Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging
Purpose To develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data. Theory Robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables...
Saved in:
| Published in | Magnetic resonance in medicine Vol. 81; no. 1; pp. 439 - 453 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Wiley Subscription Services, Inc
01.01.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0740-3194 1522-2594 1522-2594 |
| DOI | 10.1002/mrm.27420 |
Cover
| Abstract | Purpose
To develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data.
Theory
Robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k‐space lines from acquired k‐space data with improved noise resilience, as opposed to conventional linear k‐space interpolation‐based methods, such as GRAPPA, which are based on linear convolutional kernels.
Methods
The training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets.
Results
Phantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high‐resolution brain imaging at high acceleration rates.
Conclusion
The RAKI method offers a training database‐free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols. |
|---|---|
| AbstractList | To develop an improved k-space reconstruction method using scan-specific deep learning that is trained on autocalibration signal (ACS) data.
Robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k-space lines from acquired k-space data with improved noise resilience, as opposed to conventional linear k-space interpolation-based methods, such as GRAPPA, which are based on linear convolutional kernels.
The training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets.
Phantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high-resolution brain imaging at high acceleration rates.
The RAKI method offers a training database-free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols. Purpose To develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data. Theory Robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k‐space lines from acquired k‐space data with improved noise resilience, as opposed to conventional linear k‐space interpolation‐based methods, such as GRAPPA, which are based on linear convolutional kernels. Methods The training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets. Results Phantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high‐resolution brain imaging at high acceleration rates. Conclusion The RAKI method offers a training database‐free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols. To develop an improved k-space reconstruction method using scan-specific deep learning that is trained on autocalibration signal (ACS) data.PURPOSETo develop an improved k-space reconstruction method using scan-specific deep learning that is trained on autocalibration signal (ACS) data.Robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k-space lines from acquired k-space data with improved noise resilience, as opposed to conventional linear k-space interpolation-based methods, such as GRAPPA, which are based on linear convolutional kernels.THEORYRobust artificial-neural-networks for k-space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k-space lines from acquired k-space data with improved noise resilience, as opposed to conventional linear k-space interpolation-based methods, such as GRAPPA, which are based on linear convolutional kernels.The training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets.METHODSThe training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets.Phantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high-resolution brain imaging at high acceleration rates.RESULTSPhantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high-resolution brain imaging at high acceleration rates.The RAKI method offers a training database-free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols.CONCLUSIONThe RAKI method offers a training database-free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols. PurposeTo develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data.TheoryRobust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k‐space lines from acquired k‐space data with improved noise resilience, as opposed to conventional linear k‐space interpolation‐based methods, such as GRAPPA, which are based on linear convolutional kernels.MethodsThe training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets.ResultsPhantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high‐resolution brain imaging at high acceleration rates.ConclusionThe RAKI method offers a training database‐free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols. |
| Author | Weingärtner, Sebastian Akçakaya, Mehmet Uğurbil, Kâmil Moeller, Steen |
| AuthorAffiliation | 1 Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 3 Computer Assisted Clinical Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany 2 Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN |
| AuthorAffiliation_xml | – name: 1 Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN – name: 3 Computer Assisted Clinical Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany – name: 2 Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN |
| Author_xml | – sequence: 1 givenname: Mehmet surname: Akçakaya fullname: Akçakaya, Mehmet email: akcakaya@umn.edu organization: University of Minnesota – sequence: 2 givenname: Steen surname: Moeller fullname: Moeller, Steen organization: University of Minnesota – sequence: 3 givenname: Sebastian surname: Weingärtner fullname: Weingärtner, Sebastian organization: University Medical Center Mannheim, Heidelberg University – sequence: 4 givenname: Kâmil surname: Uğurbil fullname: Uğurbil, Kâmil organization: University of Minnesota |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30277269$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ks1u1TAQhS1URG8LC14ARWLTLm7rOE4cs6hUlb-KVkgF1tbEmVzcJnawHaru-gjd8X48Cb4_RVCBN7HH3zk5k8wO2bLOIiHPc3qQU8oOBz8cMMEZfURmecnYnJWSb5EZFZzOi1zybbITwiWlVErBn5DtgjIhWCVn5McnDfbn7V0YUZvO6My7ZgoxAx-XRwN9urQ4-c0mXjt_FbLO-exqJQONmbER_eh6iMbZbO_i-MPpfuZROxuin_Sy-ip7DREaCJhUnUfMWsQx6xG8NXaxMuwgvdgMsEiFp-RxB33AZ5vnLvny9s3nk_fzs4_vTk-Oz-aaL5urOpBdmXOUVLSSsTxvdN1QUbcMK9rStgIBZVqSAeQNB2zLEhB1SxtO27zYJUdr33FqBmw12phaVaNPOfyNcmDU3zfWfFUL911VrKwLXiaDvY2Bd98mDFENJmjse7DopqBSpFLwuhYyoS8foJdu8ja1l6hCCC65rBL14s9Ev6Pc_7MEHK4B7V0IHjulTVx9-hTQ9CqnajkVKk2FWk1FUuw_UNyb_ovduF-bHm_-D6rzi_O14hd6JM8d |
| CitedBy_id | crossref_primary_10_1016_j_media_2021_102017 crossref_primary_10_1109_TMI_2022_3180228 crossref_primary_10_1002_mrm_30021 crossref_primary_10_1016_j_compmedimag_2024_102475 crossref_primary_10_3348_jksr_2022_0156 crossref_primary_10_1007_s10334_022_01041_3 crossref_primary_10_1016_j_media_2020_101689 crossref_primary_10_1002_mrm_29036 crossref_primary_10_1016_j_cmpb_2023_107942 crossref_primary_10_3390_bioengineering9110650 crossref_primary_10_1109_TMI_2022_3203312 crossref_primary_10_1109_TMI_2024_3364911 crossref_primary_10_1088_1361_6560_ac6cc2 crossref_primary_10_1002_mrm_29833 crossref_primary_10_1016_j_jocmr_2024_101127 crossref_primary_10_1002_jmri_27078 crossref_primary_10_1109_MSP_2022_3215288 crossref_primary_10_1109_TMI_2023_3342156 crossref_primary_10_1088_1361_6560_ad3dbc crossref_primary_10_1109_TBME_2024_3407092 crossref_primary_10_1016_j_bspc_2023_105513 crossref_primary_10_3389_fnins_2021_647535 crossref_primary_10_1109_TCI_2024_3361773 crossref_primary_10_1002_mrm_29261 crossref_primary_10_2463_mrms_rev_2021_0040 crossref_primary_10_1016_j_compbiomed_2023_107610 crossref_primary_10_1109_ACCESS_2024_3508761 crossref_primary_10_6009_jjrt_2023_2236 crossref_primary_10_1016_j_acha_2022_04_003 crossref_primary_10_1016_j_mri_2023_10_001 crossref_primary_10_1109_TMI_2022_3216527 crossref_primary_10_1016_j_mri_2023_02_004 crossref_primary_10_1186_s12880_021_00636_x crossref_primary_10_1002_mrm_30045 crossref_primary_10_1002_nbm_4798 crossref_primary_10_7498_aps_71_20211761 crossref_primary_10_1002_nbm_4312 crossref_primary_10_1109_TMI_2024_3432388 crossref_primary_10_1088_1361_6560_abaffa crossref_primary_10_1088_1361_6560_acdc7e crossref_primary_10_1016_j_neuroimage_2021_117965 crossref_primary_10_1109_TCI_2020_3018562 crossref_primary_10_1109_TIP_2024_3388970 crossref_primary_10_1109_TMI_2021_3093617 crossref_primary_10_1016_j_mri_2024_110277 crossref_primary_10_1002_mrm_28642 crossref_primary_10_1002_nbm_4436 crossref_primary_10_1016_j_jcis_2024_01_165 crossref_primary_10_1109_TCI_2019_2940916 crossref_primary_10_1007_s13534_024_00425_9 crossref_primary_10_1016_j_media_2022_102429 crossref_primary_10_1002_mrm_30030 crossref_primary_10_1109_TMI_2022_3147426 crossref_primary_10_1016_j_neucom_2023_126810 crossref_primary_10_1002_mrm_28634 crossref_primary_10_1109_TCI_2021_3125564 crossref_primary_10_1109_TMI_2023_3288219 crossref_primary_10_1016_j_artmed_2024_102798 crossref_primary_10_1016_j_mri_2023_07_004 crossref_primary_10_1098_rsta_2020_0197 crossref_primary_10_1109_JPROC_2022_3141367 crossref_primary_10_1002_mrm_28420 crossref_primary_10_1002_mrm_29759 crossref_primary_10_1016_j_compbiomed_2024_108905 crossref_primary_10_1007_s10334_024_01207_1 crossref_primary_10_1038_s42256_020_00273_z crossref_primary_10_3390_s24061954 crossref_primary_10_3390_bioengineering10091012 crossref_primary_10_1038_s41598_021_88567_z crossref_primary_10_1109_TMI_2022_3220757 crossref_primary_10_1002_mrm_29189 crossref_primary_10_1016_j_bspc_2025_107732 crossref_primary_10_1002_mrm_29625 crossref_primary_10_1016_j_ejro_2022_100441 crossref_primary_10_1002_mrm_28659 crossref_primary_10_1016_j_cobme_2021_100288 crossref_primary_10_1109_JPROC_2019_2936204 crossref_primary_10_1109_MSP_2019_2949470 crossref_primary_10_1002_nbm_4591 crossref_primary_10_1016_j_ejmp_2021_02_020 crossref_primary_10_1002_nbm_4231 crossref_primary_10_1007_s00247_021_05057_0 crossref_primary_10_1016_j_mri_2022_12_009 crossref_primary_10_1007_s00330_022_08687_6 crossref_primary_10_1002_mrm_28688 crossref_primary_10_1016_j_mri_2022_06_012 crossref_primary_10_1002_jmri_27331 crossref_primary_10_1109_RBME_2024_3485022 crossref_primary_10_1088_1361_6560_adb933 crossref_primary_10_1016_j_media_2025_103485 crossref_primary_10_6009_jjrt_2022_2069 crossref_primary_10_1109_TMI_2021_3096232 crossref_primary_10_1016_j_compbiomed_2024_109467 crossref_primary_10_1109_TCI_2024_3394770 crossref_primary_10_3390_appliedmath4030059 crossref_primary_10_3389_fcvm_2022_826283 crossref_primary_10_1002_mrm_29400 crossref_primary_10_3390_bioengineering10030334 crossref_primary_10_1016_j_bspc_2021_102579 crossref_primary_10_1186_s41747_023_00372_7 crossref_primary_10_1007_s11547_024_01893_w crossref_primary_10_1155_2021_8865582 crossref_primary_10_2463_mrms_mp_2023_0031 crossref_primary_10_1055_a_1775_8633 crossref_primary_10_1016_j_neuroimage_2022_119248 crossref_primary_10_1109_JSTSP_2020_3001737 crossref_primary_10_3390_bioengineering9120736 crossref_primary_10_1002_mrm_30307 crossref_primary_10_1097_RMR_0000000000000246 crossref_primary_10_1002_mrm_29317 crossref_primary_10_1002_mrm_29318 crossref_primary_10_1002_mrm_29314 crossref_primary_10_1002_mrm_29556 crossref_primary_10_1016_j_compmedimag_2020_101784 crossref_primary_10_1109_JBHI_2024_3432139 crossref_primary_10_1016_j_media_2021_102098 crossref_primary_10_1097_RMR_0000000000000249 crossref_primary_10_1142_S0219265921470290 crossref_primary_10_1259_bjr_20211378 crossref_primary_10_1093_bib_bbaa310 crossref_primary_10_1016_j_mri_2024_03_022 crossref_primary_10_1109_TMI_2019_2927101 crossref_primary_10_1002_mp_16543 crossref_primary_10_1007_s00330_022_08919_9 crossref_primary_10_1016_j_mri_2022_06_009 crossref_primary_10_1097_RLI_0000000000000928 crossref_primary_10_1002_mrm_29548 crossref_primary_10_1002_mrm_28219 crossref_primary_10_1002_nbm_4848 crossref_primary_10_1016_j_ejrad_2023_111246 crossref_primary_10_1016_j_mri_2020_06_002 crossref_primary_10_1109_TMI_2020_3014581 crossref_primary_10_1016_j_pnmrs_2025_101561 crossref_primary_10_1007_s11760_021_02030_0 crossref_primary_10_1016_j_mri_2022_10_001 crossref_primary_10_1002_mrm_28485 crossref_primary_10_1002_mrm_29575 crossref_primary_10_1016_j_nicl_2020_102522 crossref_primary_10_1002_nbm_5005 crossref_primary_10_1109_TMI_2019_2946501 crossref_primary_10_1109_TMI_2024_3351211 crossref_primary_10_1002_nbm_4956 crossref_primary_10_1002_mrm_29578 crossref_primary_10_1016_j_compbiomed_2022_105321 crossref_primary_10_1109_JBHI_2024_3516758 crossref_primary_10_1016_j_compmedimag_2021_101968 crossref_primary_10_1109_MSP_2019_2950557 crossref_primary_10_1002_jmri_27247 crossref_primary_10_1109_ACCESS_2019_2924604 crossref_primary_10_1016_j_media_2022_102701 crossref_primary_10_1016_j_neuroimage_2020_116619 crossref_primary_10_12688_f1000research_152312_1 crossref_primary_10_1049_iet_ipr_2019_0834 crossref_primary_10_1109_TSP_2019_2952044 crossref_primary_10_1002_mrm_28911 crossref_primary_10_1002_mrm_28912 crossref_primary_10_1016_j_neucom_2023_127067 crossref_primary_10_1088_1361_6560_ac4561 crossref_primary_10_11834_jig_230041 crossref_primary_10_1109_TIM_2025_3546402 crossref_primary_10_1002_mrm_27825 crossref_primary_10_1109_TMI_2021_3102977 crossref_primary_10_1002_mrm_28917 crossref_primary_10_1002_mrm_27827 crossref_primary_10_1016_j_jocmr_2024_101051 crossref_primary_10_1111_1754_9485_13276 crossref_primary_10_3389_fninf_2020_611666 crossref_primary_10_1002_mrm_30105 crossref_primary_10_1007_s00330_023_09472_9 crossref_primary_10_1109_TMI_2022_3153849 crossref_primary_10_3389_fnins_2022_919186 crossref_primary_10_1002_mp_15788 crossref_primary_10_31159_ksmrt_2024_34_3_23 crossref_primary_10_1109_TCBB_2022_3213669 crossref_primary_10_1002_mrm_28148 crossref_primary_10_1002_nbm_4416 crossref_primary_10_1371_journal_pone_0229418 crossref_primary_10_1002_mrm_28827 crossref_primary_10_1109_TCI_2023_3252260 crossref_primary_10_1109_TMI_2022_3199155 crossref_primary_10_1371_journal_pone_0223315 crossref_primary_10_1109_TMI_2021_3112040 crossref_primary_10_1016_j_mri_2020_05_004 crossref_primary_10_1109_JSTSP_2020_3003170 crossref_primary_10_1109_TMI_2024_3443292 crossref_primary_10_1002_mp_14566 crossref_primary_10_1016_j_mri_2020_09_021 crossref_primary_10_1002_mrm_28378 crossref_primary_10_1109_JSEN_2024_3366764 crossref_primary_10_1016_j_imavis_2024_105228 crossref_primary_10_1109_JSTSP_2020_2982777 crossref_primary_10_1016_j_compmedimag_2023_102206 crossref_primary_10_1038_s41467_021_25431_8 crossref_primary_10_3390_diagnostics11122181 crossref_primary_10_1088_1361_6560_ad6d28 crossref_primary_10_3389_fcvm_2020_00017 crossref_primary_10_1002_appl_202200109 crossref_primary_10_1002_mrm_30121 crossref_primary_10_1016_j_crad_2024_09_004 crossref_primary_10_1016_j_mri_2024_02_004 crossref_primary_10_1002_mp_17066 crossref_primary_10_1016_j_mri_2021_02_002 crossref_primary_10_13104_imri_2019_23_2_81 crossref_primary_10_1109_TBME_2022_3180691 crossref_primary_10_1038_s41584_021_00719_7 crossref_primary_10_1002_mrm_28164 crossref_primary_10_1016_j_mri_2020_04_007 crossref_primary_10_1016_j_mri_2020_11_010 crossref_primary_10_1016_j_neucom_2025_129771 crossref_primary_10_1016_j_neuroimage_2024_120926 crossref_primary_10_1109_MSP_2019_2950640 crossref_primary_10_1016_j_compbiomed_2024_108098 crossref_primary_10_1002_mrm_30234 crossref_primary_10_2214_AJR_20_23313 crossref_primary_10_1002_mrm_30114 crossref_primary_10_1109_TMI_2024_3473009 crossref_primary_10_1002_mrm_28150 crossref_primary_10_1016_j_jmr_2022_107354 crossref_primary_10_1002_mrm_29482 crossref_primary_10_1016_j_ijcard_2021_09_012 crossref_primary_10_1016_j_cmpb_2023_107452 crossref_primary_10_1109_TMI_2022_3142610 crossref_primary_10_1186_s12880_021_00727_9 crossref_primary_10_1109_TMI_2023_3311345 crossref_primary_10_1097_RLI_0000000000000786 |
| Cites_doi | 10.1002/mrm.20772 10.1002/mrm.24683 10.1002/mrm.22483 10.1002/mrm.23097 10.1002/mrm.22618 10.1002/(SICI)1522-2594(200001)43:1<91::AID-MRM11>3.0.CO;2-4 10.1002/mrm.21236 10.1109/TMI.2010.2090538 10.1002/mrm.26977 10.1002/mrm.23279 10.1109/TMI.2013.2256923 10.1097/RLI.0b013e31828a012d 10.1109/CVPR.2009.5206848 10.1109/TPAMI.2015.2439281 10.1002/mrm.1910380414 10.1002/mrm.21728 10.1002/mrm.24761 10.1016/j.neuroimage.2013.05.041 10.1109/TMI.2010.2100850 10.1002/mrm.21071 10.1186/1532-429X-16-2 10.1259/bjr.20150487 10.1002/mrm.10171 10.1002/mrm.1241 10.1002/mrm.20787 10.1002/mrm.21391 10.1002/mrm.22841 10.1038/nature14539 10.1002/mp.12600 10.1109/5.726791 10.1002/mrm.22361 10.1002/mrm.1910280204 10.1002/mrm.22595 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1002/mrm.22428 10.1109/ISBI.2016.7493320 |
| ContentType | Journal Article |
| Copyright | 2018 International Society for Magnetic Resonance in Medicine 2018 International Society for Magnetic Resonance in Medicine. 2019 International Society for Magnetic Resonance in Medicine |
| Copyright_xml | – notice: 2018 International Society for Magnetic Resonance in Medicine – notice: 2018 International Society for Magnetic Resonance in Medicine. – notice: 2019 International Society for Magnetic Resonance in Medicine |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| DOI | 10.1002/mrm.27420 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Biochemistry Abstracts 1 |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1522-2594 |
| EndPage | 453 |
| ExternalDocumentID | PMC6258345 30277269 10_1002_mrm_27420 MRM27420 |
| Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Science Foundation funderid: CAREER CCF‐1651825 – fundername: National Institutes of Health funderid: R00HL111410; P41EB015894; U01EB025144; R01NS085188; P30NS076408; P50NS098573 – fundername: National Science Foundation grantid: CAREER CCF-1651825 – fundername: NIH HHS grantid: R00HL111410 – fundername: NIBIB NIH HHS grantid: P41 EB027061 – fundername: National Science Foundation grantid: CCF-1651825 – fundername: NINDS NIH HHS grantid: P50 NS098573 – fundername: NIH HHS grantid: P41EB015894 – fundername: NHLBI NIH HHS grantid: R00 HL111410 – fundername: NIH HHS grantid: U01EB025144 – fundername: NINDS NIH HHS grantid: P30 NS076408 – fundername: NIBIB NIH HHS grantid: U01 EB025144 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| ID | FETCH-LOGICAL-c4740-6fa9f514e907d92211bc8b078d2e60d0d6a7a555592aa1b4aed55aeecd0b40d13 |
| IEDL.DBID | DR2 |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Thu Aug 21 13:20:53 EDT 2025 Thu Jul 10 23:25:42 EDT 2025 Tue Oct 07 06:28:05 EDT 2025 Wed Feb 19 02:31:41 EST 2025 Wed Oct 01 02:05:23 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 Wed Jan 22 16:27:52 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | deep learning parallel imaging convolutional neural networks image reconstruction nonlinear estimation k-space interpolation accelerated imaging |
| Language | English |
| License | 2018 International Society for Magnetic Resonance in Medicine. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4740-6fa9f514e907d92211bc8b078d2e60d0d6a7a555592aa1b4aed55aeecd0b40d13 |
| Notes | FUNDING INFORMATION National Institutes of Health, Grant/Award Numbers: R00HL111410, P41EB015894, U01EB025144, R01NS085188, P30NS076408, and P50NS098573; National Science Foundation, Grant/Award Number: CAREER CCF‐1651825. Correction added after online publication 10 November 2018. Figure 7 was cut off in the original publication and has been corrected in this version. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 30277269 |
| PQID | 2137749496 |
| PQPubID | 1016391 |
| PageCount | 10 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6258345 proquest_miscellaneous_2115748879 proquest_journals_2137749496 pubmed_primary_30277269 crossref_citationtrail_10_1002_mrm_27420 crossref_primary_10_1002_mrm_27420 wiley_primary_10_1002_mrm_27420_MRM27420 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | January 2019 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2013; 48 2012 2006; 56 2011 2010 2015; 521 2006; 55 2000; 43 2017; 44 2009 2011; 30 2008 2007 1999; 42 2001; 46 2016; 38 1998; 86 2007; 57 2010; 63 2007; 58 2002; 47 2010; 64 2013; 32 2015; 88 1992; 28 2014; 16 2013; 80 2011; 66 1997; 38 2011; 65 2017 2016 2014 2013 2012; 68 2012; 67 2014; 71 2008; 60 1989; 541–551 e_1_2_8_28_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Sun Y (e_1_2_8_33_1) 2014 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 Han YS (e_1_2_8_23_1) 2017 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 Sinha N (e_1_2_8_45_1) 2007 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 Yang Y (e_1_2_8_21_1) 2016 Haldar JP (e_1_2_8_14_1) 2010 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 e_1_2_8_30_1 Lee D (e_1_2_8_24_1) 2017 Nair V (e_1_2_8_31_1) 2010 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 Vedaldi A (e_1_2_8_39_1) 2014 e_1_2_8_16_1 e_1_2_8_37_1 LeCun Y (e_1_2_8_29_1) 1989; 541 Glorot X (e_1_2_8_46_1) 2011 Jain V (e_1_2_8_35_1) 2008 e_1_2_8_10_1 e_1_2_8_12_1 e_1_2_8_50_1 |
| References_xml | – volume: 57 start-page: 1086 year: 2007 end-page: 1098 article-title: Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint publication-title: Magn Reson Med – volume: 44 start-page: 6209 year: 2017 end-page: 6224 article-title: A parallel MR imaging method using multilayer perceptron publication-title: Med Phys – start-page: 315 year: 2011 end-page: 323 – volume: 64 start-page: 457 year: 2010 end-page: 471 article-title: SPIRiT: iterative self‐consistent parallel imaging reconstruction from arbitrary k‐space publication-title: Magn Reson Med – volume: 80 start-page: 62 year: 2013 end-page: 79 article-title: The WU‐Minn human connectome project: an overview publication-title: Neuroimage – volume: 65 start-page: 492 year: 2011 end-page: 505 article-title: Improved radial GRAPPA calibration for real‐time free‐breathing cardiac imaging publication-title: Magn Reson Med – volume: 16 start-page: 2 year: 2014 article-title: T1‐mapping in the heart: accuracy and precision publication-title: J Cardiovasc Magn Reson – volume: 71 start-page: 1024 year: 2014 end-page: 1034 article-title: Combined saturation/inversion recovery sequences for improved evaluation of scar and diffuse fibrosis in patients with arrhythmia or heart rate variability publication-title: Magn Reson Med – start-page: 1703.01135 year: 2017 publication-title: Ye JC. Deep learning with domain adaptation for accelerated projection reconstruction MR. arXiv preprint arXiv – volume: 38 start-page: 591 year: 1997 end-page: 603 article-title: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays publication-title: Magn Reson Med – volume: 55 start-page: 30 year: 2006 end-page: 40 article-title: Highly constrained backprojection for time‐resolved MRI publication-title: Magn Reson Med – start-page: 248 year: 2009 end-page: 255 – volume: 47 start-page: 1202 year: 2002 end-page: 1210 article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA) publication-title: Magn Reson Med – volume: 56 start-page: 1359 year: 2006 end-page: 1364 article-title: 2D‐GRAPPA‐operator for faster 3D parallel MRI publication-title: Magn Reson Med – volume: 67 start-page: 1210 year: 2012 end-page: 1224 article-title: Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty publication-title: Magn Reson Med – volume: 68 start-page: 730 year: 2012 end-page: 740 article-title: Nonlinear GRAPPA: a kernel approach to parallel MRI reconstruction publication-title: Magn Reson Med – volume: 55 start-page: 549 year: 2006 end-page: 556 article-title: Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA) publication-title: Magn Reson Med – volume: 58 start-page: 1182 year: 2007 end-page: 1195 article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging publication-title: Magn Reson Med – start-page: 807 year: 2010 end-page: 814 – volume: 28 start-page: 202 year: 1992 end-page: 213 article-title: Fast spiral coronary artery imaging publication-title: Magn Reson Med – volume: 43 start-page: 91 year: 2000 end-page: 101 article-title: Undersampled projection reconstruction applied to MR angiography publication-title: Magn Reson Med – volume: 30 start-page: 1042 year: 2011 end-page: 1054 article-title: Accelerated dynamic MRI exploiting sparsity and low‐rank structure: k‐t SLR publication-title: IEEE Trans Med Imaging – start-page: 1703.01120 year: 2017 publication-title: JC. Deep artifact learning for compressed sensing and parallel MRI. arXiv preprint arXiv – volume: 48 start-page: 638 year: 2013 end-page: 645 article-title: Clinical image quality assessment of accelerated magnetic resonance neuroimaging using compressed sensing publication-title: Invest Radiol – start-page: 1412.4564 year: 2014 publication-title: MatConvNet – convolutional neural networks for MATLAB. Arxiv preprint arXiv – volume: 71 start-page: 815 year: 2014 end-page: 822 article-title: Accelerated isotropic sub‐millimeter whole‐heart coronary MRI: compressed sensing versus parallel imaging publication-title: Magn Reson Med – volume: 64 start-page: 1114 year: 2010 end-page: 1120 article-title: Compressed sensing reconstruction for magnetic resonance parameter mapping publication-title: Magn Reson Med – start-page: p. III‐149‐III ‐152. year: 2007 – volume: 65 start-page: 480 year: 2011 end-page: 491 article-title: Second order total generalized variation (TGV) for MRI publication-title: Magn Reson Med – start-page: 716 year: 2010 end-page: 719 – volume: 46 start-page: 638 year: 2001 end-page: 651 article-title: Advances in sensitivity encoding with arbitrary k‐space trajectories publication-title: Magn Reson Med – start-page: 769 year: 2008 end-page: 776 – volume: 30 start-page: 1028 year: 2011 end-page: 1041 article-title: MR image reconstruction from highly undersampled k‐space data by dictionary learning publication-title: IEEE Trans Med Imaging – volume: 86 start-page: 2278 year: 1998 end-page: 2324 article-title: Gradient‐based learning applied to document recognition publication-title: Proc IEEE – start-page: 1988 year: 2014 end-page: 1996 – volume: 66 start-page: 756 year: 2011 end-page: 767 article-title: Low‐dimensional‐structure self‐learning and thresholding: regularization beyond compressed sensing for MRI Reconstruction publication-title: Magn Reson Med – volume: 88 start-page: 20150487 year: 2015 article-title: Compressed sensing MRI: a review of the clinical literature publication-title: Br J Radiol – volume: 60 start-page: 895 year: 2008 end-page: 907 article-title: Comprehensive quantification of signal‐to‐noise ratio and g‐factor for image‐based and k‐space‐based parallel imaging reconstructions publication-title: Magn Reson Med – volume: 541–551 year: 1989 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput – year: 2016 – volume: 42 start-page: 952 year: 1999 end-page: 962 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn Reson Med – volume: 521 start-page: 436 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – volume: 32 start-page: 1325 year: 2013 end-page: 1335 article-title: Sparsity‐promoting calibration for GRAPPA accelerated parallel MRI reconstruction publication-title: IEEE Trans Med Imaging – start-page: 1088 year: 2016 – start-page: 1138 year: 2013 end-page: 1147 – start-page: 1097 year: 2012 end-page: 1105 – start-page: 10 year: 2016 end-page: 18 – start-page: 514 year: 2016 end-page: 517 – volume: 63 start-page: 1144 year: 2010 end-page: 1153 article-title: Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI publication-title: Magn Reson Med – volume: 38 start-page: 295 year: 2016 end-page: 307 article-title: Image super‐resolution using deep convolutional networks publication-title: IEEE Trans Pattern Anal Mach Intell – ident: e_1_2_8_8_1 doi: 10.1002/mrm.20772 – start-page: 315 volume-title: sparse rectifier neural networks year: 2011 ident: e_1_2_8_46_1 – ident: e_1_2_8_18_1 doi: 10.1002/mrm.24683 – ident: e_1_2_8_17_1 doi: 10.1002/mrm.22483 – ident: e_1_2_8_25_1 doi: 10.1002/mrm.23097 – ident: e_1_2_8_26_1 doi: 10.1002/mrm.22618 – ident: e_1_2_8_7_1 doi: 10.1002/(SICI)1522-2594(200001)43:1<91::AID-MRM11>3.0.CO;2-4 – ident: e_1_2_8_36_1 – start-page: 10 volume-title: Proceedings of the 30th International Conference on Neural Information Processing Systems year: 2016 ident: e_1_2_8_21_1 – ident: e_1_2_8_10_1 doi: 10.1002/mrm.21236 – ident: e_1_2_8_16_1 doi: 10.1109/TMI.2010.2090538 – ident: e_1_2_8_22_1 doi: 10.1002/mrm.26977 – ident: e_1_2_8_27_1 doi: 10.1002/mrm.23279 – ident: e_1_2_8_47_1 doi: 10.1109/TMI.2013.2256923 – ident: e_1_2_8_19_1 doi: 10.1097/RLI.0b013e31828a012d – ident: e_1_2_8_32_1 doi: 10.1109/CVPR.2009.5206848 – ident: e_1_2_8_34_1 doi: 10.1109/TPAMI.2015.2439281 – volume: 541 year: 1989 ident: e_1_2_8_29_1 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput – ident: e_1_2_8_4_1 doi: 10.1002/mrm.1910380414 – start-page: 769 volume-title: Proceedings of the 21st International Conference on Neural Information Processing Systems year: 2008 ident: e_1_2_8_35_1 – ident: e_1_2_8_42_1 doi: 10.1002/mrm.21728 – ident: e_1_2_8_40_1 doi: 10.1002/mrm.24761 – ident: e_1_2_8_48_1 doi: 10.1016/j.neuroimage.2013.05.041 – ident: e_1_2_8_13_1 doi: 10.1109/TMI.2010.2100850 – ident: e_1_2_8_49_1 doi: 10.1002/mrm.21071 – ident: e_1_2_8_43_1 doi: 10.1186/1532-429X-16-2 – ident: e_1_2_8_41_1 doi: 10.1259/bjr.20150487 – ident: e_1_2_8_6_1 doi: 10.1002/mrm.10171 – ident: e_1_2_8_9_1 doi: 10.1002/mrm.1241 – ident: e_1_2_8_50_1 doi: 10.1002/mrm.20787 – ident: e_1_2_8_11_1 doi: 10.1002/mrm.21391 – ident: e_1_2_8_15_1 doi: 10.1002/mrm.22841 – start-page: 1703.01120 year: 2017 ident: e_1_2_8_24_1 publication-title: JC. Deep artifact learning for compressed sensing and parallel MRI. arXiv preprint arXiv – ident: e_1_2_8_28_1 doi: 10.1038/nature14539 – start-page: p. III‐149‐III volume-title: Parallel magnetic resonance imaging using neural networks year: 2007 ident: e_1_2_8_45_1 – start-page: 1988 volume-title: Proceedings of the 27th International Conference on Neural Information Processing, Systems year: 2014 ident: e_1_2_8_33_1 – ident: e_1_2_8_44_1 doi: 10.1002/mp.12600 – ident: e_1_2_8_37_1 doi: 10.1109/5.726791 – ident: e_1_2_8_51_1 doi: 10.1002/mrm.22361 – ident: e_1_2_8_2_1 doi: 10.1002/mrm.1910280204 – ident: e_1_2_8_12_1 doi: 10.1002/mrm.22595 – start-page: 1703.01135 year: 2017 ident: e_1_2_8_23_1 publication-title: Ye JC. Deep learning with domain adaptation for accelerated projection reconstruction MR. arXiv preprint arXiv – start-page: 716 volume-title: Proceedings of the IEEE International Symposium on Biomedical year: 2010 ident: e_1_2_8_14_1 – ident: e_1_2_8_5_1 doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – start-page: 807 volume-title: Proceedings of the 27th International Conference on International Conference on Machine Learning year: 2010 ident: e_1_2_8_31_1 – ident: e_1_2_8_38_1 – ident: e_1_2_8_30_1 – ident: e_1_2_8_3_1 doi: 10.1002/mrm.22428 – start-page: 1412.4564 year: 2014 ident: e_1_2_8_39_1 publication-title: MatConvNet – convolutional neural networks for MATLAB. Arxiv preprint arXiv – ident: e_1_2_8_20_1 doi: 10.1109/ISBI.2016.7493320 |
| SSID | ssj0009974 |
| Score | 2.6888142 |
| Snippet | Purpose
To develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data.
Theory... To develop an improved k-space reconstruction method using scan-specific deep learning that is trained on autocalibration signal (ACS) data. Robust... PurposeTo develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data.TheoryRobust... To develop an improved k-space reconstruction method using scan-specific deep learning that is trained on autocalibration signal (ACS) data.PURPOSETo develop... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 439 |
| SubjectTerms | accelerated imaging Adult Algorithms Artificial neural networks Brain Brain - diagnostic imaging Brain Mapping convolutional neural networks Data acquisition Databases, Factual Deep Learning Female Heart - diagnostic imaging High acceleration Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image Processing, Computer-Assisted - methods Image reconstruction In vivo methods and tests Interpolation k‐space interpolation Magnetic Resonance Imaging Male Medical imaging Middle Aged Neural networks Neural Networks, Computer Neuroimaging Noise nonlinear estimation Operators (mathematics) parallel imaging Phantoms, Imaging Protocol (computers) Radionuclide Imaging Resilience Young Adult |
| Title | Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27420 https://www.ncbi.nlm.nih.gov/pubmed/30277269 https://www.proquest.com/docview/2137749496 https://www.proquest.com/docview/2115748879 https://pubmed.ncbi.nlm.nih.gov/PMC6258345 |
| Volume | 81 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0740-3194 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSiAuPMqjCwUZxKEcsk28jh3TUwVUBbQcFir1gBSNH4FV2Wy12b1w4idw4__xSzq2k5SlICFysuRx_JqxZ-zxN4Q8BSdlWuU2KSqjE-6ESTRTVZIByNwZqRzzb4fH78TRMX9zkp9skP3uLUzEh-gP3LxkhPXaCzjoZu8CNHS2mA39PaO317ORCObU5AI6SqmIwCy5X2cU71CFUrbXl1zfiy4pmJf9JH_VX8MGdHiDfOyaHv1OToerpR6ar7-hOv5n326S661iSg8iJ90iG67eIlfH7dX7FrkSfEVNc5v8eI_T8fPbd_9I0zsa0cVcr5ol9UwY8Sgw0-NktongZ95Q1I7paSgGxtFpjO8VPfHo7uTg7etnNFjnPaLtc_oSluC3WSxVLZyj1rkz2sa5-BR-WAFWPJ2FUEt3yPHhqw8vjpI2vkNiuJ8WUYGqUGFzaKBbxdAU1abQqLNY5kRqUytAQo6fYgCZ5uBsnoNzxqaapzYb3SWb9bx224Q6XFqgELgbVx5gUEABPOVmpMBWzFo-ILvdTJemBT_3MTi-lBG2mZU45GUY8gF50pOeRcSPPxHtdOxStkLflMyjN3q0HzEgj_tsFFd_BwO1m688TZZLXDSlGpB7kbv6WvwVsmQCc-Qa3_UEHgp8Paeefg6Q4GjFFiOeYzcDW_294eV4Mg6J-_9O-oBcQzVRxYOnHbKJbOAeoiq21I-CzJ0Dpws5QA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqIqAXCgXK0gIGcSiHbLNex44RlwqotrTpYWmlXlDk2A6symar_blw4hG48X48CTN2krIUJEROkTxOnHjG_sYef0PIc-2kjMvERmlpiog7YaKCqTLqaS0TZ6RyDM8OZ8dicMrfnSVnK-RVcxYm8EO0C25oGX68RgPHBendS9bQ8XTcxY1GcNivcQF-CkKi4SV5lFKBg1lyHGkUb3iFYrbbVl2eja5AzKuRkr8iWD8F7a-TD03jQ-TJeXcxL7rmy2-8jv_7dbfJrRqb0r2gTHfIiqs2yI2s3n3fINd9uKiZ3SXf30OP_Pj6Dc9pYqwRnU6KxWxOUQ8DJQUUIlVmfeNDzWcUADI999W0cXQUUnyFYDy6M9w7PHhBvYPektq-pG_0XONMC7XKqXPUOndB61QXH_0DSw0vHo19tqV75HT_7cnrQVSneIgMx34RpVYlYDYHPrpVDLzRwqQFwBbLnIhtbIWWOoFLMa17BdfOJol2zti44LHt9e-T1WpSuQeEOhhddCpgQi6RY1DoVPOYm77StmTW8g7Zabo6NzX_Oabh-JwH5maWwy_P_S_vkGet6EUg_fiT0HajL3lt97OcIYEjEv6IDnnaFoPF4jaMrtxkgTK9RMK4KVWHbAb1at-Cu8iSCSiRS4rXCiAb-HJJNfrkWcHBkU37PIHP9Hr194bn2TDzNw__XfQJuTk4yY7yo4Pjwy2yBqhRhXWobbIKKuEeATKbF4-9Af4ECV89YQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiouPMproYBBHMoh26zXiWPEpWJZtZSt0EKlXlDk2BNYlX1oHxdO_ARu_D9-CTN2krIUJEROljyOXzP2jD3-hrGnBpSKy8RFWWmLSEJqo0LoMuoYoxKwSoOgt8OD4_TgRL4-TU432Iv6LUzAh2gO3Egy_HpNAg4zV-6do4aO5-M2XTSiwX5JJjojh77e8Bw8SuuAwawkrTRa1rhCsdhriq7vRhdUzIuekr9qsH4L6l9jH-rGB8-Ts_ZqWbTtl99wHf-3d9fZ1Uo35fuBmW6wDZhss61Bdfu-zS57d1G7uMm-v8MZ-fH1G73TJF8jPp8Wq8WSEx8GSArMJKjMKuFdzRccFWR-5osZC3wUQnwFZzy-O9w_OnzGvYHegNo-5z2zNLTTYqlyDsAdwIxXoS4--h-WBisejX20pVvspP_q_cuDqArxEFlJ85KWRpeoswHa6E4LtEYLmxWotjgBaexilxplEvy0MKZTSAMuSQyAdXEhY9fp3mabk-kE7jIOuLqYLMUNuSSMwdRkRsbSdrVxpXBOtthuPdW5rfDPKQzH5zwgN4schzz3Q95iTxrSWQD9-BPRTs0veSX3i1wQgCMB_qQt9rjJRomlaxgzgemKaDqJwnVT6Ra7E9irqYVukZVIMUetMV5DQGjg6zmT0SePCo6GbNaVCXbT89XfG54PhgOfuPfvpI_Y1tteP39zeHx0n11BpVGHY6gdtokcAQ9QMVsWD738_QRiWzzl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scan%E2%80%90specific+robust+artificial%E2%80%90neural%E2%80%90networks+for+k%E2%80%90space+interpolation+%28RAKI%29+reconstruction%3A+Database%E2%80%90free+deep+learning+for+fast+imaging&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Ak%C3%A7akaya%2C+Mehmet&rft.au=Moeller%2C+Steen&rft.au=Weing%C3%A4rtner%2C+Sebastian&rft.au=U%C4%9Furbil%2C+K%C3%A2mil&rft.date=2019-01-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=81&rft.issue=1&rft.spage=439&rft.epage=453&rft_id=info:doi/10.1002%2Fmrm.27420&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_27420 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |