Induction of Fetal Globin in β-Thalassemia: Cellular Obstacles and Molecular Progress

: Accelerated apoptosis of erythroid progenitors in β‐thalassemia is a significant barrier to definitive therapy because the beneficial effects of fetal globin‐inducing agents on globin chain balance may not be inducible in cells in which programmed cell death is established early. Accordingly, our...

Full description

Saved in:
Bibliographic Details
Published inAnnals of the New York Academy of Sciences Vol. 1054; no. 1; pp. 257 - 265
Main Authors PERRINE, SUSAN P., CASTANEDA, SERGUEI A., BOOSALIS, MICHAEL S., WHITE, GARY L., JONES, BRANDON M., BOHACEK, REGINE
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.01.2005
Subjects
Online AccessGet full text
ISSN0077-8923
1749-6632
1749-6632
DOI10.1196/annals.1345.033

Cover

Abstract : Accelerated apoptosis of erythroid progenitors in β‐thalassemia is a significant barrier to definitive therapy because the beneficial effects of fetal globin‐inducing agents on globin chain balance may not be inducible in cells in which programmed cell death is established early. Accordingly, our objectives have been to identify methods to decrease cellular apoptosis and to identify orally tolerable fetal globin gene inducers. A pilot clinical trial was conducted to determine whether combined use of a fetal globin gene inducer (butyrate) and rhu‐erythropoietin (EPO), the hematopoietic growth factor that prolongs erythroid cell survival and stimulates erythroid proliferation, would produce additive hematologic responses in any thalassemia subjects. Butyrate and EPO were administered in 10 patients. Novel fetal globin gene inducers that also stimulate erythroid proliferation were evaluated for pharmacokinetic profiles. Patients with β+‐thalassemia had relatively low levels of endogenous EPO (<145 mU/mL) and had additive responses to administered EPO and butyrate. Patients with at least one β0‐globin mutation had higher baseline HbF levels (>60%) and EPO levels (>160 mU/mL), and three‐fourths of these subjects responded to the fetal globin gene inducer alone. A few select fetal globin‐inducing short‐chain fatty acid derivatives that stimulated cell proliferation also had favorable pharmacokinetics. These studies identify a significant subset of thalassemia patients who appear to require exogenous EPO to respond optimally to any HbF inducer, as well as new therapeutic candidates that act on both cellular and molecular pathologies of β‐thalassemia. Both approaches now offer excellent potential for tolerable, definitive treatment of β‐thalassemia.
AbstractList : Accelerated apoptosis of erythroid progenitors in β‐thalassemia is a significant barrier to definitive therapy because the beneficial effects of fetal globin‐inducing agents on globin chain balance may not be inducible in cells in which programmed cell death is established early. Accordingly, our objectives have been to identify methods to decrease cellular apoptosis and to identify orally tolerable fetal globin gene inducers. A pilot clinical trial was conducted to determine whether combined use of a fetal globin gene inducer (butyrate) and rhu‐erythropoietin (EPO), the hematopoietic growth factor that prolongs erythroid cell survival and stimulates erythroid proliferation, would produce additive hematologic responses in any thalassemia subjects. Butyrate and EPO were administered in 10 patients. Novel fetal globin gene inducers that also stimulate erythroid proliferation were evaluated for pharmacokinetic profiles. Patients with β+‐thalassemia had relatively low levels of endogenous EPO (<145 mU/mL) and had additive responses to administered EPO and butyrate. Patients with at least one β0‐globin mutation had higher baseline HbF levels (>60%) and EPO levels (>160 mU/mL), and three‐fourths of these subjects responded to the fetal globin gene inducer alone. A few select fetal globin‐inducing short‐chain fatty acid derivatives that stimulated cell proliferation also had favorable pharmacokinetics. These studies identify a significant subset of thalassemia patients who appear to require exogenous EPO to respond optimally to any HbF inducer, as well as new therapeutic candidates that act on both cellular and molecular pathologies of β‐thalassemia. Both approaches now offer excellent potential for tolerable, definitive treatment of β‐thalassemia.
A bstract : Accelerated apoptosis of erythroid progenitors in β‐thalassemia is a significant barrier to definitive therapy because the beneficial effects of fetal globin‐inducing agents on globin chain balance may not be inducible in cells in which programmed cell death is established early. Accordingly, our objectives have been to identify methods to decrease cellular apoptosis and to identify orally tolerable fetal globin gene inducers. A pilot clinical trial was conducted to determine whether combined use of a fetal globin gene inducer (butyrate) and rhu‐erythropoietin (EPO), the hematopoietic growth factor that prolongs erythroid cell survival and stimulates erythroid proliferation, would produce additive hematologic responses in any thalassemia subjects. Butyrate and EPO were administered in 10 patients. Novel fetal globin gene inducers that also stimulate erythroid proliferation were evaluated for pharmacokinetic profiles. Patients with β + ‐thalassemia had relatively low levels of endogenous EPO (<145 mU/mL) and had additive responses to administered EPO and butyrate. Patients with at least one β 0 ‐globin mutation had higher baseline HbF levels (>60%) and EPO levels (>160 mU/mL), and three‐fourths of these subjects responded to the fetal globin gene inducer alone. A few select fetal globin‐inducing short‐chain fatty acid derivatives that stimulated cell proliferation also had favorable pharmacokinetics. These studies identify a significant subset of thalassemia patients who appear to require exogenous EPO to respond optimally to any HbF inducer, as well as new therapeutic candidates that act on both cellular and molecular pathologies of β‐thalassemia. Both approaches now offer excellent potential for tolerable, definitive treatment of β‐thalassemia.
Accelerated apoptosis of erythroid progenitors in beta-thalassemia is a significant barrier to definitive therapy because the beneficial effects of fetal globin-inducing agents on globin chain balance may not be inducible in cells in which programmed cell death is established early. Accordingly, our objectives have been to identify methods to decrease cellular apoptosis and to identify orally tolerable fetal globin gene inducers. A pilot clinical trial was conducted to determine whether combined use of a fetal globin gene inducer (butyrate) and rhu-erythropoietin (EPO), the hematopoietic growth factor that prolongs erythroid cell survival and stimulates erythroid proliferation, would produce additive hematologic responses in any thalassemia subjects. Butyrate and EPO were administered in 10 patients. Novel fetal globin gene inducers that also stimulate erythroid proliferation were evaluated for pharmacokinetic profiles. Patients with beta+-thalassemia had relatively low levels of endogenous EPO (<145 mU/mL) and had additive responses to administered EPO and butyrate. Patients with at least one beta 0-globin mutation had higher baseline HbF levels (>60%) and EPO levels (>160 mU/mL), and three-fourths of these subjects responded to the fetal globin gene inducer alone. A few select fetal globin-inducing short-chain fatty acid derivatives that stimulated cell proliferation also had favorable pharmacokinetics. These studies identify a significant subset of thalassemia patients who appear to require exogenous EPO to respond optimally to any HbF inducer, as well as new therapeutic candidates that act on both cellular and molecular pathologies of beta-thalassemia. Both approaches now offer excellent potential for tolerable, definitive treatment of beta-thalassemia.Accelerated apoptosis of erythroid progenitors in beta-thalassemia is a significant barrier to definitive therapy because the beneficial effects of fetal globin-inducing agents on globin chain balance may not be inducible in cells in which programmed cell death is established early. Accordingly, our objectives have been to identify methods to decrease cellular apoptosis and to identify orally tolerable fetal globin gene inducers. A pilot clinical trial was conducted to determine whether combined use of a fetal globin gene inducer (butyrate) and rhu-erythropoietin (EPO), the hematopoietic growth factor that prolongs erythroid cell survival and stimulates erythroid proliferation, would produce additive hematologic responses in any thalassemia subjects. Butyrate and EPO were administered in 10 patients. Novel fetal globin gene inducers that also stimulate erythroid proliferation were evaluated for pharmacokinetic profiles. Patients with beta+-thalassemia had relatively low levels of endogenous EPO (<145 mU/mL) and had additive responses to administered EPO and butyrate. Patients with at least one beta 0-globin mutation had higher baseline HbF levels (>60%) and EPO levels (>160 mU/mL), and three-fourths of these subjects responded to the fetal globin gene inducer alone. A few select fetal globin-inducing short-chain fatty acid derivatives that stimulated cell proliferation also had favorable pharmacokinetics. These studies identify a significant subset of thalassemia patients who appear to require exogenous EPO to respond optimally to any HbF inducer, as well as new therapeutic candidates that act on both cellular and molecular pathologies of beta-thalassemia. Both approaches now offer excellent potential for tolerable, definitive treatment of beta-thalassemia.
Accelerated apoptosis of erythroid progenitors in beta-thalassemia is a significant barrier to definitive therapy because the beneficial effects of fetal globin-inducing agents on globin chain balance may not be inducible in cells in which programmed cell death is established early. Accordingly, our objectives have been to identify methods to decrease cellular apoptosis and to identify orally tolerable fetal globin gene inducers. A pilot clinical trial was conducted to determine whether combined use of a fetal globin gene inducer (butyrate) and rhu-erythropoietin (EPO), the hematopoietic growth factor that prolongs erythroid cell survival and stimulates erythroid proliferation, would produce additive hematologic responses in any thalassemia subjects. Butyrate and EPO were administered in 10 patients. Novel fetal globin gene inducers that also stimulate erythroid proliferation were evaluated for pharmacokinetic profiles. Patients with beta+-thalassemia had relatively low levels of endogenous EPO (<145 mU/mL) and had additive responses to administered EPO and butyrate. Patients with at least one beta 0-globin mutation had higher baseline HbF levels (>60%) and EPO levels (>160 mU/mL), and three-fourths of these subjects responded to the fetal globin gene inducer alone. A few select fetal globin-inducing short-chain fatty acid derivatives that stimulated cell proliferation also had favorable pharmacokinetics. These studies identify a significant subset of thalassemia patients who appear to require exogenous EPO to respond optimally to any HbF inducer, as well as new therapeutic candidates that act on both cellular and molecular pathologies of beta-thalassemia. Both approaches now offer excellent potential for tolerable, definitive treatment of beta-thalassemia.
Accelerated apoptosis of erythroid progenitors in β-thalassemia is a significant barrier to definitive therapy because the beneficial effects of fetal globin–inducing agents on globin chain balance may not be inducible in cells in which programmed cell death is established early. Accordingly, our objectives have been to identify methods to decrease cellular apoptosis and to identify orally tolerable fetal globin gene inducers. A pilot clinical trial was conducted to determine whether combined use of a fetal globin gene inducer (butyrate) and rhu-erythropoietin (EPO), the hematopoietic growth factor that prolongs erythroid cell survival and stimulates erythroid proliferation, would produce additive hematologic responses in any thalassemia subjects. Butyrate and EPO were administered in 10 patients. Novel fetal globin gene inducers that also stimulate erythroid proliferation were evaluated for pharmacokinetic profiles. Patients with β+-thalassemia had relatively low levels of endogenous EPO (<145 mU/mL) and had additive responses to administered EPO and butyrate. Patients with at least one β0 -globin mutation had higher baseline HbF levels (>60%) and EPO levels (>160 mU/mL), and three-fourths of these subjects responded to the fetal globin gene inducer alone. A few select fetal globin–inducing short-chain fatty acid derivatives that stimulated cell proliferation also had favorable pharmacokinetics. These studies identify a significant subset of thalassemia patients who appear to require exogenous EPO to respond optimally to any HbF inducer, as well as new therapeutic candidates that act on both cellular and molecular pathologies of β-thalassemia. Both approaches now offer excellent potential for tolerable, definitive treatment of β-thalassemia.
Author CASTANEDA, SERGUEI A.
BOOSALIS, MICHAEL S.
BOHACEK, REGINE
PERRINE, SUSAN P.
JONES, BRANDON M.
WHITE, GARY L.
AuthorAffiliation b Gene Regulation Laboratories, Inc., Newton, Massachusetts 02464, USA
c University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
a Hemoglobinopathy–Thalassemia Research Unit, Boston University School of Medicine, Boston, Massachusetts 02118, USA
AuthorAffiliation_xml – name: a Hemoglobinopathy–Thalassemia Research Unit, Boston University School of Medicine, Boston, Massachusetts 02118, USA
– name: b Gene Regulation Laboratories, Inc., Newton, Massachusetts 02464, USA
– name: c University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
Author_xml – sequence: 1
  givenname: SUSAN P.
  surname: PERRINE
  fullname: PERRINE, SUSAN P.
  email: sperrine@bu.edu
  organization: Hemoglobinopathy-Thalassemia Research Unit, Boston University School of Medicine, Boston, Massachusetts 02118, USA
– sequence: 2
  givenname: SERGUEI A.
  surname: CASTANEDA
  fullname: CASTANEDA, SERGUEI A.
  organization: Hemoglobinopathy-Thalassemia Research Unit, Boston University School of Medicine, Boston, Massachusetts 02118, USA
– sequence: 3
  givenname: MICHAEL S.
  surname: BOOSALIS
  fullname: BOOSALIS, MICHAEL S.
  organization: Hemoglobinopathy-Thalassemia Research Unit, Boston University School of Medicine, Boston, Massachusetts 02118, USA
– sequence: 4
  givenname: GARY L.
  surname: WHITE
  fullname: WHITE, GARY L.
  organization: University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
– sequence: 5
  givenname: BRANDON M.
  surname: JONES
  fullname: JONES, BRANDON M.
  organization: Hemoglobinopathy-Thalassemia Research Unit, Boston University School of Medicine, Boston, Massachusetts 02118, USA
– sequence: 6
  givenname: REGINE
  surname: BOHACEK
  fullname: BOHACEK, REGINE
  organization: Gene Regulation Laboratories, Inc., Newton, Massachusetts 02464, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16339673$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAQhi1URLcLZ24oJ27Z2rFjJxyQqhVdikpbaQuIkzVxnNbgtRc7od3X6oPwTHjJigIHKlmyZP_fzD__HKA9551G6DnBM0JqfgjOgY0zQlk5w5Q-QhMiWJ1zTos9NMFYiLyqC7qPDmL8gjEpKiaeoH3CKa25oBP08cS1g-qNd5nvsmPdg80W1jfGZen8uMsvr8FCjHpl4FU219YOFkJ23sQelNUxA9dm773V6tf7RfBXQcf4FD3ukjH9bHdP0YfjN5fzt_np-eJkfnSaKyaYyIWoGsYwoR0tWFNzoJonW0CAl4IKTVXbElqKirGmFaRtOtYRLrqOY6V0WdIpwmPdwa1hcwPWynUwKwgbSbDcRiTHiOQ2IpkiSsjrEVkPzUq3Srs-wD3mwci_f5y5llf-u2QFJ7xmqcDLXYHgvw069nJlokrJgNN-iJJXVcVwUSXhiz873TvbpZ8E5ShQwccYdCeV6WG7jNTY2P-McPgP9_DQbCRujNWbh-Ty7PPRskgbmKJ8xEzs9e1vDMJXmfyLUn46W8jlkl_QdwWXNf0JtFzL2Q
CitedBy_id crossref_primary_10_1309_LM73OLT7NPYEHHWR
crossref_primary_10_1177_0091270010379810
crossref_primary_10_3390_ijms232113486
crossref_primary_10_1182_asheducation_2007_1_79
crossref_primary_10_1155_2014_123257
crossref_primary_10_1016_j_bcmd_2011_04_008
crossref_primary_10_1074_jbc_M110_115725
crossref_primary_10_1177_0192623311406933
crossref_primary_10_3390_ijms232415750
crossref_primary_10_1182_blood_2007_06_093948
crossref_primary_10_3892_ijmm_2013_1338
crossref_primary_10_1016_j_jchromb_2007_12_002
crossref_primary_10_1182_blood_2005_12_010934
crossref_primary_10_2139_ssrn_4133074
crossref_primary_10_52711_0974_360X_2023_00678
crossref_primary_10_1016_S0268_960X_12_70011_5
crossref_primary_10_1039_C9RA01744E
crossref_primary_10_1111_j_1537_2995_2008_01724_x
crossref_primary_10_3389_fphar_2020_01137
crossref_primary_10_1586_ehm_12_20
crossref_primary_10_1096_fj_09_134700
crossref_primary_10_1097_01_moh_0000219658_57915_d4
crossref_primary_10_3390_genes12121874
Cites_doi 10.1073/pnas.79.14.4428
10.1182/blood.V92.8.2924
10.1182/blood.V85.1.43.bloodjournal85143
10.1111/j.1365-2141.1989.tb07734.x
10.1073/pnas.82.5.1451
10.1006/bcmd.2002.0537
10.1182/blood.V82.2.374.374
10.1016/S0301-472X(02)01030-5
10.1056/NEJM198212093072401
10.1182/blood.V84.5.1690.1690
10.1111/j.1365-2141.1995.tb05156.x
10.1056/NEJM199301143280202
10.1093/carcin/5.12.1583
10.1182/blood.V87.3.887.bloodjournal873887
10.1097/00005792-200109000-00007
10.1182/blood-2002-02-0353
10.1111/j.1365-2141.1979.tb05850.x
10.1182/blood.V96.10.3624
10.1056/NEJM199309163291205
10.1093/tropej/42.6.330
10.1111/j.1600-0609.1997.tb01405.x
10.1200/JCO.2004.07.151
10.1073/pnas.81.13.3954
10.1182/blood-2004-02-0454
10.1182/blood.V97.10.3259
10.1542/peds.97.3.352
10.1182/blood.V96.7.2379
10.1182/blood.V86.8.3227.3227
10.1182/blood.V74.6.1963.1963
10.1016/S0022-3476(05)83304-9
10.1182/blood-2003-02-0478
10.1182/blood.V83.2.561.561
ContentType Journal Article
Copyright 2005 New York Academy of Sciences. 2005
Copyright_xml – notice: 2005 New York Academy of Sciences. 2005
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1196/annals.1345.033
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1749-6632
EndPage 265
ExternalDocumentID oai:pubmedcentral.nih.gov:4261694
PMC4261694
16339673
10_1196_annals_1345_033
NYAS257
ark_67375_WNG_SS6P3J26_9
Genre article
Clinical Trial
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R41 DK064535
– fundername: NIDDK NIH HHS
  grantid: R01 DK052962
– fundername: NHLBI NIH HHS
  grantid: HL-61208
– fundername: NIDDK NIH HHS
  grantid: DK-64535
– fundername: NIDDK NIH HHS
  grantid: DK-52962
– fundername: NIDDK NIH HHS
  grantid: R42 DK064535
– fundername: NHLBI NIH HHS
  grantid: R01 HL061208
– fundername: NHLBI NIH HHS
  grantid: HL-78276
– fundername: NHLBI NIH HHS
  grantid: R41 HL078276
– fundername: NCRR NIH HHS
  grantid: P40 RR012317
GroupedDBID ---
--Z
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1OB
1OC
23M
31~
33P
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
692
6J9
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AELAQ
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFSWV
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHDLI
AHEFC
AHMBA
AI.
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IH2
IX1
J0M
K48
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RAG
RIWAO
RJQFR
ROL
RX1
S10
SAMSI
SJN
SUPJJ
SV3
TEORI
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIK
WOHZO
WQJ
WVDHM
WXSBR
X7M
XG1
YBU
YOC
YSK
ZGI
ZKB
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAYXX
CITATION
AAHHS
AAMDK
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
WRC
WUP
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4747-778b44013f324b96a3e6673a1a65737e3cdd1357844bd71dbf4f167ff60cce553
IEDL.DBID DR2
ISSN 0077-8923
1749-6632
IngestDate Wed Oct 29 12:00:32 EDT 2025
Tue Sep 30 16:37:34 EDT 2025
Tue Oct 21 13:37:54 EDT 2025
Wed Feb 19 01:43:56 EST 2025
Thu Apr 24 23:07:23 EDT 2025
Wed Oct 01 02:11:05 EDT 2025
Sun Sep 21 06:21:10 EDT 2025
Sun Sep 21 06:19:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4747-778b44013f324b96a3e6673a1a65737e3cdd1357844bd71dbf4f167ff60cce553
Notes istex:154BC7FE5DE1B214B437622CCFAD506BD0B411EC
ark:/67375/WNG-SS6P3J26-9
ArticleID:NYAS257
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/4261694
PMID 16339673
PQID 68884028
PQPubID 23479
PageCount 9
ParticipantIDs unpaywall_primary_10_1196_annals_1345_033
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4261694
proquest_miscellaneous_68884028
pubmed_primary_16339673
crossref_citationtrail_10_1196_annals_1345_033
crossref_primary_10_1196_annals_1345_033
wiley_primary_10_1196_annals_1345_033_NYAS257
istex_primary_ark_67375_WNG_SS6P3J26_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-01-01
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – month: 01
  year: 2005
  text: 2005-01-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: United States
PublicationTitle Annals of the New York Academy of Sciences
PublicationTitleAlternate Ann N Y Acad Sci
PublicationYear 2005
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Centis, F., L. Tabellini, G. Lucarelli, et al. 2000. The importance of erythroid expansion in determining the extent of apoptosis in erythroid precursors in patients with β-thalassemia major. Blood 96: 3624-3629.
Bourantas, K., G. Economou & J. Georgiou. 1997. Administration of high doses of recombinant human erythropoietin to patients with beta-thalassemia intermedia: a preliminary trial. Eur. J. Haematol. 58: 22-25.
Hajjar, F.M. & H.A. Pearson. 1994. Pharmacological treatment of thalassemia-intermedia with hydroxyurea. J. Pediatr. 125: 490-492.
Skarpidi, E., H. Cao, B. Heltweg, et al. 2003. Hydroxamide derivatives of short-chain fatty acids are potent inducers of human fetal globin gene expression. Exp. Hematol. 31: 197-203.
Dunbar, C., W. Travis, Y.W. Kan, et al. 1989. 5-Azacytidine treatment in a beta thalassemia patient unable to be transfused due to multiple allo-antibodies. Br. J. Haematol. 74: 467-468.
Nisli, G., K. Kavakli, C. Vergin, et al. 1996. Recombinant human erythropoietin trial in thalassemia intermedia. J. Trop. Pediatr. 42: 330-334.
Pace, B.S., G.L. White, G.J. Dover, et al. 2002. Short-chain fatty acid derivatives induce fetal globin expression and erythropoiesis in vivo. Blood 100: 4640-4648.
Galanello, R., S. Barella, M.P. Turco, et al. 1994. Serum erythropoietin and erythropoiesis in high and low fetal hemoglobin beta-thalassemia intermedia patients. Blood 83: 561-565.
Steinberg, M.H. & G.P. Rodgers. 2001. Pharmacologic modulation of fetal hemoglobin. Medicine 80: 328-344.
Atweh, G.F., M. Sutton, I. Nassif, et al. 1999. Sustained induction of fetal hemoglobin by pulse butyrate therapy in sickle cell disease. Blood 93: 1790-1797.
Carr, B.I., J.G. Reilly, S.S. Smith, et al. 1984. The tumorigenicity of 5-azacytidine in the male Fischer rat. Carcinogenesis 5: 1583-1590.
Liakopoulou, E., C.A. Blau, Q. Li, et al. 1995. Stimulation of fetal hemoglobin production by short chain fatty acids. Blood 86: 3227-3235.
Weinberg, R.S., X. Ji, M. Sutton, et al. 2005. Butyrate increases the efficiency of translation of gamma-globin mRNA. Blood 105: 1807-1809.
Koshy, M., L. Dorn, L. Bressler, et al. 2000. 2-Deoxy 5-azacytidine and fetal hemoglobin induction in sickle cell anemia. Blood 96: 2379-2384.
Perrine, S.P., G. Ginder, D.V. Faller, et al. 1993. A short-term trial of butyrate to stimulate fetal-globin-gene expression in the -globin disorders. N. Engl. J. Med. 328: 129-131.
Perrine, S.P., M.S. Boosalis, D.W. Emery, et al. 2003. A pharmacophore model for screening Hb F-inducing agents. Blood 102: 122a.
Pearson, H.A., A.R. Cohen, P.J. Giardina, et al. 1996. The changing profile of homozygous β-thalassemia: demography, ethnicity, and age distribution of current North American patients and changes in two decades. Pediatrics 97: 352-356.
Gallo, E., P. Massaro, R. Miniero, et al. 1979. The importance of the genetic picture and globin synthesis in determining the clinical and haematological features of thalassaemia intermedia. Br. J. Haematol. 41: 211-221.
Jaenisch, R., A. Schnieke & K. Harbers. 1985. Treatment of mice with 5-azacytidine efficiently activates silent retroviral genomes in different tissues. Proc. Natl. Acad. Sci. USA 82: 1451-1455.
Cao, H., G. Stamatoyannopoulos & M. Jung. 2004. Induction of human gamma globin gene expression by histone deacetylase inhibitors. Blood 103: 701-709.
Constantoulakis, P., G. Knitter & G. Stamatoyannopoulos. 1989. On the induction of fetal hemoglobin by butyrates: in vivo and in vitro studies with sodium butyrate and comparison of combination treatments with 5-AzaC and AraC. Blood 74: 1963-1971.
Ley, T.J., J. DeSimone, N.P. Anagou, et al. 1982. 5-Azacytidine selectively increases globin synthesis in a patient with beta+-thalassemia. N. Engl. J. Med. 307: 1469-1475.
Lowrey, C. 2005. Epigenetic modifications of the human β-globin LCR core elements and γ-globin gene promoters. Blood Cells Mol. Dis. 34: 104-105.
DeSimone, J., P. Heller, L. Hall, et al. 1982. 5-Azacytidine stimulates fetal hemoglobin synthesis in anemic baboons. Proc. Natl. Acad. Sci. USA 79: 4428-4431.
Collins, A.F., H.A. Pearson, P. Giardina, et al. 1995. Oral sodium phenylbutyrate therapy in homozygous beta thalassemia: a clinical trial. Blood 85: 39-43.
Ikuta, T., Y.W. Kan, P.S. Swerdlow, et al. 1998. Alterations in protein-DNA interactions in the gamma-globin gene promoter in response to butyrate therapy. Blood 92: 2924-2933.
Collins, A.F., G.J. Dover & N.L. Luban. 1994. Increased fetal hemoglobin production in patients receiving valproic acid for epilepsy. Blood 84: 1690-1691.
Perrine, S.P., Y.M. Yang, A. Piga, et al. 2002. Butyrate + EPO in beta thalassemia intermedia: interim findings of a phase II trial. Blood 100: 47a.
Liakopoulou, E., Q. Li & G. Stamatoyannopoulos. 2002. Induction of fetal hemoglobin by propionic and butyric acid derivatives: correlations between chemical structure and potency of Hb F induction. Blood Cells Mol. Dis. 29: 48-56.
Ginder, G., M.J. Whitters & J.K. Pohlman. 1984. Activation of a chicken embryonic globin gene in adult erythroid cells by 5-azacytidine and sodium butyrate. Proc. Natl. Acad. Sci. USA 81: 3954-3957.
Yuan, J., E. Angelucci, G. Lucarelli, et al. 1993. Accelerated programmed cell death (apoptosis) in erythroid precursors of patients with severe beta-thalassemia. Blood 82: 374-377.
Angelucci, E., G. Lucarelli, J. Yuan, et al. 1996. Programmed cell death (PCD) and ineffective erythropoiesis in Cooley's anemia. Blood 88: 22b.
Vaziri, C., L. Stice & D.V. Faller. 1998. Butyrate-induced G1 arrest results from p21-independent disruption of retinoblastoma protein-mediated signals. Cell Growth Differ. 9: 465-474.
Singer, S.T., N. Sweeters, E. Vichinsky, et al. 2003. A dose-finding and safety study of darbepoetin alfa (erythropoiesis stimulating protein) for the treatment of anemia in patients with thalassemia intermedia. Blood 102: 268a.
Fucharoen, S., N. Siritanaratkul, P. Winichagoon, et al. 1996. Hydroxyurea increases Hb F levels and improves the effectiveness of erythropoiesis in beta thalassemia/Hb E disease. Blood 87: 887-892.
Boosalis, M.S., R. Bandyopadhyay, E.H. Bresnick, et al. 2001. Short-chain fatty acid derivatives stimulate cell proliferation and induce STAT-5 activation. Blood 97: 3259-3267.
Rachmilewitz, E.A., M. Aker, D. Perry & G. Dover. 1995. Sustained increase in haemoglobin and red blood cells following long-term administration of recombinant human erythropoietin to patients with homozygous beta thalassemia. Br. J Haematol. 90: 341-345.
Das, P.M. & R. Singal. 2004. DNA methylation and cancer. J. Clin. Oncol. 22: 4632-4642.
Lowrey, C.H. & A.W. Nienhuis. 1993. Brief report: treatment with azacitidine of patients with end-state β-thalassemia. N. Engl. J. Med. 329: 845-848.
1982; 79
2004; 22
1993; 329
1984; 81
2004; 103
1993; 328
1995; 90
1982; 307
1993; 82
1985; 82
1994; 83
2003; 31
1996; 97
1994; 84
2001; 80
1995; 86
1989; 74
1995; 85
1994; 125
2002; 29
1997; 58
2000; 96
2002; 100
2005; 105
1984; 5
1998; 92
1999; 93
1979; 41
2003; 102
1996; 87
1996; 42
2005; 34
1998; 9
2001; 97
1996; 88
Constantoulakis P. (e_1_2_6_23_2) 1989; 74
Ikuta T. (e_1_2_6_27_2) 1998; 92
Atweh G.F. (e_1_2_6_28_2) 1999; 93
Singer S.T. (e_1_2_6_38_2) 2003; 102
e_1_2_6_31_2
e_1_2_6_30_2
Fucharoen S. (e_1_2_6_16_2) 1996; 87
Pearson H.A. (e_1_2_6_4_2) 1996; 97
Angelucci E. (e_1_2_6_8_2) 1996; 88
e_1_2_6_19_2
Liakopoulou E. (e_1_2_6_24_2) 1995; 86
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
Yuan J. (e_1_2_6_7_2) 1993; 82
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_37_2
Galanello R. (e_1_2_6_6_2) 1994; 83
e_1_2_6_15_2
e_1_2_6_36_2
Vaziri C. (e_1_2_6_18_2) 1998; 9
e_1_2_6_20_2
Perrine S.P. (e_1_2_6_40_2) 2003; 102
Collins A.F. (e_1_2_6_25_2) 1994; 84
e_1_2_6_29_2
e_1_2_6_3_2
Centis F. (e_1_2_6_9_2) 2000; 96
e_1_2_6_5_2
Lowrey C. (e_1_2_6_41_2) 2005; 34
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
Collins A.F. (e_1_2_6_26_2) 1995; 85
Perrine S.P. (e_1_2_6_39_2) 2002; 100
2478217 - Blood. 1989 Nov 1;74(6):1963-71
7520784 - Blood. 1994 Sep 1;84(5):1690-1
12482403 - Blood Cells Mol Dis. 2002 Jul-Aug;29(1):48-56
7528572 - Blood. 1995 Jan 1;85(1):43-9
9020369 - Eur J Haematol. 1997 Jan;58(1):22-5
9763579 - Blood. 1998 Oct 15;92(8):2924-33
11001887 - Blood. 2000 Oct 1;96(7):2379-84
7677966 - N Engl J Med. 1993 Jan 14;328(2):81-6
427031 - Br J Haematol. 1979 Feb;41(2):211-21
6181507 - Proc Natl Acad Sci U S A. 1982 Jul;79(14):4428-31
11342457 - Blood. 2001 May 15;97(10):3259-67
11071663 - Blood. 2000 Nov 15;96(10):3624-9
9009557 - J Trop Pediatr. 1996 Dec;42(6):330-4
9663465 - Cell Growth Differ. 1998 Jun;9(6):465-74
11552087 - Medicine (Baltimore). 2001 Sep;80(5):328-44
8604269 - Pediatrics. 1996 Mar;97(3):352-6
7689171 - N Engl J Med. 1993 Sep 16;329(12):845-8
15479724 - Blood. 2005 Feb 15;105(4):1807-9
7579419 - Blood. 1995 Oct 15;86(8):3227-35
6209028 - Carcinogenesis. 1984 Dec;5(12):1583-90
12393583 - Blood. 2002 Dec 15;100(13):4640-8
8562958 - Blood. 1996 Feb 1;87(3):887-92
2579397 - Proc Natl Acad Sci U S A. 1985 Mar;82(5):1451-5
7794754 - Br J Haematol. 1995 Jun;90(2):341-5
7520935 - J Pediatr. 1994 Sep;125(3):490-2
15542813 - J Clin Oncol. 2004 Nov 15;22(22):4632-42
2475157 - Br J Haematol. 1989 Jul;72(3):467-8
6204332 - Proc Natl Acad Sci U S A. 1984 Jul;81(13):3954-8
8329696 - Blood. 1993 Jul 15;82(2):374-7
12644016 - Exp Hematol. 2003 Mar;31(3):197-203
7506955 - Blood. 1994 Jan 15;83(2):561-5
12920038 - Blood. 2004 Jan 15;103(2):701-9
10068649 - Blood. 1999 Mar 15;93(6):1790-7
6183586 - N Engl J Med. 1982 Dec 9;307(24):1469-75
References_xml – reference: Atweh, G.F., M. Sutton, I. Nassif, et al. 1999. Sustained induction of fetal hemoglobin by pulse butyrate therapy in sickle cell disease. Blood 93: 1790-1797.
– reference: Liakopoulou, E., C.A. Blau, Q. Li, et al. 1995. Stimulation of fetal hemoglobin production by short chain fatty acids. Blood 86: 3227-3235.
– reference: Centis, F., L. Tabellini, G. Lucarelli, et al. 2000. The importance of erythroid expansion in determining the extent of apoptosis in erythroid precursors in patients with β-thalassemia major. Blood 96: 3624-3629.
– reference: Nisli, G., K. Kavakli, C. Vergin, et al. 1996. Recombinant human erythropoietin trial in thalassemia intermedia. J. Trop. Pediatr. 42: 330-334.
– reference: Bourantas, K., G. Economou & J. Georgiou. 1997. Administration of high doses of recombinant human erythropoietin to patients with beta-thalassemia intermedia: a preliminary trial. Eur. J. Haematol. 58: 22-25.
– reference: Weinberg, R.S., X. Ji, M. Sutton, et al. 2005. Butyrate increases the efficiency of translation of gamma-globin mRNA. Blood 105: 1807-1809.
– reference: Rachmilewitz, E.A., M. Aker, D. Perry & G. Dover. 1995. Sustained increase in haemoglobin and red blood cells following long-term administration of recombinant human erythropoietin to patients with homozygous beta thalassemia. Br. J Haematol. 90: 341-345.
– reference: Jaenisch, R., A. Schnieke & K. Harbers. 1985. Treatment of mice with 5-azacytidine efficiently activates silent retroviral genomes in different tissues. Proc. Natl. Acad. Sci. USA 82: 1451-1455.
– reference: Ginder, G., M.J. Whitters & J.K. Pohlman. 1984. Activation of a chicken embryonic globin gene in adult erythroid cells by 5-azacytidine and sodium butyrate. Proc. Natl. Acad. Sci. USA 81: 3954-3957.
– reference: Perrine, S.P., G. Ginder, D.V. Faller, et al. 1993. A short-term trial of butyrate to stimulate fetal-globin-gene expression in the -globin disorders. N. Engl. J. Med. 328: 129-131.
– reference: Cao, H., G. Stamatoyannopoulos & M. Jung. 2004. Induction of human gamma globin gene expression by histone deacetylase inhibitors. Blood 103: 701-709.
– reference: Pace, B.S., G.L. White, G.J. Dover, et al. 2002. Short-chain fatty acid derivatives induce fetal globin expression and erythropoiesis in vivo. Blood 100: 4640-4648.
– reference: Vaziri, C., L. Stice & D.V. Faller. 1998. Butyrate-induced G1 arrest results from p21-independent disruption of retinoblastoma protein-mediated signals. Cell Growth Differ. 9: 465-474.
– reference: Singer, S.T., N. Sweeters, E. Vichinsky, et al. 2003. A dose-finding and safety study of darbepoetin alfa (erythropoiesis stimulating protein) for the treatment of anemia in patients with thalassemia intermedia. Blood 102: 268a.
– reference: Yuan, J., E. Angelucci, G. Lucarelli, et al. 1993. Accelerated programmed cell death (apoptosis) in erythroid precursors of patients with severe beta-thalassemia. Blood 82: 374-377.
– reference: Lowrey, C.H. & A.W. Nienhuis. 1993. Brief report: treatment with azacitidine of patients with end-state β-thalassemia. N. Engl. J. Med. 329: 845-848.
– reference: Perrine, S.P., M.S. Boosalis, D.W. Emery, et al. 2003. A pharmacophore model for screening Hb F-inducing agents. Blood 102: 122a.
– reference: Liakopoulou, E., Q. Li & G. Stamatoyannopoulos. 2002. Induction of fetal hemoglobin by propionic and butyric acid derivatives: correlations between chemical structure and potency of Hb F induction. Blood Cells Mol. Dis. 29: 48-56.
– reference: Angelucci, E., G. Lucarelli, J. Yuan, et al. 1996. Programmed cell death (PCD) and ineffective erythropoiesis in Cooley's anemia. Blood 88: 22b.
– reference: Collins, A.F., H.A. Pearson, P. Giardina, et al. 1995. Oral sodium phenylbutyrate therapy in homozygous beta thalassemia: a clinical trial. Blood 85: 39-43.
– reference: Steinberg, M.H. & G.P. Rodgers. 2001. Pharmacologic modulation of fetal hemoglobin. Medicine 80: 328-344.
– reference: Gallo, E., P. Massaro, R. Miniero, et al. 1979. The importance of the genetic picture and globin synthesis in determining the clinical and haematological features of thalassaemia intermedia. Br. J. Haematol. 41: 211-221.
– reference: Constantoulakis, P., G. Knitter & G. Stamatoyannopoulos. 1989. On the induction of fetal hemoglobin by butyrates: in vivo and in vitro studies with sodium butyrate and comparison of combination treatments with 5-AzaC and AraC. Blood 74: 1963-1971.
– reference: Ikuta, T., Y.W. Kan, P.S. Swerdlow, et al. 1998. Alterations in protein-DNA interactions in the gamma-globin gene promoter in response to butyrate therapy. Blood 92: 2924-2933.
– reference: Skarpidi, E., H. Cao, B. Heltweg, et al. 2003. Hydroxamide derivatives of short-chain fatty acids are potent inducers of human fetal globin gene expression. Exp. Hematol. 31: 197-203.
– reference: Hajjar, F.M. & H.A. Pearson. 1994. Pharmacological treatment of thalassemia-intermedia with hydroxyurea. J. Pediatr. 125: 490-492.
– reference: Carr, B.I., J.G. Reilly, S.S. Smith, et al. 1984. The tumorigenicity of 5-azacytidine in the male Fischer rat. Carcinogenesis 5: 1583-1590.
– reference: Dunbar, C., W. Travis, Y.W. Kan, et al. 1989. 5-Azacytidine treatment in a beta thalassemia patient unable to be transfused due to multiple allo-antibodies. Br. J. Haematol. 74: 467-468.
– reference: Boosalis, M.S., R. Bandyopadhyay, E.H. Bresnick, et al. 2001. Short-chain fatty acid derivatives stimulate cell proliferation and induce STAT-5 activation. Blood 97: 3259-3267.
– reference: DeSimone, J., P. Heller, L. Hall, et al. 1982. 5-Azacytidine stimulates fetal hemoglobin synthesis in anemic baboons. Proc. Natl. Acad. Sci. USA 79: 4428-4431.
– reference: Koshy, M., L. Dorn, L. Bressler, et al. 2000. 2-Deoxy 5-azacytidine and fetal hemoglobin induction in sickle cell anemia. Blood 96: 2379-2384.
– reference: Fucharoen, S., N. Siritanaratkul, P. Winichagoon, et al. 1996. Hydroxyurea increases Hb F levels and improves the effectiveness of erythropoiesis in beta thalassemia/Hb E disease. Blood 87: 887-892.
– reference: Collins, A.F., G.J. Dover & N.L. Luban. 1994. Increased fetal hemoglobin production in patients receiving valproic acid for epilepsy. Blood 84: 1690-1691.
– reference: Ley, T.J., J. DeSimone, N.P. Anagou, et al. 1982. 5-Azacytidine selectively increases globin synthesis in a patient with beta+-thalassemia. N. Engl. J. Med. 307: 1469-1475.
– reference: Perrine, S.P., Y.M. Yang, A. Piga, et al. 2002. Butyrate + EPO in beta thalassemia intermedia: interim findings of a phase II trial. Blood 100: 47a.
– reference: Pearson, H.A., A.R. Cohen, P.J. Giardina, et al. 1996. The changing profile of homozygous β-thalassemia: demography, ethnicity, and age distribution of current North American patients and changes in two decades. Pediatrics 97: 352-356.
– reference: Das, P.M. & R. Singal. 2004. DNA methylation and cancer. J. Clin. Oncol. 22: 4632-4642.
– reference: Lowrey, C. 2005. Epigenetic modifications of the human β-globin LCR core elements and γ-globin gene promoters. Blood Cells Mol. Dis. 34: 104-105.
– reference: Galanello, R., S. Barella, M.P. Turco, et al. 1994. Serum erythropoietin and erythropoiesis in high and low fetal hemoglobin beta-thalassemia intermedia patients. Blood 83: 561-565.
– volume: 88
  start-page: 22b
  year: 1996
  article-title: Programmed cell death (PCD) and ineffective erythropoiesis in Cooley's anemia
  publication-title: Blood
– volume: 97
  start-page: 352
  year: 1996
  end-page: 356
  article-title: The changing profile of homozygous β‐thalassemia: demography, ethnicity, and age distribution of current North American patients and changes in two decades
  publication-title: Pediatrics
– volume: 81
  start-page: 3954
  year: 1984
  end-page: 3957
  article-title: Activation of a chicken embryonic globin gene in adult erythroid cells by 5‐azacytidine and sodium butyrate
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 93
  start-page: 1790
  year: 1999
  end-page: 1797
  article-title: Sustained induction of fetal hemoglobin by pulse butyrate therapy in sickle cell disease
  publication-title: Blood
– volume: 42
  start-page: 330
  year: 1996
  end-page: 334
  article-title: Recombinant human erythropoietin trial in thalassemia intermedia
  publication-title: J. Trop. Pediatr.
– volume: 74
  start-page: 1963
  year: 1989
  end-page: 1971
  article-title: On the induction of fetal hemoglobin by butyrates: and studies with sodium butyrate and comparison of combination treatments with 5‐AzaC and AraC
  publication-title: Blood
– volume: 100
  start-page: 4640
  year: 2002
  end-page: 4648
  article-title: Short‐chain fatty acid derivatives induce fetal globin expression and erythropoiesis
  publication-title: Blood
– volume: 97
  start-page: 3259
  year: 2001
  end-page: 3267
  article-title: Short‐chain fatty acid derivatives stimulate cell proliferation and induce STAT‐5 activation
  publication-title: Blood
– volume: 82
  start-page: 1451
  year: 1985
  end-page: 1455
  article-title: Treatment of mice with 5‐azacytidine efficiently activates silent retroviral genomes in different tissues
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 465
  year: 1998
  end-page: 474
  article-title: Butyrate‐induced G arrest results from p21‐independent disruption of retinoblastoma protein‐mediated signals
  publication-title: Cell Growth Differ.
– volume: 41
  start-page: 211
  year: 1979
  end-page: 221
  article-title: The importance of the genetic picture and globin synthesis in determining the clinical and haematological features of thalassaemia intermedia
  publication-title: Br. J. Haematol.
– volume: 328
  start-page: 129
  year: 1993
  end-page: 131
  article-title: A short‐term trial of butyrate to stimulate fetal‐globin‐gene expression in the ‐globin disorders
  publication-title: N. Engl. J. Med.
– volume: 90
  start-page: 341
  year: 1995
  end-page: 345
  article-title: Sustained increase in haemoglobin and red blood cells following long‐term administration of recombinant human erythropoietin to patients with homozygous beta thalassemia
  publication-title: Br. J Haematol.
– volume: 31
  start-page: 197
  year: 2003
  end-page: 203
  article-title: Hydroxamide derivatives of short‐chain fatty acids are potent inducers of human fetal globin gene expression
  publication-title: Exp. Hematol.
– volume: 102
  start-page: 122a
  year: 2003
  article-title: A pharmacophore model for screening Hb F‐inducing agents
  publication-title: Blood
– volume: 84
  start-page: 1690
  year: 1994
  end-page: 1691
  article-title: Increased fetal hemoglobin production in patients receiving valproic acid for epilepsy
  publication-title: Blood
– volume: 103
  start-page: 701
  year: 2004
  end-page: 709
  article-title: Induction of human gamma globin gene expression by histone deacetylase inhibitors
  publication-title: Blood
– volume: 74
  start-page: 467
  year: 1989
  end-page: 468
  article-title: 5‐Azacytidine treatment in a beta thalassemia patient unable to be transfused due to multiple allo‐antibodies
  publication-title: Br. J. Haematol.
– volume: 105
  start-page: 1807
  year: 2005
  end-page: 1809
  article-title: Butyrate increases the efficiency of translation of gamma‐globin mRNA
  publication-title: Blood
– volume: 80
  start-page: 328
  year: 2001
  end-page: 344
  article-title: Pharmacologic modulation of fetal hemoglobin
  publication-title: Medicine
– volume: 125
  start-page: 490
  year: 1994
  end-page: 492
  article-title: Pharmacological treatment of thalassemia‐intermedia with hydroxyurea
  publication-title: J. Pediatr.
– volume: 22
  start-page: 4632
  year: 2004
  end-page: 4642
  article-title: DNA methylation and cancer
  publication-title: J. Clin. Oncol.
– volume: 86
  start-page: 3227
  year: 1995
  end-page: 3235
  article-title: Stimulation of fetal hemoglobin production by short chain fatty acids
  publication-title: Blood
– volume: 29
  start-page: 48
  year: 2002
  end-page: 56
  article-title: Induction of fetal hemoglobin by propionic and butyric acid derivatives: correlations between chemical structure and potency of Hb F induction
  publication-title: Blood Cells Mol. Dis.
– volume: 307
  start-page: 1469
  year: 1982
  end-page: 1475
  article-title: 5‐Azacytidine selectively increases globin synthesis in a patient with beta ‐thalassemia
  publication-title: N. Engl. J. Med.
– volume: 102
  start-page: 268a
  year: 2003
  article-title: A dose‐finding and safety study of darbepoetin alfa (erythropoiesis stimulating protein) for the treatment of anemia in patients with thalassemia intermedia
  publication-title: Blood
– volume: 329
  start-page: 845
  year: 1993
  end-page: 848
  article-title: Brief report: treatment with azacitidine of patients with end‐state β‐thalassemia
  publication-title: N. Engl. J. Med.
– volume: 92
  start-page: 2924
  year: 1998
  end-page: 2933
  article-title: Alterations in protein‐DNA interactions in the gamma‐globin gene promoter in response to butyrate therapy
  publication-title: Blood
– volume: 100
  start-page: 47a
  year: 2002
  article-title: Butyrate + EPO in beta thalassemia intermedia: interim findings of a phase II trial
  publication-title: Blood
– volume: 79
  start-page: 4428
  year: 1982
  end-page: 4431
  article-title: 5‐Azacytidine stimulates fetal hemoglobin synthesis in anemic baboons
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 87
  start-page: 887
  year: 1996
  end-page: 892
  article-title: Hydroxyurea increases Hb F levels and improves the effectiveness of erythropoiesis in beta thalassemia/Hb E disease
  publication-title: Blood
– volume: 96
  start-page: 2379
  year: 2000
  end-page: 2384
  article-title: 2‐Deoxy 5‐azacytidine and fetal hemoglobin induction in sickle cell anemia
  publication-title: Blood
– volume: 82
  start-page: 374
  year: 1993
  end-page: 377
  article-title: Accelerated programmed cell death (apoptosis) in erythroid precursors of patients with severe beta‐thalassemia
  publication-title: Blood
– volume: 96
  start-page: 3624
  year: 2000
  end-page: 3629
  article-title: The importance of erythroid expansion in determining the extent of apoptosis in erythroid precursors in patients with β‐thalassemia major
  publication-title: Blood
– volume: 85
  start-page: 39
  year: 1995
  end-page: 43
  article-title: Oral sodium phenylbutyrate therapy in homozygous beta thalassemia: a clinical trial
  publication-title: Blood
– volume: 5
  start-page: 1583
  year: 1984
  end-page: 1590
  article-title: The tumorigenicity of 5‐azacytidine in the male Fischer rat
  publication-title: Carcinogenesis
– volume: 58
  start-page: 22
  year: 1997
  end-page: 25
  article-title: Administration of high doses of recombinant human erythropoietin to patients with beta‐thalassemia intermedia: a preliminary trial
  publication-title: Eur. J. Haematol.
– volume: 83
  start-page: 561
  year: 1994
  end-page: 565
  article-title: Serum erythropoietin and erythropoiesis in high and low fetal hemoglobin beta‐thalassemia intermedia patients
  publication-title: Blood
– volume: 34
  start-page: 104
  year: 2005
  end-page: 105
  article-title: Epigenetic modifications of the human β‐globin LCR core elements and γ‐globin gene promoters
  publication-title: Blood Cells Mol. Dis.
– ident: e_1_2_6_10_2
  doi: 10.1073/pnas.79.14.4428
– volume: 92
  start-page: 2924
  year: 1998
  ident: e_1_2_6_27_2
  article-title: Alterations in protein‐DNA interactions in the gamma‐globin gene promoter in response to butyrate therapy
  publication-title: Blood
  doi: 10.1182/blood.V92.8.2924
– ident: e_1_2_6_5_2
– volume: 88
  start-page: 22b
  year: 1996
  ident: e_1_2_6_8_2
  article-title: Programmed cell death (PCD) and ineffective erythropoiesis in Cooley's anemia
  publication-title: Blood
– volume: 85
  start-page: 39
  year: 1995
  ident: e_1_2_6_26_2
  article-title: Oral sodium phenylbutyrate therapy in homozygous beta thalassemia: a clinical trial
  publication-title: Blood
  doi: 10.1182/blood.V85.1.43.bloodjournal85143
– volume: 102
  start-page: 268a
  year: 2003
  ident: e_1_2_6_38_2
  article-title: A dose‐finding and safety study of darbepoetin alfa (erythropoiesis stimulating protein) for the treatment of anemia in patients with thalassemia intermedia
  publication-title: Blood
– ident: e_1_2_6_11_2
  doi: 10.1111/j.1365-2141.1989.tb07734.x
– ident: e_1_2_6_12_2
  doi: 10.1073/pnas.82.5.1451
– volume: 9
  start-page: 465
  year: 1998
  ident: e_1_2_6_18_2
  article-title: Butyrate‐induced G1 arrest results from p21‐independent disruption of retinoblastoma protein‐mediated signals
  publication-title: Cell Growth Differ.
– ident: e_1_2_6_29_2
  doi: 10.1006/bcmd.2002.0537
– volume: 82
  start-page: 374
  year: 1993
  ident: e_1_2_6_7_2
  article-title: Accelerated programmed cell death (apoptosis) in erythroid precursors of patients with severe beta‐thalassemia
  publication-title: Blood
  doi: 10.1182/blood.V82.2.374.374
– ident: e_1_2_6_31_2
  doi: 10.1016/S0301-472X(02)01030-5
– ident: e_1_2_6_14_2
  doi: 10.1056/NEJM198212093072401
– volume: 84
  start-page: 1690
  year: 1994
  ident: e_1_2_6_25_2
  article-title: Increased fetal hemoglobin production in patients receiving valproic acid for epilepsy
  publication-title: Blood
  doi: 10.1182/blood.V84.5.1690.1690
– ident: e_1_2_6_36_2
  doi: 10.1111/j.1365-2141.1995.tb05156.x
– ident: e_1_2_6_22_2
  doi: 10.1056/NEJM199301143280202
– ident: e_1_2_6_19_2
  doi: 10.1093/carcin/5.12.1583
– volume: 87
  start-page: 887
  year: 1996
  ident: e_1_2_6_16_2
  article-title: Hydroxyurea increases Hb F levels and improves the effectiveness of erythropoiesis in beta thalassemia/Hb E disease
  publication-title: Blood
  doi: 10.1182/blood.V87.3.887.bloodjournal873887
– volume: 93
  start-page: 1790
  year: 1999
  ident: e_1_2_6_28_2
  article-title: Sustained induction of fetal hemoglobin by pulse butyrate therapy in sickle cell disease
  publication-title: Blood
– ident: e_1_2_6_2_2
  doi: 10.1097/00005792-200109000-00007
– ident: e_1_2_6_30_2
  doi: 10.1182/blood-2002-02-0353
– ident: e_1_2_6_3_2
  doi: 10.1111/j.1365-2141.1979.tb05850.x
– volume: 96
  start-page: 3624
  year: 2000
  ident: e_1_2_6_9_2
  article-title: The importance of erythroid expansion in determining the extent of apoptosis in erythroid precursors in patients with β‐thalassemia major
  publication-title: Blood
  doi: 10.1182/blood.V96.10.3624
– ident: e_1_2_6_15_2
  doi: 10.1056/NEJM199309163291205
– ident: e_1_2_6_35_2
  doi: 10.1093/tropej/42.6.330
– volume: 102
  start-page: 122a
  year: 2003
  ident: e_1_2_6_40_2
  article-title: A pharmacophore model for screening Hb F‐inducing agents
  publication-title: Blood
– ident: e_1_2_6_37_2
  doi: 10.1111/j.1600-0609.1997.tb01405.x
– ident: e_1_2_6_20_2
  doi: 10.1200/JCO.2004.07.151
– ident: e_1_2_6_21_2
  doi: 10.1073/pnas.81.13.3954
– ident: e_1_2_6_32_2
  doi: 10.1182/blood-2004-02-0454
– ident: e_1_2_6_34_2
  doi: 10.1182/blood.V97.10.3259
– volume: 97
  start-page: 352
  year: 1996
  ident: e_1_2_6_4_2
  article-title: The changing profile of homozygous β‐thalassemia: demography, ethnicity, and age distribution of current North American patients and changes in two decades
  publication-title: Pediatrics
  doi: 10.1542/peds.97.3.352
– ident: e_1_2_6_13_2
  doi: 10.1182/blood.V96.7.2379
– volume: 86
  start-page: 3227
  year: 1995
  ident: e_1_2_6_24_2
  article-title: Stimulation of fetal hemoglobin production by short chain fatty acids
  publication-title: Blood
  doi: 10.1182/blood.V86.8.3227.3227
– volume: 74
  start-page: 1963
  year: 1989
  ident: e_1_2_6_23_2
  article-title: On the induction of fetal hemoglobin by butyrates: in vivo and in vitro studies with sodium butyrate and comparison of combination treatments with 5‐AzaC and AraC
  publication-title: Blood
  doi: 10.1182/blood.V74.6.1963.1963
– ident: e_1_2_6_17_2
  doi: 10.1016/S0022-3476(05)83304-9
– ident: e_1_2_6_33_2
  doi: 10.1182/blood-2003-02-0478
– volume: 83
  start-page: 561
  year: 1994
  ident: e_1_2_6_6_2
  article-title: Serum erythropoietin and erythropoiesis in high and low fetal hemoglobin beta‐thalassemia intermedia patients
  publication-title: Blood
  doi: 10.1182/blood.V83.2.561.561
– volume: 100
  start-page: 47a
  year: 2002
  ident: e_1_2_6_39_2
  article-title: Butyrate + EPO in beta thalassemia intermedia: interim findings of a phase II trial
  publication-title: Blood
– volume: 34
  start-page: 104
  year: 2005
  ident: e_1_2_6_41_2
  article-title: Epigenetic modifications of the human β‐globin LCR core elements and γ‐globin gene promoters
  publication-title: Blood Cells Mol. Dis.
– reference: 10068649 - Blood. 1999 Mar 15;93(6):1790-7
– reference: 11342457 - Blood. 2001 May 15;97(10):3259-67
– reference: 7520935 - J Pediatr. 1994 Sep;125(3):490-2
– reference: 6183586 - N Engl J Med. 1982 Dec 9;307(24):1469-75
– reference: 9020369 - Eur J Haematol. 1997 Jan;58(1):22-5
– reference: 427031 - Br J Haematol. 1979 Feb;41(2):211-21
– reference: 8329696 - Blood. 1993 Jul 15;82(2):374-7
– reference: 8604269 - Pediatrics. 1996 Mar;97(3):352-6
– reference: 2475157 - Br J Haematol. 1989 Jul;72(3):467-8
– reference: 12393583 - Blood. 2002 Dec 15;100(13):4640-8
– reference: 6209028 - Carcinogenesis. 1984 Dec;5(12):1583-90
– reference: 11001887 - Blood. 2000 Oct 1;96(7):2379-84
– reference: 8562958 - Blood. 1996 Feb 1;87(3):887-92
– reference: 6204332 - Proc Natl Acad Sci U S A. 1984 Jul;81(13):3954-8
– reference: 7677966 - N Engl J Med. 1993 Jan 14;328(2):81-6
– reference: 12482403 - Blood Cells Mol Dis. 2002 Jul-Aug;29(1):48-56
– reference: 12644016 - Exp Hematol. 2003 Mar;31(3):197-203
– reference: 9663465 - Cell Growth Differ. 1998 Jun;9(6):465-74
– reference: 15542813 - J Clin Oncol. 2004 Nov 15;22(22):4632-42
– reference: 7528572 - Blood. 1995 Jan 1;85(1):43-9
– reference: 15479724 - Blood. 2005 Feb 15;105(4):1807-9
– reference: 11552087 - Medicine (Baltimore). 2001 Sep;80(5):328-44
– reference: 9009557 - J Trop Pediatr. 1996 Dec;42(6):330-4
– reference: 7794754 - Br J Haematol. 1995 Jun;90(2):341-5
– reference: 12920038 - Blood. 2004 Jan 15;103(2):701-9
– reference: 2478217 - Blood. 1989 Nov 1;74(6):1963-71
– reference: 9763579 - Blood. 1998 Oct 15;92(8):2924-33
– reference: 11071663 - Blood. 2000 Nov 15;96(10):3624-9
– reference: 7579419 - Blood. 1995 Oct 15;86(8):3227-35
– reference: 7520784 - Blood. 1994 Sep 1;84(5):1690-1
– reference: 2579397 - Proc Natl Acad Sci U S A. 1985 Mar;82(5):1451-5
– reference: 6181507 - Proc Natl Acad Sci U S A. 1982 Jul;79(14):4428-31
– reference: 7506955 - Blood. 1994 Jan 15;83(2):561-5
– reference: 7689171 - N Engl J Med. 1993 Sep 16;329(12):845-8
SSID ssj0012847
Score 1.9408616
Snippet : Accelerated apoptosis of erythroid progenitors in β‐thalassemia is a significant barrier to definitive therapy because the beneficial effects of fetal...
A bstract : Accelerated apoptosis of erythroid progenitors in β‐thalassemia is a significant barrier to definitive therapy because the beneficial effects of...
Accelerated apoptosis of erythroid progenitors in beta-thalassemia is a significant barrier to definitive therapy because the beneficial effects of fetal...
Accelerated apoptosis of erythroid progenitors in β-thalassemia is a significant barrier to definitive therapy because the beneficial effects of fetal...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 257
SubjectTerms Animals
apoptosis
Apoptosis - drug effects
beta-Thalassemia - drug therapy
beta-Thalassemia - genetics
beta-Thalassemia - metabolism
beta-Thalassemia - therapy
Blood Transfusion
Butyrates - administration & dosage
Butyrates - therapeutic use
Cells, Cultured - drug effects
Combined Modality Therapy
Drug Evaluation, Preclinical
Drug Therapy, Combination
Erythroid Cells - drug effects
Erythroid Cells - metabolism
erythropoietin
Erythropoietin - administration & dosage
Erythropoietin - therapeutic use
Fatty Acids, Volatile - pharmacokinetics
Fatty Acids, Volatile - pharmacology
fetal hemoglobin
Fetal Hemoglobin - biosynthesis
Fetal Hemoglobin - genetics
Gene Expression - drug effects
Humans
molecular signaling
Papio
Pilot Projects
Recombinant Proteins
short-chain fatty acid
thalassemia
Treatment Outcome
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEB6VRAguQAsF87sHhNqD3azXXsfcoopQVSJEpBHpabW7XqtRHSdqEkE58Qg8Cw_CQ_AkzG7soPCjqlJuXq-zns-z39jfzAC8VNJEPA6lT3F3wABFSl9paWyuDDU5T6Msc2qLHj8aRsejeLQFtM6FcaJ9rcZBWUyCcnzmtJWziT6odWIHlvPjHDegyWOk3w1oDnv9zqnzuAl63NS1dEOinfq4m4ZVOR8Emm3sgiYNKIvioMXYxk7UtDf1879o5t9qyVvLciYvP8mi2GS0bkvq3oUP9WJWSpTzYLlQgf7yR53Ha632HtypCCrprA5tw5Ypd-DmqmXl5Q5sV85gTvaqitX792FkG4C4BAkyzUnXIKEnVsYxLgn-fnz_-fXbyZlN2JybyVi-JoemKKz8lbxXSE7tPyCyzMi7ulUv6VvVGPrgBzDsvjk5PPKrlg2-jjAwQa7eVpEN2XIkairlkhnbV1RSyeOEJYbpLKO2wE4UqSyhmcqjnPIkz3lLaxPHbBca5bQ0j4CwXGnaymVsGIZsNJEZmiDUNpnXyDDNPAhq8wld1TO3bTUK4eKa1OVao72FtbdAe3uwtz5htirl8f-hrxwe1uPkxblVwCWx-Nh7KwYD3mfHIRepBy9qwAh8Lu3HFlma6XIueLuNsXPY9uDhCj6_r8kZS3EyD5INYK0H2Irfm0cQGq7yd4UGD_bXELx6Kb6D6FXjRO-0M0D__fgacz-B266SrXsj9RQai4uleYYcbaGeV0_lL7ekPIw
  priority: 102
  providerName: Unpaywall
Title Induction of Fetal Globin in β-Thalassemia: Cellular Obstacles and Molecular Progress
URI https://api.istex.fr/ark:/67375/WNG-SS6P3J26-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1196%2Fannals.1345.033
https://www.ncbi.nlm.nih.gov/pubmed/16339673
https://www.proquest.com/docview/68884028
https://pubmed.ncbi.nlm.nih.gov/PMC4261694
https://www.ncbi.nlm.nih.gov/pmc/articles/4261694
UnpaywallVersion submittedVersion
Volume 1054
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0077-8923
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1749-6632
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012847
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB6hVgguQMuf-Sl7QKg9OM167XXMLaoIVSVCRBrRnla79lqNapyqSQTlxCPwLDwID8GTMLP-QSmgCiH55rGt3Z2ZnVl_8w3Ac6NtKKNA-xx3B0xQtPZNqi3VynCbyyTMMoe2GMr9SXhwFDVoQqqFqfgh2gM3sgznr8nAtam7kCQ1uy0uUIeLMOp0BfF9ciFdUvWuJZByztf54hh9McYyNbkPvmH30vMr-9I6TfGnPwWdv2MnbyzLM33xURfFanzrNqjBbTDN0CpcymlnuTCd9PMl1sf_GvsduFWHr6xf6dsGXLPlJlyvGlpebMJG7SrmbLvms965C0fUHsSVT7BZzgYWw31GII9pyfD6_u3Hl6-HJ1TOObcfpvol27NFQeBY9tZg6EqoPabLjL1pGvmyEWHK0EPfg8ng1eHevl83dPDTENMWjOR7JqSELscwziRSC0tdRzXXMopFbEWaZZzod8LQZDHPTB7mXMZ5LrtpaqNI3Ie1clbah8BEblLezXVkBSZ0PNYZLkmQUqmv1UGSedBpllOlNds5Nd0olMt6EleJjXOoaA4VzqEH2-0DZxXRx99FXzj9aOX0-Snh4-JIvR--VuOxHImDQKrEg2eNAim0WvoVo0s7W86V7PUwsw56Hjyo1OnXN6UQCb7Mg3hF0VoB4gNfvVNOTxwvOGXDaF0e7LQqefVQfKdnV8mp4XF_jN790T_KP4abjuvWnVk9gbXF-dI-xShuYbacoW7B-mQ46h__BDk_Rqw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB5BK1QuhZY_89c9INQebGKvvY65VRUhlDZUJBXhtNq112pU16maRFBOPALPwoPwEDwJM2vHkAKqEJJvmay1uzOz36xnvgF4opUJRRQo18fTAQMUpVydKkO1Mr7JRRJmmc226InuYbg7jIa_1MJU_BDNhRtZhvXXZOB0IV1ZeVLT2-IOeT4PI6_F-VVYDgVGKwSM3jYUUtb9Wm8cozdGNFPT--AQzy4MsHAyLdMif_wT7Pw9e3JlVp6q8w-qKBYRrj2iOjcgnU-uykw59mZT7aWfLvA-_t_sb8JqjWDZdqVya3DFlOtwreppeb4Oa7W3mLDNmtJ66xYMqUOIraBg45x1DCJ-Rnkeo5Lh8-3r989fBkdU0TkxJyP1nO2YoqD8WPZGI3qlxD2myoztz3v5sgNKK0MnfRsOOy8GO1237ungpiFGLgjm2zqkmC5HJKcTobihxqPKVyKKeWx4mmU-MfCEoc5iP9N5mPsiznPRSlMTRfwOLJXj0twDxnOd-q1cRYZjTOfHKsM9CVKq9jUqSDIHvPl-yrQmPKe-G4W0gU9ii7FxDSWtocQ1dGCz-cNpxfXxd9GnVkEaOXV2TClycSTf9V7Kfl8c8N1AyMSBjbkGSTRc-hqjSjOeTaRotzG4DtoO3K306ec7BecJDuZAvKBpjQBRgi_-Uo6OLDU4BcRoYA5sNTp5-VRcq2iXycne--0-Ovj7_yi_ASvdwf6e3HvVe_0ArlvqW3uF9RCWpmcz8whB3VQ_tlb7AzsTSR0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB5BKygXoIWC-eseEGoPMbHXXtvcqpZQCoSItCKcVrv2Wo1qnKhJBOXEI_AsPAgPwZMws3YMKaAKIfnm8Vq7OzP7jT3zDcBDrUwgQl-1PDwdMEBRqqVTZahWxjO5SIIss9kWXbF3GOwPwsEvtTAVP0TzwY0sw_prMnAzzvLKypOa3hZ3yPV4ELptzi_CchAmMaX17b5pKKSs-7XeOEJvjGimpvfBIR6fGWDhZFqmRf74J9j5e_bkyqwcq9MPqigWEa49ojrXIJ1PrspMOXZnU-2mn87wPv7f7K_D1RrBsu1K5VbhginX4FLV0_J0DVZrbzFhmzWl9dYNGFCHEFtBwUY56xhE_IzyPIYlw-vb1--fvxwcUUXnxLwfqidsxxQF5cey1xrRKyXuMVVm7NW8ly_rUVoZOumbcNh5erCz16p7OrTSACMXBPOxDiimyxHJ6UQobqjxqPKUCCMeGZ5mmUcMPEGgs8jLdB7knojyXLTT1IQhX4elclSa28B4rlOvnavQcIzpvEhluCd-StW-RvlJ5oA730-Z1oTn1HejkDbwSWwxNq6hpDWUuIYObDYPjCuuj7-LPrIK0sipk2NKkYtC-bb7TPb7osf3fSETBzbmGiTRcOlvjCrNaDaRIo4xuPZjB25V-vTznYLzBAdzIFrQtEaAKMEX75TDI0sNTgExGpgDW41Onj-VllW08-Rk9912Hx38nX-U34DLvd2OfPm8--IuXLHMt_YL1j1Ymp7MzH3EdFP9wBrtD4M-SKE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEB6VRAguQAsF87sHhNqD3azXXsfcoopQVSJEpBHpabW7XqtRHSdqEkE58Qg8Cw_CQ_AkzG7soPCjqlJuXq-zns-z39jfzAC8VNJEPA6lT3F3wABFSl9paWyuDDU5T6Msc2qLHj8aRsejeLQFtM6FcaJ9rcZBWUyCcnzmtJWziT6odWIHlvPjHDegyWOk3w1oDnv9zqnzuAl63NS1dEOinfq4m4ZVOR8Emm3sgiYNKIvioMXYxk7UtDf1879o5t9qyVvLciYvP8mi2GS0bkvq3oUP9WJWSpTzYLlQgf7yR53Ha632HtypCCrprA5tw5Ypd-DmqmXl5Q5sV85gTvaqitX792FkG4C4BAkyzUnXIKEnVsYxLgn-fnz_-fXbyZlN2JybyVi-JoemKKz8lbxXSE7tPyCyzMi7ulUv6VvVGPrgBzDsvjk5PPKrlg2-jjAwQa7eVpEN2XIkairlkhnbV1RSyeOEJYbpLKO2wE4UqSyhmcqjnPIkz3lLaxPHbBca5bQ0j4CwXGnaymVsGIZsNJEZmiDUNpnXyDDNPAhq8wld1TO3bTUK4eKa1OVao72FtbdAe3uwtz5htirl8f-hrxwe1uPkxblVwCWx-Nh7KwYD3mfHIRepBy9qwAh8Lu3HFlma6XIueLuNsXPY9uDhCj6_r8kZS3EyD5INYK0H2Irfm0cQGq7yd4UGD_bXELx6Kb6D6FXjRO-0M0D__fgacz-B266SrXsj9RQai4uleYYcbaGeV0_lL7ekPIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Induction+of+fetal+globin+in+beta-thalassemia%3A+Cellular+obstacles+and+molecular+progress&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=Perrine%2C+Susan+P&rft.au=Castaneda%2C+Serguei+A&rft.au=Boosalis%2C+Michael+S&rft.au=White%2C+Gary+L&rft.date=2005-01-01&rft.issn=0077-8923&rft.volume=1054&rft.spage=257&rft_id=info:doi/10.1196%2Fannals.1345.033&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon