Carrying out streamlined routine data analyses with reports for observational studies: introduction to a series of generic SAS ® macros [version 2; peer review: 2 approved]

For a typical medical research project based on observational data, sequential routine analyses are often essential to comprehend the data on hand and to draw valid conclusions.  However, generating reports in SAS ® for routine analyses can be a time-consuming and tedious process, especially when de...

Full description

Saved in:
Bibliographic Details
Published inF1000 research Vol. 7; p. 1955
Main Authors Liu, Yuan, Nickleach, Dana C, Zhang, Chao, Switchenko, Jeffrey M, Kowalski, Jeanne
Format Journal Article
LanguageEnglish
Published England Faculty of 1000 Ltd 2018
F1000 Research Limited
F1000 Research Ltd
Subjects
Online AccessGet full text
ISSN2046-1402
2046-1402
DOI10.12688/f1000research.16866.2

Cover

Abstract For a typical medical research project based on observational data, sequential routine analyses are often essential to comprehend the data on hand and to draw valid conclusions.  However, generating reports in SAS ® for routine analyses can be a time-consuming and tedious process, especially when dealing with large databases with a massive number of variables in an iterative and collaborative research environment. In this work, we present a general workflow of research based on an observational database and a series of SAS ® macros that fits this framework, which covers a streamlined data analyses and produces journal-quality summary tables. The system is generic enough to fit a variety of research projects and enables researchers to build a highly organized and concise coding for quick updates as research evolves. The result reports promote communication in collaborations and will escort the research with ease and efficiency.
AbstractList For a typical medical research project based on observational data, sequential routine analyses are often essential to comprehend the data on hand and to draw valid conclusions.  However, generating reports in SAS® for routine analyses can be a time-consuming and tedious process, especially when dealing with large databases with a massive number of variables in an iterative and collaborative research environment. In this work, we present a general workflow of research based on an observational database and a series of SAS® macros that fits this framework, which covers a streamlined data analyses and produces journal-quality summary tables. The system is generic enough to fit a variety of research projects and enables researchers to build a highly organized and concise coding for quick updates as research evolves. The result reports promote communication in collaborations and will escort the research with ease and efficiency.
For a typical medical research project based on observational data, sequential routine analyses are often essential to comprehend the data on hand and to draw valid conclusions.  However, generating reports in SAS ® for routine analyses can be a time-consuming and tedious process, especially when dealing with large databases with a massive number of variables in an iterative and collaborative research environment. In this work, we present a general workflow of research based on an observational database and a series of SAS ® macros that fits this framework, which covers a streamlined data analyses and produces journal-quality summary tables. The system is generic enough to fit a variety of research projects and enables researchers to build a highly organized and concise coding for quick updates as research evolves. The result reports promote communication in collaborations and will escort the research with ease and efficiency.
For a typical medical research project based on observational data, sequential routine analyses are often essential to comprehend the data on hand and to draw valid conclusions.  However, generating reports in SAS ® for routine analyses can be a time-consuming and tedious process, especially when dealing with large databases with a massive number of variables in an iterative and collaborative research environment. In this work, we present a general workflow of research based on an observational database and a series of SAS ® macros that fits this framework, which covers a streamlined data analyses and produces journal-quality summary tables. The system is generic enough to fit a variety of research projects and enables researchers to build a highly organized and concise coding for quick updates as research evolves. The result reports promote communication in collaborations and will escort the research with ease and efficiency.
For a typical medical research project based on observational data, sequential routine analyses are often essential to comprehend the data on hand and to draw valid conclusions. However, generating reports in SAS ® for routine analyses can be a time-consuming and tedious process, especially when dealing with large databases with a massive number of variables in an iterative and collaborative research environment. In this work, we present a general workflow of research based on an observational database and a series of SAS ® macros that fits this framework, which covers a streamlined data analyses and produces journal-quality summary tables. The system is generic enough to fit a variety of research projects and enables researchers to build a highly organized and concise coding for quick updates as research evolves. The result reports promote communication in collaborations and will escort the research with ease and efficiency.
For a typical medical research project based on observational data, sequential routine analyses are often essential to comprehend the data on hand and to draw valid conclusions.  However, generating reports in SAS for routine analyses can be a time-consuming and tedious process, especially when dealing with large databases with a massive number of variables in an iterative and collaborative research environment. In this work, we present a general workflow of research based on an observational database and a series of SAS macros that fits this framework, which covers a streamlined data analyses and produces journal-quality summary tables. The system is generic enough to fit a variety of research projects and enables researchers to build a highly organized and concise coding for quick updates as research evolves. The result reports promote communication in collaborations and will escort the research with ease and efficiency.
For a typical medical research project based on observational data, sequential routine analyses are often essential to comprehend the data on hand and to draw valid conclusions. However, generating reports in SAS ® for routine analyses can be a time-consuming and tedious process, especially when dealing with large databases with a massive number of variables in an iterative and collaborative research environment. In this work, we present a general workflow of research based on an observational database and a series of SAS ® macros that fits this framework, which covers a streamlined data analyses and produces journal-quality summary tables. The system is generic enough to fit a variety of research projects and enables researchers to build a highly organized and concise coding for quick updates as research evolves. The result reports promote communication in collaborations and will escort the research with ease and efficiency.For a typical medical research project based on observational data, sequential routine analyses are often essential to comprehend the data on hand and to draw valid conclusions. However, generating reports in SAS ® for routine analyses can be a time-consuming and tedious process, especially when dealing with large databases with a massive number of variables in an iterative and collaborative research environment. In this work, we present a general workflow of research based on an observational database and a series of SAS ® macros that fits this framework, which covers a streamlined data analyses and produces journal-quality summary tables. The system is generic enough to fit a variety of research projects and enables researchers to build a highly organized and concise coding for quick updates as research evolves. The result reports promote communication in collaborations and will escort the research with ease and efficiency.
Author Liu, Yuan
Nickleach, Dana C
Kowalski, Jeanne
Zhang, Chao
Switchenko, Jeffrey M
Author_xml – sequence: 1
  givenname: Yuan
  orcidid: 0000-0001-8926-3058
  surname: Liu
  fullname: Liu, Yuan
  email: yliu31@emory.edu
  organization: Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
– sequence: 2
  givenname: Dana C
  surname: Nickleach
  fullname: Nickleach, Dana C
  organization: Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
– sequence: 3
  givenname: Chao
  orcidid: 0000-0002-9066-8658
  surname: Zhang
  fullname: Zhang, Chao
  organization: Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
– sequence: 4
  givenname: Jeffrey M
  surname: Switchenko
  fullname: Switchenko, Jeffrey M
  organization: Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
– sequence: 5
  givenname: Jeanne
  surname: Kowalski
  fullname: Kowalski, Jeanne
  organization: Department of Oncology, University of Texas, Austin, Texas, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31231506$$D View this record in MEDLINE/PubMed
BookMark eNqFks9uEzEQxleoiJbSV6gsceGSYM96vbsBVaoi_lSqxKFwQsia9c4mjjbrYO-mykPBQ_BkOEkLTQ9w8mj8-z6PPN_z5KhzHSXJueBjAaooXjeCc-4pEHozHwtVKDWGJ8kJcKlGQnI4elAfJ2chLKKAl2WqIH-WHKcCUpFxdZL8mKL3G9vNmBt6FnpPuGxtRzXzsRELVmOPDDtsN4ECu7X9nHlaOd8H1jjPXBXIr7G3LiLRYKgthQmzXe9dPZhtn_WOIYtYvGGuYTPqYm3YzeUN-_WTLdF4F9jXNfmwpeENWxH5-Mra0u2EAcPVyrs11d9eJE8bbAOd3Z2nyZf37z5PP46uP324ml5ej4zMJYxESSDqRjZQFlBKTLlSOZS5rLMKgIsi51UjZSZNxkvMq1pUmSlyQN5kiiSlp8nV3rd2uNArb5foN9qh1buG8zONvremJQ2mSJXMlMISpQBRibyuUpBVmVUKZBG9LvZeq6FaUm0o_gy2B6aHN52d65lba5VthxbR4NWdgXffBwq9XtpgqG2xIzcEnYoCiiKPbERfPkIXbvBxMUEDyDLmJCYlUucPJ_ozyn0qIvB2D2wXEzw12th-t-I4oG214HqXQ32QQ73LoYYoV4_k9y_8VzjZCxs0Q9tvtpD-S_1b_Bs63fly
CitedBy_id crossref_primary_10_1097_COC_0000000000001125
crossref_primary_10_3389_fonc_2022_1074675
crossref_primary_10_1136_jitc_2023_007235
crossref_primary_10_1245_s10434_020_09279_8
crossref_primary_10_1002_hed_27282
crossref_primary_10_1002_jso_25976
crossref_primary_10_1634_theoncologist_2019_0661
crossref_primary_10_1002_jso_27814
crossref_primary_10_1002_jso_27503
crossref_primary_10_1200_OP_22_00781
crossref_primary_10_3389_fonc_2021_728076
crossref_primary_10_1097_COC_0000000000001093
crossref_primary_10_1007_s00404_024_07421_5
crossref_primary_10_1016_j_clgc_2021_03_007
crossref_primary_10_1002_cam4_70624
crossref_primary_10_1002_cncr_33660
Cites_doi 10.1046/j.1524-4733.2003.00242.x
10.1016/j.jtho.2015.10.007
10.1377/hlthaff.2010.0666
10.21037/atm.2018.08.13
10.1002/sim.6265
10.1080/01621459.1999.10474144
10.1002/cpt.320
10.1111/j.1524-4733.2009.00602.x
10.1111/j.1524-4733.2009.00600.x
10.1245/s10434-007-9747-3
10.1111/j.1524-4733.2009.00601.x
10.2471/BLT.07.045120
10.1080/00273171.2011.568786
10.1056/NEJMsr077003
ContentType Journal Article
Copyright Copyright: © 2019 Liu Y et al.
Copyright: © 2019 Liu Y et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright: © 2019 Liu Y et al. 2019
Copyright_xml – notice: Copyright: © 2019 Liu Y et al.
– notice: Copyright: © 2019 Liu Y et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright: © 2019 Liu Y et al. 2019
DBID C-E
CH4
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.12688/f1000research.16866.2
DatabaseName F1000Research
Faculty of 1000
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Science Database
ProQuest Biological Science
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

Publicly Available Content Database
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Women's Studies
EISSN 2046-1402
ExternalDocumentID oai_doaj_org_article_2c8364566a9a4121b17db324b95b6248
PMC6567291
31231506
10_12688_f1000research_16866_2
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Atlanta Georgia
United States--US
GeographicLocations_xml – name: Atlanta Georgia
– name: United States--US
GrantInformation_xml – fundername: Winship Cancer Institute
  grantid: P30CA138292
– fundername: NCI NIH HHS
  grantid: P30 CA138292
GroupedDBID 3V.
53G
5VS
7X7
88I
8FE
8FH
8FI
8FJ
ABUWG
ACGOD
ACPRK
ADACO
ADBBV
ADRAZ
AFKRA
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BAWUL
BBAFP
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C-E
CH4
DIK
DWQXO
FRP
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M7P
OK1
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PROAC
RPM
AAFWJ
AAYXX
AFPKN
ALIPV
AOIJS
CCPQU
CITATION
HMCUK
M48
M~E
PGMZT
PHGZM
PHGZT
UKHRP
W2D
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
7XB
8FK
K9.
PKEHL
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c4742-19e21df4f298294a306672974d5b2201870bf4454c509a7bd1b5c872a0f56e4e3
IEDL.DBID M48
ISSN 2046-1402
IngestDate Wed Aug 27 01:26:08 EDT 2025
Thu Aug 21 18:41:35 EDT 2025
Fri Sep 05 17:47:54 EDT 2025
Fri Jul 25 12:06:50 EDT 2025
Mon Jul 21 05:57:20 EDT 2025
Tue Jul 01 04:27:04 EDT 2025
Thu Apr 24 23:01:00 EDT 2025
Mon Jan 18 12:18:50 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords SAS® macros
observational studies
collaborative
reporting
streamlined data process
Good-Research-Practice
Language English
License http://creativecommons.org/licenses/by/4.0/: This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4742-19e21df4f298294a306672974d5b2201870bf4454c509a7bd1b5c872a0f56e4e3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
No competing interests were disclosed.
ORCID 0000-0001-8926-3058
0000-0002-9066-8658
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.12688/f1000research.16866.2
PMID 31231506
PQID 2249686866
PQPubID 2045578
ParticipantIDs doaj_primary_oai_doaj_org_article_2c8364566a9a4121b17db324b95b6248
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6567291
proquest_miscellaneous_3182887729
proquest_journals_2249686866
pubmed_primary_31231506
crossref_citationtrail_10_12688_f1000research_16866_2
crossref_primary_10_12688_f1000research_16866_2
faculty1000_research_10_12688_f1000research_16866_2
ProviderPackageCode C-E
CH4
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: London, UK
PublicationTitle F1000 research
PublicationTitleAlternate F1000Res
PublicationYear 2018
Publisher Faculty of 1000 Ltd
F1000 Research Limited
F1000 Research Ltd
Publisher_xml – name: Faculty of 1000 Ltd
– name: F1000 Research Limited
– name: F1000 Research Ltd
References J Fine (ref-21) 1999; 94
E von Elm (ref-7) 2007; 85
B Motheral (ref-11) 2003; 6
R Ball (ref-3) 2016; 99
Y Liu (ref-13) 2018
P Austin (ref-14) 2011; 46
H Gu (ref-16) 2018; 6
E Frank (ref-15) 2006
N Dreyer (ref-5) 2010; 29
L Hansen (ref-4) 2011
L Zhao (ref-18) 2005
E Cox (ref-9) 2009; 12
N Dreyer (ref-6) 2010; 16
M Berger (ref-10) 2009; 12
B Hankey (ref-1) 1999; 8
M Johnson (ref-8) 2009; 12
W Sauerbrei (ref-12) 2014; 33
G Grandits (ref-17) 2006
R Wang (ref-22) 2007; 357
K Bilimoria (ref-2) 2008; 15
R Medbery (ref-20) 2016; 11
D Nickleach (ref-19)
References_xml – volume: 16
  start-page: 467-471
  year: 2010
  ident: ref-6
  article-title: GRACE principles: recognizing high-quality observational studies of comparative effectiveness.
  publication-title: Am J Manag Care.
– year: 2006
  ident: ref-15
  article-title: Regression Modeling Strategies
– volume: 6
  start-page: 90-97
  year: 2003
  ident: ref-11
  article-title: A checklist for retrospective database studies--report of the ISPOR Task Force on Retrospective Databases.
  publication-title: Value Health.
  doi: 10.1046/j.1524-4733.2003.00242.x
– volume: 11
  start-page: 222-233
  year: 2016
  ident: ref-20
  article-title: Nodal Upstaging Is More Common with Thoracotomy than with VATS During Lobectomy for Early-Stage Lung Cancer: An Analysis from the National Cancer Data Base.
  publication-title: J Thorac Oncol.
  doi: 10.1016/j.jtho.2015.10.007
– volume: 29
  start-page: 1818-1825
  year: 2010
  ident: ref-5
  article-title: Why observational studies should be among the tools used in comparative effectiveness research.
  publication-title: Health Aff (Millwood).
  doi: 10.1377/hlthaff.2010.0666
– volume: 6
  start-page: 326
  year: 2018
  ident: ref-16
  article-title: %ggBaseline: a SAS macro for analyzing and reporting baseline characteristics automatically in medical research.
  publication-title: Ann Transl Med.
  doi: 10.21037/atm.2018.08.13
– volume: 33
  start-page: 5413-5432
  year: 2014
  ident: ref-12
  article-title: STRengthening analytical thinking for observational studies: the STRATOS initiative.
  publication-title: Stat Med.
  doi: 10.1002/sim.6265
– volume: 94
  start-page: 496-509
  year: 1999
  ident: ref-21
  article-title: A Proportional Hazards Model for the Subdistribution of a Competing Risk.
  publication-title: J Am Stat Assoc.
  doi: 10.1080/01621459.1999.10474144
– volume: 99
  start-page: 265-268
  year: 2016
  ident: ref-3
  article-title: The FDA's sentinel initiative--A comprehensive approach to medical product surveillance.
  publication-title: Clin Pharmacol Ther.
  doi: 10.1002/cpt.320
– volume: 12
  start-page: 1062-1073
  year: 2009
  ident: ref-8
  article-title: Good research practices for comparative effectiveness research: analytic methods to improve causal inference from nonrandomized studies of treatment effects using secondary data sources: the ISPOR Good Research Practices for Retrospective Database Analysis Task Force Report--Part III.
  publication-title: Value Health.
  doi: 10.1111/j.1524-4733.2009.00602.x
– year: 2018
  ident: ref-13
  article-title: Emory-Yuan/BBISR-SAS-Macros V1 (Version V1).
  publication-title: Zenodo.
– volume: 12
  start-page: 1044-1052
  year: 2009
  ident: ref-10
  article-title: Good research practices for comparative effectiveness research: defining, reporting and interpreting nonrandomized studies of treatment effects using secondary data sources: the ISPOR Good Research Practices for Retrospective Database Analysis Task Force Report--Part I.
  publication-title: Value Health.
  doi: 10.1111/j.1524-4733.2009.00600.x
– volume: 15
  start-page: 683-690
  year: 2008
  ident: ref-2
  article-title: The National Cancer Data Base: a powerful initiative to improve cancer care in the United States.
  publication-title: Ann Surg Oncol.
  doi: 10.1245/s10434-007-9747-3
– year: 2006
  ident: ref-17
  article-title: A System of SAS® Macros for Producing Statistical Reports
– volume: 12
  start-page: 1053-1061
  year: 2009
  ident: ref-9
  article-title: Good research practices for comparative effectiveness research: approaches to mitigate bias and confounding in the design of nonrandomized studies of treatment effects using secondary data sources: the International Society for Pharmacoeconomics and Outcomes Research Good Research Practices for Retrospective Database Analysis Task Force Report--Part II.
  publication-title: Value Health.
  doi: 10.1111/j.1524-4733.2009.00601.x
– ident: ref-19
  article-title: SAS® Macros to Conduct Common Biostatistical Analyses and Generate Reports.
  publication-title: SESUG 2013: The Proceeding of the SouthEast SAS User Group.
– volume: 8
  start-page: 1117-1121
  year: 1999
  ident: ref-1
  article-title: The surveillance, epidemiology, and end results program: a national resource.
  publication-title: Cancer Epidemiol Biomarkers Prev.
– year: 2011
  ident: ref-4
  article-title: Health Research Data for the Real World: The MarketScan Databases.
  publication-title: White Paper: TRUVEN Health Analytics.
– volume: 85
  start-page: 867-872
  year: 2007
  ident: ref-7
  article-title: The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies.
  publication-title: Bull World Health Organ.
  doi: 10.2471/BLT.07.045120
– volume: 46
  start-page: 399-424
  year: 2011
  ident: ref-14
  article-title: An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies.
  publication-title: Multivariate Behav Res.
  doi: 10.1080/00273171.2011.568786
– year: 2005
  ident: ref-18
  article-title: A SAS® Macro for Producing Customized Reports
– volume: 357
  start-page: 2189-2194
  year: 2007
  ident: ref-22
  article-title: Statistics in medicine--reporting of subgroup analyses in clinical trials.
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMsr077003
SSID ssj0000993627
Score 2.341632
Snippet For a typical medical research project based on observational data, sequential routine analyses are often essential to comprehend the data on hand and to draw...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
faculty1000
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1955
SubjectTerms Bias
Bioinformatics
Biomedical Research
Cancer
Data Analysis
Data processing
Databases, Factual
Humans
Hypotheses
Literature reviews
Medical research
Observational studies
Observational Studies as Topic - statistics & numerical data
Population
Researchers
Software
Software Tool
Variables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA-yB3EPQ-dXdcoRBJ-6tWn6NZ_mcAxhvszBQCQkaeLucO1o7x34P4l_hH-Z5yRdvVeE--JbadKkTU7PV875HcZeK2UUCh4RG250LESdxRoFdWxspgyKD2NrSnA--Vgcn4kP5_n5UqkvigkL8MBh4fa4qeikrChUrUTKU52WjUYtQNe5Lrjwab5JnSwZU5dB70HOTLnSHA3AOPVhPD49mBdo8jnyao9oOhe7aVEVxS5fkUwewH-TbTpFCBjfqf-_dNC_QymXZNPRfbY1KpVwED7mAbtj221292Q8Nt9mW75O5ZsBxqjBh-zHoep7ynCCbjEHShhRV6RwNtDjDbwACh0F5SFL7ADkroXxfAFQz4VOT-5cnHkI4-7DjALfm4BIC_MOFBCJ4wCdg6-EcD0zcHpw-usnXClaBvh8Exx2wN_CtbU9hFyafeDg4c5vbPPlETs7ev_p8DgeCzfERqCpHae15WnjhON1xWuhMoqk5Wi5NLnmnMoAJtoJkQuD6ooqdZPq3FQlV4nLCyts9phttF1rnzJwZVYlylYmMaVwyF5cYqqmMYaXuk4qF7H8dtOkGVHNqbjGN0nWDW22XNls6Tdb8ojtTc9dB1yPtU-8I5qYehMut7-B1CpHapXrqDVi2RJFyT9zrJl655by5MhiBom6V43N2CFir6ZmZA504qNa2y0GiQyboxTBtY_Yk0Co0_tnqLMQvGTEyhUSXvnA1ZZ2duEByNEGwCHTZ_9jRZ6ze0QRwau1wzbm_cK-QD1vrl_6X_o3_WdO5g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwEB5BkRA9VFD-AgUZCYlT2sRx4oQLKhVVhVQupdLeLNux25VoUpLdQ9-gT8ND8GTMJN60ixDVXlb5sZPMeObzePwNwHutrUbHI2LLrYmFqLLYoKOOrcu0RfdhXUUbnI-_FUen4ussn4WAWx_SKlc2cTDUdWspRr6HrqYqSvwVny5_xlQ1ilZXQwmN-_AgRSRCpRvkTE4xFkQ_aJ9l2BjMC5zseYpnBx6d892U2tvlaz5poO7fhE2vifviiq7_F_r8O4nyllc6fAxbAU6y_VH-T-Cea7bh4XFYMN-GraFC5YeehXzBp3B9oLuO9jaxdrlgtFVEXxDUrFmHB_APo6RRpgeyEtczCtSysLLAEOGy1kyBXOy5H9v9yOaU8l6PXLRs0TLNSLmxgdazM-K2nlt2sn_Cfv9iF5q-wzM4Pfzy_eAoDuUYYitwAh2nleNp7YXnVckroTPKj-U4H6lzwzkV90uMFyIXFkGIlqZOTW5LyXXi88IJlz2HjaZt3EtgXmZlol1pEyuFR6PhE1vWtbVcmiopfQT5SiDKBq5yKpnxQ9GchQSp1gSpBkEqHsHedN_lyNZx5x2fSd7T1cS2PRxouzMVBq_itqTV2qLQlRYpT00qa4NI1FS5KbgoI8huaYu66eOOrndWWqWC4ejVjZpH8G46jUOe1nF049plr9AMc_QN-O0jeDEq4fT8GSIRIo2MQK6p59oLrp9p5ucDrTgie2wyffX_x3oNj0jWYxRqBzYW3dK9QVy2MG-HwfcHRmQ5Jw
  priority: 102
  providerName: ProQuest
Title Carrying out streamlined routine data analyses with reports for observational studies: introduction to a series of generic SAS ® macros [version 2; peer review: 2 approved]
URI http://dx.doi.org/10.12688/f1000research.16866.2
https://www.ncbi.nlm.nih.gov/pubmed/31231506
https://www.proquest.com/docview/2249686866
https://www.proquest.com/docview/3182887729
https://pubmed.ncbi.nlm.nih.gov/PMC6567291
https://doaj.org/article/2c8364566a9a4121b17db324b95b6248
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA61BbEPRetttC5HEHyadSaTuVVE2tJahBaxLiyIhCSTaVfamTq7W-x_En-Ev8xzMrNrV4p98WVZJplkNzk593yHsRdKGYWCR_iGG-0LkUe-RkHtGxspg-LD2JwuOB8cJvsD8X4YD5fYrFxqt4Dja007qic1aE77379dvsUD_8ZhIyRowZXkpO7AcU76YZIlSR_Z8oqLGVE6X6fyf201IuTZdIuao2nohy7Bp_fvoRZkloP2X2WrpSJsjEvqf512-neS5RWptXeXrXXqJmy19HGPLdlqnd0-6ALq62zNVbB8OYYun_A--7GjmobuPkE9nQBdJVFnpIoW0OAD_AKUVArKgZnYMZAjF7rIA6AGDLWeO3px5nE77iaMKCW-aLFqYVKDAiJ-HKAu4Ziwr0cGjraOfv2EM0XLAJ8vWlce8Ndwbm0D7S2bTeDggNAvbPHlARvs7X7a2fe7kg6-EWiE-2FueViUouR5xnOhIsqx5WjTFLHmnAoEBroUIhYGFRmV6iLUsclSroIyTqyw0UO2XNWVfcygTKMsUDYzgUlFiYynDExWFMbwVOdBVnosnm2aNB3eOZXdOJVk99Bmy4XNlm6zJffYq_l75y3ix41vbBNNzHsTYrd7UDfHsmMAkpuMIr5JonIlQh7qMC00arM6j3XCReax6ApFyT9z3DD1xozy5OzsSNTKcmzGDh57Pm9GtkGxIFXZejqWyMo5yhdce489agl1_vsj1GYIeNJj6QIJL_zBxZZqdOKgydE6wCHDJ_9jRZ6yO0QRrb9rgy1Pmql9hhrgRPfYrXSY9tjK9u7hh48950fBz3fDsOcO-287KV4x
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFD7BJVF5IIq3KuqYaHwqtNPpzYQYQMgiLDECCW_jzHQKm8gWt7sx_AN_jT_BB3-Z53RnC2uMPJF92fQy0_bMnPv5DsBrpYxCwSN8w432hcgjX6Og9o2NlEHxYWxOBc69_aR7JD4ex8dz8GtaC0NplVOe2DDqojLkI19FUZMnGf6S9-fffOoaRdHVaQsN5VorFGsNxJgr7Ni1F9_RhKvXdj4gvd9wvr11uNn1XZcB3wi0C_0wtzwsSlHyPOO5UBGlfXJUs4tYc0496wJdChELg7JVpboIdWyylKugjBMrbITj3oJ5QQ6UDsxvbO1_-tx6eVD_QgmRutJknqC5WZJH3SH5nK6E9EYrfEYqNs0DFmChVIS-cUHX_0v__TuN84pc3L4Hi06hZeuTFXgf5uxgCW73XMh-CRabHplva-YyFh_Aj001HFJ1FavGI0bFKuqMlN2CDfEA_mGUtspUA5dia0auYuZiGwx1bFbp1pWMM9eTcd-xPiXdFxM0XDaqmGK0vXCAqmQnhK7dN-xg_YD9_snOFH2Hh3B0I6R6BJ1BNbBPgJVplAXKZiYwqSiRbZWByYrCGJ7qPMhKD-IpQaRxaOnUtOOrJKuJCClnCCkbQkruwWp73_kEL-TaOzaI3u3VhPfdHKiGJ9KxD8lNRvHiJFG5EiEPdZgWGnVhncc64SLzILqyWuTlHNdMvTxdVdKxrlpebjQPXrWnkelQJEkNbDWuJQoCjtIJv70HjyeLsH3-CHUhgq30IJ1ZnjMvOHtm0D9tgM3RtsAhw6f_f6yXcKd72NuTezv7u8_gLtF94hNbhs5oOLbPUUsc6RduKzL4ctO7_w8Ex3oR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFJ4gJEQeiOKtijomGp_KttPpzYQYbhsQ2RCRhLdxZjoDm0iL290Y_oG_xh_ho7_Kc9rZwhojT2RfNr3MtD0z5zv3Q8hrKbUE4OG-Zlr5nOeRrwCofW0iqQE-tMkxwflgkOwe8w8n8ckc-T3NhcGwyilPbBh1UWm0kfcAavIkg1_Ssy4s4nC7__7im48dpNDTOm2nIV2bhWK9KTfmkjz2zeV3UOfq9b1toP0bxvo7n7d2fddxwNccdEQ_zA0LC8styzOWcxlhCCgDkbuIFWPYvy5QlvOYa8BZmaoiVLHOUiYDGyeGmwjGvUMWUkB9UAQXNncGh586iw_IYoAWqUtTZgmonhat666qz9laiG-3xmYQsmkksESWrMRKHJd4_b9k4b9DOq9hZP8eWXbCLd1oV-N9MmfKFbJ44Nz3K2S56Zf5tqYuevEB-bElRyPMtKLVZEwxcUWeo-Bb0BEcgD8UQ1ipbEqnmJqi2Zg6PwcFeZtWqjMrw8x1O-47OsQA_KKtjEvHFZUUtxoMUFl6ipW2h5oebRzRXz_pucTv8JAc3wqpHpH5sirNE0JtGmWBNJkOdMotsDAb6KwotGapyoPMeiSeEkRoVzkdG3h8FahBISHFDCFFQ0jBPNLr7rtoa4fceMcm0ru7Gmt_Nweq0alwrEQwnaHvOElkLnnIQhWmhQK5WOWxShjPPBJdWy3iao4bpl6drirh2FgtrjadR151p4EBoVdJlqaa1AJAgQFSwbf3yON2EXbPH4FchCUsPZLOLM-ZF5w9Uw7PmiLnoGfAkOHT_z_WS7IIXEB83BvsPyN3keyteWyVzI9HE_McBMaxeuF2IiVfbnvz_wH_5n5V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carrying+out+streamlined+routine+data+analyses+with+reports+for+observational+studies%3A+introduction+to+a+series+of+generic+SAS%C2%AE+macros+%5Bversion+2%3B+peer+review%3A+2+approved%5D&rft.jtitle=F1000+research&rft.au=Yuan+Liu&rft.au=Dana+C.+Nickleach&rft.au=Chao+Zhang&rft.au=Jeffrey+M.+Switchenko&rft.date=2018&rft.pub=F1000+Research+Ltd&rft.issn=2046-1402&rft.eissn=2046-1402&rft.volume=7&rft_id=info:doi/10.12688%2Ff1000research.16866.2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2c8364566a9a4121b17db324b95b6248
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-1402&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-1402&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-1402&client=summon