Calibrating Sensitivity Analyses to Observed Covariates in Observational Studies
: In medical sciences, statistical analyses based on observational studies are common phenomena. One peril of drawing inferences about the effect of a treatment on subjects using observational studies is the lack of randomized assignment of subjects to the treatment. After adjusting for measured pre...
Saved in:
| Published in | Biometrics Vol. 69; no. 4; pp. 803 - 811 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Blackwell Publishers
01.12.2013
Blackwell Publishing Ltd International Biometric Society |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0006-341X 1541-0420 1541-0420 |
| DOI | 10.1111/biom.12101 |
Cover
| Abstract | : In medical sciences, statistical analyses based on observational studies are common phenomena. One peril of drawing inferences about the effect of a treatment on subjects using observational studies is the lack of randomized assignment of subjects to the treatment. After adjusting for measured pretreatment covariates, perhaps by matching, a sensitivity analysis examines the impact of an unobserved covariate, u, in an observational study. One type of sensitivity analysis uses two sensitivity parameters to measure the degree of departure of an observational study from randomized assignment. One sensitivity parameter relates u to treatment and the other relates u to response. For subject matter experts, it may be difficult to specify plausible ranges of values for the sensitivity parameters on their absolute scales. We propose an approach that calibrates the values of the sensitivity parameters to the observed covariates and is more interpretable to subject matter experts. We will illustrate our method using data from the U.S. National Health and Nutrition Examination Survey regarding the relationship between cigarette smoking and blood lead levels. |
|---|---|
| AbstractList | In medical sciences, statistical analyses based on observational studies are common phenomena. One peril of drawing inferences about the effect of a treatment on subjects using observational studies is the lack of randomized assignment of subjects to the treatment. After adjusting for measured pretreatment covariates, perhaps by matching, a sensitivity analysis examines the impact of an unobserved covariate, u, in an observational study. One type of sensitivity analysis uses two sensitivity parameters to measure the degree of departure of an observational study from randomized assignment. One sensitivity parameter relates u to treatment and the other relates u to response. For subject matter experts, it may be difficult to specify plausible ranges of values for the sensitivity parameters on their absolute scales. We propose an approach that calibrates the values of the sensitivity parameters to the observed covariates and is more interpretable to subject matter experts. We will illustrate our method using data from the U.S. National Health and Nutrition Examination Survey regarding the relationship between cigarette smoking and blood lead levels. : In medical sciences, statistical analyses based on observational studies are common phenomena. One peril of drawing inferences about the effect of a treatment on subjects using observational studies is the lack of randomized assignment of subjects to the treatment. After adjusting for measured pretreatment covariates, perhaps by matching, a sensitivity analysis examines the impact of an unobserved covariate, u, in an observational study. One type of sensitivity analysis uses two sensitivity parameters to measure the degree of departure of an observational study from randomized assignment. One sensitivity parameter relates u to treatment and the other relates u to response. For subject matter experts, it may be difficult to specify plausible ranges of values for the sensitivity parameters on their absolute scales. We propose an approach that calibrates the values of the sensitivity parameters to the observed covariates and is more interpretable to subject matter experts. We will illustrate our method using data from the U.S. National Health and Nutrition Examination Survey regarding the relationship between cigarette smoking and blood lead levels. In medical sciences, statistical analyses based on observational studies are common phenomena. One peril of drawing inferences about the effect of a treatment on subjects using observational studies is the lack of randomized assignment of subjects to the treatment. After adjusting for measured pretreatment covariates, perhaps by matching, a sensitivity analysis examines the impact of an unobserved covariate, u, in an observational study. One type of sensitivity analysis uses two sensitivity parameters to measure the degree of departure of an observational study from randomized assignment. One sensitivity parameter relates to treatment and the other relates u to response. For subject matter experts, it may be difficult to specify plausible ranges of values for the sensitivity parameters on their absolute scales. We propose an approach that calibrates the values of the sensitivity parameters to the observed covariates and is more interpretable to subject matter experts. We will illustrate our method using data from the US National Health and Nutrition Examination Survey regarding the relationship between cigarette smoking and blood lead levels. [PUBLICATION ABSTRACT] In medical sciences, statistical analyses based on observational studies are common phenomena. One peril of drawing inferences about the effect of a treatment on subjects using observational studies is the lack of randomized assignment of subjects to the treatment. After adjusting for measured pretreatment covariates, perhaps by matching, a sensitivity analysis examines the impact of an unobserved covariate, u, in an observational study. One type of sensitivity analysis uses two sensitivity parameters to measure the degree of departure of an observational study from randomized assignment. One sensitivity parameter relates u to treatment and the other relates u to response. For subject matter experts, it may be difficult to specify plausible ranges of values for the sensitivity parameters on their absolute scales. We propose an approach that calibrates the values of the sensitivity parameters to the observed covariates and is more interpretable to subject matter experts. We will illustrate our method using data from the U.S. National Health and Nutrition Examination Survey regarding the relationship between cigarette smoking and blood lead levels.In medical sciences, statistical analyses based on observational studies are common phenomena. One peril of drawing inferences about the effect of a treatment on subjects using observational studies is the lack of randomized assignment of subjects to the treatment. After adjusting for measured pretreatment covariates, perhaps by matching, a sensitivity analysis examines the impact of an unobserved covariate, u, in an observational study. One type of sensitivity analysis uses two sensitivity parameters to measure the degree of departure of an observational study from randomized assignment. One sensitivity parameter relates u to treatment and the other relates u to response. For subject matter experts, it may be difficult to specify plausible ranges of values for the sensitivity parameters on their absolute scales. We propose an approach that calibrates the values of the sensitivity parameters to the observed covariates and is more interpretable to subject matter experts. We will illustrate our method using data from the U.S. National Health and Nutrition Examination Survey regarding the relationship between cigarette smoking and blood lead levels. Summary In medical sciences, statistical analyses based on observational studies are common phenomena. One peril of drawing inferences about the effect of a treatment on subjects using observational studies is the lack of randomized assignment of subjects to the treatment. After adjusting for measured pretreatment covariates, perhaps by matching, a sensitivity analysis examines the impact of an unobserved covariate, u, in an observational study. One type of sensitivity analysis uses two sensitivity parameters to measure the degree of departure of an observational study from randomized assignment. One sensitivity parameter relates u to treatment and the other relates u to response. For subject matter experts, it may be difficult to specify plausible ranges of values for the sensitivity parameters on their absolute scales. We propose an approach that calibrates the values of the sensitivity parameters to the observed covariates and is more interpretable to subject matter experts. We will illustrate our method using data from the U.S. National Health and Nutrition Examination Survey regarding the relationship between cigarette smoking and blood lead levels. |
| Author | Small, Dylan S. Hsu, Jesse Y. |
| Author_xml | – sequence: 1 fullname: Hsu, Jesse Y – sequence: 2 fullname: Small, Dylan S |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24328711$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkd1rFDEUxYNU7Lb64rs64EsRpuY7mcd2cWuhdoW1KL6EzExSss5OapJdu_-9mc62SBHNS8i9v3O4uecA7PW-NwC8RPAY5fO-dn51jDCC6AmYIEZRCSmGe2ACIeQloejbPjiIcZmfFYP4GdjHlGApEJqAz1PduTro5PrrYmH66JLbuLQtTnrdbaOJRfLFvI4mbExbTP1GB6dTLrt-V85Sn9likdatM_E5eGp1F82L3X0IrmYfvkw_lhfzs_PpyUXZUJEn1LRhdWtbaVlNa9ZKjWtkZIsr3HBrObd1y7WAjFUWVbSpoGREk5ZXiNmGQHIIjkbfm-B_rk1MauViY7pO98avo0JcSIYJ5eT_KBWCMQzlgL59hC79OuTvDRQXLIMUZ-r1jlrXK9Oqm-BWOmzV_Voz8G4EmuBjDMY-IAiqITM1ZKbuMsswfAQ3Lt1tNQXtur9L0Cj55Tqz_Ye5Oj2ff7rXvBo1y5h8-GNmRiRiLPfLse9iMrcPfR1-KC6IYOrr5ZmazcTppfxeqcHvzchb7ZW-Di6qqwWGiEGIqOQ5ot_nVsmC |
| CODEN | BIOMA5 |
| CitedBy_id | crossref_primary_10_1093_biomet_asz048 crossref_primary_10_1080_01621459_2023_2298037 crossref_primary_10_1214_18_AOAS1215 crossref_primary_10_1080_01621459_2022_2102503 crossref_primary_10_1002_bimj_202100118 crossref_primary_10_1093_jrsssb_qkae034 crossref_primary_10_1016_j_ecosta_2023_11_004 crossref_primary_10_1038_s41598_024_71766_9 crossref_primary_10_1080_01621459_2024_2441519 crossref_primary_10_1214_18_EJS1476 crossref_primary_10_1287_mnsc_2020_3699 crossref_primary_10_1080_01621459_2020_1737078 crossref_primary_10_1093_ije_dyaa093 crossref_primary_10_1111_biom_12373 crossref_primary_10_1515_jci_2021_0010 crossref_primary_10_1186_s12874_023_01906_8 crossref_primary_10_3102_1076998620914003 crossref_primary_10_1080_01621459_2020_1736083 crossref_primary_10_1080_24709360_2022_2109910 crossref_primary_10_1111_biom_12919 crossref_primary_10_1093_biomet_asy008 crossref_primary_10_1007_s10260_021_00597_z crossref_primary_10_1080_01621459_2014_960968 crossref_primary_10_1111_biom_12873 crossref_primary_10_1214_16_AOAS942 crossref_primary_10_1080_01621459_2015_1054489 crossref_primary_10_1053_j_ajkd_2016_08_020 crossref_primary_10_1002_sim_7599 crossref_primary_10_1111_biom_13395 crossref_primary_10_1111_rssc_12443 crossref_primary_10_1016_j_jspi_2020_10_004 crossref_primary_10_1093_biomet_asae040 crossref_primary_10_1214_14_AOAS770 crossref_primary_10_1080_01621459_2020_1720693 crossref_primary_10_1111_rssa_12946 crossref_primary_10_1002_sim_8460 crossref_primary_10_1080_01621459_2022_2069572 crossref_primary_10_1080_01621459_2024_2335588 |
| Cites_doi | 10.1126/science.308.5726.1239a 10.1198/000313007X163213 10.1007/978-1-4757-3692-2 10.1257/000282803321946921 10.1002/sim.2344 10.1093/oxfordjournals.aje.a009673 10.3102/10769986011003207 10.2307/1165377 10.1093/biomet/70.1.41 10.1093/biomet/71.3.431 10.1111/1467-9868.00249 10.1111/j.2517-6161.1979.tb01052.x 10.3102/10769986028004315 10.1214/09-AOAS315 10.1198/016214507000000608 10.1007/s10742-012-0095-9 10.1126/science.1110096 10.1111/1467-9868.00055 10.1111/j.2517-6161.1995.tb02029.x 10.1037/h0037350 10.4310/SII.2009.v2.n2.a10 10.1002/sim.3107 10.1093/biomet/85.4.907 |
| ContentType | Journal Article |
| Copyright | 2013 International Biometric Society 2013, The International Biometric Society 2013, The International Biometric Society. |
| Copyright_xml | – notice: 2013 International Biometric Society – notice: 2013, The International Biometric Society – notice: 2013, The International Biometric Society. |
| DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7X8 7S9 L.6 |
| DOI | 10.1111/biom.12101 |
| DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef ProQuest Computer Science Collection MEDLINE - Academic MEDLINE AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Biology Mathematics |
| EISSN | 1541-0420 |
| EndPage | 811 |
| ExternalDocumentID | 3154584391 24328711 10_1111_biom_12101 BIOM12101 24538155 ark_67375_WNG_FF7BN8Z9_1 US201500148630 |
| Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article Feature |
| GeographicLocations | United States United States--US |
| GeographicLocations_xml | – name: United States – name: United States--US |
| GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 3V. 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABCVL ABDBF ABEML ABFAN ABHUG ABJCF ABJNI ABLJU ABPPZ ABPTK ABPVW ABTAH ABUWG ABWRO ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACSCC ACTMH ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIPN ADIZJ ADKYN ADMGS ADODI ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELPN AENEX AEQDE AEUPB AEUQT AEUYR AFBPY AFDVO AFEBI AFFTP AFGKR AFKRA AFPWT AFVGU AFVYC AFXKK AFZJQ AGJLS AGTJU AHMBA AIAGR AIBGX AIURR AIWBW AJBDE AJXKR ALAGY ALEEW ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANPLD APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EFSUC EJD EMB EMK EMOBN EST ESTFP ESX F00 F01 F04 F5P FBQ FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K48 K6V K7- L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OWPYF P0- P2P P2W P2X P4D P62 PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K VQA W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WXSBR WYISQ X6Y XBAML XFK XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHBH AAMMB AANHP AAUAY AAWIL AAYCA AAZSN ABAWQ ABDFA ABEJV ABGNP ABMNT ABXSQ ABXVV ACHJO ACRPL ACUHS ACYXJ ADNBA ADNMO ADVOB AEFGJ AEOTA AFWVQ AGLNM AGQPQ AGXDD AHGBF AIDQK AIDYY AIHAF AJAOE AJBYB AJNCP ALRMG BSCLL H13 IPSME KOP NU- OIG OJZSN PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO ROX ALIPV AAYXX CITATION CGR CUY CVF ECM EIF NPM AGORE JQ2 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c4741-a4c5bdfd8f5b4b5d8a2b1e8d292c6ff66fbd6a70559f194c90853a3d6915fc303 |
| IEDL.DBID | DR2 |
| ISSN | 0006-341X 1541-0420 |
| IngestDate | Fri Oct 03 00:05:24 EDT 2025 Wed Oct 01 14:21:05 EDT 2025 Wed Aug 13 10:45:41 EDT 2025 Thu Apr 03 07:00:11 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Wed Oct 01 01:41:30 EDT 2025 Wed Jan 22 16:56:06 EST 2025 Sat Oct 25 06:57:01 EDT 2025 Sun Sep 21 06:17:31 EDT 2025 Wed Dec 27 19:16:48 EST 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Causal inference Hidden bias Simultaneous sensitivity analysis |
| Language | English |
| License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model 2013, The International Biometric Society. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4741-a4c5bdfd8f5b4b5d8a2b1e8d292c6ff66fbd6a70559f194c90853a3d6915fc303 |
| Notes | http://dx.doi.org/10.1111/biom.12101 ArticleID:BIOM12101 ark:/67375/WNG-FF7BN8Z9-1 istex:0EF9B898AB9714566095F54ADEA0B5AE42BC621A SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PMID | 24328711 |
| PQID | 1467577542 |
| PQPubID | 35366 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1678523463 proquest_miscellaneous_1477552083 proquest_journals_1467577542 pubmed_primary_24328711 crossref_primary_10_1111_biom_12101 crossref_citationtrail_10_1111_biom_12101 wiley_primary_10_1111_biom_12101_BIOM12101 jstor_primary_24538155 istex_primary_ark_67375_WNG_FF7BN8Z9_1 fao_agris_US201500148630 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | December 2013 |
| PublicationDateYYYYMMDD | 2013-12-01 |
| PublicationDate_xml | – month: 12 year: 2013 text: December 2013 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington |
| PublicationTitle | Biometrics |
| PublicationTitleAlternate | Biom |
| PublicationYear | 2013 |
| Publisher | Blackwell Publishers Blackwell Publishing Ltd International Biometric Society |
| Publisher_xml | – name: Blackwell Publishers – name: Blackwell Publishing Ltd – name: International Biometric Society |
| References | Geronimus, A. T. and Bound, J. (1998). Use of census-based aggregate variables to proxy for socioeconomic group: Evidence from national samples. American Journal of Epidemiology 148, 475-486. Hosman, C. A., Hansen, B. B., and Holland, P. W. (2010). The sensitivity of linear regression coefficients' confidence limits to the omission of a confounder. The Annals of Applied Statistics 4, 849-870. Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology 66, 688-701. Small, D. S. (2007). Sensitivity analysis for instrumental variables regression with overidentifying restructions. Journal of the American Statistical Association 102, 1049-1058. Gail, M. H., Wieand, S., and Piantadosi, S. (1984). Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates. Biometrika 71, 431-444. Rosenbaum, P. R. (2002). Observational Studies, 2nd edition. New York, NY, USA: Springer. Fisher, R. A. (1935). The Design of Experiments. Edinburgh, Scotland: Oliver and Boyd. Gelman, A. (2008). Scaling regression inputs by dividing by two standard deviations. Statistics in Medicine 27, 2865-2873. Cornfield, J., Haenszel, W., Hammond, E. C., Lilienfeld, A. M., Shimkin, M. B., and Wynder, E. L. (1959). Smoking and lung cancer. Journal of the National Cancer Institute 22, 173-203. Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41-55. Bingenheimer, J. B., Brennan, R. T., and Earls, F. J. (2005). Firearm violence exposure and serious violent behavior. Science 308, 1323-1326. Marcus, S. M. (1997). Using omitted variable bias to assess uncertainty in the estimation of an AIDS education treatment effect. Journal of Educational and Behavioral Statistics 22, 193-201. Neyman, J. (1923). On the application of probability theory to agricultural experiments. Reprint in Statistical Science( 5:465-480, 1923). Gastwirth, J. L. (1992). Methods for assessing the sensitivity of statistical comparisons used in title VII cases to omitted variables. Jurimetrics 33, 19-34. Gastwirth, J. L., Krieger, A. M., and Rosenbaum, P. R. (2000). Asymptotic separability in sensitivity analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 62, 545-555. Hsu, J. Y., Lorch, S. A., and Small, D. S. (2012). Perils and prospects of using aggregate area level socioeconomic information as a proxy for individual level socioeconomic confounders in instrumental variables regression. Health Services and Outcomes Research Methodology 12, 119-140. Dawid, A. P. (1979). Conditional independence in statistical theory. Journal of the Royal Statistical Society. Series B (Methodological) 41, 1-31. Rosenbaum, P. R. (1986). Dropping out of high school in the united states: An observational study. Journal of Educational Statistics 11, 207-224. Hansen, B. B. (2007). Optmatch: Flexible, optimal matching for observational studies. R News 7, 18-24. Pan, W. and Frank, K. A. (2003). A probability index of the robustness of a causal inference. Journal of Educational and Behavioral Statistics 28, 315-337. Imbens, G. W. (2003). Sensitivity to exogeneity assumptions in program evaluation. The American Economic Review 93, 126-132. Guo, J. and Geng, Z. (1995). Collasibility of logistic regression coefficients. Journal of the Royal Statistical Society. Series B (Methodological) 57, 263-267. Small, D. S., Gastwirth, J. L., Krieger, A. M., and Rosenbaum, P. R. (2009). Simultaneous sensitivity analysis for observational studies using full matching or matching with multiple controls. Statistics and Its Interface 2, 203-211. Copas, J. B. and Li, H. G. (1997). Inference for non-random samples. Journal of the Royal Statistical Society. Series B (Methodological) 59, 55-95. Shepherd, B. E., Gilbert, P. B., and Mehrotra, D. V. (2007). Eliciting a counterfactual sensitivity parameter. The American Statistician 61, 56-63. Gastwirth, J. L., Krieger, A. M., and Rosenbaum, P. R. (1998). Dual and simultaneous sensitivity analysis for matched pairs. Biometrika 85, 907-920. Holden, C. (2005). Controversial study suggests seeing gun violence promotes it. Science 308, 1239-1240. Wang, L. and Krieger, A. M. (2006). Causal conclusions are most sensitive to unobserved binary covariates. Statistics in Medicine 25, 2257-2271. 2007; 102 1997; 22 1986; 11 1995; 57 2002 1983; 70 1998; 85 2003; 93 1992; 33 2012; 12 1959; 22 1935 1974; 66 1984; 71 1923; 5 1997; 59 2008; 27 2006; 25 2000; 62 2005; 308 2007; 7 1998; 148 2003; 28 2007; 61 1979; 41 2009; 2 2010; 4 Pan (2024010512551530200_biom12101-bib-0020) 2003; 28 Small (2024010512551530200_biom12101-bib-0027) 2009; 2 Copas (2024010512551530200_biom12101-bib-0002) 1997; 59 Hansen (2024010512551530200_biom12101-bib-0013) 2007; 7 Rubin (2024010512551530200_biom12101-bib-0024) 1974; 66 Imbens (2024010512551530200_biom12101-bib-0017) 2003; 93 Hsu (2024010512551530200_biom12101-bib-0016) 2012; 12 Gail (2024010512551530200_biom12101-bib-0006) 1984; 71 Guo (2024010512551530200_biom12101-bib-0012) 1995; 57 Bingenheimer (2024010512551530200_biom12101-bib-0001) 2005; 308 Neyman (2024010512551530200_biom12101-bib-0019) 1923; 5 Rosenbaum (2024010512551530200_biom12101-bib-0022) 2002 Gelman (2024010512551530200_biom12101-bib-0010) 2008; 27 Shepherd (2024010512551530200_biom12101-bib-0025) 2007; 61 Fisher (2024010512551530200_biom12101-bib-0005) 1935 Rosenbaum (2024010512551530200_biom12101-bib-0023) 1983; 70 Hosman (2024010512551530200_biom12101-bib-0015) 2010; 4 Gastwirth (2024010512551530200_biom12101-bib-0009) 2000; 62 Marcus (2024010512551530200_biom12101-bib-0018) 1997; 22 Small (2024010512551530200_biom12101-bib-0026) 2007; 102 Gastwirth (2024010512551530200_biom12101-bib-0007) 1992; 33 Gastwirth (2024010512551530200_biom12101-bib-0008) 1998; 85 Cornfield (2024010512551530200_biom12101-bib-0003) 1959; 22 Wang (2024010512551530200_biom12101-bib-0028) 2006; 25 Holden (2024010512551530200_biom12101-bib-0014) 2005; 308 Geronimus (2024010512551530200_biom12101-bib-0011) 1998; 148 Rosenbaum (2024010512551530200_biom12101-bib-0021) 1986; 11 Dawid (2024010512551530200_biom12101-bib-0004) 1979; 41 |
| References_xml | – reference: Marcus, S. M. (1997). Using omitted variable bias to assess uncertainty in the estimation of an AIDS education treatment effect. Journal of Educational and Behavioral Statistics 22, 193-201. – reference: Rosenbaum, P. R. (2002). Observational Studies, 2nd edition. New York, NY, USA: Springer. – reference: Bingenheimer, J. B., Brennan, R. T., and Earls, F. J. (2005). Firearm violence exposure and serious violent behavior. Science 308, 1323-1326. – reference: Fisher, R. A. (1935). The Design of Experiments. Edinburgh, Scotland: Oliver and Boyd. – reference: Gastwirth, J. L., Krieger, A. M., and Rosenbaum, P. R. (1998). Dual and simultaneous sensitivity analysis for matched pairs. Biometrika 85, 907-920. – reference: Cornfield, J., Haenszel, W., Hammond, E. C., Lilienfeld, A. M., Shimkin, M. B., and Wynder, E. L. (1959). Smoking and lung cancer. Journal of the National Cancer Institute 22, 173-203. – reference: Hansen, B. B. (2007). Optmatch: Flexible, optimal matching for observational studies. R News 7, 18-24. – reference: Gelman, A. (2008). Scaling regression inputs by dividing by two standard deviations. Statistics in Medicine 27, 2865-2873. – reference: Rosenbaum, P. R. (1986). Dropping out of high school in the united states: An observational study. Journal of Educational Statistics 11, 207-224. – reference: Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41-55. – reference: Gastwirth, J. L. (1992). Methods for assessing the sensitivity of statistical comparisons used in title VII cases to omitted variables. Jurimetrics 33, 19-34. – reference: Gastwirth, J. L., Krieger, A. M., and Rosenbaum, P. R. (2000). Asymptotic separability in sensitivity analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 62, 545-555. – reference: Imbens, G. W. (2003). Sensitivity to exogeneity assumptions in program evaluation. The American Economic Review 93, 126-132. – reference: Shepherd, B. E., Gilbert, P. B., and Mehrotra, D. V. (2007). Eliciting a counterfactual sensitivity parameter. The American Statistician 61, 56-63. – reference: Hsu, J. Y., Lorch, S. A., and Small, D. S. (2012). Perils and prospects of using aggregate area level socioeconomic information as a proxy for individual level socioeconomic confounders in instrumental variables regression. Health Services and Outcomes Research Methodology 12, 119-140. – reference: Neyman, J. (1923). On the application of probability theory to agricultural experiments. Reprint in Statistical Science( 5:465-480, 1923). – reference: Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology 66, 688-701. – reference: Geronimus, A. T. and Bound, J. (1998). Use of census-based aggregate variables to proxy for socioeconomic group: Evidence from national samples. American Journal of Epidemiology 148, 475-486. – reference: Copas, J. B. and Li, H. G. (1997). Inference for non-random samples. Journal of the Royal Statistical Society. Series B (Methodological) 59, 55-95. – reference: Wang, L. and Krieger, A. M. (2006). Causal conclusions are most sensitive to unobserved binary covariates. Statistics in Medicine 25, 2257-2271. – reference: Dawid, A. P. (1979). Conditional independence in statistical theory. Journal of the Royal Statistical Society. Series B (Methodological) 41, 1-31. – reference: Holden, C. (2005). Controversial study suggests seeing gun violence promotes it. Science 308, 1239-1240. – reference: Gail, M. H., Wieand, S., and Piantadosi, S. (1984). Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates. Biometrika 71, 431-444. – reference: Guo, J. and Geng, Z. (1995). Collasibility of logistic regression coefficients. Journal of the Royal Statistical Society. Series B (Methodological) 57, 263-267. – reference: Small, D. S. (2007). Sensitivity analysis for instrumental variables regression with overidentifying restructions. Journal of the American Statistical Association 102, 1049-1058. – reference: Hosman, C. A., Hansen, B. B., and Holland, P. W. (2010). The sensitivity of linear regression coefficients' confidence limits to the omission of a confounder. The Annals of Applied Statistics 4, 849-870. – reference: Pan, W. and Frank, K. A. (2003). A probability index of the robustness of a causal inference. Journal of Educational and Behavioral Statistics 28, 315-337. – reference: Small, D. S., Gastwirth, J. L., Krieger, A. M., and Rosenbaum, P. R. (2009). Simultaneous sensitivity analysis for observational studies using full matching or matching with multiple controls. Statistics and Its Interface 2, 203-211. – volume: 27 start-page: 2865 year: 2008 end-page: 2873 article-title: Scaling regression inputs by dividing by two standard deviations publication-title: Statistics in Medicine – volume: 7 start-page: 18 year: 2007 end-page: 24 article-title: Optmatch: Flexible, optimal matching for observational studies publication-title: R News – year: 1935 – volume: 71 start-page: 431 year: 1984 end-page: 444 article-title: Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates publication-title: Biometrika – volume: 5 start-page: 465 year: 1923 end-page: 480 article-title: On the application of probability theory to agricultural experiments publication-title: Reprint in Statistical Science – volume: 28 start-page: 315 year: 2003 end-page: 337 article-title: A probability index of the robustness of a causal inference publication-title: Journal of Educational and Behavioral Statistics – volume: 102 start-page: 1049 year: 2007 end-page: 1058 article-title: Sensitivity analysis for instrumental variables regression with overidentifying restructions publication-title: Journal of the American Statistical Association – volume: 62 start-page: 545 year: 2000 end-page: 555 article-title: Asymptotic separability in sensitivity analysis publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – volume: 59 start-page: 55 year: 1997 end-page: 95 article-title: Inference for non‐random samples publication-title: Journal of the Royal Statistical Society. Series B (Methodological) – volume: 22 start-page: 193 year: 1997 end-page: 201 article-title: Using omitted variable bias to assess uncertainty in the estimation of an AIDS education treatment effect publication-title: Journal of Educational and Behavioral Statistics – volume: 308 start-page: 1323 year: 2005 end-page: 1326 article-title: Firearm violence exposure and serious violent behavior publication-title: Science – volume: 41 start-page: 1 year: 1979 end-page: 31 article-title: Conditional independence in statistical theory publication-title: Journal of the Royal Statistical Society. Series B (Methodological) – volume: 57 start-page: 263 year: 1995 end-page: 267 article-title: Collasibility of logistic regression coefficients publication-title: Journal of the Royal Statistical Society. Series B (Methodological) – volume: 70 start-page: 41 year: 1983 end-page: 55 article-title: The central role of the propensity score in observational studies for causal effects publication-title: Biometrika – volume: 85 start-page: 907 year: 1998 end-page: 920 article-title: Dual and simultaneous sensitivity analysis for matched pairs publication-title: Biometrika – volume: 12 start-page: 119 year: 2012 end-page: 140 article-title: Perils and prospects of using aggregate area level socioeconomic information as a proxy for individual level socioeconomic confounders in instrumental variables regression publication-title: Health Services and Outcomes Research Methodology – volume: 61 start-page: 56 year: 2007 end-page: 63 article-title: Eliciting a counterfactual sensitivity parameter publication-title: The American Statistician – volume: 2 start-page: 203 year: 2009 end-page: 211 article-title: Simultaneous sensitivity analysis for observational studies using full matching or matching with multiple controls publication-title: Statistics and Its Interface – volume: 22 start-page: 173 year: 1959 end-page: 203 article-title: Smoking and lung cancer publication-title: Journal of the National Cancer Institute – volume: 25 start-page: 2257 year: 2006 end-page: 2271 article-title: Causal conclusions are most sensitive to unobserved binary covariates publication-title: Statistics in Medicine – volume: 93 start-page: 126 year: 2003 end-page: 132 article-title: Sensitivity to exogeneity assumptions in program evaluation publication-title: The American Economic Review – year: 2002 – volume: 33 start-page: 19 year: 1992 end-page: 34 article-title: Methods for assessing the sensitivity of statistical comparisons used in title VII cases to omitted variables publication-title: Jurimetrics – volume: 4 start-page: 849 year: 2010 end-page: 870 article-title: The sensitivity of linear regression coefficients’ confidence limits to the omission of a confounder publication-title: The Annals of Applied Statistics – volume: 308 start-page: 1239 year: 2005 end-page: 1240 article-title: Controversial study suggests seeing gun violence promotes it publication-title: Science – volume: 66 start-page: 688 year: 1974 end-page: 701 article-title: Estimating causal effects of treatments in randomized and nonrandomized studies publication-title: Journal of Educational Psychology – volume: 148 start-page: 475 year: 1998 end-page: 486 article-title: Use of census‐based aggregate variables to proxy for socioeconomic group: Evidence from national samples publication-title: American Journal of Epidemiology – volume: 11 start-page: 207 year: 1986 end-page: 224 article-title: Dropping out of high school in the united states: An observational study publication-title: Journal of Educational Statistics – volume: 308 start-page: 1239 year: 2005 ident: 2024010512551530200_biom12101-bib-0014 article-title: Controversial study suggests seeing gun violence promotes it publication-title: Science doi: 10.1126/science.308.5726.1239a – volume: 61 start-page: 56 year: 2007 ident: 2024010512551530200_biom12101-bib-0025 article-title: Eliciting a counterfactual sensitivity parameter publication-title: The American Statistician doi: 10.1198/000313007X163213 – volume: 5 start-page: 465 year: 1923 ident: 2024010512551530200_biom12101-bib-0019 article-title: On the application of probability theory to agricultural experiments publication-title: Reprint in Statistical Science – volume-title: Observational Studies year: 2002 ident: 2024010512551530200_biom12101-bib-0022 doi: 10.1007/978-1-4757-3692-2 – volume: 93 start-page: 126 year: 2003 ident: 2024010512551530200_biom12101-bib-0017 article-title: Sensitivity to exogeneity assumptions in program evaluation publication-title: The American Economic Review doi: 10.1257/000282803321946921 – volume: 25 start-page: 2257 year: 2006 ident: 2024010512551530200_biom12101-bib-0028 article-title: Causal conclusions are most sensitive to unobserved binary covariates publication-title: Statistics in Medicine doi: 10.1002/sim.2344 – volume: 148 start-page: 475 year: 1998 ident: 2024010512551530200_biom12101-bib-0011 article-title: Use of census-based aggregate variables to proxy for socioeconomic group: Evidence from national samples publication-title: American Journal of Epidemiology doi: 10.1093/oxfordjournals.aje.a009673 – volume: 33 start-page: 19 year: 1992 ident: 2024010512551530200_biom12101-bib-0007 article-title: Methods for assessing the sensitivity of statistical comparisons used in title VII cases to omitted variables publication-title: Jurimetrics – volume: 11 start-page: 207 year: 1986 ident: 2024010512551530200_biom12101-bib-0021 article-title: Dropping out of high school in the united states: An observational study publication-title: Journal of Educational Statistics doi: 10.3102/10769986011003207 – volume: 22 start-page: 193 year: 1997 ident: 2024010512551530200_biom12101-bib-0018 article-title: Using omitted variable bias to assess uncertainty in the estimation of an AIDS education treatment effect publication-title: Journal of Educational and Behavioral Statistics doi: 10.2307/1165377 – volume: 70 start-page: 41 year: 1983 ident: 2024010512551530200_biom12101-bib-0023 article-title: The central role of the propensity score in observational studies for causal effects publication-title: Biometrika doi: 10.1093/biomet/70.1.41 – volume: 71 start-page: 431 year: 1984 ident: 2024010512551530200_biom12101-bib-0006 article-title: Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates publication-title: Biometrika doi: 10.1093/biomet/71.3.431 – volume: 62 start-page: 545 year: 2000 ident: 2024010512551530200_biom12101-bib-0009 article-title: Asymptotic separability in sensitivity analysis publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/1467-9868.00249 – volume: 41 start-page: 1 year: 1979 ident: 2024010512551530200_biom12101-bib-0004 article-title: Conditional independence in statistical theory publication-title: Journal of the Royal Statistical Society. Series B (Methodological) doi: 10.1111/j.2517-6161.1979.tb01052.x – volume: 28 start-page: 315 year: 2003 ident: 2024010512551530200_biom12101-bib-0020 article-title: A probability index of the robustness of a causal inference publication-title: Journal of Educational and Behavioral Statistics doi: 10.3102/10769986028004315 – volume: 22 start-page: 173 year: 1959 ident: 2024010512551530200_biom12101-bib-0003 article-title: Smoking and lung cancer publication-title: Journal of the National Cancer Institute – volume: 4 start-page: 849 year: 2010 ident: 2024010512551530200_biom12101-bib-0015 article-title: The sensitivity of linear regression coefficients’ confidence limits to the omission of a confounder publication-title: The Annals of Applied Statistics doi: 10.1214/09-AOAS315 – volume: 102 start-page: 1049 year: 2007 ident: 2024010512551530200_biom12101-bib-0026 article-title: Sensitivity analysis for instrumental variables regression with overidentifying restructions publication-title: Journal of the American Statistical Association doi: 10.1198/016214507000000608 – volume-title: The Design of Experiments year: 1935 ident: 2024010512551530200_biom12101-bib-0005 – volume: 12 start-page: 119 year: 2012 ident: 2024010512551530200_biom12101-bib-0016 article-title: Perils and prospects of using aggregate area level socioeconomic information as a proxy for individual level socioeconomic confounders in instrumental variables regression publication-title: Health Services and Outcomes Research Methodology doi: 10.1007/s10742-012-0095-9 – volume: 308 start-page: 1323 year: 2005 ident: 2024010512551530200_biom12101-bib-0001 article-title: Firearm violence exposure and serious violent behavior publication-title: Science doi: 10.1126/science.1110096 – volume: 59 start-page: 55 year: 1997 ident: 2024010512551530200_biom12101-bib-0002 article-title: Inference for non-random samples publication-title: Journal of the Royal Statistical Society. Series B (Methodological) doi: 10.1111/1467-9868.00055 – volume: 57 start-page: 263 year: 1995 ident: 2024010512551530200_biom12101-bib-0012 article-title: Collasibility of logistic regression coefficients publication-title: Journal of the Royal Statistical Society. Series B (Methodological) doi: 10.1111/j.2517-6161.1995.tb02029.x – volume: 66 start-page: 688 year: 1974 ident: 2024010512551530200_biom12101-bib-0024 article-title: Estimating causal effects of treatments in randomized and nonrandomized studies publication-title: Journal of Educational Psychology doi: 10.1037/h0037350 – volume: 2 start-page: 203 year: 2009 ident: 2024010512551530200_biom12101-bib-0027 article-title: Simultaneous sensitivity analysis for observational studies using full matching or matching with multiple controls publication-title: Statistics and Its Interface doi: 10.4310/SII.2009.v2.n2.a10 – volume: 7 start-page: 18 year: 2007 ident: 2024010512551530200_biom12101-bib-0013 article-title: Optmatch: Flexible, optimal matching for observational studies publication-title: R News – volume: 27 start-page: 2865 year: 2008 ident: 2024010512551530200_biom12101-bib-0010 article-title: Scaling regression inputs by dividing by two standard deviations publication-title: Statistics in Medicine doi: 10.1002/sim.3107 – volume: 85 start-page: 907 year: 1998 ident: 2024010512551530200_biom12101-bib-0008 article-title: Dual and simultaneous sensitivity analysis for matched pairs publication-title: Biometrika doi: 10.1093/biomet/85.4.907 |
| SSID | ssj0009502 |
| Score | 2.3438835 |
| Snippet | : In medical sciences, statistical analyses based on observational studies are common phenomena. One peril of drawing inferences about the effect of a... In medical sciences, statistical analyses based on observational studies are common phenomena. One peril of drawing inferences about the effect of a treatment... Summary In medical sciences, statistical analyses based on observational studies are common phenomena. One peril of drawing inferences about the effect of a... |
| SourceID | proquest pubmed crossref wiley jstor istex fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 803 |
| SubjectTerms | BIOMETRIC METHODOLOGY Biometrics biometry Biometry - methods blood Calibration Causal inference Clinical outcomes Data Interpretation, Statistical Epidemiologic Methods experts Female Hidden bias Humans lead Lead - blood Male Matched-Pair Analysis medical sciences Medical treatment Middle Aged National Health and Nutrition Examination Survey observational studies Observational Studies as Topic - methods Observational Studies as Topic - standards Observational Studies as Topic - statistics & numerical data Risk Factors Sensitivity analysis Simultaneous sensitivity analysis smoking (habit) Smoking - blood Smoking - epidemiology statistical analysis Studies United States United States - epidemiology |
| Title | Calibrating Sensitivity Analyses to Observed Covariates in Observational Studies |
| URI | https://api.istex.fr/ark:/67375/WNG-FF7BN8Z9-1/fulltext.pdf https://www.jstor.org/stable/24538155 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.12101 https://www.ncbi.nlm.nih.gov/pubmed/24328711 https://www.proquest.com/docview/1467577542 https://www.proquest.com/docview/1477552083 https://www.proquest.com/docview/1678523463 |
| Volume | 69 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCO_Food Science Source customDbUrl: eissn: 1541-0420 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0009502 issn: 0006-341X databaseCode: A8Z dateStart: 20030301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1541-0420 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009502 issn: 0006-341X databaseCode: ABDBF dateStart: 20030301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0006-341X databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1541-0420 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009502 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxNBEB5qQagP_ojWnlY5UQSFK7ndvb1b8MUWYxWSijUYBFl293aLVC7SJKL-9e7s3p2plIK-hWQu3G1mdr-ZfPMNwBNSGpYblWeEljpjJJAAVJ05IqqhsqI0Q-x3Hk_44ZS9nRWzDXjR9cJEfYi-4IaREfZrDHClF2tBju3pqI0QmrdyykM-9Z6sKe4Oo1Q4krtYPmu1SZHG8-fSc6fRFafmHqPi8v7o6IkXAc_zODYcRKMb8Ll7hMg_Od1bLfWe-fWXuuP_PuNNuN4i1PRldKlbsGGbAVyNMyt_DuDauBd6XQxgC8Fq1Hq-De-w0UujSzUn6TEy4-NoijQqn9hFupynRxrrwLZOD-bffZ6OUDf90rRvt5XJtGU33oHp6NWHg8OsndiQGeahSaaYKXTt6soVmumirhTRua1qIojhznHudM0VCvgIlwtmhAd8VNGai7xwxp-m27DZzBu7A6nmtPS5pxLUCEaVrazQCOdI7VRurU7gWffLSdPKmeNUja-yS2tw8WRYvAQe97bfoojHhVY73gGkOvG7q5weE6wFYb2V02ECT4NX9Fers1NkxJWF_Dh5LUejcn9SfRLSf8d2cJvekDB_onjMlsBu50ey3SUWmHaVBUoQkgQe9R_7-MY_bVRj5yu08QYF8Uj5EhuPOApCGfc2d6OPrt0AxaTY39nz4GmXLIDcf3M0Dq_u_YvxfdgiOCMkcHx2YXN5trIPPFJb6ochIn8DuLM0pA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED7BEGI88KMwFhgQBEICKVPjOE78yCZKB2uH2KpVvFi2Y09oKEFri4C_Hp-dhg5Nk-Ctai9V6tzZ312_-w7gBSk0TbVME5IVKqHEkwBklVjCy740vNB97HcejdlwQt9P82nLzcFemKAP0RXcMDL8fo0BjgXplSjH_nQUR8DurWuUuUQFMdEnsqK52w9i4Ujvoum0VSdFIs-fa8-dR1etbBxKxQX-sSQoXgQ9zyNZfxQNbod5qzOvYIgMlNPtxVxt619_6Tv-96-8A7dakBq_CV51F66YugfXw9jKnz24Oeq0Xmc9WEe8GuSe78FH7PVS6FX1SXyI5PgwnSIO4idmFs-b-EBhKdhU8W7z3aXqiHbjL3X7dlucjFuC432YDN4e7Q6TdmhDoqlDJ4mkOleVrUqbK6ryqpREpaasCCeaWcuYVRWTqOHDbcqp5g7zZTKrGE9zq92BugFrdVObTYgVywr3VCXPNKeZNKXhChEdqaxMjVERvFo-OqFbRXMcrPFVLDMbXDzhFy-C553tt6DjcaHVpvMAIU_cBismhwTLQVhyZVk_gpfeLbqr5dkpkuKKXByP34nBoNgZl5-5cN-x4f2mMyTUHSoOtkWwtXQk0W4UM8y8ihxVCEkEz7qPXYjj_zayNs0CbZxBThxYvsTGgY6cZJQ5mwfBSVduIMO82N3Za-9qlyyA2Nk7GPlXD__F-CncGB6N9sX-3vjDI1gnODLEU362YG1-tjCPHXCbqyc-PH8DAwc4xQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgCDQe-FEYCwwIAiGBlKlx7CR-ZBthA9pNbBUVL5Z_TmgomdYWbfvr57PT0KFpErxV7aVK3Dv7u-t33yH0BheKpEqkCc4KmRDsSQBCJxazsi8MK1Qf-p0Hw3x7RD6P6bjl5kAvTNCH6ApuEBl-v4YAN8faLkQ59KeDOAJ0b90ilJXA6Nv6hhc0d_tBLBzoXSQdt-qkQOT5c-2l8-imFY1DqbDAp3OC4lXQ8zKS9UdRdT_MW514BUNgoBytz6ZyXZ3_pe_430_5AN1rQWr8IXjVQ3TD1D10O4ytPOuhu4NO63XSQ8uAV4Pc8yO0B71eEryqPoz3gRwfplPEQfzETOJpE-9KKAUbHW82v12qDmg3_lm3b7fFybglOD5Go-rjweZ20g5tSBRx6CQRRFGprS4tlURSXQosU1NqzLDKrc1zK3UuQMOH2ZQRxRzmy0Smc5ZSq9yBuoKW6qY2qyiWeVa49FOwTDGSCVMaJgHRYW1FaoyM0Lv5T8dVq2gOgzV-8XlmA4vH_eJF6HVnexx0PK60WnUewMWh22D5aB9DOQhKrnnWj9Bb7xbd1eLkCEhxBeXfh594VRUbw_IH4-47VrzfdIaYuEPFwbYIrc0dibcbxQQyr4KCCiGO0KvuYxfi8L-NqE0zAxtnQLEDy9fYONBBcUZyZ_MkOOnCDWSQF7s7e-9d7ZoF4Bs7uwP_6um_GL9Ed_a2Kv51Z_jlGVrGMDHEM37W0NL0ZGaeO9w2lS98dF4AXVM4SQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calibrating+Sensitivity+Analyses+to+Observed+Covariates+in+Observational+Studies&rft.jtitle=Biometrics&rft.au=Hsu%2C+Jesse+Y.&rft.au=Small%2C+Dylan+S.&rft.date=2013-12-01&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=69&rft.issue=4&rft.spage=803&rft.epage=811&rft_id=info:doi/10.1111%2Fbiom.12101&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_biom_12101 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |