Calibrating Sensitivity Analyses to Observed Covariates in Observational Studies

: In medical sciences, statistical analyses based on observational studies are common phenomena. One peril of drawing inferences about the effect of a treatment on subjects using observational studies is the lack of randomized assignment of subjects to the treatment. After adjusting for measured pre...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 69; no. 4; pp. 803 - 811
Main Authors Hsu, Jesse Y, Small, Dylan S
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishers 01.12.2013
Blackwell Publishing Ltd
International Biometric Society
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
1541-0420
DOI10.1111/biom.12101

Cover

Abstract : In medical sciences, statistical analyses based on observational studies are common phenomena. One peril of drawing inferences about the effect of a treatment on subjects using observational studies is the lack of randomized assignment of subjects to the treatment. After adjusting for measured pretreatment covariates, perhaps by matching, a sensitivity analysis examines the impact of an unobserved covariate, u, in an observational study. One type of sensitivity analysis uses two sensitivity parameters to measure the degree of departure of an observational study from randomized assignment. One sensitivity parameter relates u to treatment and the other relates u to response. For subject matter experts, it may be difficult to specify plausible ranges of values for the sensitivity parameters on their absolute scales. We propose an approach that calibrates the values of the sensitivity parameters to the observed covariates and is more interpretable to subject matter experts. We will illustrate our method using data from the U.S. National Health and Nutrition Examination Survey regarding the relationship between cigarette smoking and blood lead levels.
AbstractList In medical sciences, statistical analyses based on observational studies are common phenomena. One peril of drawing inferences about the effect of a treatment on subjects using observational studies is the lack of randomized assignment of subjects to the treatment. After adjusting for measured pretreatment covariates, perhaps by matching, a sensitivity analysis examines the impact of an unobserved covariate, u, in an observational study. One type of sensitivity analysis uses two sensitivity parameters to measure the degree of departure of an observational study from randomized assignment. One sensitivity parameter relates u to treatment and the other relates u to response. For subject matter experts, it may be difficult to specify plausible ranges of values for the sensitivity parameters on their absolute scales. We propose an approach that calibrates the values of the sensitivity parameters to the observed covariates and is more interpretable to subject matter experts. We will illustrate our method using data from the U.S. National Health and Nutrition Examination Survey regarding the relationship between cigarette smoking and blood lead levels.
: In medical sciences, statistical analyses based on observational studies are common phenomena. One peril of drawing inferences about the effect of a treatment on subjects using observational studies is the lack of randomized assignment of subjects to the treatment. After adjusting for measured pretreatment covariates, perhaps by matching, a sensitivity analysis examines the impact of an unobserved covariate, u, in an observational study. One type of sensitivity analysis uses two sensitivity parameters to measure the degree of departure of an observational study from randomized assignment. One sensitivity parameter relates u to treatment and the other relates u to response. For subject matter experts, it may be difficult to specify plausible ranges of values for the sensitivity parameters on their absolute scales. We propose an approach that calibrates the values of the sensitivity parameters to the observed covariates and is more interpretable to subject matter experts. We will illustrate our method using data from the U.S. National Health and Nutrition Examination Survey regarding the relationship between cigarette smoking and blood lead levels.
In medical sciences, statistical analyses based on observational studies are common phenomena. One peril of drawing inferences about the effect of a treatment on subjects using observational studies is the lack of randomized assignment of subjects to the treatment. After adjusting for measured pretreatment covariates, perhaps by matching, a sensitivity analysis examines the impact of an unobserved covariate, u, in an observational study. One type of sensitivity analysis uses two sensitivity parameters to measure the degree of departure of an observational study from randomized assignment. One sensitivity parameter relates to treatment and the other relates u to response. For subject matter experts, it may be difficult to specify plausible ranges of values for the sensitivity parameters on their absolute scales. We propose an approach that calibrates the values of the sensitivity parameters to the observed covariates and is more interpretable to subject matter experts. We will illustrate our method using data from the US National Health and Nutrition Examination Survey regarding the relationship between cigarette smoking and blood lead levels. [PUBLICATION ABSTRACT]
In medical sciences, statistical analyses based on observational studies are common phenomena. One peril of drawing inferences about the effect of a treatment on subjects using observational studies is the lack of randomized assignment of subjects to the treatment. After adjusting for measured pretreatment covariates, perhaps by matching, a sensitivity analysis examines the impact of an unobserved covariate, u, in an observational study. One type of sensitivity analysis uses two sensitivity parameters to measure the degree of departure of an observational study from randomized assignment. One sensitivity parameter relates u to treatment and the other relates u to response. For subject matter experts, it may be difficult to specify plausible ranges of values for the sensitivity parameters on their absolute scales. We propose an approach that calibrates the values of the sensitivity parameters to the observed covariates and is more interpretable to subject matter experts. We will illustrate our method using data from the U.S. National Health and Nutrition Examination Survey regarding the relationship between cigarette smoking and blood lead levels.In medical sciences, statistical analyses based on observational studies are common phenomena. One peril of drawing inferences about the effect of a treatment on subjects using observational studies is the lack of randomized assignment of subjects to the treatment. After adjusting for measured pretreatment covariates, perhaps by matching, a sensitivity analysis examines the impact of an unobserved covariate, u, in an observational study. One type of sensitivity analysis uses two sensitivity parameters to measure the degree of departure of an observational study from randomized assignment. One sensitivity parameter relates u to treatment and the other relates u to response. For subject matter experts, it may be difficult to specify plausible ranges of values for the sensitivity parameters on their absolute scales. We propose an approach that calibrates the values of the sensitivity parameters to the observed covariates and is more interpretable to subject matter experts. We will illustrate our method using data from the U.S. National Health and Nutrition Examination Survey regarding the relationship between cigarette smoking and blood lead levels.
Summary In medical sciences, statistical analyses based on observational studies are common phenomena. One peril of drawing inferences about the effect of a treatment on subjects using observational studies is the lack of randomized assignment of subjects to the treatment. After adjusting for measured pretreatment covariates, perhaps by matching, a sensitivity analysis examines the impact of an unobserved covariate, u, in an observational study. One type of sensitivity analysis uses two sensitivity parameters to measure the degree of departure of an observational study from randomized assignment. One sensitivity parameter relates u to treatment and the other relates u to response. For subject matter experts, it may be difficult to specify plausible ranges of values for the sensitivity parameters on their absolute scales. We propose an approach that calibrates the values of the sensitivity parameters to the observed covariates and is more interpretable to subject matter experts. We will illustrate our method using data from the U.S. National Health and Nutrition Examination Survey regarding the relationship between cigarette smoking and blood lead levels.
Author Small, Dylan S.
Hsu, Jesse Y.
Author_xml – sequence: 1
  fullname: Hsu, Jesse Y
– sequence: 2
  fullname: Small, Dylan S
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24328711$$D View this record in MEDLINE/PubMed
BookMark eNqFkd1rFDEUxYNU7Lb64rs64EsRpuY7mcd2cWuhdoW1KL6EzExSss5OapJdu_-9mc62SBHNS8i9v3O4uecA7PW-NwC8RPAY5fO-dn51jDCC6AmYIEZRCSmGe2ACIeQloejbPjiIcZmfFYP4GdjHlGApEJqAz1PduTro5PrrYmH66JLbuLQtTnrdbaOJRfLFvI4mbExbTP1GB6dTLrt-V85Sn9likdatM_E5eGp1F82L3X0IrmYfvkw_lhfzs_PpyUXZUJEn1LRhdWtbaVlNa9ZKjWtkZIsr3HBrObd1y7WAjFUWVbSpoGREk5ZXiNmGQHIIjkbfm-B_rk1MauViY7pO98avo0JcSIYJ5eT_KBWCMQzlgL59hC79OuTvDRQXLIMUZ-r1jlrXK9Oqm-BWOmzV_Voz8G4EmuBjDMY-IAiqITM1ZKbuMsswfAQ3Lt1tNQXtur9L0Cj55Tqz_Ye5Oj2ff7rXvBo1y5h8-GNmRiRiLPfLse9iMrcPfR1-KC6IYOrr5ZmazcTppfxeqcHvzchb7ZW-Di6qqwWGiEGIqOQ5ot_nVsmC
CODEN BIOMA5
CitedBy_id crossref_primary_10_1093_biomet_asz048
crossref_primary_10_1080_01621459_2023_2298037
crossref_primary_10_1214_18_AOAS1215
crossref_primary_10_1080_01621459_2022_2102503
crossref_primary_10_1002_bimj_202100118
crossref_primary_10_1093_jrsssb_qkae034
crossref_primary_10_1016_j_ecosta_2023_11_004
crossref_primary_10_1038_s41598_024_71766_9
crossref_primary_10_1080_01621459_2024_2441519
crossref_primary_10_1214_18_EJS1476
crossref_primary_10_1287_mnsc_2020_3699
crossref_primary_10_1080_01621459_2020_1737078
crossref_primary_10_1093_ije_dyaa093
crossref_primary_10_1111_biom_12373
crossref_primary_10_1515_jci_2021_0010
crossref_primary_10_1186_s12874_023_01906_8
crossref_primary_10_3102_1076998620914003
crossref_primary_10_1080_01621459_2020_1736083
crossref_primary_10_1080_24709360_2022_2109910
crossref_primary_10_1111_biom_12919
crossref_primary_10_1093_biomet_asy008
crossref_primary_10_1007_s10260_021_00597_z
crossref_primary_10_1080_01621459_2014_960968
crossref_primary_10_1111_biom_12873
crossref_primary_10_1214_16_AOAS942
crossref_primary_10_1080_01621459_2015_1054489
crossref_primary_10_1053_j_ajkd_2016_08_020
crossref_primary_10_1002_sim_7599
crossref_primary_10_1111_biom_13395
crossref_primary_10_1111_rssc_12443
crossref_primary_10_1016_j_jspi_2020_10_004
crossref_primary_10_1093_biomet_asae040
crossref_primary_10_1214_14_AOAS770
crossref_primary_10_1080_01621459_2020_1720693
crossref_primary_10_1111_rssa_12946
crossref_primary_10_1002_sim_8460
crossref_primary_10_1080_01621459_2022_2069572
crossref_primary_10_1080_01621459_2024_2335588
Cites_doi 10.1126/science.308.5726.1239a
10.1198/000313007X163213
10.1007/978-1-4757-3692-2
10.1257/000282803321946921
10.1002/sim.2344
10.1093/oxfordjournals.aje.a009673
10.3102/10769986011003207
10.2307/1165377
10.1093/biomet/70.1.41
10.1093/biomet/71.3.431
10.1111/1467-9868.00249
10.1111/j.2517-6161.1979.tb01052.x
10.3102/10769986028004315
10.1214/09-AOAS315
10.1198/016214507000000608
10.1007/s10742-012-0095-9
10.1126/science.1110096
10.1111/1467-9868.00055
10.1111/j.2517-6161.1995.tb02029.x
10.1037/h0037350
10.4310/SII.2009.v2.n2.a10
10.1002/sim.3107
10.1093/biomet/85.4.907
ContentType Journal Article
Copyright 2013 International Biometric Society
2013, The International Biometric Society
2013, The International Biometric Society.
Copyright_xml – notice: 2013 International Biometric Society
– notice: 2013, The International Biometric Society
– notice: 2013, The International Biometric Society.
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7S9
L.6
DOI 10.1111/biom.12101
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

CrossRef
ProQuest Computer Science Collection
MEDLINE - Academic
MEDLINE

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 811
ExternalDocumentID 3154584391
24328711
10_1111_biom_12101
BIOM12101
24538155
ark_67375_WNG_FF7BN8Z9_1
US201500148630
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Feature
GeographicLocations United States
United States--US
GeographicLocations_xml – name: United States
– name: United States--US
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
3V.
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABCVL
ABDBF
ABEML
ABFAN
ABHUG
ABJCF
ABJNI
ABLJU
ABPPZ
ABPTK
ABPVW
ABTAH
ABUWG
ABWRO
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACSCC
ACTMH
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELPN
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFDVO
AFEBI
AFFTP
AFGKR
AFKRA
AFPWT
AFVGU
AFVYC
AFXKK
AFZJQ
AGJLS
AGTJU
AHMBA
AIAGR
AIBGX
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALEEW
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANPLD
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EFSUC
EJD
EMB
EMK
EMOBN
EST
ESTFP
ESX
F00
F01
F04
F5P
FBQ
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K48
K6V
K7-
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
X6Y
XBAML
XFK
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAMMB
AANHP
AAUAY
AAWIL
AAYCA
AAZSN
ABAWQ
ABDFA
ABEJV
ABGNP
ABMNT
ABXSQ
ABXVV
ACHJO
ACRPL
ACUHS
ACYXJ
ADNBA
ADNMO
ADVOB
AEFGJ
AEOTA
AFWVQ
AGLNM
AGQPQ
AGXDD
AHGBF
AIDQK
AIDYY
AIHAF
AJAOE
AJBYB
AJNCP
ALRMG
BSCLL
H13
IPSME
KOP
NU-
OIG
OJZSN
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
ROX
ALIPV
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
AGORE
JQ2
7X8
7S9
L.6
ID FETCH-LOGICAL-c4741-a4c5bdfd8f5b4b5d8a2b1e8d292c6ff66fbd6a70559f194c90853a3d6915fc303
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Fri Oct 03 00:05:24 EDT 2025
Wed Oct 01 14:21:05 EDT 2025
Wed Aug 13 10:45:41 EDT 2025
Thu Apr 03 07:00:11 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
Wed Oct 01 01:41:30 EDT 2025
Wed Jan 22 16:56:06 EST 2025
Sat Oct 25 06:57:01 EDT 2025
Sun Sep 21 06:17:31 EDT 2025
Wed Dec 27 19:16:48 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Causal inference
Hidden bias
Simultaneous sensitivity analysis
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
2013, The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4741-a4c5bdfd8f5b4b5d8a2b1e8d292c6ff66fbd6a70559f194c90853a3d6915fc303
Notes http://dx.doi.org/10.1111/biom.12101
ArticleID:BIOM12101
ark:/67375/WNG-FF7BN8Z9-1
istex:0EF9B898AB9714566095F54ADEA0B5AE42BC621A
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 24328711
PQID 1467577542
PQPubID 35366
PageCount 9
ParticipantIDs proquest_miscellaneous_1678523463
proquest_miscellaneous_1477552083
proquest_journals_1467577542
pubmed_primary_24328711
crossref_primary_10_1111_biom_12101
crossref_citationtrail_10_1111_biom_12101
wiley_primary_10_1111_biom_12101_BIOM12101
jstor_primary_24538155
istex_primary_ark_67375_WNG_FF7BN8Z9_1
fao_agris_US201500148630
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2013
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: December 2013
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biom
PublicationYear 2013
Publisher Blackwell Publishers
Blackwell Publishing Ltd
International Biometric Society
Publisher_xml – name: Blackwell Publishers
– name: Blackwell Publishing Ltd
– name: International Biometric Society
References Geronimus, A. T. and Bound, J. (1998). Use of census-based aggregate variables to proxy for socioeconomic group: Evidence from national samples. American Journal of Epidemiology 148, 475-486.
Hosman, C. A., Hansen, B. B., and Holland, P. W. (2010). The sensitivity of linear regression coefficients' confidence limits to the omission of a confounder. The Annals of Applied Statistics 4, 849-870.
Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology 66, 688-701.
Small, D. S. (2007). Sensitivity analysis for instrumental variables regression with overidentifying restructions. Journal of the American Statistical Association 102, 1049-1058.
Gail, M. H., Wieand, S., and Piantadosi, S. (1984). Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates. Biometrika 71, 431-444.
Rosenbaum, P. R. (2002). Observational Studies, 2nd edition. New York, NY, USA: Springer.
Fisher, R. A. (1935). The Design of Experiments. Edinburgh, Scotland: Oliver and Boyd.
Gelman, A. (2008). Scaling regression inputs by dividing by two standard deviations. Statistics in Medicine 27, 2865-2873.
Cornfield, J., Haenszel, W., Hammond, E. C., Lilienfeld, A. M., Shimkin, M. B., and Wynder, E. L. (1959). Smoking and lung cancer. Journal of the National Cancer Institute 22, 173-203.
Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41-55.
Bingenheimer, J. B., Brennan, R. T., and Earls, F. J. (2005). Firearm violence exposure and serious violent behavior. Science 308, 1323-1326.
Marcus, S. M. (1997). Using omitted variable bias to assess uncertainty in the estimation of an AIDS education treatment effect. Journal of Educational and Behavioral Statistics 22, 193-201.
Neyman, J. (1923). On the application of probability theory to agricultural experiments. Reprint in Statistical Science( 5:465-480, 1923).
Gastwirth, J. L. (1992). Methods for assessing the sensitivity of statistical comparisons used in title VII cases to omitted variables. Jurimetrics 33, 19-34.
Gastwirth, J. L., Krieger, A. M., and Rosenbaum, P. R. (2000). Asymptotic separability in sensitivity analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 62, 545-555.
Hsu, J. Y., Lorch, S. A., and Small, D. S. (2012). Perils and prospects of using aggregate area level socioeconomic information as a proxy for individual level socioeconomic confounders in instrumental variables regression. Health Services and Outcomes Research Methodology 12, 119-140.
Dawid, A. P. (1979). Conditional independence in statistical theory. Journal of the Royal Statistical Society. Series B (Methodological) 41, 1-31.
Rosenbaum, P. R. (1986). Dropping out of high school in the united states: An observational study. Journal of Educational Statistics 11, 207-224.
Hansen, B. B. (2007). Optmatch: Flexible, optimal matching for observational studies. R News 7, 18-24.
Pan, W. and Frank, K. A. (2003). A probability index of the robustness of a causal inference. Journal of Educational and Behavioral Statistics 28, 315-337.
Imbens, G. W. (2003). Sensitivity to exogeneity assumptions in program evaluation. The American Economic Review 93, 126-132.
Guo, J. and Geng, Z. (1995). Collasibility of logistic regression coefficients. Journal of the Royal Statistical Society. Series B (Methodological) 57, 263-267.
Small, D. S., Gastwirth, J. L., Krieger, A. M., and Rosenbaum, P. R. (2009). Simultaneous sensitivity analysis for observational studies using full matching or matching with multiple controls. Statistics and Its Interface 2, 203-211.
Copas, J. B. and Li, H. G. (1997). Inference for non-random samples. Journal of the Royal Statistical Society. Series B (Methodological) 59, 55-95.
Shepherd, B. E., Gilbert, P. B., and Mehrotra, D. V. (2007). Eliciting a counterfactual sensitivity parameter. The American Statistician 61, 56-63.
Gastwirth, J. L., Krieger, A. M., and Rosenbaum, P. R. (1998). Dual and simultaneous sensitivity analysis for matched pairs. Biometrika 85, 907-920.
Holden, C. (2005). Controversial study suggests seeing gun violence promotes it. Science 308, 1239-1240.
Wang, L. and Krieger, A. M. (2006). Causal conclusions are most sensitive to unobserved binary covariates. Statistics in Medicine 25, 2257-2271.
2007; 102
1997; 22
1986; 11
1995; 57
2002
1983; 70
1998; 85
2003; 93
1992; 33
2012; 12
1959; 22
1935
1974; 66
1984; 71
1923; 5
1997; 59
2008; 27
2006; 25
2000; 62
2005; 308
2007; 7
1998; 148
2003; 28
2007; 61
1979; 41
2009; 2
2010; 4
Pan (2024010512551530200_biom12101-bib-0020) 2003; 28
Small (2024010512551530200_biom12101-bib-0027) 2009; 2
Copas (2024010512551530200_biom12101-bib-0002) 1997; 59
Hansen (2024010512551530200_biom12101-bib-0013) 2007; 7
Rubin (2024010512551530200_biom12101-bib-0024) 1974; 66
Imbens (2024010512551530200_biom12101-bib-0017) 2003; 93
Hsu (2024010512551530200_biom12101-bib-0016) 2012; 12
Gail (2024010512551530200_biom12101-bib-0006) 1984; 71
Guo (2024010512551530200_biom12101-bib-0012) 1995; 57
Bingenheimer (2024010512551530200_biom12101-bib-0001) 2005; 308
Neyman (2024010512551530200_biom12101-bib-0019) 1923; 5
Rosenbaum (2024010512551530200_biom12101-bib-0022) 2002
Gelman (2024010512551530200_biom12101-bib-0010) 2008; 27
Shepherd (2024010512551530200_biom12101-bib-0025) 2007; 61
Fisher (2024010512551530200_biom12101-bib-0005) 1935
Rosenbaum (2024010512551530200_biom12101-bib-0023) 1983; 70
Hosman (2024010512551530200_biom12101-bib-0015) 2010; 4
Gastwirth (2024010512551530200_biom12101-bib-0009) 2000; 62
Marcus (2024010512551530200_biom12101-bib-0018) 1997; 22
Small (2024010512551530200_biom12101-bib-0026) 2007; 102
Gastwirth (2024010512551530200_biom12101-bib-0007) 1992; 33
Gastwirth (2024010512551530200_biom12101-bib-0008) 1998; 85
Cornfield (2024010512551530200_biom12101-bib-0003) 1959; 22
Wang (2024010512551530200_biom12101-bib-0028) 2006; 25
Holden (2024010512551530200_biom12101-bib-0014) 2005; 308
Geronimus (2024010512551530200_biom12101-bib-0011) 1998; 148
Rosenbaum (2024010512551530200_biom12101-bib-0021) 1986; 11
Dawid (2024010512551530200_biom12101-bib-0004) 1979; 41
References_xml – reference: Marcus, S. M. (1997). Using omitted variable bias to assess uncertainty in the estimation of an AIDS education treatment effect. Journal of Educational and Behavioral Statistics 22, 193-201.
– reference: Rosenbaum, P. R. (2002). Observational Studies, 2nd edition. New York, NY, USA: Springer.
– reference: Bingenheimer, J. B., Brennan, R. T., and Earls, F. J. (2005). Firearm violence exposure and serious violent behavior. Science 308, 1323-1326.
– reference: Fisher, R. A. (1935). The Design of Experiments. Edinburgh, Scotland: Oliver and Boyd.
– reference: Gastwirth, J. L., Krieger, A. M., and Rosenbaum, P. R. (1998). Dual and simultaneous sensitivity analysis for matched pairs. Biometrika 85, 907-920.
– reference: Cornfield, J., Haenszel, W., Hammond, E. C., Lilienfeld, A. M., Shimkin, M. B., and Wynder, E. L. (1959). Smoking and lung cancer. Journal of the National Cancer Institute 22, 173-203.
– reference: Hansen, B. B. (2007). Optmatch: Flexible, optimal matching for observational studies. R News 7, 18-24.
– reference: Gelman, A. (2008). Scaling regression inputs by dividing by two standard deviations. Statistics in Medicine 27, 2865-2873.
– reference: Rosenbaum, P. R. (1986). Dropping out of high school in the united states: An observational study. Journal of Educational Statistics 11, 207-224.
– reference: Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41-55.
– reference: Gastwirth, J. L. (1992). Methods for assessing the sensitivity of statistical comparisons used in title VII cases to omitted variables. Jurimetrics 33, 19-34.
– reference: Gastwirth, J. L., Krieger, A. M., and Rosenbaum, P. R. (2000). Asymptotic separability in sensitivity analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 62, 545-555.
– reference: Imbens, G. W. (2003). Sensitivity to exogeneity assumptions in program evaluation. The American Economic Review 93, 126-132.
– reference: Shepherd, B. E., Gilbert, P. B., and Mehrotra, D. V. (2007). Eliciting a counterfactual sensitivity parameter. The American Statistician 61, 56-63.
– reference: Hsu, J. Y., Lorch, S. A., and Small, D. S. (2012). Perils and prospects of using aggregate area level socioeconomic information as a proxy for individual level socioeconomic confounders in instrumental variables regression. Health Services and Outcomes Research Methodology 12, 119-140.
– reference: Neyman, J. (1923). On the application of probability theory to agricultural experiments. Reprint in Statistical Science( 5:465-480, 1923).
– reference: Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology 66, 688-701.
– reference: Geronimus, A. T. and Bound, J. (1998). Use of census-based aggregate variables to proxy for socioeconomic group: Evidence from national samples. American Journal of Epidemiology 148, 475-486.
– reference: Copas, J. B. and Li, H. G. (1997). Inference for non-random samples. Journal of the Royal Statistical Society. Series B (Methodological) 59, 55-95.
– reference: Wang, L. and Krieger, A. M. (2006). Causal conclusions are most sensitive to unobserved binary covariates. Statistics in Medicine 25, 2257-2271.
– reference: Dawid, A. P. (1979). Conditional independence in statistical theory. Journal of the Royal Statistical Society. Series B (Methodological) 41, 1-31.
– reference: Holden, C. (2005). Controversial study suggests seeing gun violence promotes it. Science 308, 1239-1240.
– reference: Gail, M. H., Wieand, S., and Piantadosi, S. (1984). Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates. Biometrika 71, 431-444.
– reference: Guo, J. and Geng, Z. (1995). Collasibility of logistic regression coefficients. Journal of the Royal Statistical Society. Series B (Methodological) 57, 263-267.
– reference: Small, D. S. (2007). Sensitivity analysis for instrumental variables regression with overidentifying restructions. Journal of the American Statistical Association 102, 1049-1058.
– reference: Hosman, C. A., Hansen, B. B., and Holland, P. W. (2010). The sensitivity of linear regression coefficients' confidence limits to the omission of a confounder. The Annals of Applied Statistics 4, 849-870.
– reference: Pan, W. and Frank, K. A. (2003). A probability index of the robustness of a causal inference. Journal of Educational and Behavioral Statistics 28, 315-337.
– reference: Small, D. S., Gastwirth, J. L., Krieger, A. M., and Rosenbaum, P. R. (2009). Simultaneous sensitivity analysis for observational studies using full matching or matching with multiple controls. Statistics and Its Interface 2, 203-211.
– volume: 27
  start-page: 2865
  year: 2008
  end-page: 2873
  article-title: Scaling regression inputs by dividing by two standard deviations
  publication-title: Statistics in Medicine
– volume: 7
  start-page: 18
  year: 2007
  end-page: 24
  article-title: Optmatch: Flexible, optimal matching for observational studies
  publication-title: R News
– year: 1935
– volume: 71
  start-page: 431
  year: 1984
  end-page: 444
  article-title: Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates
  publication-title: Biometrika
– volume: 5
  start-page: 465
  year: 1923
  end-page: 480
  article-title: On the application of probability theory to agricultural experiments
  publication-title: Reprint in Statistical Science
– volume: 28
  start-page: 315
  year: 2003
  end-page: 337
  article-title: A probability index of the robustness of a causal inference
  publication-title: Journal of Educational and Behavioral Statistics
– volume: 102
  start-page: 1049
  year: 2007
  end-page: 1058
  article-title: Sensitivity analysis for instrumental variables regression with overidentifying restructions
  publication-title: Journal of the American Statistical Association
– volume: 62
  start-page: 545
  year: 2000
  end-page: 555
  article-title: Asymptotic separability in sensitivity analysis
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 59
  start-page: 55
  year: 1997
  end-page: 95
  article-title: Inference for non‐random samples
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
– volume: 22
  start-page: 193
  year: 1997
  end-page: 201
  article-title: Using omitted variable bias to assess uncertainty in the estimation of an AIDS education treatment effect
  publication-title: Journal of Educational and Behavioral Statistics
– volume: 308
  start-page: 1323
  year: 2005
  end-page: 1326
  article-title: Firearm violence exposure and serious violent behavior
  publication-title: Science
– volume: 41
  start-page: 1
  year: 1979
  end-page: 31
  article-title: Conditional independence in statistical theory
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
– volume: 57
  start-page: 263
  year: 1995
  end-page: 267
  article-title: Collasibility of logistic regression coefficients
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
– volume: 70
  start-page: 41
  year: 1983
  end-page: 55
  article-title: The central role of the propensity score in observational studies for causal effects
  publication-title: Biometrika
– volume: 85
  start-page: 907
  year: 1998
  end-page: 920
  article-title: Dual and simultaneous sensitivity analysis for matched pairs
  publication-title: Biometrika
– volume: 12
  start-page: 119
  year: 2012
  end-page: 140
  article-title: Perils and prospects of using aggregate area level socioeconomic information as a proxy for individual level socioeconomic confounders in instrumental variables regression
  publication-title: Health Services and Outcomes Research Methodology
– volume: 61
  start-page: 56
  year: 2007
  end-page: 63
  article-title: Eliciting a counterfactual sensitivity parameter
  publication-title: The American Statistician
– volume: 2
  start-page: 203
  year: 2009
  end-page: 211
  article-title: Simultaneous sensitivity analysis for observational studies using full matching or matching with multiple controls
  publication-title: Statistics and Its Interface
– volume: 22
  start-page: 173
  year: 1959
  end-page: 203
  article-title: Smoking and lung cancer
  publication-title: Journal of the National Cancer Institute
– volume: 25
  start-page: 2257
  year: 2006
  end-page: 2271
  article-title: Causal conclusions are most sensitive to unobserved binary covariates
  publication-title: Statistics in Medicine
– volume: 93
  start-page: 126
  year: 2003
  end-page: 132
  article-title: Sensitivity to exogeneity assumptions in program evaluation
  publication-title: The American Economic Review
– year: 2002
– volume: 33
  start-page: 19
  year: 1992
  end-page: 34
  article-title: Methods for assessing the sensitivity of statistical comparisons used in title VII cases to omitted variables
  publication-title: Jurimetrics
– volume: 4
  start-page: 849
  year: 2010
  end-page: 870
  article-title: The sensitivity of linear regression coefficients’ confidence limits to the omission of a confounder
  publication-title: The Annals of Applied Statistics
– volume: 308
  start-page: 1239
  year: 2005
  end-page: 1240
  article-title: Controversial study suggests seeing gun violence promotes it
  publication-title: Science
– volume: 66
  start-page: 688
  year: 1974
  end-page: 701
  article-title: Estimating causal effects of treatments in randomized and nonrandomized studies
  publication-title: Journal of Educational Psychology
– volume: 148
  start-page: 475
  year: 1998
  end-page: 486
  article-title: Use of census‐based aggregate variables to proxy for socioeconomic group: Evidence from national samples
  publication-title: American Journal of Epidemiology
– volume: 11
  start-page: 207
  year: 1986
  end-page: 224
  article-title: Dropping out of high school in the united states: An observational study
  publication-title: Journal of Educational Statistics
– volume: 308
  start-page: 1239
  year: 2005
  ident: 2024010512551530200_biom12101-bib-0014
  article-title: Controversial study suggests seeing gun violence promotes it
  publication-title: Science
  doi: 10.1126/science.308.5726.1239a
– volume: 61
  start-page: 56
  year: 2007
  ident: 2024010512551530200_biom12101-bib-0025
  article-title: Eliciting a counterfactual sensitivity parameter
  publication-title: The American Statistician
  doi: 10.1198/000313007X163213
– volume: 5
  start-page: 465
  year: 1923
  ident: 2024010512551530200_biom12101-bib-0019
  article-title: On the application of probability theory to agricultural experiments
  publication-title: Reprint in Statistical Science
– volume-title: Observational Studies
  year: 2002
  ident: 2024010512551530200_biom12101-bib-0022
  doi: 10.1007/978-1-4757-3692-2
– volume: 93
  start-page: 126
  year: 2003
  ident: 2024010512551530200_biom12101-bib-0017
  article-title: Sensitivity to exogeneity assumptions in program evaluation
  publication-title: The American Economic Review
  doi: 10.1257/000282803321946921
– volume: 25
  start-page: 2257
  year: 2006
  ident: 2024010512551530200_biom12101-bib-0028
  article-title: Causal conclusions are most sensitive to unobserved binary covariates
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.2344
– volume: 148
  start-page: 475
  year: 1998
  ident: 2024010512551530200_biom12101-bib-0011
  article-title: Use of census-based aggregate variables to proxy for socioeconomic group: Evidence from national samples
  publication-title: American Journal of Epidemiology
  doi: 10.1093/oxfordjournals.aje.a009673
– volume: 33
  start-page: 19
  year: 1992
  ident: 2024010512551530200_biom12101-bib-0007
  article-title: Methods for assessing the sensitivity of statistical comparisons used in title VII cases to omitted variables
  publication-title: Jurimetrics
– volume: 11
  start-page: 207
  year: 1986
  ident: 2024010512551530200_biom12101-bib-0021
  article-title: Dropping out of high school in the united states: An observational study
  publication-title: Journal of Educational Statistics
  doi: 10.3102/10769986011003207
– volume: 22
  start-page: 193
  year: 1997
  ident: 2024010512551530200_biom12101-bib-0018
  article-title: Using omitted variable bias to assess uncertainty in the estimation of an AIDS education treatment effect
  publication-title: Journal of Educational and Behavioral Statistics
  doi: 10.2307/1165377
– volume: 70
  start-page: 41
  year: 1983
  ident: 2024010512551530200_biom12101-bib-0023
  article-title: The central role of the propensity score in observational studies for causal effects
  publication-title: Biometrika
  doi: 10.1093/biomet/70.1.41
– volume: 71
  start-page: 431
  year: 1984
  ident: 2024010512551530200_biom12101-bib-0006
  article-title: Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates
  publication-title: Biometrika
  doi: 10.1093/biomet/71.3.431
– volume: 62
  start-page: 545
  year: 2000
  ident: 2024010512551530200_biom12101-bib-0009
  article-title: Asymptotic separability in sensitivity analysis
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/1467-9868.00249
– volume: 41
  start-page: 1
  year: 1979
  ident: 2024010512551530200_biom12101-bib-0004
  article-title: Conditional independence in statistical theory
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
  doi: 10.1111/j.2517-6161.1979.tb01052.x
– volume: 28
  start-page: 315
  year: 2003
  ident: 2024010512551530200_biom12101-bib-0020
  article-title: A probability index of the robustness of a causal inference
  publication-title: Journal of Educational and Behavioral Statistics
  doi: 10.3102/10769986028004315
– volume: 22
  start-page: 173
  year: 1959
  ident: 2024010512551530200_biom12101-bib-0003
  article-title: Smoking and lung cancer
  publication-title: Journal of the National Cancer Institute
– volume: 4
  start-page: 849
  year: 2010
  ident: 2024010512551530200_biom12101-bib-0015
  article-title: The sensitivity of linear regression coefficients’ confidence limits to the omission of a confounder
  publication-title: The Annals of Applied Statistics
  doi: 10.1214/09-AOAS315
– volume: 102
  start-page: 1049
  year: 2007
  ident: 2024010512551530200_biom12101-bib-0026
  article-title: Sensitivity analysis for instrumental variables regression with overidentifying restructions
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214507000000608
– volume-title: The Design of Experiments
  year: 1935
  ident: 2024010512551530200_biom12101-bib-0005
– volume: 12
  start-page: 119
  year: 2012
  ident: 2024010512551530200_biom12101-bib-0016
  article-title: Perils and prospects of using aggregate area level socioeconomic information as a proxy for individual level socioeconomic confounders in instrumental variables regression
  publication-title: Health Services and Outcomes Research Methodology
  doi: 10.1007/s10742-012-0095-9
– volume: 308
  start-page: 1323
  year: 2005
  ident: 2024010512551530200_biom12101-bib-0001
  article-title: Firearm violence exposure and serious violent behavior
  publication-title: Science
  doi: 10.1126/science.1110096
– volume: 59
  start-page: 55
  year: 1997
  ident: 2024010512551530200_biom12101-bib-0002
  article-title: Inference for non-random samples
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
  doi: 10.1111/1467-9868.00055
– volume: 57
  start-page: 263
  year: 1995
  ident: 2024010512551530200_biom12101-bib-0012
  article-title: Collasibility of logistic regression coefficients
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
  doi: 10.1111/j.2517-6161.1995.tb02029.x
– volume: 66
  start-page: 688
  year: 1974
  ident: 2024010512551530200_biom12101-bib-0024
  article-title: Estimating causal effects of treatments in randomized and nonrandomized studies
  publication-title: Journal of Educational Psychology
  doi: 10.1037/h0037350
– volume: 2
  start-page: 203
  year: 2009
  ident: 2024010512551530200_biom12101-bib-0027
  article-title: Simultaneous sensitivity analysis for observational studies using full matching or matching with multiple controls
  publication-title: Statistics and Its Interface
  doi: 10.4310/SII.2009.v2.n2.a10
– volume: 7
  start-page: 18
  year: 2007
  ident: 2024010512551530200_biom12101-bib-0013
  article-title: Optmatch: Flexible, optimal matching for observational studies
  publication-title: R News
– volume: 27
  start-page: 2865
  year: 2008
  ident: 2024010512551530200_biom12101-bib-0010
  article-title: Scaling regression inputs by dividing by two standard deviations
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.3107
– volume: 85
  start-page: 907
  year: 1998
  ident: 2024010512551530200_biom12101-bib-0008
  article-title: Dual and simultaneous sensitivity analysis for matched pairs
  publication-title: Biometrika
  doi: 10.1093/biomet/85.4.907
SSID ssj0009502
Score 2.3438835
Snippet : In medical sciences, statistical analyses based on observational studies are common phenomena. One peril of drawing inferences about the effect of a...
In medical sciences, statistical analyses based on observational studies are common phenomena. One peril of drawing inferences about the effect of a treatment...
Summary In medical sciences, statistical analyses based on observational studies are common phenomena. One peril of drawing inferences about the effect of a...
SourceID proquest
pubmed
crossref
wiley
jstor
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 803
SubjectTerms BIOMETRIC METHODOLOGY
Biometrics
biometry
Biometry - methods
blood
Calibration
Causal inference
Clinical outcomes
Data Interpretation, Statistical
Epidemiologic Methods
experts
Female
Hidden bias
Humans
lead
Lead - blood
Male
Matched-Pair Analysis
medical sciences
Medical treatment
Middle Aged
National Health and Nutrition Examination Survey
observational studies
Observational Studies as Topic - methods
Observational Studies as Topic - standards
Observational Studies as Topic - statistics & numerical data
Risk Factors
Sensitivity analysis
Simultaneous sensitivity analysis
smoking (habit)
Smoking - blood
Smoking - epidemiology
statistical analysis
Studies
United States
United States - epidemiology
Title Calibrating Sensitivity Analyses to Observed Covariates in Observational Studies
URI https://api.istex.fr/ark:/67375/WNG-FF7BN8Z9-1/fulltext.pdf
https://www.jstor.org/stable/24538155
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.12101
https://www.ncbi.nlm.nih.gov/pubmed/24328711
https://www.proquest.com/docview/1467577542
https://www.proquest.com/docview/1477552083
https://www.proquest.com/docview/1678523463
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCO_Food Science Source
  customDbUrl:
  eissn: 1541-0420
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: A8Z
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1541-0420
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: ABDBF
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0006-341X
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1541-0420
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009502
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxNBEB5qQagP_ojWnlY5UQSFK7ndvb1b8MUWYxWSijUYBFl293aLVC7SJKL-9e7s3p2plIK-hWQu3G1mdr-ZfPMNwBNSGpYblWeEljpjJJAAVJ05IqqhsqI0Q-x3Hk_44ZS9nRWzDXjR9cJEfYi-4IaREfZrDHClF2tBju3pqI0QmrdyykM-9Z6sKe4Oo1Q4krtYPmu1SZHG8-fSc6fRFafmHqPi8v7o6IkXAc_zODYcRKMb8Ll7hMg_Od1bLfWe-fWXuuP_PuNNuN4i1PRldKlbsGGbAVyNMyt_DuDauBd6XQxgC8Fq1Hq-De-w0UujSzUn6TEy4-NoijQqn9hFupynRxrrwLZOD-bffZ6OUDf90rRvt5XJtGU33oHp6NWHg8OsndiQGeahSaaYKXTt6soVmumirhTRua1qIojhznHudM0VCvgIlwtmhAd8VNGai7xwxp-m27DZzBu7A6nmtPS5pxLUCEaVrazQCOdI7VRurU7gWffLSdPKmeNUja-yS2tw8WRYvAQe97bfoojHhVY73gGkOvG7q5weE6wFYb2V02ECT4NX9Fers1NkxJWF_Dh5LUejcn9SfRLSf8d2cJvekDB_onjMlsBu50ey3SUWmHaVBUoQkgQe9R_7-MY_bVRj5yu08QYF8Uj5EhuPOApCGfc2d6OPrt0AxaTY39nz4GmXLIDcf3M0Dq_u_YvxfdgiOCMkcHx2YXN5trIPPFJb6ochIn8DuLM0pA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED7BEGI88KMwFhgQBEICKVPjOE78yCZKB2uH2KpVvFi2Y09oKEFri4C_Hp-dhg5Nk-Ctai9V6tzZ312_-w7gBSk0TbVME5IVKqHEkwBklVjCy740vNB97HcejdlwQt9P82nLzcFemKAP0RXcMDL8fo0BjgXplSjH_nQUR8DurWuUuUQFMdEnsqK52w9i4Ujvoum0VSdFIs-fa8-dR1etbBxKxQX-sSQoXgQ9zyNZfxQNbod5qzOvYIgMlNPtxVxt619_6Tv-96-8A7dakBq_CV51F66YugfXw9jKnz24Oeq0Xmc9WEe8GuSe78FH7PVS6FX1SXyI5PgwnSIO4idmFs-b-EBhKdhU8W7z3aXqiHbjL3X7dlucjFuC432YDN4e7Q6TdmhDoqlDJ4mkOleVrUqbK6ryqpREpaasCCeaWcuYVRWTqOHDbcqp5g7zZTKrGE9zq92BugFrdVObTYgVywr3VCXPNKeZNKXhChEdqaxMjVERvFo-OqFbRXMcrPFVLDMbXDzhFy-C553tt6DjcaHVpvMAIU_cBismhwTLQVhyZVk_gpfeLbqr5dkpkuKKXByP34nBoNgZl5-5cN-x4f2mMyTUHSoOtkWwtXQk0W4UM8y8ihxVCEkEz7qPXYjj_zayNs0CbZxBThxYvsTGgY6cZJQ5mwfBSVduIMO82N3Za-9qlyyA2Nk7GPlXD__F-CncGB6N9sX-3vjDI1gnODLEU362YG1-tjCPHXCbqyc-PH8DAwc4xQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgCDQe-FEYCwwIAiGBlKlx7CR-ZBthA9pNbBUVL5Z_TmgomdYWbfvr57PT0KFpErxV7aVK3Dv7u-t33yH0BheKpEqkCc4KmRDsSQBCJxazsi8MK1Qf-p0Hw3x7RD6P6bjl5kAvTNCH6ApuEBl-v4YAN8faLkQ59KeDOAJ0b90ilJXA6Nv6hhc0d_tBLBzoXSQdt-qkQOT5c-2l8-imFY1DqbDAp3OC4lXQ8zKS9UdRdT_MW514BUNgoBytz6ZyXZ3_pe_430_5AN1rQWr8IXjVQ3TD1D10O4ytPOuhu4NO63XSQ8uAV4Pc8yO0B71eEryqPoz3gRwfplPEQfzETOJpE-9KKAUbHW82v12qDmg3_lm3b7fFybglOD5Go-rjweZ20g5tSBRx6CQRRFGprS4tlURSXQosU1NqzLDKrc1zK3UuQMOH2ZQRxRzmy0Smc5ZSq9yBuoKW6qY2qyiWeVa49FOwTDGSCVMaJgHRYW1FaoyM0Lv5T8dVq2gOgzV-8XlmA4vH_eJF6HVnexx0PK60WnUewMWh22D5aB9DOQhKrnnWj9Bb7xbd1eLkCEhxBeXfh594VRUbw_IH4-47VrzfdIaYuEPFwbYIrc0dibcbxQQyr4KCCiGO0KvuYxfi8L-NqE0zAxtnQLEDy9fYONBBcUZyZ_MkOOnCDWSQF7s7e-9d7ZoF4Bs7uwP_6um_GL9Ed_a2Kv51Z_jlGVrGMDHEM37W0NL0ZGaeO9w2lS98dF4AXVM4SQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calibrating+Sensitivity+Analyses+to+Observed+Covariates+in+Observational+Studies&rft.jtitle=Biometrics&rft.au=Hsu%2C+Jesse+Y.&rft.au=Small%2C+Dylan+S.&rft.date=2013-12-01&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=69&rft.issue=4&rft.spage=803&rft.epage=811&rft_id=info:doi/10.1111%2Fbiom.12101&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_biom_12101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon