Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging

Purpose To develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data. Theory Robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 81; no. 1; pp. 439 - 453
Main Authors Akçakaya, Mehmet, Moeller, Steen, Weingärtner, Sebastian, Uğurbil, Kâmil
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.01.2019
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.27420

Cover

Abstract Purpose To develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data. Theory Robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k‐space lines from acquired k‐space data with improved noise resilience, as opposed to conventional linear k‐space interpolation‐based methods, such as GRAPPA, which are based on linear convolutional kernels. Methods The training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets. Results Phantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high‐resolution brain imaging at high acceleration rates. Conclusion The RAKI method offers a training database‐free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols.
AbstractList To develop an improved k-space reconstruction method using scan-specific deep learning that is trained on autocalibration signal (ACS) data. Robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k-space lines from acquired k-space data with improved noise resilience, as opposed to conventional linear k-space interpolation-based methods, such as GRAPPA, which are based on linear convolutional kernels. The training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets. Phantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high-resolution brain imaging at high acceleration rates. The RAKI method offers a training database-free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols.
Purpose To develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data. Theory Robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k‐space lines from acquired k‐space data with improved noise resilience, as opposed to conventional linear k‐space interpolation‐based methods, such as GRAPPA, which are based on linear convolutional kernels. Methods The training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets. Results Phantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high‐resolution brain imaging at high acceleration rates. Conclusion The RAKI method offers a training database‐free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols.
To develop an improved k-space reconstruction method using scan-specific deep learning that is trained on autocalibration signal (ACS) data.PURPOSETo develop an improved k-space reconstruction method using scan-specific deep learning that is trained on autocalibration signal (ACS) data.Robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k-space lines from acquired k-space data with improved noise resilience, as opposed to conventional linear k-space interpolation-based methods, such as GRAPPA, which are based on linear convolutional kernels.THEORYRobust artificial-neural-networks for k-space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k-space lines from acquired k-space data with improved noise resilience, as opposed to conventional linear k-space interpolation-based methods, such as GRAPPA, which are based on linear convolutional kernels.The training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets.METHODSThe training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets.Phantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high-resolution brain imaging at high acceleration rates.RESULTSPhantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high-resolution brain imaging at high acceleration rates.The RAKI method offers a training database-free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols.CONCLUSIONThe RAKI method offers a training database-free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols.
PurposeTo develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data.TheoryRobust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k‐space lines from acquired k‐space data with improved noise resilience, as opposed to conventional linear k‐space interpolation‐based methods, such as GRAPPA, which are based on linear convolutional kernels.MethodsThe training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets.ResultsPhantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high‐resolution brain imaging at high acceleration rates.ConclusionThe RAKI method offers a training database‐free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols.
Author Weingärtner, Sebastian
Akçakaya, Mehmet
Uğurbil, Kâmil
Moeller, Steen
AuthorAffiliation 1 Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN
3 Computer Assisted Clinical Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
2 Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
AuthorAffiliation_xml – name: 1 Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN
– name: 3 Computer Assisted Clinical Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
– name: 2 Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
Author_xml – sequence: 1
  givenname: Mehmet
  surname: Akçakaya
  fullname: Akçakaya, Mehmet
  email: akcakaya@umn.edu
  organization: University of Minnesota
– sequence: 2
  givenname: Steen
  surname: Moeller
  fullname: Moeller, Steen
  organization: University of Minnesota
– sequence: 3
  givenname: Sebastian
  surname: Weingärtner
  fullname: Weingärtner, Sebastian
  organization: University Medical Center Mannheim, Heidelberg University
– sequence: 4
  givenname: Kâmil
  surname: Uğurbil
  fullname: Uğurbil, Kâmil
  organization: University of Minnesota
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30277269$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1u1TAQhS1URG8LC14ARWLTLm7rOE4cs6hUlb-KVkgF1tbEmVzcJnawHaru-gjd8X48Cb4_RVCBN7HH3zk5k8wO2bLOIiHPc3qQU8oOBz8cMMEZfURmecnYnJWSb5EZFZzOi1zybbITwiWlVErBn5DtgjIhWCVn5McnDfbn7V0YUZvO6My7ZgoxAx-XRwN9urQ4-c0mXjt_FbLO-exqJQONmbER_eh6iMbZbO_i-MPpfuZROxuin_Sy-ip7DREaCJhUnUfMWsQx6xG8NXaxMuwgvdgMsEiFp-RxB33AZ5vnLvny9s3nk_fzs4_vTk-Oz-aaL5urOpBdmXOUVLSSsTxvdN1QUbcMK9rStgIBZVqSAeQNB2zLEhB1SxtO27zYJUdr33FqBmw12phaVaNPOfyNcmDU3zfWfFUL911VrKwLXiaDvY2Bd98mDFENJmjse7DopqBSpFLwuhYyoS8foJdu8ja1l6hCCC65rBL14s9Ev6Pc_7MEHK4B7V0IHjulTVx9-hTQ9CqnajkVKk2FWk1FUuw_UNyb_ovduF-bHm_-D6rzi_O14hd6JM8d
CitedBy_id crossref_primary_10_1016_j_media_2021_102017
crossref_primary_10_1109_TMI_2022_3180228
crossref_primary_10_1002_mrm_30021
crossref_primary_10_1016_j_compmedimag_2024_102475
crossref_primary_10_3348_jksr_2022_0156
crossref_primary_10_1007_s10334_022_01041_3
crossref_primary_10_1016_j_media_2020_101689
crossref_primary_10_1002_mrm_29036
crossref_primary_10_1016_j_cmpb_2023_107942
crossref_primary_10_3390_bioengineering9110650
crossref_primary_10_1109_TMI_2022_3203312
crossref_primary_10_1109_TMI_2024_3364911
crossref_primary_10_1088_1361_6560_ac6cc2
crossref_primary_10_1002_mrm_29833
crossref_primary_10_1016_j_jocmr_2024_101127
crossref_primary_10_1002_jmri_27078
crossref_primary_10_1109_MSP_2022_3215288
crossref_primary_10_1109_TMI_2023_3342156
crossref_primary_10_1088_1361_6560_ad3dbc
crossref_primary_10_1109_TBME_2024_3407092
crossref_primary_10_1016_j_bspc_2023_105513
crossref_primary_10_3389_fnins_2021_647535
crossref_primary_10_1109_TCI_2024_3361773
crossref_primary_10_1002_mrm_29261
crossref_primary_10_2463_mrms_rev_2021_0040
crossref_primary_10_1016_j_compbiomed_2023_107610
crossref_primary_10_1109_ACCESS_2024_3508761
crossref_primary_10_6009_jjrt_2023_2236
crossref_primary_10_1016_j_acha_2022_04_003
crossref_primary_10_1016_j_mri_2023_10_001
crossref_primary_10_1109_TMI_2022_3216527
crossref_primary_10_1016_j_mri_2023_02_004
crossref_primary_10_1186_s12880_021_00636_x
crossref_primary_10_1002_mrm_30045
crossref_primary_10_1002_nbm_4798
crossref_primary_10_7498_aps_71_20211761
crossref_primary_10_1002_nbm_4312
crossref_primary_10_1109_TMI_2024_3432388
crossref_primary_10_1088_1361_6560_abaffa
crossref_primary_10_1088_1361_6560_acdc7e
crossref_primary_10_1016_j_neuroimage_2021_117965
crossref_primary_10_1109_TCI_2020_3018562
crossref_primary_10_1109_TIP_2024_3388970
crossref_primary_10_1109_TMI_2021_3093617
crossref_primary_10_1016_j_mri_2024_110277
crossref_primary_10_1002_mrm_28642
crossref_primary_10_1002_nbm_4436
crossref_primary_10_1016_j_jcis_2024_01_165
crossref_primary_10_1109_TCI_2019_2940916
crossref_primary_10_1007_s13534_024_00425_9
crossref_primary_10_1016_j_media_2022_102429
crossref_primary_10_1002_mrm_30030
crossref_primary_10_1109_TMI_2022_3147426
crossref_primary_10_1016_j_neucom_2023_126810
crossref_primary_10_1002_mrm_28634
crossref_primary_10_1109_TCI_2021_3125564
crossref_primary_10_1109_TMI_2023_3288219
crossref_primary_10_1016_j_artmed_2024_102798
crossref_primary_10_1016_j_mri_2023_07_004
crossref_primary_10_1098_rsta_2020_0197
crossref_primary_10_1109_JPROC_2022_3141367
crossref_primary_10_1002_mrm_28420
crossref_primary_10_1002_mrm_29759
crossref_primary_10_1016_j_compbiomed_2024_108905
crossref_primary_10_1007_s10334_024_01207_1
crossref_primary_10_1038_s42256_020_00273_z
crossref_primary_10_3390_s24061954
crossref_primary_10_3390_bioengineering10091012
crossref_primary_10_1038_s41598_021_88567_z
crossref_primary_10_1109_TMI_2022_3220757
crossref_primary_10_1002_mrm_29189
crossref_primary_10_1016_j_bspc_2025_107732
crossref_primary_10_1002_mrm_29625
crossref_primary_10_1016_j_ejro_2022_100441
crossref_primary_10_1002_mrm_28659
crossref_primary_10_1016_j_cobme_2021_100288
crossref_primary_10_1109_JPROC_2019_2936204
crossref_primary_10_1109_MSP_2019_2949470
crossref_primary_10_1002_nbm_4591
crossref_primary_10_1016_j_ejmp_2021_02_020
crossref_primary_10_1002_nbm_4231
crossref_primary_10_1007_s00247_021_05057_0
crossref_primary_10_1016_j_mri_2022_12_009
crossref_primary_10_1007_s00330_022_08687_6
crossref_primary_10_1002_mrm_28688
crossref_primary_10_1016_j_mri_2022_06_012
crossref_primary_10_1002_jmri_27331
crossref_primary_10_1109_RBME_2024_3485022
crossref_primary_10_1088_1361_6560_adb933
crossref_primary_10_1016_j_media_2025_103485
crossref_primary_10_6009_jjrt_2022_2069
crossref_primary_10_1109_TMI_2021_3096232
crossref_primary_10_1016_j_compbiomed_2024_109467
crossref_primary_10_1109_TCI_2024_3394770
crossref_primary_10_3390_appliedmath4030059
crossref_primary_10_3389_fcvm_2022_826283
crossref_primary_10_1002_mrm_29400
crossref_primary_10_3390_bioengineering10030334
crossref_primary_10_1016_j_bspc_2021_102579
crossref_primary_10_1186_s41747_023_00372_7
crossref_primary_10_1007_s11547_024_01893_w
crossref_primary_10_1155_2021_8865582
crossref_primary_10_2463_mrms_mp_2023_0031
crossref_primary_10_1055_a_1775_8633
crossref_primary_10_1016_j_neuroimage_2022_119248
crossref_primary_10_1109_JSTSP_2020_3001737
crossref_primary_10_3390_bioengineering9120736
crossref_primary_10_1002_mrm_30307
crossref_primary_10_1097_RMR_0000000000000246
crossref_primary_10_1002_mrm_29317
crossref_primary_10_1002_mrm_29318
crossref_primary_10_1002_mrm_29314
crossref_primary_10_1002_mrm_29556
crossref_primary_10_1016_j_compmedimag_2020_101784
crossref_primary_10_1109_JBHI_2024_3432139
crossref_primary_10_1016_j_media_2021_102098
crossref_primary_10_1097_RMR_0000000000000249
crossref_primary_10_1142_S0219265921470290
crossref_primary_10_1259_bjr_20211378
crossref_primary_10_1093_bib_bbaa310
crossref_primary_10_1016_j_mri_2024_03_022
crossref_primary_10_1109_TMI_2019_2927101
crossref_primary_10_1002_mp_16543
crossref_primary_10_1007_s00330_022_08919_9
crossref_primary_10_1016_j_mri_2022_06_009
crossref_primary_10_1097_RLI_0000000000000928
crossref_primary_10_1002_mrm_29548
crossref_primary_10_1002_mrm_28219
crossref_primary_10_1002_nbm_4848
crossref_primary_10_1016_j_ejrad_2023_111246
crossref_primary_10_1016_j_mri_2020_06_002
crossref_primary_10_1109_TMI_2020_3014581
crossref_primary_10_1016_j_pnmrs_2025_101561
crossref_primary_10_1007_s11760_021_02030_0
crossref_primary_10_1016_j_mri_2022_10_001
crossref_primary_10_1002_mrm_28485
crossref_primary_10_1002_mrm_29575
crossref_primary_10_1016_j_nicl_2020_102522
crossref_primary_10_1002_nbm_5005
crossref_primary_10_1109_TMI_2019_2946501
crossref_primary_10_1109_TMI_2024_3351211
crossref_primary_10_1002_nbm_4956
crossref_primary_10_1002_mrm_29578
crossref_primary_10_1016_j_compbiomed_2022_105321
crossref_primary_10_1109_JBHI_2024_3516758
crossref_primary_10_1016_j_compmedimag_2021_101968
crossref_primary_10_1109_MSP_2019_2950557
crossref_primary_10_1002_jmri_27247
crossref_primary_10_1109_ACCESS_2019_2924604
crossref_primary_10_1016_j_media_2022_102701
crossref_primary_10_1016_j_neuroimage_2020_116619
crossref_primary_10_12688_f1000research_152312_1
crossref_primary_10_1049_iet_ipr_2019_0834
crossref_primary_10_1109_TSP_2019_2952044
crossref_primary_10_1002_mrm_28911
crossref_primary_10_1002_mrm_28912
crossref_primary_10_1016_j_neucom_2023_127067
crossref_primary_10_1088_1361_6560_ac4561
crossref_primary_10_11834_jig_230041
crossref_primary_10_1109_TIM_2025_3546402
crossref_primary_10_1002_mrm_27825
crossref_primary_10_1109_TMI_2021_3102977
crossref_primary_10_1002_mrm_28917
crossref_primary_10_1002_mrm_27827
crossref_primary_10_1016_j_jocmr_2024_101051
crossref_primary_10_1111_1754_9485_13276
crossref_primary_10_3389_fninf_2020_611666
crossref_primary_10_1002_mrm_30105
crossref_primary_10_1007_s00330_023_09472_9
crossref_primary_10_1109_TMI_2022_3153849
crossref_primary_10_3389_fnins_2022_919186
crossref_primary_10_1002_mp_15788
crossref_primary_10_31159_ksmrt_2024_34_3_23
crossref_primary_10_1109_TCBB_2022_3213669
crossref_primary_10_1002_mrm_28148
crossref_primary_10_1002_nbm_4416
crossref_primary_10_1371_journal_pone_0229418
crossref_primary_10_1002_mrm_28827
crossref_primary_10_1109_TCI_2023_3252260
crossref_primary_10_1109_TMI_2022_3199155
crossref_primary_10_1371_journal_pone_0223315
crossref_primary_10_1109_TMI_2021_3112040
crossref_primary_10_1016_j_mri_2020_05_004
crossref_primary_10_1109_JSTSP_2020_3003170
crossref_primary_10_1109_TMI_2024_3443292
crossref_primary_10_1002_mp_14566
crossref_primary_10_1016_j_mri_2020_09_021
crossref_primary_10_1002_mrm_28378
crossref_primary_10_1109_JSEN_2024_3366764
crossref_primary_10_1016_j_imavis_2024_105228
crossref_primary_10_1109_JSTSP_2020_2982777
crossref_primary_10_1016_j_compmedimag_2023_102206
crossref_primary_10_1038_s41467_021_25431_8
crossref_primary_10_3390_diagnostics11122181
crossref_primary_10_1088_1361_6560_ad6d28
crossref_primary_10_3389_fcvm_2020_00017
crossref_primary_10_1002_appl_202200109
crossref_primary_10_1002_mrm_30121
crossref_primary_10_1016_j_crad_2024_09_004
crossref_primary_10_1016_j_mri_2024_02_004
crossref_primary_10_1002_mp_17066
crossref_primary_10_1016_j_mri_2021_02_002
crossref_primary_10_13104_imri_2019_23_2_81
crossref_primary_10_1109_TBME_2022_3180691
crossref_primary_10_1038_s41584_021_00719_7
crossref_primary_10_1002_mrm_28164
crossref_primary_10_1016_j_mri_2020_04_007
crossref_primary_10_1016_j_mri_2020_11_010
crossref_primary_10_1016_j_neucom_2025_129771
crossref_primary_10_1016_j_neuroimage_2024_120926
crossref_primary_10_1109_MSP_2019_2950640
crossref_primary_10_1016_j_compbiomed_2024_108098
crossref_primary_10_1002_mrm_30234
crossref_primary_10_2214_AJR_20_23313
crossref_primary_10_1002_mrm_30114
crossref_primary_10_1109_TMI_2024_3473009
crossref_primary_10_1002_mrm_28150
crossref_primary_10_1016_j_jmr_2022_107354
crossref_primary_10_1002_mrm_29482
crossref_primary_10_1016_j_ijcard_2021_09_012
crossref_primary_10_1016_j_cmpb_2023_107452
crossref_primary_10_1109_TMI_2022_3142610
crossref_primary_10_1186_s12880_021_00727_9
crossref_primary_10_1109_TMI_2023_3311345
crossref_primary_10_1097_RLI_0000000000000786
Cites_doi 10.1002/mrm.20772
10.1002/mrm.24683
10.1002/mrm.22483
10.1002/mrm.23097
10.1002/mrm.22618
10.1002/(SICI)1522-2594(200001)43:1<91::AID-MRM11>3.0.CO;2-4
10.1002/mrm.21236
10.1109/TMI.2010.2090538
10.1002/mrm.26977
10.1002/mrm.23279
10.1109/TMI.2013.2256923
10.1097/RLI.0b013e31828a012d
10.1109/CVPR.2009.5206848
10.1109/TPAMI.2015.2439281
10.1002/mrm.1910380414
10.1002/mrm.21728
10.1002/mrm.24761
10.1016/j.neuroimage.2013.05.041
10.1109/TMI.2010.2100850
10.1002/mrm.21071
10.1186/1532-429X-16-2
10.1259/bjr.20150487
10.1002/mrm.10171
10.1002/mrm.1241
10.1002/mrm.20787
10.1002/mrm.21391
10.1002/mrm.22841
10.1038/nature14539
10.1002/mp.12600
10.1109/5.726791
10.1002/mrm.22361
10.1002/mrm.1910280204
10.1002/mrm.22595
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1002/mrm.22428
10.1109/ISBI.2016.7493320
ContentType Journal Article
Copyright 2018 International Society for Magnetic Resonance in Medicine
2018 International Society for Magnetic Resonance in Medicine.
2019 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2018 International Society for Magnetic Resonance in Medicine
– notice: 2018 International Society for Magnetic Resonance in Medicine.
– notice: 2019 International Society for Magnetic Resonance in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.27420
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 453
ExternalDocumentID PMC6258345
30277269
10_1002_mrm_27420
MRM27420
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Science Foundation
  funderid: CAREER CCF‐1651825
– fundername: National Institutes of Health
  funderid: R00HL111410; P41EB015894; U01EB025144; R01NS085188; P30NS076408; P50NS098573
– fundername: National Science Foundation
  grantid: CAREER CCF-1651825
– fundername: NIH HHS
  grantid: R00HL111410
– fundername: NIBIB NIH HHS
  grantid: P41 EB027061
– fundername: National Science Foundation
  grantid: CCF-1651825
– fundername: NINDS NIH HHS
  grantid: P50 NS098573
– fundername: NIH HHS
  grantid: P41EB015894
– fundername: NHLBI NIH HHS
  grantid: R00 HL111410
– fundername: NIH HHS
  grantid: U01EB025144
– fundername: NINDS NIH HHS
  grantid: P30 NS076408
– fundername: NIBIB NIH HHS
  grantid: U01 EB025144
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4740-6fa9f514e907d92211bc8b078d2e60d0d6a7a555592aa1b4aed55aeecd0b40d13
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 13:20:53 EDT 2025
Thu Jul 10 23:25:42 EDT 2025
Tue Oct 07 06:28:05 EDT 2025
Wed Feb 19 02:31:41 EST 2025
Wed Oct 01 02:05:23 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
Wed Jan 22 16:27:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords deep learning
parallel imaging
convolutional neural networks
image reconstruction
nonlinear estimation
k-space interpolation
accelerated imaging
Language English
License 2018 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4740-6fa9f514e907d92211bc8b078d2e60d0d6a7a555592aa1b4aed55aeecd0b40d13
Notes FUNDING INFORMATION
National Institutes of Health, Grant/Award Numbers: R00HL111410, P41EB015894, U01EB025144, R01NS085188, P30NS076408, and P50NS098573; National Science Foundation, Grant/Award Number: CAREER CCF‐1651825.
Correction added after online publication 10 November 2018. Figure 7 was cut off in the original publication and has been corrected in this version.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30277269
PQID 2137749496
PQPubID 1016391
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6258345
proquest_miscellaneous_2115748879
proquest_journals_2137749496
pubmed_primary_30277269
crossref_citationtrail_10_1002_mrm_27420
crossref_primary_10_1002_mrm_27420
wiley_primary_10_1002_mrm_27420_MRM27420
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 48
2012
2006; 56
2011
2010
2015; 521
2006; 55
2000; 43
2017; 44
2009
2011; 30
2008
2007
1999; 42
2001; 46
2016; 38
1998; 86
2007; 57
2010; 63
2007; 58
2002; 47
2010; 64
2013; 32
2015; 88
1992; 28
2014; 16
2013; 80
2011; 66
1997; 38
2011; 65
2017
2016
2014
2013
2012; 68
2012; 67
2014; 71
2008; 60
1989; 541–551
e_1_2_8_28_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Sun Y (e_1_2_8_33_1) 2014
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
Han YS (e_1_2_8_23_1) 2017
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
Sinha N (e_1_2_8_45_1) 2007
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
Yang Y (e_1_2_8_21_1) 2016
Haldar JP (e_1_2_8_14_1) 2010
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
Lee D (e_1_2_8_24_1) 2017
Nair V (e_1_2_8_31_1) 2010
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
Vedaldi A (e_1_2_8_39_1) 2014
e_1_2_8_16_1
e_1_2_8_37_1
LeCun Y (e_1_2_8_29_1) 1989; 541
Glorot X (e_1_2_8_46_1) 2011
Jain V (e_1_2_8_35_1) 2008
e_1_2_8_10_1
e_1_2_8_12_1
e_1_2_8_50_1
References_xml – volume: 57
  start-page: 1086
  year: 2007
  end-page: 1098
  article-title: Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint
  publication-title: Magn Reson Med
– volume: 44
  start-page: 6209
  year: 2017
  end-page: 6224
  article-title: A parallel MR imaging method using multilayer perceptron
  publication-title: Med Phys
– start-page: 315
  year: 2011
  end-page: 323
– volume: 64
  start-page: 457
  year: 2010
  end-page: 471
  article-title: SPIRiT: iterative self‐consistent parallel imaging reconstruction from arbitrary k‐space
  publication-title: Magn Reson Med
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  article-title: The WU‐Minn human connectome project: an overview
  publication-title: Neuroimage
– volume: 65
  start-page: 492
  year: 2011
  end-page: 505
  article-title: Improved radial GRAPPA calibration for real‐time free‐breathing cardiac imaging
  publication-title: Magn Reson Med
– volume: 16
  start-page: 2
  year: 2014
  article-title: T1‐mapping in the heart: accuracy and precision
  publication-title: J Cardiovasc Magn Reson
– volume: 71
  start-page: 1024
  year: 2014
  end-page: 1034
  article-title: Combined saturation/inversion recovery sequences for improved evaluation of scar and diffuse fibrosis in patients with arrhythmia or heart rate variability
  publication-title: Magn Reson Med
– start-page: 1703.01135
  year: 2017
  publication-title: Ye JC. Deep learning with domain adaptation for accelerated projection reconstruction MR. arXiv preprint arXiv
– volume: 38
  start-page: 591
  year: 1997
  end-page: 603
  article-title: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays
  publication-title: Magn Reson Med
– volume: 55
  start-page: 30
  year: 2006
  end-page: 40
  article-title: Highly constrained backprojection for time‐resolved MRI
  publication-title: Magn Reson Med
– start-page: 248
  year: 2009
  end-page: 255
– volume: 47
  start-page: 1202
  year: 2002
  end-page: 1210
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Med
– volume: 56
  start-page: 1359
  year: 2006
  end-page: 1364
  article-title: 2D‐GRAPPA‐operator for faster 3D parallel MRI
  publication-title: Magn Reson Med
– volume: 67
  start-page: 1210
  year: 2012
  end-page: 1224
  article-title: Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty
  publication-title: Magn Reson Med
– volume: 68
  start-page: 730
  year: 2012
  end-page: 740
  article-title: Nonlinear GRAPPA: a kernel approach to parallel MRI reconstruction
  publication-title: Magn Reson Med
– volume: 55
  start-page: 549
  year: 2006
  end-page: 556
  article-title: Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA)
  publication-title: Magn Reson Med
– volume: 58
  start-page: 1182
  year: 2007
  end-page: 1195
  article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging
  publication-title: Magn Reson Med
– start-page: 807
  year: 2010
  end-page: 814
– volume: 28
  start-page: 202
  year: 1992
  end-page: 213
  article-title: Fast spiral coronary artery imaging
  publication-title: Magn Reson Med
– volume: 43
  start-page: 91
  year: 2000
  end-page: 101
  article-title: Undersampled projection reconstruction applied to MR angiography
  publication-title: Magn Reson Med
– volume: 30
  start-page: 1042
  year: 2011
  end-page: 1054
  article-title: Accelerated dynamic MRI exploiting sparsity and low‐rank structure: k‐t SLR
  publication-title: IEEE Trans Med Imaging
– start-page: 1703.01120
  year: 2017
  publication-title: JC. Deep artifact learning for compressed sensing and parallel MRI. arXiv preprint arXiv
– volume: 48
  start-page: 638
  year: 2013
  end-page: 645
  article-title: Clinical image quality assessment of accelerated magnetic resonance neuroimaging using compressed sensing
  publication-title: Invest Radiol
– start-page: 1412.4564
  year: 2014
  publication-title: MatConvNet – convolutional neural networks for MATLAB. Arxiv preprint arXiv
– volume: 71
  start-page: 815
  year: 2014
  end-page: 822
  article-title: Accelerated isotropic sub‐millimeter whole‐heart coronary MRI: compressed sensing versus parallel imaging
  publication-title: Magn Reson Med
– volume: 64
  start-page: 1114
  year: 2010
  end-page: 1120
  article-title: Compressed sensing reconstruction for magnetic resonance parameter mapping
  publication-title: Magn Reson Med
– start-page: p. III‐149‐III ‐152.
  year: 2007
– volume: 65
  start-page: 480
  year: 2011
  end-page: 491
  article-title: Second order total generalized variation (TGV) for MRI
  publication-title: Magn Reson Med
– start-page: 716
  year: 2010
  end-page: 719
– volume: 46
  start-page: 638
  year: 2001
  end-page: 651
  article-title: Advances in sensitivity encoding with arbitrary k‐space trajectories
  publication-title: Magn Reson Med
– start-page: 769
  year: 2008
  end-page: 776
– volume: 30
  start-page: 1028
  year: 2011
  end-page: 1041
  article-title: MR image reconstruction from highly undersampled k‐space data by dictionary learning
  publication-title: IEEE Trans Med Imaging
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  article-title: Gradient‐based learning applied to document recognition
  publication-title: Proc IEEE
– start-page: 1988
  year: 2014
  end-page: 1996
– volume: 66
  start-page: 756
  year: 2011
  end-page: 767
  article-title: Low‐dimensional‐structure self‐learning and thresholding: regularization beyond compressed sensing for MRI Reconstruction
  publication-title: Magn Reson Med
– volume: 88
  start-page: 20150487
  year: 2015
  article-title: Compressed sensing MRI: a review of the clinical literature
  publication-title: Br J Radiol
– volume: 60
  start-page: 895
  year: 2008
  end-page: 907
  article-title: Comprehensive quantification of signal‐to‐noise ratio and g‐factor for image‐based and k‐space‐based parallel imaging reconstructions
  publication-title: Magn Reson Med
– volume: 541–551
  year: 1989
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput
– year: 2016
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 32
  start-page: 1325
  year: 2013
  end-page: 1335
  article-title: Sparsity‐promoting calibration for GRAPPA accelerated parallel MRI reconstruction
  publication-title: IEEE Trans Med Imaging
– start-page: 1088
  year: 2016
– start-page: 1138
  year: 2013
  end-page: 1147
– start-page: 1097
  year: 2012
  end-page: 1105
– start-page: 10
  year: 2016
  end-page: 18
– start-page: 514
  year: 2016
  end-page: 517
– volume: 63
  start-page: 1144
  year: 2010
  end-page: 1153
  article-title: Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI
  publication-title: Magn Reson Med
– volume: 38
  start-page: 295
  year: 2016
  end-page: 307
  article-title: Image super‐resolution using deep convolutional networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: e_1_2_8_8_1
  doi: 10.1002/mrm.20772
– start-page: 315
  volume-title: sparse rectifier neural networks
  year: 2011
  ident: e_1_2_8_46_1
– ident: e_1_2_8_18_1
  doi: 10.1002/mrm.24683
– ident: e_1_2_8_17_1
  doi: 10.1002/mrm.22483
– ident: e_1_2_8_25_1
  doi: 10.1002/mrm.23097
– ident: e_1_2_8_26_1
  doi: 10.1002/mrm.22618
– ident: e_1_2_8_7_1
  doi: 10.1002/(SICI)1522-2594(200001)43:1<91::AID-MRM11>3.0.CO;2-4
– ident: e_1_2_8_36_1
– start-page: 10
  volume-title: Proceedings of the 30th International Conference on Neural Information Processing Systems
  year: 2016
  ident: e_1_2_8_21_1
– ident: e_1_2_8_10_1
  doi: 10.1002/mrm.21236
– ident: e_1_2_8_16_1
  doi: 10.1109/TMI.2010.2090538
– ident: e_1_2_8_22_1
  doi: 10.1002/mrm.26977
– ident: e_1_2_8_27_1
  doi: 10.1002/mrm.23279
– ident: e_1_2_8_47_1
  doi: 10.1109/TMI.2013.2256923
– ident: e_1_2_8_19_1
  doi: 10.1097/RLI.0b013e31828a012d
– ident: e_1_2_8_32_1
  doi: 10.1109/CVPR.2009.5206848
– ident: e_1_2_8_34_1
  doi: 10.1109/TPAMI.2015.2439281
– volume: 541
  year: 1989
  ident: e_1_2_8_29_1
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput
– ident: e_1_2_8_4_1
  doi: 10.1002/mrm.1910380414
– start-page: 769
  volume-title: Proceedings of the 21st International Conference on Neural Information Processing Systems
  year: 2008
  ident: e_1_2_8_35_1
– ident: e_1_2_8_42_1
  doi: 10.1002/mrm.21728
– ident: e_1_2_8_40_1
  doi: 10.1002/mrm.24761
– ident: e_1_2_8_48_1
  doi: 10.1016/j.neuroimage.2013.05.041
– ident: e_1_2_8_13_1
  doi: 10.1109/TMI.2010.2100850
– ident: e_1_2_8_49_1
  doi: 10.1002/mrm.21071
– ident: e_1_2_8_43_1
  doi: 10.1186/1532-429X-16-2
– ident: e_1_2_8_41_1
  doi: 10.1259/bjr.20150487
– ident: e_1_2_8_6_1
  doi: 10.1002/mrm.10171
– ident: e_1_2_8_9_1
  doi: 10.1002/mrm.1241
– ident: e_1_2_8_50_1
  doi: 10.1002/mrm.20787
– ident: e_1_2_8_11_1
  doi: 10.1002/mrm.21391
– ident: e_1_2_8_15_1
  doi: 10.1002/mrm.22841
– start-page: 1703.01120
  year: 2017
  ident: e_1_2_8_24_1
  publication-title: JC. Deep artifact learning for compressed sensing and parallel MRI. arXiv preprint arXiv
– ident: e_1_2_8_28_1
  doi: 10.1038/nature14539
– start-page: p. III‐149‐III
  volume-title: Parallel magnetic resonance imaging using neural networks
  year: 2007
  ident: e_1_2_8_45_1
– start-page: 1988
  volume-title: Proceedings of the 27th International Conference on Neural Information Processing, Systems
  year: 2014
  ident: e_1_2_8_33_1
– ident: e_1_2_8_44_1
  doi: 10.1002/mp.12600
– ident: e_1_2_8_37_1
  doi: 10.1109/5.726791
– ident: e_1_2_8_51_1
  doi: 10.1002/mrm.22361
– ident: e_1_2_8_2_1
  doi: 10.1002/mrm.1910280204
– ident: e_1_2_8_12_1
  doi: 10.1002/mrm.22595
– start-page: 1703.01135
  year: 2017
  ident: e_1_2_8_23_1
  publication-title: Ye JC. Deep learning with domain adaptation for accelerated projection reconstruction MR. arXiv preprint arXiv
– start-page: 716
  volume-title: Proceedings of the IEEE International Symposium on Biomedical
  year: 2010
  ident: e_1_2_8_14_1
– ident: e_1_2_8_5_1
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– start-page: 807
  volume-title: Proceedings of the 27th International Conference on International Conference on Machine Learning
  year: 2010
  ident: e_1_2_8_31_1
– ident: e_1_2_8_38_1
– ident: e_1_2_8_30_1
– ident: e_1_2_8_3_1
  doi: 10.1002/mrm.22428
– start-page: 1412.4564
  year: 2014
  ident: e_1_2_8_39_1
  publication-title: MatConvNet – convolutional neural networks for MATLAB. Arxiv preprint arXiv
– ident: e_1_2_8_20_1
  doi: 10.1109/ISBI.2016.7493320
SSID ssj0009974
Score 2.6888142
Snippet Purpose To develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data. Theory...
To develop an improved k-space reconstruction method using scan-specific deep learning that is trained on autocalibration signal (ACS) data. Robust...
PurposeTo develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data.TheoryRobust...
To develop an improved k-space reconstruction method using scan-specific deep learning that is trained on autocalibration signal (ACS) data.PURPOSETo develop...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 439
SubjectTerms accelerated imaging
Adult
Algorithms
Artificial neural networks
Brain
Brain - diagnostic imaging
Brain Mapping
convolutional neural networks
Data acquisition
Databases, Factual
Deep Learning
Female
Heart - diagnostic imaging
High acceleration
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image Processing, Computer-Assisted - methods
Image reconstruction
In vivo methods and tests
Interpolation
k‐space interpolation
Magnetic Resonance Imaging
Male
Medical imaging
Middle Aged
Neural networks
Neural Networks, Computer
Neuroimaging
Noise
nonlinear estimation
Operators (mathematics)
parallel imaging
Phantoms, Imaging
Protocol (computers)
Radionuclide Imaging
Resilience
Young Adult
Title Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27420
https://www.ncbi.nlm.nih.gov/pubmed/30277269
https://www.proquest.com/docview/2137749496
https://www.proquest.com/docview/2115748879
https://pubmed.ncbi.nlm.nih.gov/PMC6258345
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0740-3194
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSiAuPMqjCwUZxKEcsk28jh3TUwVUBbQcFir1gBSNH4FV2Wy12b1w4idw4__xSzq2k5SlICFysuRx_JqxZ-zxN4Q8BSdlWuU2KSqjE-6ESTRTVZIByNwZqRzzb4fH78TRMX9zkp9skP3uLUzEh-gP3LxkhPXaCzjoZu8CNHS2mA39PaO317ORCObU5AI6SqmIwCy5X2cU71CFUrbXl1zfiy4pmJf9JH_VX8MGdHiDfOyaHv1OToerpR6ar7-hOv5n326S661iSg8iJ90iG67eIlfH7dX7FrkSfEVNc5v8eI_T8fPbd_9I0zsa0cVcr5ol9UwY8Sgw0-NktongZ95Q1I7paSgGxtFpjO8VPfHo7uTg7etnNFjnPaLtc_oSluC3WSxVLZyj1rkz2sa5-BR-WAFWPJ2FUEt3yPHhqw8vjpI2vkNiuJ8WUYGqUGFzaKBbxdAU1abQqLNY5kRqUytAQo6fYgCZ5uBsnoNzxqaapzYb3SWb9bx224Q6XFqgELgbVx5gUEABPOVmpMBWzFo-ILvdTJemBT_3MTi-lBG2mZU45GUY8gF50pOeRcSPPxHtdOxStkLflMyjN3q0HzEgj_tsFFd_BwO1m688TZZLXDSlGpB7kbv6WvwVsmQCc-Qa3_UEHgp8Paeefg6Q4GjFFiOeYzcDW_294eV4Mg6J-_9O-oBcQzVRxYOnHbKJbOAeoiq21I-CzJ0Dpws5QA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqIqAXCgXK0gIGcSiHbLNex44RlwqotrTpYWmlXlDk2A6symar_blw4hG48X48CTN2krIUJEROkTxOnHjG_sYef0PIc-2kjMvERmlpiog7YaKCqTLqaS0TZ6RyDM8OZ8dicMrfnSVnK-RVcxYm8EO0C25oGX68RgPHBendS9bQ8XTcxY1GcNivcQF-CkKi4SV5lFKBg1lyHGkUb3iFYrbbVl2eja5AzKuRkr8iWD8F7a-TD03jQ-TJeXcxL7rmy2-8jv_7dbfJrRqb0r2gTHfIiqs2yI2s3n3fINd9uKiZ3SXf30OP_Pj6Dc9pYqwRnU6KxWxOUQ8DJQUUIlVmfeNDzWcUADI999W0cXQUUnyFYDy6M9w7PHhBvYPektq-pG_0XONMC7XKqXPUOndB61QXH_0DSw0vHo19tqV75HT_7cnrQVSneIgMx34RpVYlYDYHPrpVDLzRwqQFwBbLnIhtbIWWOoFLMa17BdfOJol2zti44LHt9e-T1WpSuQeEOhhddCpgQi6RY1DoVPOYm77StmTW8g7Zabo6NzX_Oabh-JwH5maWwy_P_S_vkGet6EUg_fiT0HajL3lt97OcIYEjEv6IDnnaFoPF4jaMrtxkgTK9RMK4KVWHbAb1at-Cu8iSCSiRS4rXCiAb-HJJNfrkWcHBkU37PIHP9Hr194bn2TDzNw__XfQJuTk4yY7yo4Pjwy2yBqhRhXWobbIKKuEeATKbF4-9Af4ECV89YQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiouPMproYBBHMoh26zXiWPEpWJZtZSt0EKlXlDk2BNYlX1oHxdO_ARu_D9-CTN2krIUJEROljyOXzP2jD3-hrGnBpSKy8RFWWmLSEJqo0LoMuoYoxKwSoOgt8OD4_TgRL4-TU432Iv6LUzAh2gO3Egy_HpNAg4zV-6do4aO5-M2XTSiwX5JJjojh77e8Bw8SuuAwawkrTRa1rhCsdhriq7vRhdUzIuekr9qsH4L6l9jH-rGB8-Ts_ZqWbTtl99wHf-3d9fZ1Uo35fuBmW6wDZhss61Bdfu-zS57d1G7uMm-v8MZ-fH1G73TJF8jPp8Wq8WSEx8GSArMJKjMKuFdzRccFWR-5osZC3wUQnwFZzy-O9w_OnzGvYHegNo-5z2zNLTTYqlyDsAdwIxXoS4--h-WBisejX20pVvspP_q_cuDqArxEFlJ85KWRpeoswHa6E4LtEYLmxWotjgBaexilxplEvy0MKZTSAMuSQyAdXEhY9fp3mabk-kE7jIOuLqYLMUNuSSMwdRkRsbSdrVxpXBOtthuPdW5rfDPKQzH5zwgN4schzz3Q95iTxrSWQD9-BPRTs0veSX3i1wQgCMB_qQt9rjJRomlaxgzgemKaDqJwnVT6Ra7E9irqYVukZVIMUetMV5DQGjg6zmT0SePCo6GbNaVCXbT89XfG54PhgOfuPfvpI_Y1tteP39zeHx0n11BpVGHY6gdtokcAQ9QMVsWD738_QRiWzzl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scan%E2%80%90specific+robust+artificial%E2%80%90neural%E2%80%90networks+for+k%E2%80%90space+interpolation+%28RAKI%29+reconstruction%3A+Database%E2%80%90free+deep+learning+for+fast+imaging&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Ak%C3%A7akaya%2C+Mehmet&rft.au=Moeller%2C+Steen&rft.au=Weing%C3%A4rtner%2C+Sebastian&rft.au=U%C4%9Furbil%2C+K%C3%A2mil&rft.date=2019-01-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=81&rft.issue=1&rft.spage=439&rft.epage=453&rft_id=info:doi/10.1002%2Fmrm.27420&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_27420
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon