An empirical study on Resource Description Framework reification for trustworthiness in knowledge graphs [version 2; peer review: 2 approved]

Knowledge graph (KG) publishes machine-readable representation of knowledge on the Web. Structured data in the knowledge graph is published using Resource Description Framework (RDF) where knowledge is represented as a triple (subject, predicate, object). Due to the presence of erroneous, outdated o...

Full description

Saved in:
Bibliographic Details
Published inF1000 research Vol. 10; p. 881
Main Authors Govindapillai, Sini, Soon, Lay-Ki, Haw, Su-Cheng
Format Journal Article
LanguageEnglish
Published England Faculty of 1000 Ltd 2021
F1000 Research Limited
F1000 Research Ltd
Subjects
Online AccessGet full text
ISSN2046-1402
2046-1402
DOI10.12688/f1000research.72843.2

Cover

Abstract Knowledge graph (KG) publishes machine-readable representation of knowledge on the Web. Structured data in the knowledge graph is published using Resource Description Framework (RDF) where knowledge is represented as a triple (subject, predicate, object). Due to the presence of erroneous, outdated or conflicting data in the knowledge graph, the quality of facts cannot be guaranteed. Trustworthiness of facts in knowledge graph can be enhanced by the addition of metadata like the source of information, location and time of the fact occurrence. Since RDF does not support metadata for providing provenance and contextualization, an alternate method, RDF reification is employed by most of the knowledge graphs. RDF reification increases the magnitude of data as several statements are required to represent a single fact. Another limitation for applications that uses provenance data like in the medical domain and in cyber security is that not all facts in these knowledge graphs are annotated with provenance data. In this paper, we have provided an overview of prominent reification approaches together with the analysis of popular, general knowledge graphs Wikidata and YAGO4 with regard to the representation of provenance and context data. Wikidata employs qualifiers to include metadata to facts, while YAGO4 collects metadata from Wikidata qualifiers. However, facts in Wikidata and YAGO4 can be fetched without using reification to cater for applications that do not require metadata. To the best of our knowledge, this is the first paper that investigates the method and the extent of metadata covered by two prominent KGs, Wikidata and YAGO4.
AbstractList Knowledge graph (KG) publishes machine-readable representation of knowledge on the Web. Structured data in the knowledge graph is published using Resource Description Framework (RDF) where knowledge is represented as a triple (subject, predicate, object). Due to the presence of erroneous, outdated or conflicting data in the knowledge graph, the quality of facts cannot be guaranteed. Trustworthiness of facts in knowledge graph can be enhanced by the addition of metadata like the source of information, location and time of the fact occurrence. Since RDF does not support metadata for providing provenance and contextualization, an alternate method, RDF reification is employed by most of the knowledge graphs. RDF reification increases the magnitude of data as several statements are required to represent a single fact. Another limitation for applications that uses provenance data like in the medical domain and in cyber security is that not all facts in these knowledge graphs are annotated with provenance data. In this paper, we have provided an overview of prominent reification approaches together with the analysis of popular, general knowledge graphs Wikidata and YAGO4 with regard to the representation of provenance and context data. Wikidata employs qualifiers to include metadata to facts, while YAGO4 collects metadata from Wikidata qualifiers. However, facts in Wikidata and YAGO4 can be fetched without using reification to cater for applications that do not require metadata. To the best of our knowledge, this is the first paper that investigates the method and the extent of metadata covered by two prominent KGs, Wikidata and YAGO4.
Knowledge graph (KG) publishes machine-readable representation of knowledge on the Web. Structured data in the knowledge graph is published using Resource Description Framework (RDF) where knowledge is represented as a triple (subject, predicate, object). Due to the presence of erroneous, outdated or conflicting data in the knowledge graph, the quality of facts cannot be guaranteed. Trustworthiness of facts in knowledge graph can be enhanced by the addition of metadata like the source of information, location and time of the fact occurrence. Since RDF does not support metadata for providing provenance and contextualization, an alternate method, RDF reification is employed by most of the knowledge graphs. RDF reification increases the magnitude of data as several statements are required to represent a single fact. Another limitation for applications that uses provenance data like in the medical domain and in cyber security is that not all facts in these knowledge graphs are annotated with provenance data. In this paper, we have provided an overview of prominent reification approaches together with the analysis of popular, general knowledge graphs Wikidata and YAGO4 with regard to the representation of provenance and context data. Wikidata employs qualifiers to include metadata to facts, while YAGO4 collects metadata from Wikidata qualifiers. However, facts in Wikidata and YAGO4 can be fetched without using reification to cater for applications that do not require metadata. To the best of our knowledge, this is the first paper that investigates the method and the extent of metadata covered by two prominent KGs, Wikidata and YAGO4.Knowledge graph (KG) publishes machine-readable representation of knowledge on the Web. Structured data in the knowledge graph is published using Resource Description Framework (RDF) where knowledge is represented as a triple (subject, predicate, object). Due to the presence of erroneous, outdated or conflicting data in the knowledge graph, the quality of facts cannot be guaranteed. Trustworthiness of facts in knowledge graph can be enhanced by the addition of metadata like the source of information, location and time of the fact occurrence. Since RDF does not support metadata for providing provenance and contextualization, an alternate method, RDF reification is employed by most of the knowledge graphs. RDF reification increases the magnitude of data as several statements are required to represent a single fact. Another limitation for applications that uses provenance data like in the medical domain and in cyber security is that not all facts in these knowledge graphs are annotated with provenance data. In this paper, we have provided an overview of prominent reification approaches together with the analysis of popular, general knowledge graphs Wikidata and YAGO4 with regard to the representation of provenance and context data. Wikidata employs qualifiers to include metadata to facts, while YAGO4 collects metadata from Wikidata qualifiers. However, facts in Wikidata and YAGO4 can be fetched without using reification to cater for applications that do not require metadata. To the best of our knowledge, this is the first paper that investigates the method and the extent of metadata covered by two prominent KGs, Wikidata and YAGO4.
Author Govindapillai, Sini
Soon, Lay-Ki
Haw, Su-Cheng
Author_xml – sequence: 1
  givenname: Sini
  orcidid: 0000-0002-0829-4870
  surname: Govindapillai
  fullname: Govindapillai, Sini
  organization: Faculty of Computing Informatics, Multimedia University, Cyberjaya, Selangor, 63100, Malaysia
– sequence: 2
  givenname: Lay-Ki
  orcidid: 0000-0002-8072-242X
  surname: Soon
  fullname: Soon, Lay-Ki
  organization: School of Information Technology, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
– sequence: 3
  givenname: Su-Cheng
  orcidid: 0000-0002-7190-0837
  surname: Haw
  fullname: Haw, Su-Cheng
  email: sucheng@mmu.edu.my
  organization: Faculty of Computing Informatics, Multimedia University, Cyberjaya, Selangor, 63100, Malaysia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34900233$$D View this record in MEDLINE/PubMed
BookMark eNqFktFqFDEUhgep2Fr7CiXgjTe7ZpLMJKkilGq1UBBEr0RCJnOym-1sMiYzu_QhfGezu23p9qZXCef8_5efnPO6OPDBQ1GclnhaklqI97bEGEdIoKOZTzkRjE7Ji-KIYFZPSobJwaP7YXGS0iIbsJS0JvxVcUiZxJhQelT8O_cIlr2LzugOpWFsb1Hw6AekMEYD6DMkE10_uFy8jHoJ6xBvUARns2FbtSGiIY5pyJ1h7jykhJxHNz6sO2hngGZR9_OEfq8gpo2BfEA9QMyQlYP1GSJI930MK2j_vCleWt0lOLk7j4tfl19-XnybXH__enVxfj0xjDMyMQaqSgA3tCp5RbAUsuG25Jzb2jay1qKx0mjSNIxUmpPSMKGZFII3YDXR9Li42nHboBeqj26p460K2qltIcSZ0nFwpgNVaSxbaiVtq5ZJmbmGMm5FBWBwBRvWpx2rH5sltAb8EHW3B93veDdXs7BSoqYMM5kB7-4AMfwdIQ1q6ZKBrtMewpgULQXhtGaMZOnbJ9JFHpPPX6VITYjkTPI6q04fJ3qIcj_1LPi4E5gYUopglXHDdpo5oOtUidV2z9TenqntnqlNivqJ_f6FZ41nO6PVZuyG241IPaieMf8H9p7v2Q
CitedBy_id crossref_primary_10_1134_S1995080224600869
crossref_primary_10_3389_frma_2023_1204801
Cites_doi 10.1007/978-3-642-32873-2_10
10.1145/2566486.2567973
10.3233/SW-160218
10.1016/j.artint.2012.06.001
10.1007/s41019-020-00118-0
10.1145/1963192.1963296
10.3233/SW-180307
10.3233/SW-170275
10.1007/978-3-319-11964-9_4
ContentType Journal Article
Copyright Copyright: © 2021 Govindapillai S et al.
Copyright: © 2021 Govindapillai S et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright: © 2021 Govindapillai S et al. 2021
Copyright_xml – notice: Copyright: © 2021 Govindapillai S et al.
– notice: Copyright: © 2021 Govindapillai S et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright: © 2021 Govindapillai S et al. 2021
DBID C-E
CH4
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.12688/f1000research.72843.2
DatabaseName F1000Research
Faculty of 1000
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

Publicly Available Content Database

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Women's Studies
EISSN 2046-1402
ExternalDocumentID oai_doaj_org_article_5a09d3f93d5d499f9cc347f85eec05ea
PMC8634049
34900233
10_12688_f1000research_72843_2
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Multimedia University Internal Fund
  grantid: MMUI/180006
– fundername: Fundamental Research Grant Scheme (FRGS) by Malaysia Ministry of Higher Education
  grantid: FRGS/2/2013/ICT07/MMU/02/2
GroupedDBID 3V.
53G
5VS
7X7
88I
8FE
8FH
8FI
8FJ
ABUWG
ACGOD
ACPRK
ADACO
ADBBV
ADRAZ
AFKRA
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBAFP
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C-E
CH4
DIK
DWQXO
FRP
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
OK1
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PROAC
RPM
AAFWJ
AAYXX
AFPKN
ALIPV
CCPQU
CITATION
HMCUK
M~E
PGMZT
PHGZM
PHGZT
UKHRP
W2D
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQGLB
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c4742-cce558e7c3517520989b7f1777f6fb96a8bf9ca2bb425a721c48a49887befa2a3
IEDL.DBID M48
ISSN 2046-1402
IngestDate Wed Aug 27 01:07:55 EDT 2025
Thu Aug 21 13:50:30 EDT 2025
Fri Sep 05 17:49:07 EDT 2025
Fri Jul 25 11:53:17 EDT 2025
Thu Apr 03 06:57:51 EDT 2025
Tue Jul 01 04:27:26 EDT 2025
Thu Apr 24 22:52:12 EDT 2025
Thu Dec 02 08:02:49 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords RDF reification
provenance data
YAGO
Wikidata
Knowledge Graph
Language English
License http://creativecommons.org/licenses/by/4.0/: This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright: © 2021 Govindapillai S et al.
This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4742-cce558e7c3517520989b7f1777f6fb96a8bf9ca2bb425a721c48a49887befa2a3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
No competing interests were disclosed.
ORCID 0000-0002-7190-0837
0000-0002-8072-242X
0000-0002-0829-4870
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.12688/f1000research.72843.2
PMID 34900233
PQID 2622974976
PQPubID 2045578
ParticipantIDs doaj_primary_oai_doaj_org_article_5a09d3f93d5d499f9cc347f85eec05ea
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8634049
proquest_miscellaneous_3182736442
proquest_journals_2622974976
pubmed_primary_34900233
crossref_citationtrail_10_12688_f1000research_72843_2
crossref_primary_10_12688_f1000research_72843_2
faculty1000_research_10_12688_f1000research_72843_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: London, UK
PublicationTitle F1000 research
PublicationTitleAlternate F1000Res
PublicationYear 2021
Publisher Faculty of 1000 Ltd
F1000 Research Limited
F1000 Research Ltd
Publisher_xml – name: Faculty of 1000 Ltd
– name: F1000 Research Limited
– name: F1000 Research Ltd
References P Patel-Schneider (ref13) 2018
J Hoffart (ref15) 2013
F Manola (ref4)
H Paulheim (ref1) 2017
V Nguyen (ref9) 2014
O Hartig (ref8) June, 2017; 1963
M Färber (ref2) 2017; 9
S Malyshev (ref7) 2018; 11137
L Sikos (ref5) 2020; 5
F Erxleben (ref6) 2014; 8796
O Hartig (ref11) 2017
P Hayes (ref10)
J Hoffart (ref14) 2011; 23
J Frey (ref12) 2019; 10
M Bienvenu (ref3)
References_xml – ident: ref3
  article-title: Provenance for Web 2.0 Data.
  doi: 10.1007/978-3-642-32873-2_10
– start-page: 759-769
  year: 2014
  ident: ref9
  article-title: Don’t like RDF reification? Making statements about statements using singleton property.
  publication-title: WWW 2014 - Proc. 23rd Int. Conf. World Wide Web.
  doi: 10.1145/2566486.2567973
– volume: 1963
  year: June, 2017
  ident: ref8
  article-title: Foundations of RDF* and SPARQL* (An Alternative Approach to Statement-Level Metadata in RDF).
  publication-title: CEUR Workshop Proc.
– start-page: 489-508
  year: 2017
  ident: ref1
  article-title: Knowledge Graph Refinement: A Survey of Approaches and Evaluation Methods.
  publication-title: Semant. Web.
  doi: 10.3233/SW-160218
– start-page: 3161-3165
  year: 2013
  ident: ref15
  article-title: YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia.
  publication-title: IJCAI Int. Jt. Conf. Artif. Intell.
  doi: 10.1016/j.artint.2012.06.001
– volume: 5
  start-page: 293-316
  year: 2020
  ident: ref5
  article-title: Provenance-Aware Knowledge Representation: A Survey of Data Models and Contextualized Knowledge Graphs.
  publication-title: Data Sci. Eng.
  doi: 10.1007/s41019-020-00118-0
– volume: 23
  start-page: 229-232
  year: 2011
  ident: ref14
  article-title: YAGO2: Exploring and Querying World Knowledge in Time , Space, Context, and Many Languages.
  publication-title: Time.
  doi: 10.1145/1963192.1963296
– year: 2017
  ident: ref11
  article-title: RDF∗ and SPARQL∗: An alternative approach to annotate statements in RDF.
  publication-title: Int. Semant. Web Conf.
– volume: 10
  start-page: 205-229
  year: 2019
  ident: ref12
  article-title: Evaluation of metadata representations in RDF stores.
  publication-title: Semant. Web.
  doi: 10.3233/SW-180307
– year: 2018
  ident: ref13
  article-title: Contextualization via qualifiers.
  publication-title: CEUR Workshop Proc.
– ident: ref10
  article-title: Defining N-ary Relations on the Semantic Web.
– volume: 9
  start-page: 77-129
  year: 2017
  ident: ref2
  article-title: Linked Data Quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO.
  publication-title: Semant. Web.
  doi: 10.3233/SW-170275
– volume: 11137
  start-page: 8-12
  year: 2018
  ident: ref7
  article-title: Getting the Most Out of Wikidata: Semantic Technology Usage in Wikipedia’s Knowledge Graph.
  publication-title: Proc. 17th Int. Semant. Web Conf. (ISWC 2018).
– ident: ref4
  article-title: RDF Primer.
  publication-title: W3C Recommendation 10 February 2004. [Online].
– volume: 8796
  start-page: 50-65
  year: 2014
  ident: ref6
  article-title: Introducing wikidata to the linked data web.
  publication-title: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics).
  doi: 10.1007/978-3-319-11964-9_4
RelatedPersons Williams, Serena
Trump, Donald J
RelatedPersons_xml – fullname: Trump, Donald J
– fullname: Williams, Serena
SSID ssj0000993627
Score 2.2001548
Snippet Knowledge graph (KG) publishes machine-readable representation of knowledge on the Web. Structured data in the knowledge graph is published using Resource...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
faculty1000
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 881
SubjectTerms Crowdsourcing
Data models
Empirical Research
eng
Knowledge Graph
Knowledge representation
Metadata
Pattern Recognition, Automated
Provenance
provenance data
Queries
RDF reification
Research Design
Resource Description Framework-RDF
Semantics
Trump, Donald J
Wikidata
Williams, Serena
YAGO
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFA7ShdhF0foarXIEwdW0M3lMEl1V8VKEurJQEAlJJqFXdO6lVwv-CP-zJ5kHd0S4G7eTyTxyTs5835mTL4S89JJF2dZNWetWl5wpV6pGBKQqjkda4bNniY3zj83ZBf9wKS63tvpKNWG9PHA_cCfCVrplUbNWtIjOo_aecRmVCMFXImRoVOlqi0x97XEPRmY5LAmmDdK8mDLZg4LO1bHEsMyO6exrlEX798l-tEn14lc6_1-48-_yya3v0eIuORiAJJz2L3CP3ArdIbl9PvwqPyQHeW_KVxsYKgXvk9-nHYTv62UWBYGsKwurDsYEPiAFHUMILMaaLbgOqZgo2w8Q4EJepJELC3PBPCw7mPJykOWvN_D5ps_CAX0D6xCuoV8g8xooZA3zm9B-eUAuFu8_vTsrh90YSs-RP5feByFUkJ4JhBw45ko7GWspZWyi041VDo1jqXMYBiwSS8-V5RqDmAvRUssekr1u1YXHBIKKrlK61tZ5zq1VHps9grng0bx1XRAxWsX4Qao87ZjxzSTKkqxpZtY02ZqGFuRk6rfuxTp29nibjD6dncS28wF0QTO4oNnlggVhWy5jpnvsuvXR6FpmiBsbQxtKkeEhRizIi6kZZ3z6jWO7sPq5MRiFEXMijsVLPOo9cXp-xnVCYawgcuajsxect3TLq6wqrhrGkS4--R8j8pTcoan2J6eqjsgeumZ4huDth3ue5-kfXLdFcw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwELWgSIgeKihQUgoyEhKntIk_YvuECmJVIZUTlfZm2Y7NrgTJtqGH_vuOvU5oEKLXOImdzHj8Zjx-g9B7J2gQbd2UtWpVyai0pWy4B1fFskAqGHui2Dj_1pxdsK9LvswBtyGnVY42MRnqtncxRn5CGkIA-8Lq-XFzWcaqUXF3NZfQeIge1YBEYukGsRRTjAXQD9hnkQ8GkwacvRDj2ZlHZ3UswDjTYzJbkxJ1_y7aDSZyX9zE-_-FPv9OoryzKi2eor0MJ_HpVv7P0APf7aPH53nDfB_tpQqVHwac8wWfo9Vph_2vzTpRg-DELov7Do9hfAyO6GhI8GLM3MJXPqYUJSligLk4HdVI6YUpbR6vOzxF53AiwR5eoIvFl--fz8pcbqF0DBzk0jnPufTCUQ6YglRKKitCLYQITbCqMdIG5QyxFua5Ac_RMWmYAitlfTDE0Jdop-s7_wphL4OtpKqVsY4xY6SDZgdozTvlXF0XiI8_XLvMRR5LYvzU0SeJgtIzQekkKE0KdDI9t9mycdz7xKcoz-nuyKadLvRXP3SenJqbSrU0KNryFjxA-EpHmQiSe-8q7k2B6B1t0FMf93V9NGqNzoZh0H_UuEDvpmaY0nGfxnS-vx40mFkAlQBU4RUHWyWbxk-ZijCLFkjM1G_2gfOWbr1KtOGyoQz8wcP_D-s1ekJi2k6KMh2hHdAn_wZw12_7Nk2uWwI4LuQ
  priority: 102
  providerName: ProQuest
Title An empirical study on Resource Description Framework reification for trustworthiness in knowledge graphs [version 2; peer review: 2 approved]
URI http://dx.doi.org/10.12688/f1000research.72843.2
https://www.ncbi.nlm.nih.gov/pubmed/34900233
https://www.proquest.com/docview/2622974976
https://www.proquest.com/docview/3182736442
https://pubmed.ncbi.nlm.nih.gov/PMC8634049
https://doaj.org/article/5a09d3f93d5d499f9cc347f85eec05ea
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1daxQxFA21BbEPRavW0bpEEHyadSfJTBJFpJWuRWgRcWFBJCSZxK7U2XVXi_0R_c-9yXzQkUrBl33YTHYme2_unHNzc4LQc8up52VWpJksZcqoMKkocgdUxTBPRvDsUWLj6Lg4nLAP03y6htrjUps_cHUttQvnSU2Wp8M_P8_fwoR_E7URCmBwPiSpG3GckyGHiEuHEJY34ppRKOdrIP_3GhFBzObNZuF_d--9p6Kc_yba9DroYZyH669DpH8XVl55U43voq0GYuK92ifuoTVXbaPbR80i-jbaiqdWvljhpobwPrrYq7D7sZhFuRAcFWfxvMJtah8DOW2DCx631Vx46UKZUbQsBuiL4_aNWHIYS-nxrMJdxg5HYewV_nJW5-cweY0Xzi1xvXXmFSY4qpufufLrAzQZH3x-d5g25zSklgGzTq11eS4ctzQHMEJGUkjDfcY594U3stDCeGk1MQYChAbKaZnQTEJ4M85roulDtF7NK_cIYSe8GQmZSW0sY1oLC80WYJ6z0tosS1DeWkXZRsQ8nKVxqgKZCdZUPWuqaE1FEvSy67eoZTxu7LEfjN5dHWS44xfz5TfVzGqV65EsqZe0zEugjjBKSxn3InfOjnKnE0SvuIzq7nHTrXdb11LthFCkIAS4H6DHBD3rmiEWhAUeXbn575WC-AxoFBAu_MRO7Ynd81MmAz6jCeI9H-0NsN9SzU6i3rgoKAMi-fi_BvME3SGhDChmrXbROviiewo47pcZoFt8ygdoY__g-OOnQcyGwOf7aTaIU_YS63RMsA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAJ6qKC8AgWMBOK0bdb27tqHCrXQKKVNhFAr9Wa8XruJVDahAaH-OX4bY8e7NAjRU6_xPryZ8cw34_E3AK9NwVxRpXmSykomnIkyEXlmMVQpuaM9nHug2BiO8sEJ_3iana7Ar-YsjC-rbGxiMNTV1Pgc-TbNKUXsi97z3exb4rtG-d3VpoWGjq0Vqp1AMRYPdhzay58Yws13Dj6gvN9Q2t8_fj9IYpeBxHCMCxNjbJYJWxiWoSulPSlkWbi0KAqXu1LmWpROGk3LEtVbY8BkuNBc4uIsrdNUM3zuLVjlPoHSgdW9_dGnz22WB_EXeogiHk2mOYabzmfUI5PPeKtA98C26JJXDM0D1mDNac--cemv_xf-_buM84pf7N-D9Qhoye5CA-_Diq034PYwbtlvwHrokfl2TmLF4gMY79bEfp1NAjkJCfy2ZFqTZiOBYCjcmDLSb2rHyIX1RU1BjwgCbRIOi4QCx1C4TyY1afODJNBwzx_CyY2I4hF06mltnwCxwpU9IVOpS8O51sLgsEG8aI00Jk27kDV_uDKRDd035ThXPiryglJLglJBUIp2Ybu9b7bgA7n2jj0vz_Zqz-cdfphenKloHlSme7JiTrIqqzAGxa80jBdOZNaaXmZ1F9gVbVDtO6579WajNSqaprn6s5C68KodRqPid4p0bac_5goNPcJahMr4iMcLJWvnz7j0QI91oVhSv6UPXB6pJ-NAXC5yxjEiffr_ab2EO4Pj4ZE6OhgdPoO71BcRhZzXJnRQt-xzRIHfyxdxqRH4ctOr-zdz2XJG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8gJEQeiOLXKWpNND4td9vubtsHYkC4gAghRhLeatttvUt07-Q0hn_Rv8ppr7tyxsgTr9f96N5MZ34znf4G4KXlzPM6r7Jc1jIrmDCZqEqHoYopPB3g3CPFxvFJdXBWvDsvz5fgV3sWJpRVtjYxGup6YkOOvE8rShH7ovfs-1QWcbo3fDP9loUOUmGntW2noVObhXo70o2lQx5H7vInhnOz7cM9lP0rSof7H98eZKnjQGYLjBEza11ZCsctK9Gt0oEU0nCfc8595Y2stDBeWk2NQVXXGDzZQuhC4kI1zmuqGT73Fqxw9PoYCK7s7p-cfugyPojF0FvwdEyZVhh6-pBdT6w-oy2OroJt0QUPGRsJrMGa14GJ4zJc_y8s_HdJ5xUfObwD6wnckp25Nt6FJddswOpx2r7fgPXYL_P1jKTqxXsw2mmI-zodR6ISErluyaQh7aYCwbC4NWtk2NaRkQsXCpyiThEE3SQeHInFjrGIn4wb0uUKSaTknt2HsxsRxQNYbiaNewTECW8GQuZSG1sUWguLwxaxo7PS2jzvQdn-4comZvTQoOOLChFSEJRaEJSKglK0B_3uvumcG-TaO3aDPLurA7d3_GFy8VklU6FKPZA185LVZY3xKH6lZQX3onTODkqne8CuaIPq3nHdqzdbrVHJTM3Un0XVgxfdMBqYsGukGzf5MVNo9BHiImzGRzycK1k3f1bIAPpYD_iC-i184OJIMx5FEnNRsQKj08f_n9ZzWMVVrt4fnhw9gds01BPF9NcmLKNquacICL-bZ2mlEfh004v7N9uVdoo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+study+on+Resource+Description+Framework+reification+for+trustworthiness+in+knowledge+graphs+%5Bversion+2%3B+peer+review%3A+2+approved%5D&rft.jtitle=F1000+research&rft.au=Govindapillai%2C+Sini&rft.au=Soon%2C+Lay-Ki&rft.au=Haw%2C+Su-Cheng&rft.date=2021&rft.eissn=2046-1402&rft.volume=10&rft_id=info:doi/10.12688%2Ff1000research.72843.2&rft.externalDBID=C-E&rft.externalDocID=10_12688_f1000research_72843_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-1402&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-1402&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-1402&client=summon