netDx: Software for building interpretable patient classifiers by multi-'omic data integration using patient similarity networks [version 2; peer review: 2 approved]
Patient classification based on clinical and genomic data will further the goal of precision medicine. Interpretability is of particular relevance for models based on genomic data, where sample sizes are relatively small (in the hundreds), increasing overfitting risk netDx is a machine learning meth...
Saved in:
| Published in | F1000 research Vol. 9; p. 1239 |
|---|---|
| Main Authors | , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Faculty of 1000 Ltd
2021
F1000 Research Limited F1000 Research Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2046-1402 2046-1402 |
| DOI | 10.12688/f1000research.26429.2 |
Cover
| Abstract | Patient classification based on clinical and genomic data will further the goal of precision medicine. Interpretability is of particular relevance for models based on genomic data, where sample sizes are relatively small (in the hundreds), increasing overfitting risk netDx is a machine learning method to integrate multi-modal patient data and build a patient classifier. Patient data are converted into networks of patient similarity, which is intuitive to clinicians who also use patient similarity for medical diagnosis. Features passing selection are integrated, and new patients are assigned to the class with the greatest profile similarity. netDx has excellent performance, outperforming most machine-learning methods in binary cancer survival prediction. It handles missing data - a common problem in real-world data - without requiring imputation. netDx also has excellent interpretability, with native support to group genes into pathways for mechanistic insight into predictive features.
The netDx Bioconductor package provides multiple workflows for users to build custom patient classifiers. It provides turnkey functions for one-step predictor generation from multi-modal data, including feature selection over multiple train/test data splits. Workflows offer versatility with custom feature design, choice of similarity metric; speed is improved by parallel execution. Built-in functions and examples allow users to compute model performance metrics such as AUROC, AUPR, and accuracy. netDx uses RCy3 to visualize top-scoring pathways and the final integrated patient network in Cytoscape. Advanced users can build more complex predictor designs with functional building blocks used in the default design. Finally, the netDx Bioconductor package provides a novel workflow for pathway-based patient classification from sparse genetic data. |
|---|---|
| AbstractList | Patient classification based on clinical and genomic data will further the goal of precision medicine. Interpretability is of particular relevance for models based on genomic data, where sample sizes are relatively small (in the hundreds), increasing overfitting risk netDx is a machine learning method to integrate multi-modal patient data and build a patient classifier. Patient data are converted into networks of patient similarity, which is intuitive to clinicians who also use patient similarity for medical diagnosis. Features passing selection are integrated, and new patients are assigned to the class with the greatest profile similarity. netDx has excellent performance, outperforming most machine-learning methods in binary cancer survival prediction. It handles missing data - a common problem in real-world data - without requiring imputation. netDx also has excellent interpretability, with native support to group genes into pathways for mechanistic insight into predictive features. The netDx Bioconductor package provides multiple workflows for users to build custom patient classifiers. It provides turnkey functions for one-step predictor generation from multi-modal data, including feature selection over multiple train/test data splits. Workflows offer versatility with custom feature design, choice of similarity metric; speed is improved by parallel execution. Built-in functions and examples allow users to compute model performance metrics such as AUROC, AUPR, and accuracy. netDx uses RCy3 to visualize top-scoring pathways and the final integrated patient network in Cytoscape. Advanced users can build more complex predictor designs with functional building blocks used in the default design. Finally, the netDx Bioconductor package provides a novel workflow for pathway-based patient classification from sparse genetic data. Patient classification based on clinical and genomic data will further the goal of precision medicine. Interpretability is of particular relevance for models based on genomic data, where sample sizes are relatively small (in the hundreds), increasing overfitting risk netDx is a machine learning method to integrate multi-modal patient data and build a patient classifier. Patient data are converted into networks of patient similarity, which is intuitive to clinicians who also use patient similarity for medical diagnosis. Features passing selection are integrated, and new patients are assigned to the class with the greatest profile similarity. netDx has excellent performance, outperforming most machine-learning methods in binary cancer survival prediction. It handles missing data – a common problem in real-world data – without requiring imputation. netDx also has excellent interpretability, with native support to group genes into pathways for mechanistic insight into predictive features. The netDx Bioconductor package provides multiple workflows for users to build custom patient classifiers. It provides turnkey functions for one-step predictor generation from multi-modal data, including feature selection over multiple train/test data splits. Workflows offer versatility with custom feature design, choice of similarity metric; speed is improved by parallel execution. Built-in functions and examples allow users to compute model performance metrics such as AUROC, AUPR, and accuracy. netDx uses RCy3 to visualize top-scoring pathways and the final integrated patient network in Cytoscape. Advanced users can build more complex predictor designs with functional building blocks used in the default design. Finally, the netDx Bioconductor package provides a novel workflow for pathway-based patient classification from sparse genetic data. Patient classification based on clinical and genomic data will further the goal of precision medicine. Interpretability is of particular relevance for models based on genomic data, where sample sizes are relatively small (in the hundreds), increasing overfitting risk netDx is a machine learning method to integrate multi-modal patient data and build a patient classifier. Patient data are converted into networks of patient similarity, which is intuitive to clinicians who also use patient similarity for medical diagnosis. Features passing selection are integrated, and new patients are assigned to the class with the greatest profile similarity. netDx has excellent performance, outperforming most machine-learning methods in binary cancer survival prediction. It handles missing data - a common problem in real-world data - without requiring imputation. netDx also has excellent interpretability, with native support to group genes into pathways for mechanistic insight into predictive features. The netDx Bioconductor package provides multiple workflows for users to build custom patient classifiers. It provides turnkey functions for one-step predictor generation from multi-modal data, including feature selection over multiple train/test data splits. Workflows offer versatility with custom feature design, choice of similarity metric; speed is improved by parallel execution. Built-in functions and examples allow users to compute model performance metrics such as AUROC, AUPR, and accuracy. netDx uses RCy3 to visualize top-scoring pathways and the final integrated patient network in Cytoscape. Advanced users can build more complex predictor designs with functional building blocks used in the default design. Finally, the netDx Bioconductor package provides a novel workflow for pathway-based patient classification from sparse genetic data.Patient classification based on clinical and genomic data will further the goal of precision medicine. Interpretability is of particular relevance for models based on genomic data, where sample sizes are relatively small (in the hundreds), increasing overfitting risk netDx is a machine learning method to integrate multi-modal patient data and build a patient classifier. Patient data are converted into networks of patient similarity, which is intuitive to clinicians who also use patient similarity for medical diagnosis. Features passing selection are integrated, and new patients are assigned to the class with the greatest profile similarity. netDx has excellent performance, outperforming most machine-learning methods in binary cancer survival prediction. It handles missing data - a common problem in real-world data - without requiring imputation. netDx also has excellent interpretability, with native support to group genes into pathways for mechanistic insight into predictive features. The netDx Bioconductor package provides multiple workflows for users to build custom patient classifiers. It provides turnkey functions for one-step predictor generation from multi-modal data, including feature selection over multiple train/test data splits. Workflows offer versatility with custom feature design, choice of similarity metric; speed is improved by parallel execution. Built-in functions and examples allow users to compute model performance metrics such as AUROC, AUPR, and accuracy. netDx uses RCy3 to visualize top-scoring pathways and the final integrated patient network in Cytoscape. Advanced users can build more complex predictor designs with functional building blocks used in the default design. Finally, the netDx Bioconductor package provides a novel workflow for pathway-based patient classification from sparse genetic data. |
| Author | Shah, Muhammad Ahmad Nøhr, Anne Krogh Giudice, Luca Bader, Gary D Weber, Philipp Giugno, Rosalba Isserlin, Ruth Kaka, Hussam Baumbach, Jan Hui, Shirley Pai, Shraddha |
| Author_xml | – sequence: 1 givenname: Shraddha orcidid: 0000-0002-1048-581X surname: Pai fullname: Pai, Shraddha email: shraddha.pai@utoronto.ca organization: The Donnelly Centre, University of Toronto, Toronto, Canada – sequence: 2 givenname: Philipp orcidid: 0000-0003-3101-6817 surname: Weber fullname: Weber, Philipp organization: Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark – sequence: 3 givenname: Ruth orcidid: 0000-0002-6805-2080 surname: Isserlin fullname: Isserlin, Ruth organization: The Donnelly Centre, University of Toronto, Toronto, Canada – sequence: 4 givenname: Hussam orcidid: 0000-0002-2243-2010 surname: Kaka fullname: Kaka, Hussam organization: The Donnelly Centre, University of Toronto, Toronto, Canada – sequence: 5 givenname: Shirley surname: Hui fullname: Hui, Shirley organization: The Donnelly Centre, University of Toronto, Toronto, Canada – sequence: 6 givenname: Muhammad Ahmad surname: Shah fullname: Shah, Muhammad Ahmad organization: The Donnelly Centre, University of Toronto, Toronto, Canada – sequence: 7 givenname: Luca surname: Giudice fullname: Giudice, Luca organization: Department of Computer Science, University of Verona, Verona, Italy – sequence: 8 givenname: Rosalba surname: Giugno fullname: Giugno, Rosalba organization: Department of Computer Science, University of Verona, Verona, Italy – sequence: 9 givenname: Anne Krogh surname: Nøhr fullname: Nøhr, Anne Krogh organization: H. Lundbeck A/S, Copenhagen, Denmark – sequence: 10 givenname: Jan surname: Baumbach fullname: Baumbach, Jan organization: TUM School of Life Sciences Wiehenstephan, Technical University of Munich, Munich, Germany – sequence: 11 givenname: Gary D orcidid: 0000-0003-0185-8861 surname: Bader fullname: Bader, Gary D email: gary.bader@utoronto.ca organization: The Lunenfeld-Tanenbaum Research Institute, Mount Sinal Hospital, Toronto, Canada |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33628435$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk1vEzEQhleoiJbSv1BZ4gCXhPXH7toBIaHyVakSB-CEkOX1jlMH73qxdxPyg_ifOEkbNb2U01j2-7wznpmn2VHnO8iyc5xPMSk5f2VwnucBIqigr6ekZERMyaPshOSsnGCWk6M75-PsLMZFAnIhaEmqJ9kxTZEzWpxkfzsY3v-Zoa_eDCsVABkfUD1a19hujmw3QOgDDKp2gHo1WOgGpJ2K0RoLIaJ6jdrRDXbywrdWo0YNakvNQxL7Do1x43NLRttap4Id1ijlXfnwK6Ify-SzkZLXqAcIKMDSwmqGCFJ9H_wSmp_PssdGuQhnN_E0-_7xw7eLz5OrL58uL95dTTSrGJkwjg3jtGaAS1XlTQU11YQ0UButDdG8LLUQKudNrjFphCgVh0I1uDLMKCjoaXa58228Wsg-2FaFtfTKyu2FD3OpwmC1A1nXHBc5oxxIwRhr6oIJKnBV0oKLGpvkVe28xq5X65Vybm-Ic7mdozyYo9zOUZJEvt2R_Vi30OjUuaDcQTmHL529lnO_lBXnlBKaDF7eGAT_e4Q4yNZGDc6pDvwYJcWclKIoxCbX83vShR9Dl5osSSEqQXjJq6Q6v1vRvpTbPUqCNzuBDj7GAEZqO2w3IBVo3cM_Lu_h_92q2Q40Sqc1XG9Ecq96AP4HwZoKqw |
| CitedBy_id | crossref_primary_10_3390_ijms22062822 crossref_primary_10_1002_alz_14347 crossref_primary_10_1371_journal_pcbi_1012022 |
| Cites_doi | 10.1038/nn.4399 10.1371/journal.pone.0013984 10.1186/1755-8794-8-S1-S7 10.1038/nature11412 10.1093/nar/gkt533 10.1093/carcin/bgp261 10.1093/bioinformatics/bty186 10.1016/j.cell.2011.02.013 10.1101/gr.1239303 10.15252/msb.20188497 10.5281/zenodo.1146014 10.1093/nar/gkq537 10.12688/f1000research.9090.1 10.1016/j.celrep.2018.05.039 10.1016/j.ajhg.2014.03.018 10.1038/nmeth.2651 10.12688/f1000research.13511.3 10.12688/f1000research.20887.2 10.1371/journal.pcbi.1000641 10.1038/nmeth.3252 10.1016/j.cell.2015.09.033 10.1016/j.jmb.2018.05.037 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2021 Pai S et al. Copyright: © 2021 Pai S et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright: © 2021 Pai S et al. 2021 |
| Copyright_xml | – notice: Copyright: © 2021 Pai S et al. – notice: Copyright: © 2021 Pai S et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright: © 2021 Pai S et al. 2021 |
| DBID | C-E CH4 AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.12688/f1000research.26429.2 |
| DatabaseName | F1000Research Faculty of 1000 CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Complete ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Women's Studies |
| EISSN | 2046-1402 |
| ExternalDocumentID | oai_doaj_org_article_bb8150438e25444db549391763589b1f 10.12688/f1000research.26429.2 PMC7883323 33628435 10_12688_f1000research_26429_2 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Horizon 2020 grantid: 777111 – fundername: National Institutes of Health grantid: R01HG009979; P41GM103504 – fundername: Villum Fonden grantid: 13154 – fundername: NIMH NIH HHS grantid: R01 MH085542 – fundername: NIGMS NIH HHS grantid: P41 GM103504 – fundername: NIMH NIH HHS grantid: R01 MH109677 – fundername: NIMH NIH HHS grantid: R01 MH110921 – fundername: NIMH NIH HHS grantid: U01 MH103392 – fundername: NIMH NIH HHS grantid: R01 MH109897 – fundername: NIMH NIH HHS grantid: R37 MH057881 – fundername: NIMH NIH HHS grantid: R01 MH093725 – fundername: NIMH NIH HHS grantid: R01 MH097276 – fundername: NIMH NIH HHS grantid: P50 MH084053 |
| GroupedDBID | 3V. 53G 5VS 7X7 88I 8FE 8FH 8FI 8FJ ABUWG ACGOD ACPRK ADACO ADBBV ADRAZ AFKRA AHMBA ALMA_UNASSIGNED_HOLDINGS AZQEC BAWUL BBAFP BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C-E CH4 DIK DWQXO FRP FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M7P OK1 PIMPY PQEST PQQKQ PQUKI PRINS PROAC RPM AAFWJ AAYXX AFPKN AOIJS CCPQU CITATION HMCUK M48 M~E PGMZT PHGZM PHGZT PQGLB PUEGO UKHRP W2D ALIPV CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PJZUB PKEHL PPXIY Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4742-481f483b4e16a70d7eb3c22debfccf2c866c99a08d0c12d996a8e5ad17f4fae53 |
| IEDL.DBID | M48 |
| ISSN | 2046-1402 |
| IngestDate | Fri Oct 03 12:36:57 EDT 2025 Sun Oct 26 03:54:39 EDT 2025 Tue Sep 30 16:44:48 EDT 2025 Fri Sep 05 17:48:16 EDT 2025 Tue Oct 07 07:07:53 EDT 2025 Thu Apr 03 07:06:47 EDT 2025 Wed Oct 01 05:06:09 EDT 2025 Thu Apr 24 23:08:06 EDT 2025 Sat Feb 13 01:11:16 EST 2021 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | precision medicine genomics networks classification data integration supervised learning |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0/: This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright: © 2021 Pai S et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4742-481f483b4e16a70d7eb3c22debfccf2c866c99a08d0c12d996a8e5ad17f4fae53 |
| Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 No competing interests were disclosed. |
| ORCID | 0000-0003-3101-6817 0000-0002-6805-2080 0000-0002-1048-581X 0000-0003-0185-8861 0000-0002-2243-2010 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.12688/f1000research.26429.2 |
| PMID | 33628435 |
| PQID | 2597928687 |
| PQPubID | 2045578 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bb8150438e25444db549391763589b1f unpaywall_primary_10_12688_f1000research_26429_2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7883323 proquest_miscellaneous_3182695592 proquest_journals_2597928687 pubmed_primary_33628435 crossref_citationtrail_10_12688_f1000research_26429_2 crossref_primary_10_12688_f1000research_26429_2 faculty1000_research_10_12688_f1000research_26429_2 |
| ProviderPackageCode | C-E CH4 CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London – name: London, UK |
| PublicationTitle | F1000 research |
| PublicationTitleAlternate | F1000Res |
| PublicationYear | 2021 |
| Publisher | Faculty of 1000 Ltd F1000 Research Limited F1000 Research Ltd |
| Publisher_xml | – name: Faculty of 1000 Ltd – name: F1000 Research Limited – name: F1000 Research Ltd |
| References | D Merico (ref-5) 2010; 5 (ref-9) 2012; 490 W Huber (ref-4) 2015; 12 O Vanunu (ref-15) 2010; 6 M Fromer (ref-21) 2016; 19 J Huang (ref-18) 2018; 34 J Ronen (ref-14) 2018; 7 M Hofree (ref-12) 2013; 10 D Warde-Farley (ref-19) 2010; 38 K Zuberi (ref-20) 2013; 41 S Pai (ref-3) 2020 M Kucera (ref-6) 2016; 5 P Shannon (ref-8) 2003; 13 S Pai (ref-2) 2019; 15 G Ciriello (ref-23) 2015; 163 D Hanahan (ref-17) 2011; 144 W Engchuan (ref-11) 2015; 8 Suppl 1 H Shen (ref-16) 2018; 23 O Tange (ref-22) 2011 S Pai (ref-1) 2018; 430 D Pinto (ref-10) 2014; 94 J Gustavsen (ref-7) 2019; 8 P Kreeger (ref-13) 2010; 31 |
| References_xml | – volume: 19 start-page: 1442-1453 year: 2016 ident: ref-21 article-title: Gene expression elucidates functional impact of polygenic risk for schizophrenia. publication-title: Nat Neurosci. doi: 10.1038/nn.4399 – volume: 5 start-page: e13984 year: 2010 ident: ref-5 article-title: Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. publication-title: PLoS One. doi: 10.1371/journal.pone.0013984 – volume: 8 Suppl 1 start-page: S7 year: 2015 ident: ref-11 article-title: Performance of case-control rare copy number variation annotation in classification of autism. publication-title: BMC Med Genomics. doi: 10.1186/1755-8794-8-S1-S7 – volume: 490 start-page: 61-70 year: 2012 ident: ref-9 article-title: Comprehensive molecular portraits of human breast tumours. publication-title: Nature. doi: 10.1038/nature11412 – volume: 41 start-page: W115-122 year: 2013 ident: ref-20 article-title: GeneMANIA prediction server 2013 update. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt533 – volume: 31 start-page: 2-8 year: 2010 ident: ref-13 article-title: Cancer systems biology: a network modeling perspective. publication-title: Carcinogenesis. doi: 10.1093/carcin/bgp261 – volume: 34 start-page: 2859-2861 year: 2018 ident: ref-18 article-title: pyNBS: a Python implementation for network-based stratification of tumor mutations. publication-title: Bioinformatics. doi: 10.1093/bioinformatics/bty186 – volume: 144 start-page: 646-674 year: 2011 ident: ref-17 article-title: Hallmarks of cancer: the next generation. publication-title: Cell. doi: 10.1016/j.cell.2011.02.013 – volume: 13 start-page: 2498-2504 year: 2003 ident: ref-8 article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks. publication-title: Genome Res. doi: 10.1101/gr.1239303 – volume: 15 start-page: e8497 year: 2019 ident: ref-2 article-title: netDx: interpretable patient classification using integrated patient similarity networks. publication-title: Mol Syst Biol. doi: 10.15252/msb.20188497 – year: 2020 ident: ref-3 article-title: BaderLab/netDx: Freeze of code for netDx software manuscript (Version v1.1.4). publication-title: Zenodo. – start-page: 42-47 year: 2011 ident: ref-22 article-title: GNU Parallel - The Command-Line Power Tool. publication-title: The USENIX Magazine. doi: 10.5281/zenodo.1146014 – volume: 38 start-page: W214-220 year: 2010 ident: ref-19 article-title: The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq537 – volume: 5 start-page: 1717 year: 2016 ident: ref-6 article-title: AutoAnnotate: A Cytoscape app for summarizing networks with semantic annotations [version 1; peer review: 2 approved]. publication-title: F1000Res. doi: 10.12688/f1000research.9090.1 – volume: 23 start-page: 3392-3406 year: 2018 ident: ref-16 article-title: Integrated Molecular Characterization of Testicular Germ Cell Tumors. publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.05.039 – volume: 94 start-page: 677-694 year: 2014 ident: ref-10 article-title: Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. publication-title: Am J Hum Genet. doi: 10.1016/j.ajhg.2014.03.018 – volume: 10 start-page: 1108-1115 year: 2013 ident: ref-12 article-title: Network-based stratification of tumor mutations. publication-title: Nat Methods. doi: 10.1038/nmeth.2651 – volume: 7 start-page: 8 year: 2018 ident: ref-14 article-title: netSmooth: Network-smoothing based imputation for single cell RNA-seq [version 3; peer review: 2 approved]. publication-title: F1000Res. doi: 10.12688/f1000research.13511.3 – volume: 8 start-page: 1774 year: 2019 ident: ref-7 article-title: RCy3: Network biology using Cytoscape from within R [version 2; peer review: 3 approved]. publication-title: F1000Res. doi: 10.12688/f1000research.20887.2 – volume: 6 start-page: e1000641 year: 2010 ident: ref-15 article-title: Associating genes and protein complexes with disease via network propagation. publication-title: PLoS Comput Biol. doi: 10.1371/journal.pcbi.1000641 – volume: 12 start-page: 115-121 year: 2015 ident: ref-4 article-title: Orchestrating high-throughput genomic analysis with Bioconductor. publication-title: Nat Methods. doi: 10.1038/nmeth.3252 – volume: 163 start-page: 506-519 year: 2015 ident: ref-23 article-title: Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. publication-title: Cell. doi: 10.1016/j.cell.2015.09.033 – volume: 430 start-page: 2924-2938 year: 2018 ident: ref-1 article-title: Patient Similarity Networks for Precision Medicine. publication-title: J Mol Biol. doi: 10.1016/j.jmb.2018.05.037 |
| SSID | ssj0000993627 |
| Score | 2.1988358 |
| Snippet | Patient classification based on clinical and genomic data will further the goal of precision medicine. Interpretability is of particular relevance for models... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref faculty1000 |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1239 |
| SubjectTerms | Classification DNA methylation Feature selection Gene expression Genomics Humans Learning algorithms Machine Learning Medical prognosis Metadata Mutation Operating systems Patients Precision Medicine Propagation Software Software Tool Workflow |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQD0APFZSvQEGDhNRT2sRJHKec-KoqJLhApUoIWf6ki5Z0tdtt2R_E_2TGyUa7Amk5cN3EycZ-Gc9znt8w9sLlXudNRVaIwqalEFWqQxVSV7qGV4UjK0NSW3wUJ6fl-7PqbKXUF2nCOnvgruMOjZE5uWxJT2ZapTNIaArkGDhRysbkgaJvJpsVMvW9y3swMtNeaY4EMM2jjCduD-YCKV-gVe3eTef8AHMC3hzwtZkpGvhvs-2gyQFjQef_LQf9U0p5a95O9OJaj8cr89TxHbbTJ5jwqnuwu-yGb3fZzQ_9J_RdthNrVu7PoFcQ3mO_Wn_59ucRfMKIfK2nHjCPBdOXy4bRoEo0Yw-9DStYSrpHgepog1lAlCWm-7TDGUhzCksXChx1IGn9t6HlbPRjhGwak39oOwn6DL5cdat2wF_CxPspdBtqjoBD9Dy_8u7rfXZ6_O7zm5O0r96Q2hL5dlrKPJSyMKXPha4zVyNtt5w7b4K1gVsphG0anUmX2Zw75F1a-kq7vA5l0L4qHrCt9qL1jxjoysrgpDMeLxcyqW1WWQwcRSMQFlokrFqOnLK9tTlV2Bgrojg04mptxFUcccUTdji0m3TmHhtbvCZgDGeTOXf8ASGresiqTZBNWLECKzXcY9Ot95bwU32cmSkkr3XDpZB1wp4PhzFC0Gcf3fqL-UwVRCHJaBAv8bBD6_D_C3xLJGbMCavXcLz2gOtH2tF5dCGvqUw1LxKWDYj_x058_D868Qm7zUleFFfD9tjW5XTun2J-eGmexVDwG-XiYTU priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFLVGJwF7mGAwCAxkJKQ9ZUuc2HGQEGKwaUKiQsCkvVmOP7ZKJS1Nq9E3fjr3pk5YBWK8JnG-fHNzjn18LiEvbep0WnK0QhQmzoXgsfbcxza3JeOZRStDVFsMxelZ_uGcn2-QYbcWBmWVXU5sE7WdGBwjPwSYXpRMClm8mX6PsWoUzq52JTR0KK1gX7cWY7fIJkNnrAHZPDoefvrcj7oAHoKMXYSlwkwA_fM4wh2cdS4PAB-w8oCt_aVaM_8tsuU1umEs8fi_4dE_ZZV3FvVUL6_0eHztn3Vyj2wHsEnfrqLjPtlw9Q65_TFMp--Q7bZ-5X5Dg5rwAflZu_n7H6_oF8jOV3rmKGBaWoXS2XTUKxSrsaPBkpUaBOAjjzW1abWkrUQx3sfVzhT1p7RzpIAIoCizv-hbNqNvI2DWQARovZKjNw_J2cnx13encSjSEJscaHWcy9TnMqtylwpdJLYAdm4Ys67yxnhmpBCmLHUibWJSZoFeaem4tmnhc68dz3bJoJ7U7jGhmhvprbSVg9P5RGqTcAP5ISuFdEyLiPCuU5QJDuZYSGOskMlgZ6q1zlRtZyoWkcO-3XTl4XFjiyPs8_5o9OBuN0xmFyp80qqqZIr-b3BvPM9zWwHVzoD9AoSTZZX6iGTXIkb117jp0ntdZKmQThr1O_gj8qLfDYkAZ3d07SaLRmXIFNFPEE7xaBWI_f1nEPQSgHFEirUQXXvA9T316LI1Gy-wGjXLIpL0wfyfL_HJv5_kKbnLUB_UDmftkcF8tnDPAODNq-fhq_0FkttSKA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLagk4A9DBi3wEBGQtpT2sSJHYe3cZkmJCokqDSeIl-3ipJWvWiUJ34656RutADSxmt8i-OT4_Mln79DyCubOpWWHKUQhYlzIXisPPexzW3JeGZRyhDZFkNxMso_nPLTcFgdz8J4_N4cdG7OG0-9JYgNULY_Kwcz62-SHcEh9O6RndHw09FXTCAHOC9OG7ZOcwqYCUB23c5g62dln3U2oEanf5fseoVCF2us_69Q82_G5O1VPVPrCzWZXNqOju-S4XYiGxbKt_5qqfvm5x8aj9ee6T2yFwJTerQpvU9uuHqf3PoYfr3vk70m1-Xhggbm4QPyq3bLdz9e08_gyS_U3FGIf6kOabbpuGUz6omjQb6VGgzWxx7zb1O9pg2dMT7Ek9EUuap0q14B1kKRkn_WtlyMv48BhQNooPWGur54SEbH77-8PYlDQofY5ADB41ymPpeZzl0qVJHYApC8Ycw67Y3xzEghTFmqRNrEpMwCFFPScWXTwudeOZ49Ir16WrsnhCpupLfSagfd-UQqk3ADviQrhXRMiYjw7SpXJqidY9KNSYWoB62j6ixA1VhHxSIyaNvNNnofV7Z4g0bU1ka97ubCdH5WhSWttJYpasXBvfE8z60GWJ4BUoZwT5Y69RHJLplg1Y5x1dAHW1OtgutZVIBni5JJIYuIvGyLwWngnyBVu-lqUWWIKlF7ELp4vLHs9v4zCGkkBNERKTo235lgt6QenzfC5AVmrmZZRJL27bjmQ3z6_02ekTsM-UXN57AD0lvOV-45BIhL_SK4hd9Y82ZZ priority: 102 providerName: Unpaywall |
| Title | netDx: Software for building interpretable patient classifiers by multi-'omic data integration using patient similarity networks [version 2; peer review: 2 approved] |
| URI | http://dx.doi.org/10.12688/f1000research.26429.2 https://www.ncbi.nlm.nih.gov/pubmed/33628435 https://www.proquest.com/docview/2597928687 https://www.proquest.com/docview/3182695592 https://pubmed.ncbi.nlm.nih.gov/PMC7883323 https://f1000research.com/articles/9-1239/pdf https://doaj.org/article/bb8150438e25444db549391763589b1f |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2046-1402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000993627 issn: 2046-1402 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2046-1402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000993627 issn: 2046-1402 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2046-1402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000993627 issn: 2046-1402 databaseCode: DIK dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2046-1402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000993627 issn: 2046-1402 databaseCode: GX1 dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2046-1402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000993627 issn: 2046-1402 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2046-1402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000993627 issn: 2046-1402 databaseCode: RPM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2046-1402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000993627 issn: 2046-1402 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Complete customDbUrl: eissn: 2046-1402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000993627 issn: 2046-1402 databaseCode: 7X7 dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2046-1402 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000993627 issn: 2046-1402 databaseCode: M48 dateStart: 20121101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJgF7mGDcAqMyEtKeUhInTpwhhDbYmJBWTUCloglFji9bUUlLL9v6g_ifnJO40SqGhnjpQx3ndo6Pz-d8_g4hL3VoZJhxlEJMlB8nCfel5dbXsc4YjzRKGSLbopMcduOPPd5bIYtyqe4FTq6FdlhPqjsetC9_zt_CgH9TaSMkgOAsLlI7cZyzNkzxLGtDWF6D2SrDcg5HLuX_XmdEELNTt1n4792X5qlKzn-drFuJehhzPP66jPRPYuWdWTmS8ws5GFyZtQ7ukQ2XbtLd2j_ukxVTbpLbR-6D-ibZqCpYbk-o4xM-IL9KM31_uUM_Q3y-kGNDIaulhSueTfsNR7EYGOpEWanCFLxvsao2Lea0Iin627jfmSIDlS40KcAHKBLtT5uek_6PPhgAoAAta0L6hJ6c12t4lL2mI2PGtN5es0MZrRTQz43-9pB0D_a_vDv0XS0HX8WAvv1YhDYWURGbMJFpoFMA8YoxbQqrlGVKJInKMhkIHaiQaUBhUhgudZja2ErDo0dktRyW5gmhkithtdCFgdPZQEgVcAVhJMoSYZhMPMIXlsuVEzrHehuDHAEPWjxfsnheWTxnHnnV9BvVUh839thDx2iORqnu6o_h-DR3Iz8vChGiTBzcG4_jWBeAyCMAyZDpiawIrUeiK26VN9e46dJbC_fLF4MmByibZkwkIvXIi6YZ4gV-BJKlGc4meYSAEmUH4RSPa29t7j-CkSEgf_ZIuuTHSw-43FL2zypN8hSLVrPII0Hj8f_4Ep_-1_M_I3cZsouqxbAtsjodz8xzSA-nRYvcSntpi6zt7XeOP7WqRRb4_dALW1UkgJZu53j3629GOmsG |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrUTpoYLyMhRYJFBPbu312l4jVYjSVil9CEEr9eau99FGCk6IE4Xc-GX8NmactWkEolx6jb1-ZMYz8-3Ofh8hr3VoZJjFSIWYKJ8nSexLG1tfc52xONJIZYjdFidJ54x_PI_PF8jPZi8MtlU2MbEO1LqvcI58C8r0NGMiEem7wTcfVaNwdbWR0JBOWkFv1xRjbmPHoZlOAMJV2we7YO83jO3vnX7o-E5lwFcccKHPRWi5iApuwkSmgU4BXirGtCmsUpYpkSQqy2QgdKBCpgEfSGFiqcPUcisNqkZACljiEc8A_C3t7J18-tzO8kD9BRkidVuTWQJw0-KMumPyudqEeoRlm2wuK9biAStkxUpk35ji-X-rf_9s41welwM5nche71qO3L9HVl1xS9_PvPE-WTDlGrlz7Jbv18hqrZe5UVHXvfiA_CjNaPf7W_oFssFEDg2FGpoWTqqbdtuOyKJnqKOApQoL_q5FDW9aTGndEulv4O5qiv2utGHAAI-j2NZ_2Y6sul-7gOQBeNBy1v5ePSRnt2KuR2Sx7JfmCaEyVsJqoQsDl7OBkCqIFcSjKEuEYTLxSNwYJVeOMR2FO3o5Iic0Zj5nzLw2Zs48stWOG8w4Q24csYM2b89Gzu_6h_7wMnchJC8KESLfHDxbzDnXBUD7CNA2lIwiK0Lrkeiax-TtPW669XrjWbkLX1X--2PzyKv2MAQeXE2SpemPqzxCZIr8hXCJxzNHbJ8_AqcXUIh7JJ1z0bkXnD9Sdq9qcvMU1a9Z5JGgdeb__BOf_vtNXpLlzunxUX50cHL4jNxl2JtUT6Wtk8XRcGyeQ3E5Kl64L5iSi9sOGr8AUECQWA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTRrsYYJxCwwwEmhPWRPn5iAhBJRqYzAhwaS-eY4vW6WSdk2r0jd-F7-Oc1InrAIxXvaaxEmcc3J8Pvvzdwh5rkMjwzxBKcRU-XGaJr60ifV1rHOWRBqlDJFtcZwenMQf-kl_jfxs9sIgrbKJiXWg1iOFc-QdSNOznPGUZx3raBGfu73X4wsfK0jhSmtTTmPpIkdmMQf4Vr067IKtXzDWe__13YHvKgz4KgZM6Mc8tDGPitiEqcwCnQG0VIxpU1ilLFM8TVWey4DrQIVMAzaQ3CRSh5mNrTRYMQLC_0YWRTnSCbN-1s7vQOYFY0PmNiWzFICmxbl0p-Fzvg-ZCMv32cp4WJcN2CJbVqLuxgKv_1vm-yeB88asHMvFXA6Hl0bH3i2y7dJa-mbph7fJmil3yOYnt3C_Q7brSpl7FXW8xTvkR2mm3e8v6RcYB-ZyYihkz7RwRbrpoOVCFkNDnfgrVZjqDyxW76bFgtZkSH8P91VTZLrSRvsCfI0iof-sbVkNvg0AwwPkoOWS-F7dJSfXYqx7ZL0cleYBoTJR3GquCwO3swGXKkgURKIoT7lhMvVI0hhFKKeVjiU7hgIxExpTrBhT1MYUzCOdtt14qRZyZYu3aPP2alT7rg-MJmfCBQ9RFDxEpTl4tySOY10AqI8AZ0OyyPMitB6JLnmMaJ9x1aN3G88SLnBV4vdv5pFn7WkIObiOJEszmlUiQkyKyoVwi_tLR2zfPwKn55CCeyRbcdGVDq6eKQfntax5hnWvWeSRoHXm__yID__dk6dkE0KF-Hh4fPSI3GRISqrn0HbJ-nQyM48hq5wWT-rfl5LT644XvwBrq43y |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLagk4A9DBi3wEBGQtpT2sSJHYe3cZkmJCokqDSeIl-3ipJWvWiUJ34656RutADSxmt8i-OT4_Mln79DyCubOpWWHKUQhYlzIXisPPexzW3JeGZRyhDZFkNxMso_nPLTcFgdz8J4_N4cdG7OG0-9JYgNULY_Kwcz62-SHcEh9O6RndHw09FXTCAHOC9OG7ZOcwqYCUB23c5g62dln3U2oEanf5fseoVCF2us_69Q82_G5O1VPVPrCzWZXNqOju-S4XYiGxbKt_5qqfvm5x8aj9ee6T2yFwJTerQpvU9uuHqf3PoYfr3vk70m1-Xhggbm4QPyq3bLdz9e08_gyS_U3FGIf6kOabbpuGUz6omjQb6VGgzWxx7zb1O9pg2dMT7Ek9EUuap0q14B1kKRkn_WtlyMv48BhQNooPWGur54SEbH77-8PYlDQofY5ADB41ymPpeZzl0qVJHYApC8Ycw67Y3xzEghTFmqRNrEpMwCFFPScWXTwudeOZ49Ir16WrsnhCpupLfSagfd-UQqk3ADviQrhXRMiYjw7SpXJqidY9KNSYWoB62j6ixA1VhHxSIyaNvNNnofV7Z4g0bU1ka97ubCdH5WhSWttJYpasXBvfE8z60GWJ4BUoZwT5Y69RHJLplg1Y5x1dAHW1OtgutZVIBni5JJIYuIvGyLwWngnyBVu-lqUWWIKlF7ELp4vLHs9v4zCGkkBNERKTo235lgt6QenzfC5AVmrmZZRJL27bjmQ3z6_02ekTsM-UXN57AD0lvOV-45BIhL_SK4hd9Y82ZZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=netDx%3A+Software+for+building+interpretable+patient+classifiers+by+multi-%27omic+data+integration+using+patient+similarity+networks+%5Bversion+2%3B+peer+review%3A+2+approved%5D&rft.jtitle=F1000+research&rft.au=Pai%2C+Shraddha&rft.au=Weber%2C+Philipp&rft.au=Isserlin%2C+Ruth&rft.au=Kaka%2C+Hussam&rft.date=2021&rft.eissn=2046-1402&rft.volume=9&rft_id=info:doi/10.12688%2Ff1000research.26429.2&rft.externalDBID=C-E&rft.externalDocID=10_12688_f1000research_26429_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-1402&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-1402&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-1402&client=summon |