netDx: Software for building interpretable patient classifiers by multi-'omic data integration using patient similarity networks [version 2; peer review: 2 approved]

Patient classification based on clinical and genomic data will further the goal of precision medicine. Interpretability is of particular relevance for models based on genomic data, where sample sizes are relatively small (in the hundreds), increasing overfitting risk netDx is a machine learning meth...

Full description

Saved in:
Bibliographic Details
Published inF1000 research Vol. 9; p. 1239
Main Authors Pai, Shraddha, Weber, Philipp, Isserlin, Ruth, Kaka, Hussam, Hui, Shirley, Shah, Muhammad Ahmad, Giudice, Luca, Giugno, Rosalba, Nøhr, Anne Krogh, Baumbach, Jan, Bader, Gary D
Format Journal Article
LanguageEnglish
Published England Faculty of 1000 Ltd 2021
F1000 Research Limited
F1000 Research Ltd
Subjects
Online AccessGet full text
ISSN2046-1402
2046-1402
DOI10.12688/f1000research.26429.2

Cover

Abstract Patient classification based on clinical and genomic data will further the goal of precision medicine. Interpretability is of particular relevance for models based on genomic data, where sample sizes are relatively small (in the hundreds), increasing overfitting risk netDx is a machine learning method to integrate multi-modal patient data and build a patient classifier. Patient data are converted into networks of patient similarity, which is intuitive to clinicians who also use patient similarity for medical diagnosis. Features passing selection are integrated, and new patients are assigned to the class with the greatest profile similarity. netDx has excellent performance, outperforming most machine-learning methods in binary cancer survival prediction. It handles missing data - a common problem in real-world data - without requiring imputation. netDx also has excellent interpretability, with native support to group genes into pathways for mechanistic insight into predictive features. The netDx Bioconductor package provides multiple workflows for users to build custom patient classifiers. It provides turnkey functions for one-step predictor generation from multi-modal data, including feature selection over multiple train/test data splits. Workflows offer versatility with custom feature design, choice of similarity metric; speed is improved by parallel execution. Built-in functions and examples allow users to compute model performance metrics such as AUROC, AUPR, and accuracy. netDx uses RCy3 to visualize top-scoring pathways and the final integrated patient network in Cytoscape. Advanced users can build more complex predictor designs with functional building blocks used in the default design. Finally, the netDx Bioconductor package provides a novel workflow for pathway-based patient classification from sparse genetic data.
AbstractList Patient classification based on clinical and genomic data will further the goal of precision medicine. Interpretability is of particular relevance for models based on genomic data, where sample sizes are relatively small (in the hundreds), increasing overfitting risk netDx is a machine learning method to integrate multi-modal patient data and build a patient classifier. Patient data are converted into networks of patient similarity, which is intuitive to clinicians who also use patient similarity for medical diagnosis. Features passing selection are integrated, and new patients are assigned to the class with the greatest profile similarity. netDx has excellent performance, outperforming most machine-learning methods in binary cancer survival prediction. It handles missing data - a common problem in real-world data - without requiring imputation. netDx also has excellent interpretability, with native support to group genes into pathways for mechanistic insight into predictive features. The netDx Bioconductor package provides multiple workflows for users to build custom patient classifiers. It provides turnkey functions for one-step predictor generation from multi-modal data, including feature selection over multiple train/test data splits. Workflows offer versatility with custom feature design, choice of similarity metric; speed is improved by parallel execution. Built-in functions and examples allow users to compute model performance metrics such as AUROC, AUPR, and accuracy. netDx uses RCy3 to visualize top-scoring pathways and the final integrated patient network in Cytoscape. Advanced users can build more complex predictor designs with functional building blocks used in the default design. Finally, the netDx Bioconductor package provides a novel workflow for pathway-based patient classification from sparse genetic data.
Patient classification based on clinical and genomic data will further the goal of precision medicine. Interpretability is of particular relevance for models based on genomic data, where sample sizes are relatively small (in the hundreds), increasing overfitting risk netDx is a machine learning method to integrate multi-modal patient data and build a patient classifier. Patient data are converted into networks of patient similarity, which is intuitive to clinicians who also use patient similarity for medical diagnosis. Features passing selection are integrated, and new patients are assigned to the class with the greatest profile similarity. netDx has excellent performance, outperforming most machine-learning methods in binary cancer survival prediction. It handles missing data – a common problem in real-world data – without requiring imputation. netDx also has excellent interpretability, with native support to group genes into pathways for mechanistic insight into predictive features. The netDx Bioconductor package provides multiple workflows for users to build custom patient classifiers. It provides turnkey functions for one-step predictor generation from multi-modal data, including feature selection over multiple train/test data splits. Workflows offer versatility with custom feature design, choice of similarity metric; speed is improved by parallel execution. Built-in functions and examples allow users to compute model performance metrics such as AUROC, AUPR, and accuracy. netDx uses RCy3 to visualize top-scoring pathways and the final integrated patient network in Cytoscape. Advanced users can build more complex predictor designs with functional building blocks used in the default design. Finally, the netDx Bioconductor package provides a novel workflow for pathway-based patient classification from sparse genetic data.
Patient classification based on clinical and genomic data will further the goal of precision medicine. Interpretability is of particular relevance for models based on genomic data, where sample sizes are relatively small (in the hundreds), increasing overfitting risk netDx is a machine learning method to integrate multi-modal patient data and build a patient classifier. Patient data are converted into networks of patient similarity, which is intuitive to clinicians who also use patient similarity for medical diagnosis. Features passing selection are integrated, and new patients are assigned to the class with the greatest profile similarity. netDx has excellent performance, outperforming most machine-learning methods in binary cancer survival prediction. It handles missing data - a common problem in real-world data - without requiring imputation. netDx also has excellent interpretability, with native support to group genes into pathways for mechanistic insight into predictive features. The netDx Bioconductor package provides multiple workflows for users to build custom patient classifiers. It provides turnkey functions for one-step predictor generation from multi-modal data, including feature selection over multiple train/test data splits. Workflows offer versatility with custom feature design, choice of similarity metric; speed is improved by parallel execution. Built-in functions and examples allow users to compute model performance metrics such as AUROC, AUPR, and accuracy. netDx uses RCy3 to visualize top-scoring pathways and the final integrated patient network in Cytoscape. Advanced users can build more complex predictor designs with functional building blocks used in the default design. Finally, the netDx Bioconductor package provides a novel workflow for pathway-based patient classification from sparse genetic data.Patient classification based on clinical and genomic data will further the goal of precision medicine. Interpretability is of particular relevance for models based on genomic data, where sample sizes are relatively small (in the hundreds), increasing overfitting risk netDx is a machine learning method to integrate multi-modal patient data and build a patient classifier. Patient data are converted into networks of patient similarity, which is intuitive to clinicians who also use patient similarity for medical diagnosis. Features passing selection are integrated, and new patients are assigned to the class with the greatest profile similarity. netDx has excellent performance, outperforming most machine-learning methods in binary cancer survival prediction. It handles missing data - a common problem in real-world data - without requiring imputation. netDx also has excellent interpretability, with native support to group genes into pathways for mechanistic insight into predictive features. The netDx Bioconductor package provides multiple workflows for users to build custom patient classifiers. It provides turnkey functions for one-step predictor generation from multi-modal data, including feature selection over multiple train/test data splits. Workflows offer versatility with custom feature design, choice of similarity metric; speed is improved by parallel execution. Built-in functions and examples allow users to compute model performance metrics such as AUROC, AUPR, and accuracy. netDx uses RCy3 to visualize top-scoring pathways and the final integrated patient network in Cytoscape. Advanced users can build more complex predictor designs with functional building blocks used in the default design. Finally, the netDx Bioconductor package provides a novel workflow for pathway-based patient classification from sparse genetic data.
Author Shah, Muhammad Ahmad
Nøhr, Anne Krogh
Giudice, Luca
Bader, Gary D
Weber, Philipp
Giugno, Rosalba
Isserlin, Ruth
Kaka, Hussam
Baumbach, Jan
Hui, Shirley
Pai, Shraddha
Author_xml – sequence: 1
  givenname: Shraddha
  orcidid: 0000-0002-1048-581X
  surname: Pai
  fullname: Pai, Shraddha
  email: shraddha.pai@utoronto.ca
  organization: The Donnelly Centre, University of Toronto, Toronto, Canada
– sequence: 2
  givenname: Philipp
  orcidid: 0000-0003-3101-6817
  surname: Weber
  fullname: Weber, Philipp
  organization: Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
– sequence: 3
  givenname: Ruth
  orcidid: 0000-0002-6805-2080
  surname: Isserlin
  fullname: Isserlin, Ruth
  organization: The Donnelly Centre, University of Toronto, Toronto, Canada
– sequence: 4
  givenname: Hussam
  orcidid: 0000-0002-2243-2010
  surname: Kaka
  fullname: Kaka, Hussam
  organization: The Donnelly Centre, University of Toronto, Toronto, Canada
– sequence: 5
  givenname: Shirley
  surname: Hui
  fullname: Hui, Shirley
  organization: The Donnelly Centre, University of Toronto, Toronto, Canada
– sequence: 6
  givenname: Muhammad Ahmad
  surname: Shah
  fullname: Shah, Muhammad Ahmad
  organization: The Donnelly Centre, University of Toronto, Toronto, Canada
– sequence: 7
  givenname: Luca
  surname: Giudice
  fullname: Giudice, Luca
  organization: Department of Computer Science, University of Verona, Verona, Italy
– sequence: 8
  givenname: Rosalba
  surname: Giugno
  fullname: Giugno, Rosalba
  organization: Department of Computer Science, University of Verona, Verona, Italy
– sequence: 9
  givenname: Anne Krogh
  surname: Nøhr
  fullname: Nøhr, Anne Krogh
  organization: H. Lundbeck A/S, Copenhagen, Denmark
– sequence: 10
  givenname: Jan
  surname: Baumbach
  fullname: Baumbach, Jan
  organization: TUM School of Life Sciences Wiehenstephan, Technical University of Munich, Munich, Germany
– sequence: 11
  givenname: Gary D
  orcidid: 0000-0003-0185-8861
  surname: Bader
  fullname: Bader, Gary D
  email: gary.bader@utoronto.ca
  organization: The Lunenfeld-Tanenbaum Research Institute, Mount Sinal Hospital, Toronto, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33628435$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1vEzEQhleoiJbSv1BZ4gCXhPXH7toBIaHyVakSB-CEkOX1jlMH73qxdxPyg_ifOEkbNb2U01j2-7wznpmn2VHnO8iyc5xPMSk5f2VwnucBIqigr6ekZERMyaPshOSsnGCWk6M75-PsLMZFAnIhaEmqJ9kxTZEzWpxkfzsY3v-Zoa_eDCsVABkfUD1a19hujmw3QOgDDKp2gHo1WOgGpJ2K0RoLIaJ6jdrRDXbywrdWo0YNakvNQxL7Do1x43NLRttap4Id1ijlXfnwK6Ify-SzkZLXqAcIKMDSwmqGCFJ9H_wSmp_PssdGuQhnN_E0-_7xw7eLz5OrL58uL95dTTSrGJkwjg3jtGaAS1XlTQU11YQ0UButDdG8LLUQKudNrjFphCgVh0I1uDLMKCjoaXa58228Wsg-2FaFtfTKyu2FD3OpwmC1A1nXHBc5oxxIwRhr6oIJKnBV0oKLGpvkVe28xq5X65Vybm-Ic7mdozyYo9zOUZJEvt2R_Vi30OjUuaDcQTmHL529lnO_lBXnlBKaDF7eGAT_e4Q4yNZGDc6pDvwYJcWclKIoxCbX83vShR9Dl5osSSEqQXjJq6Q6v1vRvpTbPUqCNzuBDj7GAEZqO2w3IBVo3cM_Lu_h_92q2Q40Sqc1XG9Ecq96AP4HwZoKqw
CitedBy_id crossref_primary_10_3390_ijms22062822
crossref_primary_10_1002_alz_14347
crossref_primary_10_1371_journal_pcbi_1012022
Cites_doi 10.1038/nn.4399
10.1371/journal.pone.0013984
10.1186/1755-8794-8-S1-S7
10.1038/nature11412
10.1093/nar/gkt533
10.1093/carcin/bgp261
10.1093/bioinformatics/bty186
10.1016/j.cell.2011.02.013
10.1101/gr.1239303
10.15252/msb.20188497
10.5281/zenodo.1146014
10.1093/nar/gkq537
10.12688/f1000research.9090.1
10.1016/j.celrep.2018.05.039
10.1016/j.ajhg.2014.03.018
10.1038/nmeth.2651
10.12688/f1000research.13511.3
10.12688/f1000research.20887.2
10.1371/journal.pcbi.1000641
10.1038/nmeth.3252
10.1016/j.cell.2015.09.033
10.1016/j.jmb.2018.05.037
ContentType Journal Article
Copyright Copyright: © 2021 Pai S et al.
Copyright: © 2021 Pai S et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright: © 2021 Pai S et al. 2021
Copyright_xml – notice: Copyright: © 2021 Pai S et al.
– notice: Copyright: © 2021 Pai S et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright: © 2021 Pai S et al. 2021
DBID C-E
CH4
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.12688/f1000research.26429.2
DatabaseName F1000Research
Faculty of 1000
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Complete
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Women's Studies
EISSN 2046-1402
ExternalDocumentID oai_doaj_org_article_bb8150438e25444db549391763589b1f
10.12688/f1000research.26429.2
PMC7883323
33628435
10_12688_f1000research_26429_2
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Horizon 2020
  grantid: 777111
– fundername: National Institutes of Health
  grantid: R01HG009979; P41GM103504
– fundername: Villum Fonden
  grantid: 13154
– fundername: NIMH NIH HHS
  grantid: R01 MH085542
– fundername: NIGMS NIH HHS
  grantid: P41 GM103504
– fundername: NIMH NIH HHS
  grantid: R01 MH109677
– fundername: NIMH NIH HHS
  grantid: R01 MH110921
– fundername: NIMH NIH HHS
  grantid: U01 MH103392
– fundername: NIMH NIH HHS
  grantid: R01 MH109897
– fundername: NIMH NIH HHS
  grantid: R37 MH057881
– fundername: NIMH NIH HHS
  grantid: R01 MH093725
– fundername: NIMH NIH HHS
  grantid: R01 MH097276
– fundername: NIMH NIH HHS
  grantid: P50 MH084053
GroupedDBID 3V.
53G
5VS
7X7
88I
8FE
8FH
8FI
8FJ
ABUWG
ACGOD
ACPRK
ADACO
ADBBV
ADRAZ
AFKRA
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BAWUL
BBAFP
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C-E
CH4
DIK
DWQXO
FRP
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M7P
OK1
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PROAC
RPM
AAFWJ
AAYXX
AFPKN
AOIJS
CCPQU
CITATION
HMCUK
M48
M~E
PGMZT
PHGZM
PHGZT
PQGLB
PUEGO
UKHRP
W2D
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4742-481f483b4e16a70d7eb3c22debfccf2c866c99a08d0c12d996a8e5ad17f4fae53
IEDL.DBID M48
ISSN 2046-1402
IngestDate Fri Oct 03 12:36:57 EDT 2025
Sun Oct 26 03:54:39 EDT 2025
Tue Sep 30 16:44:48 EDT 2025
Fri Sep 05 17:48:16 EDT 2025
Tue Oct 07 07:07:53 EDT 2025
Thu Apr 03 07:06:47 EDT 2025
Wed Oct 01 05:06:09 EDT 2025
Thu Apr 24 23:08:06 EDT 2025
Sat Feb 13 01:11:16 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords precision medicine
genomics
networks
classification
data integration
supervised learning
Language English
License http://creativecommons.org/licenses/by/4.0/: This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright: © 2021 Pai S et al.
This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4742-481f483b4e16a70d7eb3c22debfccf2c866c99a08d0c12d996a8e5ad17f4fae53
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
No competing interests were disclosed.
ORCID 0000-0003-3101-6817
0000-0002-6805-2080
0000-0002-1048-581X
0000-0003-0185-8861
0000-0002-2243-2010
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.12688/f1000research.26429.2
PMID 33628435
PQID 2597928687
PQPubID 2045578
ParticipantIDs doaj_primary_oai_doaj_org_article_bb8150438e25444db549391763589b1f
unpaywall_primary_10_12688_f1000research_26429_2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7883323
proquest_miscellaneous_3182695592
proquest_journals_2597928687
pubmed_primary_33628435
crossref_citationtrail_10_12688_f1000research_26429_2
crossref_primary_10_12688_f1000research_26429_2
faculty1000_research_10_12688_f1000research_26429_2
ProviderPackageCode C-E
CH4
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: London, UK
PublicationTitle F1000 research
PublicationTitleAlternate F1000Res
PublicationYear 2021
Publisher Faculty of 1000 Ltd
F1000 Research Limited
F1000 Research Ltd
Publisher_xml – name: Faculty of 1000 Ltd
– name: F1000 Research Limited
– name: F1000 Research Ltd
References D Merico (ref-5) 2010; 5
(ref-9) 2012; 490
W Huber (ref-4) 2015; 12
O Vanunu (ref-15) 2010; 6
M Fromer (ref-21) 2016; 19
J Huang (ref-18) 2018; 34
J Ronen (ref-14) 2018; 7
M Hofree (ref-12) 2013; 10
D Warde-Farley (ref-19) 2010; 38
K Zuberi (ref-20) 2013; 41
S Pai (ref-3) 2020
M Kucera (ref-6) 2016; 5
P Shannon (ref-8) 2003; 13
S Pai (ref-2) 2019; 15
G Ciriello (ref-23) 2015; 163
D Hanahan (ref-17) 2011; 144
W Engchuan (ref-11) 2015; 8 Suppl 1
H Shen (ref-16) 2018; 23
O Tange (ref-22) 2011
S Pai (ref-1) 2018; 430
D Pinto (ref-10) 2014; 94
J Gustavsen (ref-7) 2019; 8
P Kreeger (ref-13) 2010; 31
References_xml – volume: 19
  start-page: 1442-1453
  year: 2016
  ident: ref-21
  article-title: Gene expression elucidates functional impact of polygenic risk for schizophrenia.
  publication-title: Nat Neurosci.
  doi: 10.1038/nn.4399
– volume: 5
  start-page: e13984
  year: 2010
  ident: ref-5
  article-title: Enrichment map: a network-based method for gene-set enrichment visualization and interpretation.
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0013984
– volume: 8 Suppl 1
  start-page: S7
  year: 2015
  ident: ref-11
  article-title: Performance of case-control rare copy number variation annotation in classification of autism.
  publication-title: BMC Med Genomics.
  doi: 10.1186/1755-8794-8-S1-S7
– volume: 490
  start-page: 61-70
  year: 2012
  ident: ref-9
  article-title: Comprehensive molecular portraits of human breast tumours.
  publication-title: Nature.
  doi: 10.1038/nature11412
– volume: 41
  start-page: W115-122
  year: 2013
  ident: ref-20
  article-title: GeneMANIA prediction server 2013 update.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt533
– volume: 31
  start-page: 2-8
  year: 2010
  ident: ref-13
  article-title: Cancer systems biology: a network modeling perspective.
  publication-title: Carcinogenesis.
  doi: 10.1093/carcin/bgp261
– volume: 34
  start-page: 2859-2861
  year: 2018
  ident: ref-18
  article-title: pyNBS: a Python implementation for network-based stratification of tumor mutations.
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/bty186
– volume: 144
  start-page: 646-674
  year: 2011
  ident: ref-17
  article-title: Hallmarks of cancer: the next generation.
  publication-title: Cell.
  doi: 10.1016/j.cell.2011.02.013
– volume: 13
  start-page: 2498-2504
  year: 2003
  ident: ref-8
  article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks.
  publication-title: Genome Res.
  doi: 10.1101/gr.1239303
– volume: 15
  start-page: e8497
  year: 2019
  ident: ref-2
  article-title: netDx: interpretable patient classification using integrated patient similarity networks.
  publication-title: Mol Syst Biol.
  doi: 10.15252/msb.20188497
– year: 2020
  ident: ref-3
  article-title: BaderLab/netDx: Freeze of code for netDx software manuscript (Version v1.1.4).
  publication-title: Zenodo.
– start-page: 42-47
  year: 2011
  ident: ref-22
  article-title: GNU Parallel - The Command-Line Power Tool.
  publication-title: The USENIX Magazine.
  doi: 10.5281/zenodo.1146014
– volume: 38
  start-page: W214-220
  year: 2010
  ident: ref-19
  article-title: The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq537
– volume: 5
  start-page: 1717
  year: 2016
  ident: ref-6
  article-title: AutoAnnotate: A Cytoscape app for summarizing networks with semantic annotations [version 1; peer review: 2 approved].
  publication-title: F1000Res.
  doi: 10.12688/f1000research.9090.1
– volume: 23
  start-page: 3392-3406
  year: 2018
  ident: ref-16
  article-title: Integrated Molecular Characterization of Testicular Germ Cell Tumors.
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.05.039
– volume: 94
  start-page: 677-694
  year: 2014
  ident: ref-10
  article-title: Convergence of genes and cellular pathways dysregulated in autism spectrum disorders.
  publication-title: Am J Hum Genet.
  doi: 10.1016/j.ajhg.2014.03.018
– volume: 10
  start-page: 1108-1115
  year: 2013
  ident: ref-12
  article-title: Network-based stratification of tumor mutations.
  publication-title: Nat Methods.
  doi: 10.1038/nmeth.2651
– volume: 7
  start-page: 8
  year: 2018
  ident: ref-14
  article-title: netSmooth: Network-smoothing based imputation for single cell RNA-seq [version 3; peer review: 2 approved].
  publication-title: F1000Res.
  doi: 10.12688/f1000research.13511.3
– volume: 8
  start-page: 1774
  year: 2019
  ident: ref-7
  article-title: RCy3: Network biology using Cytoscape from within R [version 2; peer review: 3 approved].
  publication-title: F1000Res.
  doi: 10.12688/f1000research.20887.2
– volume: 6
  start-page: e1000641
  year: 2010
  ident: ref-15
  article-title: Associating genes and protein complexes with disease via network propagation.
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.1000641
– volume: 12
  start-page: 115-121
  year: 2015
  ident: ref-4
  article-title: Orchestrating high-throughput genomic analysis with Bioconductor.
  publication-title: Nat Methods.
  doi: 10.1038/nmeth.3252
– volume: 163
  start-page: 506-519
  year: 2015
  ident: ref-23
  article-title: Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer.
  publication-title: Cell.
  doi: 10.1016/j.cell.2015.09.033
– volume: 430
  start-page: 2924-2938
  year: 2018
  ident: ref-1
  article-title: Patient Similarity Networks for Precision Medicine.
  publication-title: J Mol Biol.
  doi: 10.1016/j.jmb.2018.05.037
SSID ssj0000993627
Score 2.1988358
Snippet Patient classification based on clinical and genomic data will further the goal of precision medicine. Interpretability is of particular relevance for models...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
faculty1000
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1239
SubjectTerms Classification
DNA methylation
Feature selection
Gene expression
Genomics
Humans
Learning algorithms
Machine Learning
Medical prognosis
Metadata
Mutation
Operating systems
Patients
Precision Medicine
Propagation
Software
Software Tool
Workflow
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQD0APFZSvQEGDhNRT2sRJHKec-KoqJLhApUoIWf6ki5Z0tdtt2R_E_2TGyUa7Amk5cN3EycZ-Gc9znt8w9sLlXudNRVaIwqalEFWqQxVSV7qGV4UjK0NSW3wUJ6fl-7PqbKXUF2nCOnvgruMOjZE5uWxJT2ZapTNIaArkGDhRysbkgaJvJpsVMvW9y3swMtNeaY4EMM2jjCduD-YCKV-gVe3eTef8AHMC3hzwtZkpGvhvs-2gyQFjQef_LQf9U0p5a95O9OJaj8cr89TxHbbTJ5jwqnuwu-yGb3fZzQ_9J_RdthNrVu7PoFcQ3mO_Wn_59ucRfMKIfK2nHjCPBdOXy4bRoEo0Yw-9DStYSrpHgepog1lAlCWm-7TDGUhzCksXChx1IGn9t6HlbPRjhGwak39oOwn6DL5cdat2wF_CxPspdBtqjoBD9Dy_8u7rfXZ6_O7zm5O0r96Q2hL5dlrKPJSyMKXPha4zVyNtt5w7b4K1gVsphG0anUmX2Zw75F1a-kq7vA5l0L4qHrCt9qL1jxjoysrgpDMeLxcyqW1WWQwcRSMQFlokrFqOnLK9tTlV2Bgrojg04mptxFUcccUTdji0m3TmHhtbvCZgDGeTOXf8ASGresiqTZBNWLECKzXcY9Ot95bwU32cmSkkr3XDpZB1wp4PhzFC0Gcf3fqL-UwVRCHJaBAv8bBD6_D_C3xLJGbMCavXcLz2gOtH2tF5dCGvqUw1LxKWDYj_x058_D868Qm7zUleFFfD9tjW5XTun2J-eGmexVDwG-XiYTU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFLVGJwF7mGAwCAxkJKQ9ZUuc2HGQEGKwaUKiQsCkvVmOP7ZKJS1Nq9E3fjr3pk5YBWK8JnG-fHNzjn18LiEvbep0WnK0QhQmzoXgsfbcxza3JeOZRStDVFsMxelZ_uGcn2-QYbcWBmWVXU5sE7WdGBwjPwSYXpRMClm8mX6PsWoUzq52JTR0KK1gX7cWY7fIJkNnrAHZPDoefvrcj7oAHoKMXYSlwkwA_fM4wh2cdS4PAB-w8oCt_aVaM_8tsuU1umEs8fi_4dE_ZZV3FvVUL6_0eHztn3Vyj2wHsEnfrqLjPtlw9Q65_TFMp--Q7bZ-5X5Dg5rwAflZu_n7H6_oF8jOV3rmKGBaWoXS2XTUKxSrsaPBkpUaBOAjjzW1abWkrUQx3sfVzhT1p7RzpIAIoCizv-hbNqNvI2DWQARovZKjNw_J2cnx13encSjSEJscaHWcy9TnMqtylwpdJLYAdm4Ys67yxnhmpBCmLHUibWJSZoFeaem4tmnhc68dz3bJoJ7U7jGhmhvprbSVg9P5RGqTcAP5ISuFdEyLiPCuU5QJDuZYSGOskMlgZ6q1zlRtZyoWkcO-3XTl4XFjiyPs8_5o9OBuN0xmFyp80qqqZIr-b3BvPM9zWwHVzoD9AoSTZZX6iGTXIkb117jp0ntdZKmQThr1O_gj8qLfDYkAZ3d07SaLRmXIFNFPEE7xaBWI_f1nEPQSgHFEirUQXXvA9T316LI1Gy-wGjXLIpL0wfyfL_HJv5_kKbnLUB_UDmftkcF8tnDPAODNq-fhq_0FkttSKA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLagk4A9DBi3wEBGQtpT2sSJHYe3cZkmJCokqDSeIl-3ipJWvWiUJ34656RutADSxmt8i-OT4_Mln79DyCubOpWWHKUQhYlzIXisPPexzW3JeGZRyhDZFkNxMso_nPLTcFgdz8J4_N4cdG7OG0-9JYgNULY_Kwcz62-SHcEh9O6RndHw09FXTCAHOC9OG7ZOcwqYCUB23c5g62dln3U2oEanf5fseoVCF2us_69Q82_G5O1VPVPrCzWZXNqOju-S4XYiGxbKt_5qqfvm5x8aj9ee6T2yFwJTerQpvU9uuHqf3PoYfr3vk70m1-Xhggbm4QPyq3bLdz9e08_gyS_U3FGIf6kOabbpuGUz6omjQb6VGgzWxx7zb1O9pg2dMT7Ek9EUuap0q14B1kKRkn_WtlyMv48BhQNooPWGur54SEbH77-8PYlDQofY5ADB41ymPpeZzl0qVJHYApC8Ycw67Y3xzEghTFmqRNrEpMwCFFPScWXTwudeOZ49Ir16WrsnhCpupLfSagfd-UQqk3ADviQrhXRMiYjw7SpXJqidY9KNSYWoB62j6ixA1VhHxSIyaNvNNnofV7Z4g0bU1ka97ubCdH5WhSWttJYpasXBvfE8z60GWJ4BUoZwT5Y69RHJLplg1Y5x1dAHW1OtgutZVIBni5JJIYuIvGyLwWngnyBVu-lqUWWIKlF7ELp4vLHs9v4zCGkkBNERKTo235lgt6QenzfC5AVmrmZZRJL27bjmQ3z6_02ekTsM-UXN57AD0lvOV-45BIhL_SK4hd9Y82ZZ
  priority: 102
  providerName: Unpaywall
Title netDx: Software for building interpretable patient classifiers by multi-'omic data integration using patient similarity networks [version 2; peer review: 2 approved]
URI http://dx.doi.org/10.12688/f1000research.26429.2
https://www.ncbi.nlm.nih.gov/pubmed/33628435
https://www.proquest.com/docview/2597928687
https://www.proquest.com/docview/3182695592
https://pubmed.ncbi.nlm.nih.gov/PMC7883323
https://f1000research.com/articles/9-1239/pdf
https://doaj.org/article/bb8150438e25444db549391763589b1f
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: DIK
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: GX1
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: RPM
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Complete
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: 7X7
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2046-1402
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000993627
  issn: 2046-1402
  databaseCode: M48
  dateStart: 20121101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJgF7mGDcAqMyEtKeUhInTpwhhDbYmJBWTUCloglFji9bUUlLL9v6g_ifnJO40SqGhnjpQx3ndo6Pz-d8_g4hL3VoZJhxlEJMlB8nCfel5dbXsc4YjzRKGSLbopMcduOPPd5bIYtyqe4FTq6FdlhPqjsetC9_zt_CgH9TaSMkgOAsLlI7cZyzNkzxLGtDWF6D2SrDcg5HLuX_XmdEELNTt1n4792X5qlKzn-drFuJehhzPP66jPRPYuWdWTmS8ws5GFyZtQ7ukQ2XbtLd2j_ukxVTbpLbR-6D-ibZqCpYbk-o4xM-IL9KM31_uUM_Q3y-kGNDIaulhSueTfsNR7EYGOpEWanCFLxvsao2Lea0Iin627jfmSIDlS40KcAHKBLtT5uek_6PPhgAoAAta0L6hJ6c12t4lL2mI2PGtN5es0MZrRTQz43-9pB0D_a_vDv0XS0HX8WAvv1YhDYWURGbMJFpoFMA8YoxbQqrlGVKJInKMhkIHaiQaUBhUhgudZja2ErDo0dktRyW5gmhkithtdCFgdPZQEgVcAVhJMoSYZhMPMIXlsuVEzrHehuDHAEPWjxfsnheWTxnHnnV9BvVUh839thDx2iORqnu6o_h-DR3Iz8vChGiTBzcG4_jWBeAyCMAyZDpiawIrUeiK26VN9e46dJbC_fLF4MmByibZkwkIvXIi6YZ4gV-BJKlGc4meYSAEmUH4RSPa29t7j-CkSEgf_ZIuuTHSw-43FL2zypN8hSLVrPII0Hj8f_4Ep_-1_M_I3cZsouqxbAtsjodz8xzSA-nRYvcSntpi6zt7XeOP7WqRRb4_dALW1UkgJZu53j3629GOmsG
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrUTpoYLyMhRYJFBPbu312l4jVYjSVil9CEEr9eau99FGCk6IE4Xc-GX8NmactWkEolx6jb1-ZMYz8-3Ofh8hr3VoZJjFSIWYKJ8nSexLG1tfc52xONJIZYjdFidJ54x_PI_PF8jPZi8MtlU2MbEO1LqvcI58C8r0NGMiEem7wTcfVaNwdbWR0JBOWkFv1xRjbmPHoZlOAMJV2we7YO83jO3vnX7o-E5lwFcccKHPRWi5iApuwkSmgU4BXirGtCmsUpYpkSQqy2QgdKBCpgEfSGFiqcPUcisNqkZACljiEc8A_C3t7J18-tzO8kD9BRkidVuTWQJw0-KMumPyudqEeoRlm2wuK9biAStkxUpk35ji-X-rf_9s41welwM5nche71qO3L9HVl1xS9_PvPE-WTDlGrlz7Jbv18hqrZe5UVHXvfiA_CjNaPf7W_oFssFEDg2FGpoWTqqbdtuOyKJnqKOApQoL_q5FDW9aTGndEulv4O5qiv2utGHAAI-j2NZ_2Y6sul-7gOQBeNBy1v5ePSRnt2KuR2Sx7JfmCaEyVsJqoQsDl7OBkCqIFcSjKEuEYTLxSNwYJVeOMR2FO3o5Iic0Zj5nzLw2Zs48stWOG8w4Q24csYM2b89Gzu_6h_7wMnchJC8KESLfHDxbzDnXBUD7CNA2lIwiK0Lrkeiax-TtPW669XrjWbkLX1X--2PzyKv2MAQeXE2SpemPqzxCZIr8hXCJxzNHbJ8_AqcXUIh7JJ1z0bkXnD9Sdq9qcvMU1a9Z5JGgdeb__BOf_vtNXpLlzunxUX50cHL4jNxl2JtUT6Wtk8XRcGyeQ3E5Kl64L5iSi9sOGr8AUECQWA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTRrsYYJxCwwwEmhPWRPn5iAhBJRqYzAhwaS-eY4vW6WSdk2r0jd-F7-Oc1InrAIxXvaaxEmcc3J8Pvvzdwh5rkMjwzxBKcRU-XGaJr60ifV1rHOWRBqlDJFtcZwenMQf-kl_jfxs9sIgrbKJiXWg1iOFc-QdSNOznPGUZx3raBGfu73X4wsfK0jhSmtTTmPpIkdmMQf4Vr067IKtXzDWe__13YHvKgz4KgZM6Mc8tDGPitiEqcwCnQG0VIxpU1ilLFM8TVWey4DrQIVMAzaQ3CRSh5mNrTRYMQLC_0YWRTnSCbN-1s7vQOYFY0PmNiWzFICmxbl0p-Fzvg-ZCMv32cp4WJcN2CJbVqLuxgKv_1vm-yeB88asHMvFXA6Hl0bH3i2y7dJa-mbph7fJmil3yOYnt3C_Q7brSpl7FXW8xTvkR2mm3e8v6RcYB-ZyYihkz7RwRbrpoOVCFkNDnfgrVZjqDyxW76bFgtZkSH8P91VTZLrSRvsCfI0iof-sbVkNvg0AwwPkoOWS-F7dJSfXYqx7ZL0cleYBoTJR3GquCwO3swGXKkgURKIoT7lhMvVI0hhFKKeVjiU7hgIxExpTrBhT1MYUzCOdtt14qRZyZYu3aPP2alT7rg-MJmfCBQ9RFDxEpTl4tySOY10AqI8AZ0OyyPMitB6JLnmMaJ9x1aN3G88SLnBV4vdv5pFn7WkIObiOJEszmlUiQkyKyoVwi_tLR2zfPwKn55CCeyRbcdGVDq6eKQfntax5hnWvWeSRoHXm__yID__dk6dkE0KF-Hh4fPSI3GRISqrn0HbJ-nQyM48hq5wWT-rfl5LT644XvwBrq43y
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLagk4A9DBi3wEBGQtpT2sSJHYe3cZkmJCokqDSeIl-3ipJWvWiUJ34656RutADSxmt8i-OT4_Mln79DyCubOpWWHKUQhYlzIXisPPexzW3JeGZRyhDZFkNxMso_nPLTcFgdz8J4_N4cdG7OG0-9JYgNULY_Kwcz62-SHcEh9O6RndHw09FXTCAHOC9OG7ZOcwqYCUB23c5g62dln3U2oEanf5fseoVCF2us_69Q82_G5O1VPVPrCzWZXNqOju-S4XYiGxbKt_5qqfvm5x8aj9ee6T2yFwJTerQpvU9uuHqf3PoYfr3vk70m1-Xhggbm4QPyq3bLdz9e08_gyS_U3FGIf6kOabbpuGUz6omjQb6VGgzWxx7zb1O9pg2dMT7Ek9EUuap0q14B1kKRkn_WtlyMv48BhQNooPWGur54SEbH77-8PYlDQofY5ADB41ymPpeZzl0qVJHYApC8Ycw67Y3xzEghTFmqRNrEpMwCFFPScWXTwudeOZ49Ir16WrsnhCpupLfSagfd-UQqk3ADviQrhXRMiYjw7SpXJqidY9KNSYWoB62j6ixA1VhHxSIyaNvNNnofV7Z4g0bU1ka97ubCdH5WhSWttJYpasXBvfE8z60GWJ4BUoZwT5Y69RHJLplg1Y5x1dAHW1OtgutZVIBni5JJIYuIvGyLwWngnyBVu-lqUWWIKlF7ELp4vLHs9v4zCGkkBNERKTo235lgt6QenzfC5AVmrmZZRJL27bjmQ3z6_02ekTsM-UXN57AD0lvOV-45BIhL_SK4hd9Y82ZZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=netDx%3A+Software+for+building+interpretable+patient+classifiers+by+multi-%27omic+data+integration+using+patient+similarity+networks+%5Bversion+2%3B+peer+review%3A+2+approved%5D&rft.jtitle=F1000+research&rft.au=Pai%2C+Shraddha&rft.au=Weber%2C+Philipp&rft.au=Isserlin%2C+Ruth&rft.au=Kaka%2C+Hussam&rft.date=2021&rft.eissn=2046-1402&rft.volume=9&rft_id=info:doi/10.12688%2Ff1000research.26429.2&rft.externalDBID=C-E&rft.externalDocID=10_12688_f1000research_26429_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-1402&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-1402&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-1402&client=summon