An empirical study on Resource Description Framework reification for trustworthiness in knowledge graphs [version 2; peer review: 2 approved]
Knowledge graph (KG) publishes machine-readable representation of knowledge on the Web. Structured data in the knowledge graph is published using Resource Description Framework (RDF) where knowledge is represented as a triple (subject, predicate, object). Due to the presence of erroneous, outdated o...
Saved in:
Published in | F1000 research Vol. 10; p. 881 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Faculty of 1000 Ltd
2021
F1000 Research Limited F1000 Research Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 2046-1402 2046-1402 |
DOI | 10.12688/f1000research.72843.2 |
Cover
Abstract | Knowledge graph (KG) publishes machine-readable representation of knowledge on the Web. Structured data in the knowledge graph is published using Resource Description Framework (RDF) where knowledge is represented as a triple (subject, predicate, object). Due to the presence of erroneous, outdated or conflicting data in the knowledge graph, the quality of facts cannot be guaranteed. Trustworthiness of facts in knowledge graph can be enhanced by the addition of metadata like the source of information, location and time of the fact occurrence. Since RDF does not support metadata for providing provenance and contextualization, an alternate method, RDF reification is employed by most of the knowledge graphs. RDF reification increases the magnitude of data as several statements are required to represent a single fact. Another limitation for applications that uses provenance data like in the medical domain and in cyber security is that not all facts in these knowledge graphs are annotated with provenance data. In this paper, we have provided an overview of prominent reification approaches together with the analysis of popular, general knowledge graphs Wikidata and YAGO4 with regard to the representation of provenance and context data. Wikidata employs qualifiers to include metadata to facts, while YAGO4 collects metadata from Wikidata qualifiers. However, facts in Wikidata and YAGO4 can be fetched without using reification to cater for applications that do not require metadata. To the best of our knowledge, this is the first paper that investigates the method and the extent of metadata covered by two prominent KGs, Wikidata and YAGO4. |
---|---|
AbstractList | Knowledge graph (KG) publishes machine-readable representation of knowledge on the Web. Structured data in the knowledge graph is published using Resource Description Framework (RDF) where knowledge is represented as a triple (subject, predicate, object). Due to the presence of erroneous, outdated or conflicting data in the knowledge graph, the quality of facts cannot be guaranteed. Trustworthiness of facts in knowledge graph can be enhanced by the addition of metadata like the source of information, location and time of the fact occurrence. Since RDF does not support metadata for providing provenance and contextualization, an alternate method, RDF reification is employed by most of the knowledge graphs. RDF reification increases the magnitude of data as several statements are required to represent a single fact. Another limitation for applications that uses provenance data like in the medical domain and in cyber security is that not all facts in these knowledge graphs are annotated with provenance data. In this paper, we have provided an overview of prominent reification approaches together with the analysis of popular, general knowledge graphs Wikidata and YAGO4 with regard to the representation of provenance and context data. Wikidata employs qualifiers to include metadata to facts, while YAGO4 collects metadata from Wikidata qualifiers. However, facts in Wikidata and YAGO4 can be fetched without using reification to cater for applications that do not require metadata. To the best of our knowledge, this is the first paper that investigates the method and the extent of metadata covered by two prominent KGs, Wikidata and YAGO4. Knowledge graph (KG) publishes machine-readable representation of knowledge on the Web. Structured data in the knowledge graph is published using Resource Description Framework (RDF) where knowledge is represented as a triple (subject, predicate, object). Due to the presence of erroneous, outdated or conflicting data in the knowledge graph, the quality of facts cannot be guaranteed. Trustworthiness of facts in knowledge graph can be enhanced by the addition of metadata like the source of information, location and time of the fact occurrence. Since RDF does not support metadata for providing provenance and contextualization, an alternate method, RDF reification is employed by most of the knowledge graphs. RDF reification increases the magnitude of data as several statements are required to represent a single fact. Another limitation for applications that uses provenance data like in the medical domain and in cyber security is that not all facts in these knowledge graphs are annotated with provenance data. In this paper, we have provided an overview of prominent reification approaches together with the analysis of popular, general knowledge graphs Wikidata and YAGO4 with regard to the representation of provenance and context data. Wikidata employs qualifiers to include metadata to facts, while YAGO4 collects metadata from Wikidata qualifiers. However, facts in Wikidata and YAGO4 can be fetched without using reification to cater for applications that do not require metadata. To the best of our knowledge, this is the first paper that investigates the method and the extent of metadata covered by two prominent KGs, Wikidata and YAGO4.Knowledge graph (KG) publishes machine-readable representation of knowledge on the Web. Structured data in the knowledge graph is published using Resource Description Framework (RDF) where knowledge is represented as a triple (subject, predicate, object). Due to the presence of erroneous, outdated or conflicting data in the knowledge graph, the quality of facts cannot be guaranteed. Trustworthiness of facts in knowledge graph can be enhanced by the addition of metadata like the source of information, location and time of the fact occurrence. Since RDF does not support metadata for providing provenance and contextualization, an alternate method, RDF reification is employed by most of the knowledge graphs. RDF reification increases the magnitude of data as several statements are required to represent a single fact. Another limitation for applications that uses provenance data like in the medical domain and in cyber security is that not all facts in these knowledge graphs are annotated with provenance data. In this paper, we have provided an overview of prominent reification approaches together with the analysis of popular, general knowledge graphs Wikidata and YAGO4 with regard to the representation of provenance and context data. Wikidata employs qualifiers to include metadata to facts, while YAGO4 collects metadata from Wikidata qualifiers. However, facts in Wikidata and YAGO4 can be fetched without using reification to cater for applications that do not require metadata. To the best of our knowledge, this is the first paper that investigates the method and the extent of metadata covered by two prominent KGs, Wikidata and YAGO4. |
Author | Govindapillai, Sini Soon, Lay-Ki Haw, Su-Cheng |
Author_xml | – sequence: 1 givenname: Sini orcidid: 0000-0002-0829-4870 surname: Govindapillai fullname: Govindapillai, Sini organization: Faculty of Computing Informatics, Multimedia University, Cyberjaya, Selangor, 63100, Malaysia – sequence: 2 givenname: Lay-Ki orcidid: 0000-0002-8072-242X surname: Soon fullname: Soon, Lay-Ki organization: School of Information Technology, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia – sequence: 3 givenname: Su-Cheng orcidid: 0000-0002-7190-0837 surname: Haw fullname: Haw, Su-Cheng email: sucheng@mmu.edu.my organization: Faculty of Computing Informatics, Multimedia University, Cyberjaya, Selangor, 63100, Malaysia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34900233$$D View this record in MEDLINE/PubMed |
BookMark | eNqFktFqFDEUhgep2Fr7CiXgjTe7ZpLMJKkilGq1UBBEr0RCJnOym-1sMiYzu_QhfGezu23p9qZXCef8_5efnPO6OPDBQ1GclnhaklqI97bEGEdIoKOZTzkRjE7Ji-KIYFZPSobJwaP7YXGS0iIbsJS0JvxVcUiZxJhQelT8O_cIlr2LzugOpWFsb1Hw6AekMEYD6DMkE10_uFy8jHoJ6xBvUARns2FbtSGiIY5pyJ1h7jykhJxHNz6sO2hngGZR9_OEfq8gpo2BfEA9QMyQlYP1GSJI930MK2j_vCleWt0lOLk7j4tfl19-XnybXH__enVxfj0xjDMyMQaqSgA3tCp5RbAUsuG25Jzb2jay1qKx0mjSNIxUmpPSMKGZFII3YDXR9Li42nHboBeqj26p460K2qltIcSZ0nFwpgNVaSxbaiVtq5ZJmbmGMm5FBWBwBRvWpx2rH5sltAb8EHW3B93veDdXs7BSoqYMM5kB7-4AMfwdIQ1q6ZKBrtMewpgULQXhtGaMZOnbJ9JFHpPPX6VITYjkTPI6q04fJ3qIcj_1LPi4E5gYUopglXHDdpo5oOtUidV2z9TenqntnqlNivqJ_f6FZ41nO6PVZuyG241IPaieMf8H9p7v2Q |
CitedBy_id | crossref_primary_10_1134_S1995080224600869 crossref_primary_10_3389_frma_2023_1204801 |
Cites_doi | 10.1007/978-3-642-32873-2_10 10.1145/2566486.2567973 10.3233/SW-160218 10.1016/j.artint.2012.06.001 10.1007/s41019-020-00118-0 10.1145/1963192.1963296 10.3233/SW-180307 10.3233/SW-170275 10.1007/978-3-319-11964-9_4 |
ContentType | Journal Article |
Copyright | Copyright: © 2021 Govindapillai S et al. Copyright: © 2021 Govindapillai S et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright: © 2021 Govindapillai S et al. 2021 |
Copyright_xml | – notice: Copyright: © 2021 Govindapillai S et al. – notice: Copyright: © 2021 Govindapillai S et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright: © 2021 Govindapillai S et al. 2021 |
DBID | C-E CH4 AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.12688/f1000research.72843.2 |
DatabaseName | F1000Research Faculty of 1000 CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Women's Studies |
EISSN | 2046-1402 |
ExternalDocumentID | oai_doaj_org_article_5a09d3f93d5d499f9cc347f85eec05ea PMC8634049 34900233 10_12688_f1000research_72843_2 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Multimedia University Internal Fund grantid: MMUI/180006 – fundername: Fundamental Research Grant Scheme (FRGS) by Malaysia Ministry of Higher Education grantid: FRGS/2/2013/ICT07/MMU/02/2 |
GroupedDBID | 3V. 53G 5VS 7X7 88I 8FE 8FH 8FI 8FJ ABUWG ACGOD ACPRK ADACO ADBBV ADRAZ AFKRA AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBAFP BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C-E CH4 DIK DWQXO FRP FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P OK1 PIMPY PQEST PQQKQ PQUKI PRINS PROAC RPM AAFWJ AAYXX AFPKN ALIPV CCPQU CITATION HMCUK M~E PGMZT PHGZM PHGZT UKHRP W2D CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQGLB Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c4742-cce558e7c3517520989b7f1777f6fb96a8bf9ca2bb425a721c48a49887befa2a3 |
IEDL.DBID | M48 |
ISSN | 2046-1402 |
IngestDate | Wed Aug 27 01:07:55 EDT 2025 Thu Aug 21 13:50:30 EDT 2025 Fri Sep 05 17:49:07 EDT 2025 Fri Jul 25 11:53:17 EDT 2025 Thu Apr 03 06:57:51 EDT 2025 Tue Jul 01 04:27:26 EDT 2025 Thu Apr 24 22:52:12 EDT 2025 Thu Dec 02 08:02:49 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | RDF reification provenance data YAGO Wikidata Knowledge Graph |
Language | English |
License | http://creativecommons.org/licenses/by/4.0/: This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright: © 2021 Govindapillai S et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4742-cce558e7c3517520989b7f1777f6fb96a8bf9ca2bb425a721c48a49887befa2a3 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 No competing interests were disclosed. |
ORCID | 0000-0002-7190-0837 0000-0002-8072-242X 0000-0002-0829-4870 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.12688/f1000research.72843.2 |
PMID | 34900233 |
PQID | 2622974976 |
PQPubID | 2045578 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5a09d3f93d5d499f9cc347f85eec05ea pubmedcentral_primary_oai_pubmedcentral_nih_gov_8634049 proquest_miscellaneous_3182736442 proquest_journals_2622974976 pubmed_primary_34900233 crossref_citationtrail_10_12688_f1000research_72843_2 crossref_primary_10_12688_f1000research_72843_2 faculty1000_research_10_12688_f1000research_72843_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London – name: London, UK |
PublicationTitle | F1000 research |
PublicationTitleAlternate | F1000Res |
PublicationYear | 2021 |
Publisher | Faculty of 1000 Ltd F1000 Research Limited F1000 Research Ltd |
Publisher_xml | – name: Faculty of 1000 Ltd – name: F1000 Research Limited – name: F1000 Research Ltd |
References | P Patel-Schneider (ref13) 2018 J Hoffart (ref15) 2013 F Manola (ref4) H Paulheim (ref1) 2017 V Nguyen (ref9) 2014 O Hartig (ref8) June, 2017; 1963 M Färber (ref2) 2017; 9 S Malyshev (ref7) 2018; 11137 L Sikos (ref5) 2020; 5 F Erxleben (ref6) 2014; 8796 O Hartig (ref11) 2017 P Hayes (ref10) J Hoffart (ref14) 2011; 23 J Frey (ref12) 2019; 10 M Bienvenu (ref3) |
References_xml | – ident: ref3 article-title: Provenance for Web 2.0 Data. doi: 10.1007/978-3-642-32873-2_10 – start-page: 759-769 year: 2014 ident: ref9 article-title: Don’t like RDF reification? Making statements about statements using singleton property. publication-title: WWW 2014 - Proc. 23rd Int. Conf. World Wide Web. doi: 10.1145/2566486.2567973 – volume: 1963 year: June, 2017 ident: ref8 article-title: Foundations of RDF* and SPARQL* (An Alternative Approach to Statement-Level Metadata in RDF). publication-title: CEUR Workshop Proc. – start-page: 489-508 year: 2017 ident: ref1 article-title: Knowledge Graph Refinement: A Survey of Approaches and Evaluation Methods. publication-title: Semant. Web. doi: 10.3233/SW-160218 – start-page: 3161-3165 year: 2013 ident: ref15 article-title: YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia. publication-title: IJCAI Int. Jt. Conf. Artif. Intell. doi: 10.1016/j.artint.2012.06.001 – volume: 5 start-page: 293-316 year: 2020 ident: ref5 article-title: Provenance-Aware Knowledge Representation: A Survey of Data Models and Contextualized Knowledge Graphs. publication-title: Data Sci. Eng. doi: 10.1007/s41019-020-00118-0 – volume: 23 start-page: 229-232 year: 2011 ident: ref14 article-title: YAGO2: Exploring and Querying World Knowledge in Time , Space, Context, and Many Languages. publication-title: Time. doi: 10.1145/1963192.1963296 – year: 2017 ident: ref11 article-title: RDF∗ and SPARQL∗: An alternative approach to annotate statements in RDF. publication-title: Int. Semant. Web Conf. – volume: 10 start-page: 205-229 year: 2019 ident: ref12 article-title: Evaluation of metadata representations in RDF stores. publication-title: Semant. Web. doi: 10.3233/SW-180307 – year: 2018 ident: ref13 article-title: Contextualization via qualifiers. publication-title: CEUR Workshop Proc. – ident: ref10 article-title: Defining N-ary Relations on the Semantic Web. – volume: 9 start-page: 77-129 year: 2017 ident: ref2 article-title: Linked Data Quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. publication-title: Semant. Web. doi: 10.3233/SW-170275 – volume: 11137 start-page: 8-12 year: 2018 ident: ref7 article-title: Getting the Most Out of Wikidata: Semantic Technology Usage in Wikipedia’s Knowledge Graph. publication-title: Proc. 17th Int. Semant. Web Conf. (ISWC 2018). – ident: ref4 article-title: RDF Primer. publication-title: W3C Recommendation 10 February 2004. [Online]. – volume: 8796 start-page: 50-65 year: 2014 ident: ref6 article-title: Introducing wikidata to the linked data web. publication-title: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). doi: 10.1007/978-3-319-11964-9_4 |
RelatedPersons | Williams, Serena Trump, Donald J |
RelatedPersons_xml | – fullname: Trump, Donald J – fullname: Williams, Serena |
SSID | ssj0000993627 |
Score | 2.2001548 |
Snippet | Knowledge graph (KG) publishes machine-readable representation of knowledge on the Web. Structured data in the knowledge graph is published using Resource... |
SourceID | doaj pubmedcentral proquest pubmed crossref faculty1000 |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 881 |
SubjectTerms | Crowdsourcing Data models Empirical Research eng Knowledge Graph Knowledge representation Metadata Pattern Recognition, Automated Provenance provenance data Queries RDF reification Research Design Resource Description Framework-RDF Semantics Trump, Donald J Wikidata Williams, Serena YAGO |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFA7ShdhF0foarXIEwdW0M3lMEl1V8VKEurJQEAlJJqFXdO6lVwv-CP-zJ5kHd0S4G7eTyTxyTs5835mTL4S89JJF2dZNWetWl5wpV6pGBKQqjkda4bNniY3zj83ZBf9wKS63tvpKNWG9PHA_cCfCVrplUbNWtIjOo_aecRmVCMFXImRoVOlqi0x97XEPRmY5LAmmDdK8mDLZg4LO1bHEsMyO6exrlEX798l-tEn14lc6_1-48-_yya3v0eIuORiAJJz2L3CP3ArdIbl9PvwqPyQHeW_KVxsYKgXvk9-nHYTv62UWBYGsKwurDsYEPiAFHUMILMaaLbgOqZgo2w8Q4EJepJELC3PBPCw7mPJykOWvN_D5ps_CAX0D6xCuoV8g8xooZA3zm9B-eUAuFu8_vTsrh90YSs-RP5feByFUkJ4JhBw45ko7GWspZWyi041VDo1jqXMYBiwSS8-V5RqDmAvRUssekr1u1YXHBIKKrlK61tZ5zq1VHps9grng0bx1XRAxWsX4Qao87ZjxzSTKkqxpZtY02ZqGFuRk6rfuxTp29nibjD6dncS28wF0QTO4oNnlggVhWy5jpnvsuvXR6FpmiBsbQxtKkeEhRizIi6kZZ3z6jWO7sPq5MRiFEXMijsVLPOo9cXp-xnVCYawgcuajsxect3TLq6wqrhrGkS4--R8j8pTcoan2J6eqjsgeumZ4huDth3ue5-kfXLdFcw priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwELWgSIgeKihQUgoyEhKntIk_YvuECmJVIZUTlfZm2Y7NrgTJtqGH_vuOvU5oEKLXOImdzHj8Zjx-g9B7J2gQbd2UtWpVyai0pWy4B1fFskAqGHui2Dj_1pxdsK9LvswBtyGnVY42MRnqtncxRn5CGkIA-8Lq-XFzWcaqUXF3NZfQeIge1YBEYukGsRRTjAXQD9hnkQ8GkwacvRDj2ZlHZ3UswDjTYzJbkxJ1_y7aDSZyX9zE-_-FPv9OoryzKi2eor0MJ_HpVv7P0APf7aPH53nDfB_tpQqVHwac8wWfo9Vph_2vzTpRg-DELov7Do9hfAyO6GhI8GLM3MJXPqYUJSligLk4HdVI6YUpbR6vOzxF53AiwR5eoIvFl--fz8pcbqF0DBzk0jnPufTCUQ6YglRKKitCLYQITbCqMdIG5QyxFua5Ac_RMWmYAitlfTDE0Jdop-s7_wphL4OtpKqVsY4xY6SDZgdozTvlXF0XiI8_XLvMRR5LYvzU0SeJgtIzQekkKE0KdDI9t9mycdz7xKcoz-nuyKadLvRXP3SenJqbSrU0KNryFjxA-EpHmQiSe-8q7k2B6B1t0FMf93V9NGqNzoZh0H_UuEDvpmaY0nGfxnS-vx40mFkAlQBU4RUHWyWbxk-ZijCLFkjM1G_2gfOWbr1KtOGyoQz8wcP_D-s1ekJi2k6KMh2hHdAn_wZw12_7Nk2uWwI4LuQ priority: 102 providerName: ProQuest |
Title | An empirical study on Resource Description Framework reification for trustworthiness in knowledge graphs [version 2; peer review: 2 approved] |
URI | http://dx.doi.org/10.12688/f1000research.72843.2 https://www.ncbi.nlm.nih.gov/pubmed/34900233 https://www.proquest.com/docview/2622974976 https://www.proquest.com/docview/3182736442 https://pubmed.ncbi.nlm.nih.gov/PMC8634049 https://doaj.org/article/5a09d3f93d5d499f9cc347f85eec05ea |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1daxQxFA21BbEPRavW0bpEEHyadSfJTBJFpJWuRWgRcWFBJCSZxK7U2XVXi_0R_c-9yXzQkUrBl33YTHYme2_unHNzc4LQc8up52VWpJksZcqoMKkocgdUxTBPRvDsUWLj6Lg4nLAP03y6htrjUps_cHUttQvnSU2Wp8M_P8_fwoR_E7URCmBwPiSpG3GckyGHiEuHEJY34ppRKOdrIP_3GhFBzObNZuF_d--9p6Kc_yba9DroYZyH669DpH8XVl55U43voq0GYuK92ifuoTVXbaPbR80i-jbaiqdWvljhpobwPrrYq7D7sZhFuRAcFWfxvMJtah8DOW2DCx631Vx46UKZUbQsBuiL4_aNWHIYS-nxrMJdxg5HYewV_nJW5-cweY0Xzi1xvXXmFSY4qpufufLrAzQZH3x-d5g25zSklgGzTq11eS4ctzQHMEJGUkjDfcY594U3stDCeGk1MQYChAbKaZnQTEJ4M85roulDtF7NK_cIYSe8GQmZSW0sY1oLC80WYJ6z0tosS1DeWkXZRsQ8nKVxqgKZCdZUPWuqaE1FEvSy67eoZTxu7LEfjN5dHWS44xfz5TfVzGqV65EsqZe0zEugjjBKSxn3InfOjnKnE0SvuIzq7nHTrXdb11LthFCkIAS4H6DHBD3rmiEWhAUeXbn575WC-AxoFBAu_MRO7Ynd81MmAz6jCeI9H-0NsN9SzU6i3rgoKAMi-fi_BvME3SGhDChmrXbROviiewo47pcZoFt8ygdoY__g-OOnQcyGwOf7aTaIU_YS63RMsA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAJ6qKC8AgWMBOK0bdb27tqHCrXQKKVNhFAr9Wa8XruJVDahAaH-OX4bY8e7NAjRU6_xPryZ8cw34_E3AK9NwVxRpXmSykomnIkyEXlmMVQpuaM9nHug2BiO8sEJ_3iana7Ar-YsjC-rbGxiMNTV1Pgc-TbNKUXsi97z3exb4rtG-d3VpoWGjq0Vqp1AMRYPdhzay58Yws13Dj6gvN9Q2t8_fj9IYpeBxHCMCxNjbJYJWxiWoSulPSlkWbi0KAqXu1LmWpROGk3LEtVbY8BkuNBc4uIsrdNUM3zuLVjlPoHSgdW9_dGnz22WB_EXeogiHk2mOYabzmfUI5PPeKtA98C26JJXDM0D1mDNac--cemv_xf-_buM84pf7N-D9Qhoye5CA-_Diq034PYwbtlvwHrokfl2TmLF4gMY79bEfp1NAjkJCfy2ZFqTZiOBYCjcmDLSb2rHyIX1RU1BjwgCbRIOi4QCx1C4TyY1afODJNBwzx_CyY2I4hF06mltnwCxwpU9IVOpS8O51sLgsEG8aI00Jk27kDV_uDKRDd035ThXPiryglJLglJBUIp2Ybu9b7bgA7n2jj0vz_Zqz-cdfphenKloHlSme7JiTrIqqzAGxa80jBdOZNaaXmZ1F9gVbVDtO6579WajNSqaprn6s5C68KodRqPid4p0bac_5goNPcJahMr4iMcLJWvnz7j0QI91oVhSv6UPXB6pJ-NAXC5yxjEiffr_ab2EO4Pj4ZE6OhgdPoO71BcRhZzXJnRQt-xzRIHfyxdxqRH4ctOr-zdz2XJG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8gJEQeiOLXKWpNND4td9vubtsHYkC4gAghRhLeatttvUt07-Q0hn_Rv8ppr7tyxsgTr9f96N5MZ34znf4G4KXlzPM6r7Jc1jIrmDCZqEqHoYopPB3g3CPFxvFJdXBWvDsvz5fgV3sWJpRVtjYxGup6YkOOvE8rShH7ovfs-1QWcbo3fDP9loUOUmGntW2noVObhXo70o2lQx5H7vInhnOz7cM9lP0rSof7H98eZKnjQGYLjBEza11ZCsctK9Gt0oEU0nCfc8595Y2stDBeWk2NQVXXGDzZQuhC4kI1zmuqGT73Fqxw9PoYCK7s7p-cfugyPojF0FvwdEyZVhh6-pBdT6w-oy2OroJt0QUPGRsJrMGa14GJ4zJc_y8s_HdJ5xUfObwD6wnckp25Nt6FJddswOpx2r7fgPXYL_P1jKTqxXsw2mmI-zodR6ISErluyaQh7aYCwbC4NWtk2NaRkQsXCpyiThEE3SQeHInFjrGIn4wb0uUKSaTknt2HsxsRxQNYbiaNewTECW8GQuZSG1sUWguLwxaxo7PS2jzvQdn-4comZvTQoOOLChFSEJRaEJSKglK0B_3uvumcG-TaO3aDPLurA7d3_GFy8VklU6FKPZA185LVZY3xKH6lZQX3onTODkqne8CuaIPq3nHdqzdbrVHJTM3Un0XVgxfdMBqYsGukGzf5MVNo9BHiImzGRzycK1k3f1bIAPpYD_iC-i184OJIMx5FEnNRsQKj08f_n9ZzWMVVrt4fnhw9gds01BPF9NcmLKNquacICL-bZ2mlEfh004v7N9uVdoo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+study+on+Resource+Description+Framework+reification+for+trustworthiness+in+knowledge+graphs+%5Bversion+2%3B+peer+review%3A+2+approved%5D&rft.jtitle=F1000+research&rft.au=Govindapillai%2C+Sini&rft.au=Soon%2C+Lay-Ki&rft.au=Haw%2C+Su-Cheng&rft.date=2021&rft.eissn=2046-1402&rft.volume=10&rft_id=info:doi/10.12688%2Ff1000research.72843.2&rft.externalDBID=C-E&rft.externalDocID=10_12688_f1000research_72843_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-1402&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-1402&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-1402&client=summon |