obstacles and Molecular Progress
: Accelerated apoptosis of erythroid progenitors in β‐thalassemia is a significant barrier to definitive therapy because the beneficial effects of fetal globin‐inducing agents on globin chain balance may not be inducible in cells in which programmed cell death is established early. Accordingly, our...
Saved in:
| Published in | Annals of the New York Academy of Sciences Vol. 1054; no. 1; pp. 257 - 265 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford, UK
Blackwell Publishing Ltd
01.01.2005
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0077-8923 1749-6632 1749-6632 |
| DOI | 10.1196/annals.1345.033 |
Cover
| Abstract | : Accelerated apoptosis of erythroid progenitors in β‐thalassemia is a significant barrier to definitive therapy because the beneficial effects of fetal globin‐inducing agents on globin chain balance may not be inducible in cells in which programmed cell death is established early. Accordingly, our objectives have been to identify methods to decrease cellular apoptosis and to identify orally tolerable fetal globin gene inducers. A pilot clinical trial was conducted to determine whether combined use of a fetal globin gene inducer (butyrate) and rhu‐erythropoietin (EPO), the hematopoietic growth factor that prolongs erythroid cell survival and stimulates erythroid proliferation, would produce additive hematologic responses in any thalassemia subjects. Butyrate and EPO were administered in 10 patients. Novel fetal globin gene inducers that also stimulate erythroid proliferation were evaluated for pharmacokinetic profiles. Patients with β+‐thalassemia had relatively low levels of endogenous EPO (<145 mU/mL) and had additive responses to administered EPO and butyrate. Patients with at least one β0‐globin mutation had higher baseline HbF levels (>60%) and EPO levels (>160 mU/mL), and three‐fourths of these subjects responded to the fetal globin gene inducer alone. A few select fetal globin‐inducing short‐chain fatty acid derivatives that stimulated cell proliferation also had favorable pharmacokinetics. These studies identify a significant subset of thalassemia patients who appear to require exogenous EPO to respond optimally to any HbF inducer, as well as new therapeutic candidates that act on both cellular and molecular pathologies of β‐thalassemia. Both approaches now offer excellent potential for tolerable, definitive treatment of β‐thalassemia. |
|---|---|
| AbstractList | : Accelerated apoptosis of erythroid progenitors in β‐thalassemia is a significant barrier to definitive therapy because the beneficial effects of fetal globin‐inducing agents on globin chain balance may not be inducible in cells in which programmed cell death is established early. Accordingly, our objectives have been to identify methods to decrease cellular apoptosis and to identify orally tolerable fetal globin gene inducers. A pilot clinical trial was conducted to determine whether combined use of a fetal globin gene inducer (butyrate) and rhu‐erythropoietin (EPO), the hematopoietic growth factor that prolongs erythroid cell survival and stimulates erythroid proliferation, would produce additive hematologic responses in any thalassemia subjects. Butyrate and EPO were administered in 10 patients. Novel fetal globin gene inducers that also stimulate erythroid proliferation were evaluated for pharmacokinetic profiles. Patients with β+‐thalassemia had relatively low levels of endogenous EPO (<145 mU/mL) and had additive responses to administered EPO and butyrate. Patients with at least one β0‐globin mutation had higher baseline HbF levels (>60%) and EPO levels (>160 mU/mL), and three‐fourths of these subjects responded to the fetal globin gene inducer alone. A few select fetal globin‐inducing short‐chain fatty acid derivatives that stimulated cell proliferation also had favorable pharmacokinetics. These studies identify a significant subset of thalassemia patients who appear to require exogenous EPO to respond optimally to any HbF inducer, as well as new therapeutic candidates that act on both cellular and molecular pathologies of β‐thalassemia. Both approaches now offer excellent potential for tolerable, definitive treatment of β‐thalassemia. A bstract : Accelerated apoptosis of erythroid progenitors in β‐thalassemia is a significant barrier to definitive therapy because the beneficial effects of fetal globin‐inducing agents on globin chain balance may not be inducible in cells in which programmed cell death is established early. Accordingly, our objectives have been to identify methods to decrease cellular apoptosis and to identify orally tolerable fetal globin gene inducers. A pilot clinical trial was conducted to determine whether combined use of a fetal globin gene inducer (butyrate) and rhu‐erythropoietin (EPO), the hematopoietic growth factor that prolongs erythroid cell survival and stimulates erythroid proliferation, would produce additive hematologic responses in any thalassemia subjects. Butyrate and EPO were administered in 10 patients. Novel fetal globin gene inducers that also stimulate erythroid proliferation were evaluated for pharmacokinetic profiles. Patients with β + ‐thalassemia had relatively low levels of endogenous EPO (<145 mU/mL) and had additive responses to administered EPO and butyrate. Patients with at least one β 0 ‐globin mutation had higher baseline HbF levels (>60%) and EPO levels (>160 mU/mL), and three‐fourths of these subjects responded to the fetal globin gene inducer alone. A few select fetal globin‐inducing short‐chain fatty acid derivatives that stimulated cell proliferation also had favorable pharmacokinetics. These studies identify a significant subset of thalassemia patients who appear to require exogenous EPO to respond optimally to any HbF inducer, as well as new therapeutic candidates that act on both cellular and molecular pathologies of β‐thalassemia. Both approaches now offer excellent potential for tolerable, definitive treatment of β‐thalassemia. Accelerated apoptosis of erythroid progenitors in beta-thalassemia is a significant barrier to definitive therapy because the beneficial effects of fetal globin-inducing agents on globin chain balance may not be inducible in cells in which programmed cell death is established early. Accordingly, our objectives have been to identify methods to decrease cellular apoptosis and to identify orally tolerable fetal globin gene inducers. A pilot clinical trial was conducted to determine whether combined use of a fetal globin gene inducer (butyrate) and rhu-erythropoietin (EPO), the hematopoietic growth factor that prolongs erythroid cell survival and stimulates erythroid proliferation, would produce additive hematologic responses in any thalassemia subjects. Butyrate and EPO were administered in 10 patients. Novel fetal globin gene inducers that also stimulate erythroid proliferation were evaluated for pharmacokinetic profiles. Patients with beta+-thalassemia had relatively low levels of endogenous EPO (<145 mU/mL) and had additive responses to administered EPO and butyrate. Patients with at least one beta 0-globin mutation had higher baseline HbF levels (>60%) and EPO levels (>160 mU/mL), and three-fourths of these subjects responded to the fetal globin gene inducer alone. A few select fetal globin-inducing short-chain fatty acid derivatives that stimulated cell proliferation also had favorable pharmacokinetics. These studies identify a significant subset of thalassemia patients who appear to require exogenous EPO to respond optimally to any HbF inducer, as well as new therapeutic candidates that act on both cellular and molecular pathologies of beta-thalassemia. Both approaches now offer excellent potential for tolerable, definitive treatment of beta-thalassemia.Accelerated apoptosis of erythroid progenitors in beta-thalassemia is a significant barrier to definitive therapy because the beneficial effects of fetal globin-inducing agents on globin chain balance may not be inducible in cells in which programmed cell death is established early. Accordingly, our objectives have been to identify methods to decrease cellular apoptosis and to identify orally tolerable fetal globin gene inducers. A pilot clinical trial was conducted to determine whether combined use of a fetal globin gene inducer (butyrate) and rhu-erythropoietin (EPO), the hematopoietic growth factor that prolongs erythroid cell survival and stimulates erythroid proliferation, would produce additive hematologic responses in any thalassemia subjects. Butyrate and EPO were administered in 10 patients. Novel fetal globin gene inducers that also stimulate erythroid proliferation were evaluated for pharmacokinetic profiles. Patients with beta+-thalassemia had relatively low levels of endogenous EPO (<145 mU/mL) and had additive responses to administered EPO and butyrate. Patients with at least one beta 0-globin mutation had higher baseline HbF levels (>60%) and EPO levels (>160 mU/mL), and three-fourths of these subjects responded to the fetal globin gene inducer alone. A few select fetal globin-inducing short-chain fatty acid derivatives that stimulated cell proliferation also had favorable pharmacokinetics. These studies identify a significant subset of thalassemia patients who appear to require exogenous EPO to respond optimally to any HbF inducer, as well as new therapeutic candidates that act on both cellular and molecular pathologies of beta-thalassemia. Both approaches now offer excellent potential for tolerable, definitive treatment of beta-thalassemia. Accelerated apoptosis of erythroid progenitors in beta-thalassemia is a significant barrier to definitive therapy because the beneficial effects of fetal globin-inducing agents on globin chain balance may not be inducible in cells in which programmed cell death is established early. Accordingly, our objectives have been to identify methods to decrease cellular apoptosis and to identify orally tolerable fetal globin gene inducers. A pilot clinical trial was conducted to determine whether combined use of a fetal globin gene inducer (butyrate) and rhu-erythropoietin (EPO), the hematopoietic growth factor that prolongs erythroid cell survival and stimulates erythroid proliferation, would produce additive hematologic responses in any thalassemia subjects. Butyrate and EPO were administered in 10 patients. Novel fetal globin gene inducers that also stimulate erythroid proliferation were evaluated for pharmacokinetic profiles. Patients with beta+-thalassemia had relatively low levels of endogenous EPO (<145 mU/mL) and had additive responses to administered EPO and butyrate. Patients with at least one beta 0-globin mutation had higher baseline HbF levels (>60%) and EPO levels (>160 mU/mL), and three-fourths of these subjects responded to the fetal globin gene inducer alone. A few select fetal globin-inducing short-chain fatty acid derivatives that stimulated cell proliferation also had favorable pharmacokinetics. These studies identify a significant subset of thalassemia patients who appear to require exogenous EPO to respond optimally to any HbF inducer, as well as new therapeutic candidates that act on both cellular and molecular pathologies of beta-thalassemia. Both approaches now offer excellent potential for tolerable, definitive treatment of beta-thalassemia. Accelerated apoptosis of erythroid progenitors in β-thalassemia is a significant barrier to definitive therapy because the beneficial effects of fetal globin–inducing agents on globin chain balance may not be inducible in cells in which programmed cell death is established early. Accordingly, our objectives have been to identify methods to decrease cellular apoptosis and to identify orally tolerable fetal globin gene inducers. A pilot clinical trial was conducted to determine whether combined use of a fetal globin gene inducer (butyrate) and rhu-erythropoietin (EPO), the hematopoietic growth factor that prolongs erythroid cell survival and stimulates erythroid proliferation, would produce additive hematologic responses in any thalassemia subjects. Butyrate and EPO were administered in 10 patients. Novel fetal globin gene inducers that also stimulate erythroid proliferation were evaluated for pharmacokinetic profiles. Patients with β+-thalassemia had relatively low levels of endogenous EPO (<145 mU/mL) and had additive responses to administered EPO and butyrate. Patients with at least one β0 -globin mutation had higher baseline HbF levels (>60%) and EPO levels (>160 mU/mL), and three-fourths of these subjects responded to the fetal globin gene inducer alone. A few select fetal globin–inducing short-chain fatty acid derivatives that stimulated cell proliferation also had favorable pharmacokinetics. These studies identify a significant subset of thalassemia patients who appear to require exogenous EPO to respond optimally to any HbF inducer, as well as new therapeutic candidates that act on both cellular and molecular pathologies of β-thalassemia. Both approaches now offer excellent potential for tolerable, definitive treatment of β-thalassemia. |
| Author | CASTANEDA, SERGUEI A. BOOSALIS, MICHAEL S. BOHACEK, REGINE PERRINE, SUSAN P. JONES, BRANDON M. WHITE, GARY L. |
| AuthorAffiliation | b Gene Regulation Laboratories, Inc., Newton, Massachusetts 02464, USA c University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA a Hemoglobinopathy–Thalassemia Research Unit, Boston University School of Medicine, Boston, Massachusetts 02118, USA |
| AuthorAffiliation_xml | – name: a Hemoglobinopathy–Thalassemia Research Unit, Boston University School of Medicine, Boston, Massachusetts 02118, USA – name: b Gene Regulation Laboratories, Inc., Newton, Massachusetts 02464, USA – name: c University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA |
| Author_xml | – sequence: 1 givenname: SUSAN P. surname: PERRINE fullname: PERRINE, SUSAN P. email: sperrine@bu.edu organization: Hemoglobinopathy-Thalassemia Research Unit, Boston University School of Medicine, Boston, Massachusetts 02118, USA – sequence: 2 givenname: SERGUEI A. surname: CASTANEDA fullname: CASTANEDA, SERGUEI A. organization: Hemoglobinopathy-Thalassemia Research Unit, Boston University School of Medicine, Boston, Massachusetts 02118, USA – sequence: 3 givenname: MICHAEL S. surname: BOOSALIS fullname: BOOSALIS, MICHAEL S. organization: Hemoglobinopathy-Thalassemia Research Unit, Boston University School of Medicine, Boston, Massachusetts 02118, USA – sequence: 4 givenname: GARY L. surname: WHITE fullname: WHITE, GARY L. organization: University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA – sequence: 5 givenname: BRANDON M. surname: JONES fullname: JONES, BRANDON M. organization: Hemoglobinopathy-Thalassemia Research Unit, Boston University School of Medicine, Boston, Massachusetts 02118, USA – sequence: 6 givenname: REGINE surname: BOHACEK fullname: BOHACEK, REGINE organization: Gene Regulation Laboratories, Inc., Newton, Massachusetts 02464, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16339673$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkcFu1DAQhi1URLcLZ24oJ27Z2rFjJxyQqhVdikpbaQuIkzVxnNbgtRc7od3X6oPwTHjJigIHKlmyZP_fzD__HKA9551G6DnBM0JqfgjOgY0zQlk5w5Q-QhMiWJ1zTos9NMFYiLyqC7qPDmL8gjEpKiaeoH3CKa25oBP08cS1g-qNd5nvsmPdg80W1jfGZen8uMsvr8FCjHpl4FU219YOFkJ23sQelNUxA9dm773V6tf7RfBXQcf4FD3ukjH9bHdP0YfjN5fzt_np-eJkfnSaKyaYyIWoGsYwoR0tWFNzoJonW0CAl4IKTVXbElqKirGmFaRtOtYRLrqOY6V0WdIpwmPdwa1hcwPWynUwKwgbSbDcRiTHiOQ2IpkiSsjrEVkPzUq3Srs-wD3mwci_f5y5llf-u2QFJ7xmqcDLXYHgvw069nJlokrJgNN-iJJXVcVwUSXhiz873TvbpZ8E5ShQwccYdCeV6WG7jNTY2P-McPgP9_DQbCRujNWbh-Ty7PPRskgbmKJ8xEzs9e1vDMJXmfyLUn46W8jlkl_QdwWXNf0JtFzL2Q |
| CitedBy_id | crossref_primary_10_1309_LM73OLT7NPYEHHWR crossref_primary_10_1177_0091270010379810 crossref_primary_10_3390_ijms232113486 crossref_primary_10_1182_asheducation_2007_1_79 crossref_primary_10_1155_2014_123257 crossref_primary_10_1016_j_bcmd_2011_04_008 crossref_primary_10_1074_jbc_M110_115725 crossref_primary_10_1177_0192623311406933 crossref_primary_10_3390_ijms232415750 crossref_primary_10_1182_blood_2007_06_093948 crossref_primary_10_3892_ijmm_2013_1338 crossref_primary_10_1016_j_jchromb_2007_12_002 crossref_primary_10_1182_blood_2005_12_010934 crossref_primary_10_2139_ssrn_4133074 crossref_primary_10_52711_0974_360X_2023_00678 crossref_primary_10_1016_S0268_960X_12_70011_5 crossref_primary_10_1039_C9RA01744E crossref_primary_10_1111_j_1537_2995_2008_01724_x crossref_primary_10_3389_fphar_2020_01137 crossref_primary_10_1586_ehm_12_20 crossref_primary_10_1096_fj_09_134700 crossref_primary_10_1097_01_moh_0000219658_57915_d4 crossref_primary_10_3390_genes12121874 |
| Cites_doi | 10.1073/pnas.79.14.4428 10.1182/blood.V92.8.2924 10.1182/blood.V85.1.43.bloodjournal85143 10.1111/j.1365-2141.1989.tb07734.x 10.1073/pnas.82.5.1451 10.1006/bcmd.2002.0537 10.1182/blood.V82.2.374.374 10.1016/S0301-472X(02)01030-5 10.1056/NEJM198212093072401 10.1182/blood.V84.5.1690.1690 10.1111/j.1365-2141.1995.tb05156.x 10.1056/NEJM199301143280202 10.1093/carcin/5.12.1583 10.1182/blood.V87.3.887.bloodjournal873887 10.1097/00005792-200109000-00007 10.1182/blood-2002-02-0353 10.1111/j.1365-2141.1979.tb05850.x 10.1182/blood.V96.10.3624 10.1056/NEJM199309163291205 10.1093/tropej/42.6.330 10.1111/j.1600-0609.1997.tb01405.x 10.1200/JCO.2004.07.151 10.1073/pnas.81.13.3954 10.1182/blood-2004-02-0454 10.1182/blood.V97.10.3259 10.1542/peds.97.3.352 10.1182/blood.V96.7.2379 10.1182/blood.V86.8.3227.3227 10.1182/blood.V74.6.1963.1963 10.1016/S0022-3476(05)83304-9 10.1182/blood-2003-02-0478 10.1182/blood.V83.2.561.561 |
| ContentType | Journal Article |
| Copyright | 2005 New York Academy of Sciences. 2005 |
| Copyright_xml | – notice: 2005 New York Academy of Sciences. 2005 |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1196/annals.1345.033 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Biology |
| EISSN | 1749-6632 |
| EndPage | 265 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:4261694 PMC4261694 16339673 10_1196_annals_1345_033 NYAS257 ark_67375_WNG_SS6P3J26_9 |
| Genre | article Clinical Trial Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R41 DK064535 – fundername: NIDDK NIH HHS grantid: R01 DK052962 – fundername: NHLBI NIH HHS grantid: HL-61208 – fundername: NIDDK NIH HHS grantid: DK-64535 – fundername: NIDDK NIH HHS grantid: DK-52962 – fundername: NIDDK NIH HHS grantid: R42 DK064535 – fundername: NHLBI NIH HHS grantid: R01 HL061208 – fundername: NHLBI NIH HHS grantid: HL-78276 – fundername: NHLBI NIH HHS grantid: R41 HL078276 – fundername: NCRR NIH HHS grantid: P40 RR012317 |
| GroupedDBID | --- --Z -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1OB 1OC 23M 31~ 33P 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 692 6J9 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADXHL ADZMN AEFGJ AEGXH AEIGN AEIMD AELAQ AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFSWV AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHDLI AHEFC AHMBA AI. AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD EMOBN ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IH2 IX1 J0M K48 L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OHT OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RAG RIWAO RJQFR ROL RX1 S10 SAMSI SJN SUPJJ SV3 TEORI TUS UB1 UPT V8K VH1 W8V W99 WBKPD WH7 WHWMO WIH WIK WOHZO WQJ WVDHM WXSBR X7M XG1 YBU YOC YSK ZGI ZKB ZXP ZZTAW ~02 ~IA ~KM ~WT AAYXX CITATION AAHHS AAMDK ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE CGR CUY CVF ECM EIF NPM WRC WUP 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4747-778b44013f324b96a3e6673a1a65737e3cdd1357844bd71dbf4f167ff60cce553 |
| IEDL.DBID | DR2 |
| ISSN | 0077-8923 1749-6632 |
| IngestDate | Wed Oct 29 12:00:32 EDT 2025 Tue Sep 30 16:37:34 EDT 2025 Tue Oct 21 13:37:54 EDT 2025 Wed Feb 19 01:43:56 EST 2025 Thu Apr 24 23:07:23 EDT 2025 Wed Oct 01 02:11:05 EDT 2025 Sun Sep 21 06:21:10 EDT 2025 Sun Sep 21 06:19:48 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4747-778b44013f324b96a3e6673a1a65737e3cdd1357844bd71dbf4f167ff60cce553 |
| Notes | istex:154BC7FE5DE1B214B437622CCFAD506BD0B411EC ark:/67375/WNG-SS6P3J26-9 ArticleID:NYAS257 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/4261694 |
| PMID | 16339673 |
| PQID | 68884028 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_1196_annals_1345_033 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4261694 proquest_miscellaneous_68884028 pubmed_primary_16339673 crossref_citationtrail_10_1196_annals_1345_033 crossref_primary_10_1196_annals_1345_033 wiley_primary_10_1196_annals_1345_033_NYAS257 istex_primary_ark_67375_WNG_SS6P3J26_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2005-01-01 |
| PublicationDateYYYYMMDD | 2005-01-01 |
| PublicationDate_xml | – month: 01 year: 2005 text: 2005-01-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: United States |
| PublicationTitle | Annals of the New York Academy of Sciences |
| PublicationTitleAlternate | Ann N Y Acad Sci |
| PublicationYear | 2005 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Centis, F., L. Tabellini, G. Lucarelli, et al. 2000. The importance of erythroid expansion in determining the extent of apoptosis in erythroid precursors in patients with β-thalassemia major. Blood 96: 3624-3629. Bourantas, K., G. Economou & J. Georgiou. 1997. Administration of high doses of recombinant human erythropoietin to patients with beta-thalassemia intermedia: a preliminary trial. Eur. J. Haematol. 58: 22-25. Hajjar, F.M. & H.A. Pearson. 1994. Pharmacological treatment of thalassemia-intermedia with hydroxyurea. J. Pediatr. 125: 490-492. Skarpidi, E., H. Cao, B. Heltweg, et al. 2003. Hydroxamide derivatives of short-chain fatty acids are potent inducers of human fetal globin gene expression. Exp. Hematol. 31: 197-203. Dunbar, C., W. Travis, Y.W. Kan, et al. 1989. 5-Azacytidine treatment in a beta thalassemia patient unable to be transfused due to multiple allo-antibodies. Br. J. Haematol. 74: 467-468. Nisli, G., K. Kavakli, C. Vergin, et al. 1996. Recombinant human erythropoietin trial in thalassemia intermedia. J. Trop. Pediatr. 42: 330-334. Pace, B.S., G.L. White, G.J. Dover, et al. 2002. Short-chain fatty acid derivatives induce fetal globin expression and erythropoiesis in vivo. Blood 100: 4640-4648. Galanello, R., S. Barella, M.P. Turco, et al. 1994. Serum erythropoietin and erythropoiesis in high and low fetal hemoglobin beta-thalassemia intermedia patients. Blood 83: 561-565. Steinberg, M.H. & G.P. Rodgers. 2001. Pharmacologic modulation of fetal hemoglobin. Medicine 80: 328-344. Atweh, G.F., M. Sutton, I. Nassif, et al. 1999. Sustained induction of fetal hemoglobin by pulse butyrate therapy in sickle cell disease. Blood 93: 1790-1797. Carr, B.I., J.G. Reilly, S.S. Smith, et al. 1984. The tumorigenicity of 5-azacytidine in the male Fischer rat. Carcinogenesis 5: 1583-1590. Liakopoulou, E., C.A. Blau, Q. Li, et al. 1995. Stimulation of fetal hemoglobin production by short chain fatty acids. Blood 86: 3227-3235. Weinberg, R.S., X. Ji, M. Sutton, et al. 2005. Butyrate increases the efficiency of translation of gamma-globin mRNA. Blood 105: 1807-1809. Koshy, M., L. Dorn, L. Bressler, et al. 2000. 2-Deoxy 5-azacytidine and fetal hemoglobin induction in sickle cell anemia. Blood 96: 2379-2384. Perrine, S.P., G. Ginder, D.V. Faller, et al. 1993. A short-term trial of butyrate to stimulate fetal-globin-gene expression in the -globin disorders. N. Engl. J. Med. 328: 129-131. Perrine, S.P., M.S. Boosalis, D.W. Emery, et al. 2003. A pharmacophore model for screening Hb F-inducing agents. Blood 102: 122a. Pearson, H.A., A.R. Cohen, P.J. Giardina, et al. 1996. The changing profile of homozygous β-thalassemia: demography, ethnicity, and age distribution of current North American patients and changes in two decades. Pediatrics 97: 352-356. Gallo, E., P. Massaro, R. Miniero, et al. 1979. The importance of the genetic picture and globin synthesis in determining the clinical and haematological features of thalassaemia intermedia. Br. J. Haematol. 41: 211-221. Jaenisch, R., A. Schnieke & K. Harbers. 1985. Treatment of mice with 5-azacytidine efficiently activates silent retroviral genomes in different tissues. Proc. Natl. Acad. Sci. USA 82: 1451-1455. Cao, H., G. Stamatoyannopoulos & M. Jung. 2004. Induction of human gamma globin gene expression by histone deacetylase inhibitors. Blood 103: 701-709. Constantoulakis, P., G. Knitter & G. Stamatoyannopoulos. 1989. On the induction of fetal hemoglobin by butyrates: in vivo and in vitro studies with sodium butyrate and comparison of combination treatments with 5-AzaC and AraC. Blood 74: 1963-1971. Ley, T.J., J. DeSimone, N.P. Anagou, et al. 1982. 5-Azacytidine selectively increases globin synthesis in a patient with beta+-thalassemia. N. Engl. J. Med. 307: 1469-1475. Lowrey, C. 2005. Epigenetic modifications of the human β-globin LCR core elements and γ-globin gene promoters. Blood Cells Mol. Dis. 34: 104-105. DeSimone, J., P. Heller, L. Hall, et al. 1982. 5-Azacytidine stimulates fetal hemoglobin synthesis in anemic baboons. Proc. Natl. Acad. Sci. USA 79: 4428-4431. Collins, A.F., H.A. Pearson, P. Giardina, et al. 1995. Oral sodium phenylbutyrate therapy in homozygous beta thalassemia: a clinical trial. Blood 85: 39-43. Ikuta, T., Y.W. Kan, P.S. Swerdlow, et al. 1998. Alterations in protein-DNA interactions in the gamma-globin gene promoter in response to butyrate therapy. Blood 92: 2924-2933. Collins, A.F., G.J. Dover & N.L. Luban. 1994. Increased fetal hemoglobin production in patients receiving valproic acid for epilepsy. Blood 84: 1690-1691. Perrine, S.P., Y.M. Yang, A. Piga, et al. 2002. Butyrate + EPO in beta thalassemia intermedia: interim findings of a phase II trial. Blood 100: 47a. Liakopoulou, E., Q. Li & G. Stamatoyannopoulos. 2002. Induction of fetal hemoglobin by propionic and butyric acid derivatives: correlations between chemical structure and potency of Hb F induction. Blood Cells Mol. Dis. 29: 48-56. Ginder, G., M.J. Whitters & J.K. Pohlman. 1984. Activation of a chicken embryonic globin gene in adult erythroid cells by 5-azacytidine and sodium butyrate. Proc. Natl. Acad. Sci. USA 81: 3954-3957. Yuan, J., E. Angelucci, G. Lucarelli, et al. 1993. Accelerated programmed cell death (apoptosis) in erythroid precursors of patients with severe beta-thalassemia. Blood 82: 374-377. Angelucci, E., G. Lucarelli, J. Yuan, et al. 1996. Programmed cell death (PCD) and ineffective erythropoiesis in Cooley's anemia. Blood 88: 22b. Vaziri, C., L. Stice & D.V. Faller. 1998. Butyrate-induced G1 arrest results from p21-independent disruption of retinoblastoma protein-mediated signals. Cell Growth Differ. 9: 465-474. Singer, S.T., N. Sweeters, E. Vichinsky, et al. 2003. A dose-finding and safety study of darbepoetin alfa (erythropoiesis stimulating protein) for the treatment of anemia in patients with thalassemia intermedia. Blood 102: 268a. Fucharoen, S., N. Siritanaratkul, P. Winichagoon, et al. 1996. Hydroxyurea increases Hb F levels and improves the effectiveness of erythropoiesis in beta thalassemia/Hb E disease. Blood 87: 887-892. Boosalis, M.S., R. Bandyopadhyay, E.H. Bresnick, et al. 2001. Short-chain fatty acid derivatives stimulate cell proliferation and induce STAT-5 activation. Blood 97: 3259-3267. Rachmilewitz, E.A., M. Aker, D. Perry & G. Dover. 1995. Sustained increase in haemoglobin and red blood cells following long-term administration of recombinant human erythropoietin to patients with homozygous beta thalassemia. Br. J Haematol. 90: 341-345. Das, P.M. & R. Singal. 2004. DNA methylation and cancer. J. Clin. Oncol. 22: 4632-4642. Lowrey, C.H. & A.W. Nienhuis. 1993. Brief report: treatment with azacitidine of patients with end-state β-thalassemia. N. Engl. J. Med. 329: 845-848. 1982; 79 2004; 22 1993; 329 1984; 81 2004; 103 1993; 328 1995; 90 1982; 307 1993; 82 1985; 82 1994; 83 2003; 31 1996; 97 1994; 84 2001; 80 1995; 86 1989; 74 1995; 85 1994; 125 2002; 29 1997; 58 2000; 96 2002; 100 2005; 105 1984; 5 1998; 92 1999; 93 1979; 41 2003; 102 1996; 87 1996; 42 2005; 34 1998; 9 2001; 97 1996; 88 Constantoulakis P. (e_1_2_6_23_2) 1989; 74 Ikuta T. (e_1_2_6_27_2) 1998; 92 Atweh G.F. (e_1_2_6_28_2) 1999; 93 Singer S.T. (e_1_2_6_38_2) 2003; 102 e_1_2_6_31_2 e_1_2_6_30_2 Fucharoen S. (e_1_2_6_16_2) 1996; 87 Pearson H.A. (e_1_2_6_4_2) 1996; 97 Angelucci E. (e_1_2_6_8_2) 1996; 88 e_1_2_6_19_2 Liakopoulou E. (e_1_2_6_24_2) 1995; 86 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_10_2 e_1_2_6_33_2 Yuan J. (e_1_2_6_7_2) 1993; 82 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_14_2 e_1_2_6_37_2 Galanello R. (e_1_2_6_6_2) 1994; 83 e_1_2_6_15_2 e_1_2_6_36_2 Vaziri C. (e_1_2_6_18_2) 1998; 9 e_1_2_6_20_2 Perrine S.P. (e_1_2_6_40_2) 2003; 102 Collins A.F. (e_1_2_6_25_2) 1994; 84 e_1_2_6_29_2 e_1_2_6_3_2 Centis F. (e_1_2_6_9_2) 2000; 96 e_1_2_6_5_2 Lowrey C. (e_1_2_6_41_2) 2005; 34 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_21_2 Collins A.F. (e_1_2_6_26_2) 1995; 85 Perrine S.P. (e_1_2_6_39_2) 2002; 100 2478217 - Blood. 1989 Nov 1;74(6):1963-71 7520784 - Blood. 1994 Sep 1;84(5):1690-1 12482403 - Blood Cells Mol Dis. 2002 Jul-Aug;29(1):48-56 7528572 - Blood. 1995 Jan 1;85(1):43-9 9020369 - Eur J Haematol. 1997 Jan;58(1):22-5 9763579 - Blood. 1998 Oct 15;92(8):2924-33 11001887 - Blood. 2000 Oct 1;96(7):2379-84 7677966 - N Engl J Med. 1993 Jan 14;328(2):81-6 427031 - Br J Haematol. 1979 Feb;41(2):211-21 6181507 - Proc Natl Acad Sci U S A. 1982 Jul;79(14):4428-31 11342457 - Blood. 2001 May 15;97(10):3259-67 11071663 - Blood. 2000 Nov 15;96(10):3624-9 9009557 - J Trop Pediatr. 1996 Dec;42(6):330-4 9663465 - Cell Growth Differ. 1998 Jun;9(6):465-74 11552087 - Medicine (Baltimore). 2001 Sep;80(5):328-44 8604269 - Pediatrics. 1996 Mar;97(3):352-6 7689171 - N Engl J Med. 1993 Sep 16;329(12):845-8 15479724 - Blood. 2005 Feb 15;105(4):1807-9 7579419 - Blood. 1995 Oct 15;86(8):3227-35 6209028 - Carcinogenesis. 1984 Dec;5(12):1583-90 12393583 - Blood. 2002 Dec 15;100(13):4640-8 8562958 - Blood. 1996 Feb 1;87(3):887-92 2579397 - Proc Natl Acad Sci U S A. 1985 Mar;82(5):1451-5 7794754 - Br J Haematol. 1995 Jun;90(2):341-5 7520935 - J Pediatr. 1994 Sep;125(3):490-2 15542813 - J Clin Oncol. 2004 Nov 15;22(22):4632-42 2475157 - Br J Haematol. 1989 Jul;72(3):467-8 6204332 - Proc Natl Acad Sci U S A. 1984 Jul;81(13):3954-8 8329696 - Blood. 1993 Jul 15;82(2):374-7 12644016 - Exp Hematol. 2003 Mar;31(3):197-203 7506955 - Blood. 1994 Jan 15;83(2):561-5 12920038 - Blood. 2004 Jan 15;103(2):701-9 10068649 - Blood. 1999 Mar 15;93(6):1790-7 6183586 - N Engl J Med. 1982 Dec 9;307(24):1469-75 |
| References_xml | – reference: Atweh, G.F., M. Sutton, I. Nassif, et al. 1999. Sustained induction of fetal hemoglobin by pulse butyrate therapy in sickle cell disease. Blood 93: 1790-1797. – reference: Liakopoulou, E., C.A. Blau, Q. Li, et al. 1995. Stimulation of fetal hemoglobin production by short chain fatty acids. Blood 86: 3227-3235. – reference: Centis, F., L. Tabellini, G. Lucarelli, et al. 2000. The importance of erythroid expansion in determining the extent of apoptosis in erythroid precursors in patients with β-thalassemia major. Blood 96: 3624-3629. – reference: Nisli, G., K. Kavakli, C. Vergin, et al. 1996. Recombinant human erythropoietin trial in thalassemia intermedia. J. Trop. Pediatr. 42: 330-334. – reference: Bourantas, K., G. Economou & J. Georgiou. 1997. Administration of high doses of recombinant human erythropoietin to patients with beta-thalassemia intermedia: a preliminary trial. Eur. J. Haematol. 58: 22-25. – reference: Weinberg, R.S., X. Ji, M. Sutton, et al. 2005. Butyrate increases the efficiency of translation of gamma-globin mRNA. Blood 105: 1807-1809. – reference: Rachmilewitz, E.A., M. Aker, D. Perry & G. Dover. 1995. Sustained increase in haemoglobin and red blood cells following long-term administration of recombinant human erythropoietin to patients with homozygous beta thalassemia. Br. J Haematol. 90: 341-345. – reference: Jaenisch, R., A. Schnieke & K. Harbers. 1985. Treatment of mice with 5-azacytidine efficiently activates silent retroviral genomes in different tissues. Proc. Natl. Acad. Sci. USA 82: 1451-1455. – reference: Ginder, G., M.J. Whitters & J.K. Pohlman. 1984. Activation of a chicken embryonic globin gene in adult erythroid cells by 5-azacytidine and sodium butyrate. Proc. Natl. Acad. Sci. USA 81: 3954-3957. – reference: Perrine, S.P., G. Ginder, D.V. Faller, et al. 1993. A short-term trial of butyrate to stimulate fetal-globin-gene expression in the -globin disorders. N. Engl. J. Med. 328: 129-131. – reference: Cao, H., G. Stamatoyannopoulos & M. Jung. 2004. Induction of human gamma globin gene expression by histone deacetylase inhibitors. Blood 103: 701-709. – reference: Pace, B.S., G.L. White, G.J. Dover, et al. 2002. Short-chain fatty acid derivatives induce fetal globin expression and erythropoiesis in vivo. Blood 100: 4640-4648. – reference: Vaziri, C., L. Stice & D.V. Faller. 1998. Butyrate-induced G1 arrest results from p21-independent disruption of retinoblastoma protein-mediated signals. Cell Growth Differ. 9: 465-474. – reference: Singer, S.T., N. Sweeters, E. Vichinsky, et al. 2003. A dose-finding and safety study of darbepoetin alfa (erythropoiesis stimulating protein) for the treatment of anemia in patients with thalassemia intermedia. Blood 102: 268a. – reference: Yuan, J., E. Angelucci, G. Lucarelli, et al. 1993. Accelerated programmed cell death (apoptosis) in erythroid precursors of patients with severe beta-thalassemia. Blood 82: 374-377. – reference: Lowrey, C.H. & A.W. Nienhuis. 1993. Brief report: treatment with azacitidine of patients with end-state β-thalassemia. N. Engl. J. Med. 329: 845-848. – reference: Perrine, S.P., M.S. Boosalis, D.W. Emery, et al. 2003. A pharmacophore model for screening Hb F-inducing agents. Blood 102: 122a. – reference: Liakopoulou, E., Q. Li & G. Stamatoyannopoulos. 2002. Induction of fetal hemoglobin by propionic and butyric acid derivatives: correlations between chemical structure and potency of Hb F induction. Blood Cells Mol. Dis. 29: 48-56. – reference: Angelucci, E., G. Lucarelli, J. Yuan, et al. 1996. Programmed cell death (PCD) and ineffective erythropoiesis in Cooley's anemia. Blood 88: 22b. – reference: Collins, A.F., H.A. Pearson, P. Giardina, et al. 1995. Oral sodium phenylbutyrate therapy in homozygous beta thalassemia: a clinical trial. Blood 85: 39-43. – reference: Steinberg, M.H. & G.P. Rodgers. 2001. Pharmacologic modulation of fetal hemoglobin. Medicine 80: 328-344. – reference: Gallo, E., P. Massaro, R. Miniero, et al. 1979. The importance of the genetic picture and globin synthesis in determining the clinical and haematological features of thalassaemia intermedia. Br. J. Haematol. 41: 211-221. – reference: Constantoulakis, P., G. Knitter & G. Stamatoyannopoulos. 1989. On the induction of fetal hemoglobin by butyrates: in vivo and in vitro studies with sodium butyrate and comparison of combination treatments with 5-AzaC and AraC. Blood 74: 1963-1971. – reference: Ikuta, T., Y.W. Kan, P.S. Swerdlow, et al. 1998. Alterations in protein-DNA interactions in the gamma-globin gene promoter in response to butyrate therapy. Blood 92: 2924-2933. – reference: Skarpidi, E., H. Cao, B. Heltweg, et al. 2003. Hydroxamide derivatives of short-chain fatty acids are potent inducers of human fetal globin gene expression. Exp. Hematol. 31: 197-203. – reference: Hajjar, F.M. & H.A. Pearson. 1994. Pharmacological treatment of thalassemia-intermedia with hydroxyurea. J. Pediatr. 125: 490-492. – reference: Carr, B.I., J.G. Reilly, S.S. Smith, et al. 1984. The tumorigenicity of 5-azacytidine in the male Fischer rat. Carcinogenesis 5: 1583-1590. – reference: Dunbar, C., W. Travis, Y.W. Kan, et al. 1989. 5-Azacytidine treatment in a beta thalassemia patient unable to be transfused due to multiple allo-antibodies. Br. J. Haematol. 74: 467-468. – reference: Boosalis, M.S., R. Bandyopadhyay, E.H. Bresnick, et al. 2001. Short-chain fatty acid derivatives stimulate cell proliferation and induce STAT-5 activation. Blood 97: 3259-3267. – reference: DeSimone, J., P. Heller, L. Hall, et al. 1982. 5-Azacytidine stimulates fetal hemoglobin synthesis in anemic baboons. Proc. Natl. Acad. Sci. USA 79: 4428-4431. – reference: Koshy, M., L. Dorn, L. Bressler, et al. 2000. 2-Deoxy 5-azacytidine and fetal hemoglobin induction in sickle cell anemia. Blood 96: 2379-2384. – reference: Fucharoen, S., N. Siritanaratkul, P. Winichagoon, et al. 1996. Hydroxyurea increases Hb F levels and improves the effectiveness of erythropoiesis in beta thalassemia/Hb E disease. Blood 87: 887-892. – reference: Collins, A.F., G.J. Dover & N.L. Luban. 1994. Increased fetal hemoglobin production in patients receiving valproic acid for epilepsy. Blood 84: 1690-1691. – reference: Ley, T.J., J. DeSimone, N.P. Anagou, et al. 1982. 5-Azacytidine selectively increases globin synthesis in a patient with beta+-thalassemia. N. Engl. J. Med. 307: 1469-1475. – reference: Perrine, S.P., Y.M. Yang, A. Piga, et al. 2002. Butyrate + EPO in beta thalassemia intermedia: interim findings of a phase II trial. Blood 100: 47a. – reference: Pearson, H.A., A.R. Cohen, P.J. Giardina, et al. 1996. The changing profile of homozygous β-thalassemia: demography, ethnicity, and age distribution of current North American patients and changes in two decades. Pediatrics 97: 352-356. – reference: Das, P.M. & R. Singal. 2004. DNA methylation and cancer. J. Clin. Oncol. 22: 4632-4642. – reference: Lowrey, C. 2005. Epigenetic modifications of the human β-globin LCR core elements and γ-globin gene promoters. Blood Cells Mol. Dis. 34: 104-105. – reference: Galanello, R., S. Barella, M.P. Turco, et al. 1994. Serum erythropoietin and erythropoiesis in high and low fetal hemoglobin beta-thalassemia intermedia patients. Blood 83: 561-565. – volume: 88 start-page: 22b year: 1996 article-title: Programmed cell death (PCD) and ineffective erythropoiesis in Cooley's anemia publication-title: Blood – volume: 97 start-page: 352 year: 1996 end-page: 356 article-title: The changing profile of homozygous β‐thalassemia: demography, ethnicity, and age distribution of current North American patients and changes in two decades publication-title: Pediatrics – volume: 81 start-page: 3954 year: 1984 end-page: 3957 article-title: Activation of a chicken embryonic globin gene in adult erythroid cells by 5‐azacytidine and sodium butyrate publication-title: Proc. Natl. Acad. Sci. USA – volume: 93 start-page: 1790 year: 1999 end-page: 1797 article-title: Sustained induction of fetal hemoglobin by pulse butyrate therapy in sickle cell disease publication-title: Blood – volume: 42 start-page: 330 year: 1996 end-page: 334 article-title: Recombinant human erythropoietin trial in thalassemia intermedia publication-title: J. Trop. Pediatr. – volume: 74 start-page: 1963 year: 1989 end-page: 1971 article-title: On the induction of fetal hemoglobin by butyrates: and studies with sodium butyrate and comparison of combination treatments with 5‐AzaC and AraC publication-title: Blood – volume: 100 start-page: 4640 year: 2002 end-page: 4648 article-title: Short‐chain fatty acid derivatives induce fetal globin expression and erythropoiesis publication-title: Blood – volume: 97 start-page: 3259 year: 2001 end-page: 3267 article-title: Short‐chain fatty acid derivatives stimulate cell proliferation and induce STAT‐5 activation publication-title: Blood – volume: 82 start-page: 1451 year: 1985 end-page: 1455 article-title: Treatment of mice with 5‐azacytidine efficiently activates silent retroviral genomes in different tissues publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 465 year: 1998 end-page: 474 article-title: Butyrate‐induced G arrest results from p21‐independent disruption of retinoblastoma protein‐mediated signals publication-title: Cell Growth Differ. – volume: 41 start-page: 211 year: 1979 end-page: 221 article-title: The importance of the genetic picture and globin synthesis in determining the clinical and haematological features of thalassaemia intermedia publication-title: Br. J. Haematol. – volume: 328 start-page: 129 year: 1993 end-page: 131 article-title: A short‐term trial of butyrate to stimulate fetal‐globin‐gene expression in the ‐globin disorders publication-title: N. Engl. J. Med. – volume: 90 start-page: 341 year: 1995 end-page: 345 article-title: Sustained increase in haemoglobin and red blood cells following long‐term administration of recombinant human erythropoietin to patients with homozygous beta thalassemia publication-title: Br. J Haematol. – volume: 31 start-page: 197 year: 2003 end-page: 203 article-title: Hydroxamide derivatives of short‐chain fatty acids are potent inducers of human fetal globin gene expression publication-title: Exp. Hematol. – volume: 102 start-page: 122a year: 2003 article-title: A pharmacophore model for screening Hb F‐inducing agents publication-title: Blood – volume: 84 start-page: 1690 year: 1994 end-page: 1691 article-title: Increased fetal hemoglobin production in patients receiving valproic acid for epilepsy publication-title: Blood – volume: 103 start-page: 701 year: 2004 end-page: 709 article-title: Induction of human gamma globin gene expression by histone deacetylase inhibitors publication-title: Blood – volume: 74 start-page: 467 year: 1989 end-page: 468 article-title: 5‐Azacytidine treatment in a beta thalassemia patient unable to be transfused due to multiple allo‐antibodies publication-title: Br. J. Haematol. – volume: 105 start-page: 1807 year: 2005 end-page: 1809 article-title: Butyrate increases the efficiency of translation of gamma‐globin mRNA publication-title: Blood – volume: 80 start-page: 328 year: 2001 end-page: 344 article-title: Pharmacologic modulation of fetal hemoglobin publication-title: Medicine – volume: 125 start-page: 490 year: 1994 end-page: 492 article-title: Pharmacological treatment of thalassemia‐intermedia with hydroxyurea publication-title: J. Pediatr. – volume: 22 start-page: 4632 year: 2004 end-page: 4642 article-title: DNA methylation and cancer publication-title: J. Clin. Oncol. – volume: 86 start-page: 3227 year: 1995 end-page: 3235 article-title: Stimulation of fetal hemoglobin production by short chain fatty acids publication-title: Blood – volume: 29 start-page: 48 year: 2002 end-page: 56 article-title: Induction of fetal hemoglobin by propionic and butyric acid derivatives: correlations between chemical structure and potency of Hb F induction publication-title: Blood Cells Mol. Dis. – volume: 307 start-page: 1469 year: 1982 end-page: 1475 article-title: 5‐Azacytidine selectively increases globin synthesis in a patient with beta ‐thalassemia publication-title: N. Engl. J. Med. – volume: 102 start-page: 268a year: 2003 article-title: A dose‐finding and safety study of darbepoetin alfa (erythropoiesis stimulating protein) for the treatment of anemia in patients with thalassemia intermedia publication-title: Blood – volume: 329 start-page: 845 year: 1993 end-page: 848 article-title: Brief report: treatment with azacitidine of patients with end‐state β‐thalassemia publication-title: N. Engl. J. Med. – volume: 92 start-page: 2924 year: 1998 end-page: 2933 article-title: Alterations in protein‐DNA interactions in the gamma‐globin gene promoter in response to butyrate therapy publication-title: Blood – volume: 100 start-page: 47a year: 2002 article-title: Butyrate + EPO in beta thalassemia intermedia: interim findings of a phase II trial publication-title: Blood – volume: 79 start-page: 4428 year: 1982 end-page: 4431 article-title: 5‐Azacytidine stimulates fetal hemoglobin synthesis in anemic baboons publication-title: Proc. Natl. Acad. Sci. USA – volume: 87 start-page: 887 year: 1996 end-page: 892 article-title: Hydroxyurea increases Hb F levels and improves the effectiveness of erythropoiesis in beta thalassemia/Hb E disease publication-title: Blood – volume: 96 start-page: 2379 year: 2000 end-page: 2384 article-title: 2‐Deoxy 5‐azacytidine and fetal hemoglobin induction in sickle cell anemia publication-title: Blood – volume: 82 start-page: 374 year: 1993 end-page: 377 article-title: Accelerated programmed cell death (apoptosis) in erythroid precursors of patients with severe beta‐thalassemia publication-title: Blood – volume: 96 start-page: 3624 year: 2000 end-page: 3629 article-title: The importance of erythroid expansion in determining the extent of apoptosis in erythroid precursors in patients with β‐thalassemia major publication-title: Blood – volume: 85 start-page: 39 year: 1995 end-page: 43 article-title: Oral sodium phenylbutyrate therapy in homozygous beta thalassemia: a clinical trial publication-title: Blood – volume: 5 start-page: 1583 year: 1984 end-page: 1590 article-title: The tumorigenicity of 5‐azacytidine in the male Fischer rat publication-title: Carcinogenesis – volume: 58 start-page: 22 year: 1997 end-page: 25 article-title: Administration of high doses of recombinant human erythropoietin to patients with beta‐thalassemia intermedia: a preliminary trial publication-title: Eur. J. Haematol. – volume: 83 start-page: 561 year: 1994 end-page: 565 article-title: Serum erythropoietin and erythropoiesis in high and low fetal hemoglobin beta‐thalassemia intermedia patients publication-title: Blood – volume: 34 start-page: 104 year: 2005 end-page: 105 article-title: Epigenetic modifications of the human β‐globin LCR core elements and γ‐globin gene promoters publication-title: Blood Cells Mol. Dis. – ident: e_1_2_6_10_2 doi: 10.1073/pnas.79.14.4428 – volume: 92 start-page: 2924 year: 1998 ident: e_1_2_6_27_2 article-title: Alterations in protein‐DNA interactions in the gamma‐globin gene promoter in response to butyrate therapy publication-title: Blood doi: 10.1182/blood.V92.8.2924 – ident: e_1_2_6_5_2 – volume: 88 start-page: 22b year: 1996 ident: e_1_2_6_8_2 article-title: Programmed cell death (PCD) and ineffective erythropoiesis in Cooley's anemia publication-title: Blood – volume: 85 start-page: 39 year: 1995 ident: e_1_2_6_26_2 article-title: Oral sodium phenylbutyrate therapy in homozygous beta thalassemia: a clinical trial publication-title: Blood doi: 10.1182/blood.V85.1.43.bloodjournal85143 – volume: 102 start-page: 268a year: 2003 ident: e_1_2_6_38_2 article-title: A dose‐finding and safety study of darbepoetin alfa (erythropoiesis stimulating protein) for the treatment of anemia in patients with thalassemia intermedia publication-title: Blood – ident: e_1_2_6_11_2 doi: 10.1111/j.1365-2141.1989.tb07734.x – ident: e_1_2_6_12_2 doi: 10.1073/pnas.82.5.1451 – volume: 9 start-page: 465 year: 1998 ident: e_1_2_6_18_2 article-title: Butyrate‐induced G1 arrest results from p21‐independent disruption of retinoblastoma protein‐mediated signals publication-title: Cell Growth Differ. – ident: e_1_2_6_29_2 doi: 10.1006/bcmd.2002.0537 – volume: 82 start-page: 374 year: 1993 ident: e_1_2_6_7_2 article-title: Accelerated programmed cell death (apoptosis) in erythroid precursors of patients with severe beta‐thalassemia publication-title: Blood doi: 10.1182/blood.V82.2.374.374 – ident: e_1_2_6_31_2 doi: 10.1016/S0301-472X(02)01030-5 – ident: e_1_2_6_14_2 doi: 10.1056/NEJM198212093072401 – volume: 84 start-page: 1690 year: 1994 ident: e_1_2_6_25_2 article-title: Increased fetal hemoglobin production in patients receiving valproic acid for epilepsy publication-title: Blood doi: 10.1182/blood.V84.5.1690.1690 – ident: e_1_2_6_36_2 doi: 10.1111/j.1365-2141.1995.tb05156.x – ident: e_1_2_6_22_2 doi: 10.1056/NEJM199301143280202 – ident: e_1_2_6_19_2 doi: 10.1093/carcin/5.12.1583 – volume: 87 start-page: 887 year: 1996 ident: e_1_2_6_16_2 article-title: Hydroxyurea increases Hb F levels and improves the effectiveness of erythropoiesis in beta thalassemia/Hb E disease publication-title: Blood doi: 10.1182/blood.V87.3.887.bloodjournal873887 – volume: 93 start-page: 1790 year: 1999 ident: e_1_2_6_28_2 article-title: Sustained induction of fetal hemoglobin by pulse butyrate therapy in sickle cell disease publication-title: Blood – ident: e_1_2_6_2_2 doi: 10.1097/00005792-200109000-00007 – ident: e_1_2_6_30_2 doi: 10.1182/blood-2002-02-0353 – ident: e_1_2_6_3_2 doi: 10.1111/j.1365-2141.1979.tb05850.x – volume: 96 start-page: 3624 year: 2000 ident: e_1_2_6_9_2 article-title: The importance of erythroid expansion in determining the extent of apoptosis in erythroid precursors in patients with β‐thalassemia major publication-title: Blood doi: 10.1182/blood.V96.10.3624 – ident: e_1_2_6_15_2 doi: 10.1056/NEJM199309163291205 – ident: e_1_2_6_35_2 doi: 10.1093/tropej/42.6.330 – volume: 102 start-page: 122a year: 2003 ident: e_1_2_6_40_2 article-title: A pharmacophore model for screening Hb F‐inducing agents publication-title: Blood – ident: e_1_2_6_37_2 doi: 10.1111/j.1600-0609.1997.tb01405.x – ident: e_1_2_6_20_2 doi: 10.1200/JCO.2004.07.151 – ident: e_1_2_6_21_2 doi: 10.1073/pnas.81.13.3954 – ident: e_1_2_6_32_2 doi: 10.1182/blood-2004-02-0454 – ident: e_1_2_6_34_2 doi: 10.1182/blood.V97.10.3259 – volume: 97 start-page: 352 year: 1996 ident: e_1_2_6_4_2 article-title: The changing profile of homozygous β‐thalassemia: demography, ethnicity, and age distribution of current North American patients and changes in two decades publication-title: Pediatrics doi: 10.1542/peds.97.3.352 – ident: e_1_2_6_13_2 doi: 10.1182/blood.V96.7.2379 – volume: 86 start-page: 3227 year: 1995 ident: e_1_2_6_24_2 article-title: Stimulation of fetal hemoglobin production by short chain fatty acids publication-title: Blood doi: 10.1182/blood.V86.8.3227.3227 – volume: 74 start-page: 1963 year: 1989 ident: e_1_2_6_23_2 article-title: On the induction of fetal hemoglobin by butyrates: in vivo and in vitro studies with sodium butyrate and comparison of combination treatments with 5‐AzaC and AraC publication-title: Blood doi: 10.1182/blood.V74.6.1963.1963 – ident: e_1_2_6_17_2 doi: 10.1016/S0022-3476(05)83304-9 – ident: e_1_2_6_33_2 doi: 10.1182/blood-2003-02-0478 – volume: 83 start-page: 561 year: 1994 ident: e_1_2_6_6_2 article-title: Serum erythropoietin and erythropoiesis in high and low fetal hemoglobin beta‐thalassemia intermedia patients publication-title: Blood doi: 10.1182/blood.V83.2.561.561 – volume: 100 start-page: 47a year: 2002 ident: e_1_2_6_39_2 article-title: Butyrate + EPO in beta thalassemia intermedia: interim findings of a phase II trial publication-title: Blood – volume: 34 start-page: 104 year: 2005 ident: e_1_2_6_41_2 article-title: Epigenetic modifications of the human β‐globin LCR core elements and γ‐globin gene promoters publication-title: Blood Cells Mol. Dis. – reference: 10068649 - Blood. 1999 Mar 15;93(6):1790-7 – reference: 11342457 - Blood. 2001 May 15;97(10):3259-67 – reference: 7520935 - J Pediatr. 1994 Sep;125(3):490-2 – reference: 6183586 - N Engl J Med. 1982 Dec 9;307(24):1469-75 – reference: 9020369 - Eur J Haematol. 1997 Jan;58(1):22-5 – reference: 427031 - Br J Haematol. 1979 Feb;41(2):211-21 – reference: 8329696 - Blood. 1993 Jul 15;82(2):374-7 – reference: 8604269 - Pediatrics. 1996 Mar;97(3):352-6 – reference: 2475157 - Br J Haematol. 1989 Jul;72(3):467-8 – reference: 12393583 - Blood. 2002 Dec 15;100(13):4640-8 – reference: 6209028 - Carcinogenesis. 1984 Dec;5(12):1583-90 – reference: 11001887 - Blood. 2000 Oct 1;96(7):2379-84 – reference: 8562958 - Blood. 1996 Feb 1;87(3):887-92 – reference: 6204332 - Proc Natl Acad Sci U S A. 1984 Jul;81(13):3954-8 – reference: 7677966 - N Engl J Med. 1993 Jan 14;328(2):81-6 – reference: 12482403 - Blood Cells Mol Dis. 2002 Jul-Aug;29(1):48-56 – reference: 12644016 - Exp Hematol. 2003 Mar;31(3):197-203 – reference: 9663465 - Cell Growth Differ. 1998 Jun;9(6):465-74 – reference: 15542813 - J Clin Oncol. 2004 Nov 15;22(22):4632-42 – reference: 7528572 - Blood. 1995 Jan 1;85(1):43-9 – reference: 15479724 - Blood. 2005 Feb 15;105(4):1807-9 – reference: 11552087 - Medicine (Baltimore). 2001 Sep;80(5):328-44 – reference: 9009557 - J Trop Pediatr. 1996 Dec;42(6):330-4 – reference: 7794754 - Br J Haematol. 1995 Jun;90(2):341-5 – reference: 12920038 - Blood. 2004 Jan 15;103(2):701-9 – reference: 2478217 - Blood. 1989 Nov 1;74(6):1963-71 – reference: 9763579 - Blood. 1998 Oct 15;92(8):2924-33 – reference: 11071663 - Blood. 2000 Nov 15;96(10):3624-9 – reference: 7579419 - Blood. 1995 Oct 15;86(8):3227-35 – reference: 7520784 - Blood. 1994 Sep 1;84(5):1690-1 – reference: 2579397 - Proc Natl Acad Sci U S A. 1985 Mar;82(5):1451-5 – reference: 6181507 - Proc Natl Acad Sci U S A. 1982 Jul;79(14):4428-31 – reference: 7506955 - Blood. 1994 Jan 15;83(2):561-5 – reference: 7689171 - N Engl J Med. 1993 Sep 16;329(12):845-8 |
| SSID | ssj0012847 |
| Score | 1.9408616 |
| Snippet | : Accelerated apoptosis of erythroid progenitors in β‐thalassemia is a significant barrier to definitive therapy because the beneficial effects of fetal... A bstract : Accelerated apoptosis of erythroid progenitors in β‐thalassemia is a significant barrier to definitive therapy because the beneficial effects of... Accelerated apoptosis of erythroid progenitors in beta-thalassemia is a significant barrier to definitive therapy because the beneficial effects of fetal... Accelerated apoptosis of erythroid progenitors in β-thalassemia is a significant barrier to definitive therapy because the beneficial effects of fetal... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 257 |
| SubjectTerms | Animals apoptosis Apoptosis - drug effects beta-Thalassemia - drug therapy beta-Thalassemia - genetics beta-Thalassemia - metabolism beta-Thalassemia - therapy Blood Transfusion Butyrates - administration & dosage Butyrates - therapeutic use Cells, Cultured - drug effects Combined Modality Therapy Drug Evaluation, Preclinical Drug Therapy, Combination Erythroid Cells - drug effects Erythroid Cells - metabolism erythropoietin Erythropoietin - administration & dosage Erythropoietin - therapeutic use Fatty Acids, Volatile - pharmacokinetics Fatty Acids, Volatile - pharmacology fetal hemoglobin Fetal Hemoglobin - biosynthesis Fetal Hemoglobin - genetics Gene Expression - drug effects Humans molecular signaling Papio Pilot Projects Recombinant Proteins short-chain fatty acid thalassemia Treatment Outcome |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEB6VRAguQAsF87sHhNqD3azXXsfcoopQVSJEpBHpabW7XqtRHSdqEkE58Qg8Cw_CQ_AkzG7soPCjqlJuXq-zns-z39jfzAC8VNJEPA6lT3F3wABFSl9paWyuDDU5T6Msc2qLHj8aRsejeLQFtM6FcaJ9rcZBWUyCcnzmtJWziT6odWIHlvPjHDegyWOk3w1oDnv9zqnzuAl63NS1dEOinfq4m4ZVOR8Emm3sgiYNKIvioMXYxk7UtDf1879o5t9qyVvLciYvP8mi2GS0bkvq3oUP9WJWSpTzYLlQgf7yR53Ha632HtypCCrprA5tw5Ypd-DmqmXl5Q5sV85gTvaqitX792FkG4C4BAkyzUnXIKEnVsYxLgn-fnz_-fXbyZlN2JybyVi-JoemKKz8lbxXSE7tPyCyzMi7ulUv6VvVGPrgBzDsvjk5PPKrlg2-jjAwQa7eVpEN2XIkairlkhnbV1RSyeOEJYbpLKO2wE4UqSyhmcqjnPIkz3lLaxPHbBca5bQ0j4CwXGnaymVsGIZsNJEZmiDUNpnXyDDNPAhq8wld1TO3bTUK4eKa1OVao72FtbdAe3uwtz5htirl8f-hrxwe1uPkxblVwCWx-Nh7KwYD3mfHIRepBy9qwAh8Lu3HFlma6XIueLuNsXPY9uDhCj6_r8kZS3EyD5INYK0H2Irfm0cQGq7yd4UGD_bXELx6Kb6D6FXjRO-0M0D__fgacz-B266SrXsj9RQai4uleYYcbaGeV0_lL7ekPIw priority: 102 providerName: Unpaywall |
| Title | Induction of Fetal Globin in β-Thalassemia: Cellular Obstacles and Molecular Progress |
| URI | https://api.istex.fr/ark:/67375/WNG-SS6P3J26-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1196%2Fannals.1345.033 https://www.ncbi.nlm.nih.gov/pubmed/16339673 https://www.proquest.com/docview/68884028 https://pubmed.ncbi.nlm.nih.gov/PMC4261694 https://www.ncbi.nlm.nih.gov/pmc/articles/4261694 |
| UnpaywallVersion | submittedVersion |
| Volume | 1054 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0077-8923 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1749-6632 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012847 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB6hVgguQMuf-Sl7QKg9OM167XXMLaoIVSVCRBrRnla79lqNapyqSQTlxCPwLDwID8GTMLP-QSmgCiH55rGt3Z2ZnVl_8w3Ac6NtKKNA-xx3B0xQtPZNqi3VynCbyyTMMoe2GMr9SXhwFDVoQqqFqfgh2gM3sgznr8nAtam7kCQ1uy0uUIeLMOp0BfF9ciFdUvWuJZByztf54hh9McYyNbkPvmH30vMr-9I6TfGnPwWdv2MnbyzLM33xURfFanzrNqjBbTDN0CpcymlnuTCd9PMl1sf_GvsduFWHr6xf6dsGXLPlJlyvGlpebMJG7SrmbLvms965C0fUHsSVT7BZzgYWw31GII9pyfD6_u3Hl6-HJ1TOObcfpvol27NFQeBY9tZg6EqoPabLjL1pGvmyEWHK0EPfg8ng1eHevl83dPDTENMWjOR7JqSELscwziRSC0tdRzXXMopFbEWaZZzod8LQZDHPTB7mXMZ5LrtpaqNI3Ie1clbah8BEblLezXVkBSZ0PNYZLkmQUqmv1UGSedBpllOlNds5Nd0olMt6EleJjXOoaA4VzqEH2-0DZxXRx99FXzj9aOX0-Snh4-JIvR--VuOxHImDQKrEg2eNAim0WvoVo0s7W86V7PUwsw56Hjyo1OnXN6UQCb7Mg3hF0VoB4gNfvVNOTxwvOGXDaF0e7LQqefVQfKdnV8mp4XF_jN790T_KP4abjuvWnVk9gbXF-dI-xShuYbacoW7B-mQ46h__BDk_Rqw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB5BK1QuhZY_89c9INQebGKvvY65VRUhlDZUJBXhtNq112pU16maRFBOPALPwoPwEDwJM2vHkAKqEJJvmay1uzOz36xnvgF4opUJRRQo18fTAQMUpVydKkO1Mr7JRRJmmc226InuYbg7jIa_1MJU_BDNhRtZhvXXZOB0IV1ZeVLT2-IOeT4PI6_F-VVYDgVGKwSM3jYUUtb9Wm8cozdGNFPT--AQzy4MsHAyLdMif_wT7Pw9e3JlVp6q8w-qKBYRrj2iOjcgnU-uykw59mZT7aWfLvA-_t_sb8JqjWDZdqVya3DFlOtwreppeb4Oa7W3mLDNmtJ66xYMqUOIraBg45x1DCJ-Rnkeo5Lh8-3r989fBkdU0TkxJyP1nO2YoqD8WPZGI3qlxD2myoztz3v5sgNKK0MnfRsOOy8GO1237ungpiFGLgjm2zqkmC5HJKcTobihxqPKVyKKeWx4mmU-MfCEoc5iP9N5mPsiznPRSlMTRfwOLJXj0twDxnOd-q1cRYZjTOfHKsM9CVKq9jUqSDIHvPl-yrQmPKe-G4W0gU9ii7FxDSWtocQ1dGCz-cNpxfXxd9GnVkEaOXV2TClycSTf9V7Kfl8c8N1AyMSBjbkGSTRc-hqjSjOeTaRotzG4DtoO3K306ec7BecJDuZAvKBpjQBRgi_-Uo6OLDU4BcRoYA5sNTp5-VRcq2iXycne--0-Ovj7_yi_ASvdwf6e3HvVe_0ArlvqW3uF9RCWpmcz8whB3VQ_tlb7AzsTSR0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB5BKygXoIWC-eseEGoPMbHXXtvcqpZQCoSItCKcVrv2Wo1qnKhJBOXEI_AsPAgPwZMws3YMKaAKIfnm8Vq7OzP7jT3zDcBDrUwgQl-1PDwdMEBRqqVTZahWxjO5SIIss9kWXbF3GOwPwsEvtTAVP0TzwY0sw_prMnAzzvLKypOa3hZ3yPV4ELptzi_CchAmMaX17b5pKKSs-7XeOEJvjGimpvfBIR6fGWDhZFqmRf74J9j5e_bkyqwcq9MPqigWEa49ojrXIJ1PrspMOXZnU-2mn87wPv7f7K_D1RrBsu1K5VbhginX4FLV0_J0DVZrbzFhmzWl9dYNGFCHEFtBwUY56xhE_IzyPIYlw-vb1--fvxwcUUXnxLwfqidsxxQF5cey1xrRKyXuMVVm7NW8ly_rUVoZOumbcNh5erCz16p7OrTSACMXBPOxDiimyxHJ6UQobqjxqPKUCCMeGZ5mmUcMPEGgs8jLdB7knojyXLTT1IQhX4elclSa28B4rlOvnavQcIzpvEhluCd-StW-RvlJ5oA730-Z1oTn1HejkDbwSWwxNq6hpDWUuIYObDYPjCuuj7-LPrIK0sipk2NKkYtC-bb7TPb7osf3fSETBzbmGiTRcOlvjCrNaDaRIo4xuPZjB25V-vTznYLzBAdzIFrQtEaAKMEX75TDI0sNTgExGpgDW41Onj-VllW08-Rk9912Hx38nX-U34DLvd2OfPm8--IuXLHMt_YL1j1Ymp7MzH3EdFP9wBrtD4M-SKE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEB6VRAguQAsF87sHhNqD3azXXsfcoopQVSJEpBHpabW7XqtRHSdqEkE58Qg8Cw_CQ_AkzG7soPCjqlJuXq-zns-z39jfzAC8VNJEPA6lT3F3wABFSl9paWyuDDU5T6Msc2qLHj8aRsejeLQFtM6FcaJ9rcZBWUyCcnzmtJWziT6odWIHlvPjHDegyWOk3w1oDnv9zqnzuAl63NS1dEOinfq4m4ZVOR8Emm3sgiYNKIvioMXYxk7UtDf1879o5t9qyVvLciYvP8mi2GS0bkvq3oUP9WJWSpTzYLlQgf7yR53Ha632HtypCCrprA5tw5Ypd-DmqmXl5Q5sV85gTvaqitX792FkG4C4BAkyzUnXIKEnVsYxLgn-fnz_-fXbyZlN2JybyVi-JoemKKz8lbxXSE7tPyCyzMi7ulUv6VvVGPrgBzDsvjk5PPKrlg2-jjAwQa7eVpEN2XIkairlkhnbV1RSyeOEJYbpLKO2wE4UqSyhmcqjnPIkz3lLaxPHbBca5bQ0j4CwXGnaymVsGIZsNJEZmiDUNpnXyDDNPAhq8wld1TO3bTUK4eKa1OVao72FtbdAe3uwtz5htirl8f-hrxwe1uPkxblVwCWx-Nh7KwYD3mfHIRepBy9qwAh8Lu3HFlma6XIueLuNsXPY9uDhCj6_r8kZS3EyD5INYK0H2Irfm0cQGq7yd4UGD_bXELx6Kb6D6FXjRO-0M0D__fgacz-B266SrXsj9RQai4uleYYcbaGeV0_lL7ekPIw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Induction+of+fetal+globin+in+beta-thalassemia%3A+Cellular+obstacles+and+molecular+progress&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=Perrine%2C+Susan+P&rft.au=Castaneda%2C+Serguei+A&rft.au=Boosalis%2C+Michael+S&rft.au=White%2C+Gary+L&rft.date=2005-01-01&rft.issn=0077-8923&rft.volume=1054&rft.spage=257&rft_id=info:doi/10.1196%2Fannals.1345.033&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon |