Protocol for iterative indirect immunofluorescence imaging in cultured cells, tissue sections, and metaphase chromosome spreads

We present a protocol to generate highly multiplexed spatial data at cellular and subcellular resolutions using iterative indirect immunofluorescence imaging (4i). We describe streamlined steps for using 4i across fixed cultured cells, formalin-fixed paraffin-embedded (FFPE) tissue sections, and met...

Full description

Saved in:
Bibliographic Details
Published inSTAR protocols Vol. 5; no. 3; p. 103190
Main Authors Hsu, Jeffrey, Nguyen, Kimberly T., Bujnowska, Magda, Janes, Kevin A., Fallahi-Sichani, Mohammad
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 20.09.2024
Elsevier
Subjects
Online AccessGet full text
ISSN2666-1667
2666-1667
DOI10.1016/j.xpro.2024.103190

Cover

Abstract We present a protocol to generate highly multiplexed spatial data at cellular and subcellular resolutions using iterative indirect immunofluorescence imaging (4i). We describe streamlined steps for using 4i across fixed cultured cells, formalin-fixed paraffin-embedded (FFPE) tissue sections, and metaphase chromosome spreads. We detail procedures for sample preparation, antibody and DNA staining, immunofluorescence imaging, antibody elution, and image processing. This protocol is adapted for high-throughput analysis of fixed cultured cells and addresses sample-specific challenges such as intrinsic tissue autofluorescence and chromosome fragility. For complete details on the use and execution of this protocol for fixed cultured cells, please refer to Comandante-Lou et al.1 [Display omitted] •Three variants of an iterative imaging protocol for cellular and subcellular analysis•Highly multiplexed immunofluorescence staining and antibody elution in diverse samples•Streamlined image processing steps for cultured cells, tissue sections, and chromosomes Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics. We present a protocol to generate highly multiplexed spatial data at cellular and subcellular resolutions using iterative indirect immunofluorescence imaging (4i). We describe streamlined steps for using 4i across fixed cultured cells, formalin-fixed paraffin-embedded (FFPE) tissue sections, and metaphase chromosome spreads. We detail procedures for sample preparation, antibody and DNA staining, immunofluorescence imaging, antibody elution, and image processing. This protocol is adapted for high-throughput analysis of fixed cultured cells and addresses sample-specific challenges such as intrinsic tissue autofluorescence and chromosome fragility.
AbstractList We present a protocol to generate highly multiplexed spatial data at cellular and subcellular resolutions using iterative indirect immunofluorescence imaging (4i). We describe streamlined steps for using 4i across fixed cultured cells, formalin-fixed paraffin-embedded (FFPE) tissue sections, and metaphase chromosome spreads. We detail procedures for sample preparation, antibody and DNA staining, immunofluorescence imaging, antibody elution, and image processing. This protocol is adapted for high-throughput analysis of fixed cultured cells and addresses sample-specific challenges such as intrinsic tissue autofluorescence and chromosome fragility. For complete details on the use and execution of this protocol for fixed cultured cells, please refer to Comandante-Lou et al.1.We present a protocol to generate highly multiplexed spatial data at cellular and subcellular resolutions using iterative indirect immunofluorescence imaging (4i). We describe streamlined steps for using 4i across fixed cultured cells, formalin-fixed paraffin-embedded (FFPE) tissue sections, and metaphase chromosome spreads. We detail procedures for sample preparation, antibody and DNA staining, immunofluorescence imaging, antibody elution, and image processing. This protocol is adapted for high-throughput analysis of fixed cultured cells and addresses sample-specific challenges such as intrinsic tissue autofluorescence and chromosome fragility. For complete details on the use and execution of this protocol for fixed cultured cells, please refer to Comandante-Lou et al.1.
We present a protocol to generate highly multiplexed spatial data at cellular and subcellular resolutions using iterative indirect immunofluorescence imaging (4i). We describe streamlined steps for using 4i across fixed cultured cells, formalin-fixed paraffin-embedded (FFPE) tissue sections, and metaphase chromosome spreads. We detail procedures for sample preparation, antibody and DNA staining, immunofluorescence imaging, antibody elution, and image processing. This protocol is adapted for high-throughput analysis of fixed cultured cells and addresses sample-specific challenges such as intrinsic tissue autofluorescence and chromosome fragility. For complete details on the use and execution of this protocol for fixed cultured cells, please refer to Comandante-Lou et al.1 •Three variants of an iterative imaging protocol for cellular and subcellular analysis•Highly multiplexed immunofluorescence staining and antibody elution in diverse samples•Streamlined image processing steps for cultured cells, tissue sections, and chromosomes Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics. We present a protocol to generate highly multiplexed spatial data at cellular and subcellular resolutions using iterative indirect immunofluorescence imaging (4i). We describe streamlined steps for using 4i across fixed cultured cells, formalin-fixed paraffin-embedded (FFPE) tissue sections, and metaphase chromosome spreads. We detail procedures for sample preparation, antibody and DNA staining, immunofluorescence imaging, antibody elution, and image processing. This protocol is adapted for high-throughput analysis of fixed cultured cells and addresses sample-specific challenges such as intrinsic tissue autofluorescence and chromosome fragility.
We present a protocol to generate highly multiplexed spatial data at cellular and subcellular resolutions using iterative indirect immunofluorescence imaging (4i). We describe streamlined steps for using 4i across fixed cultured cells, formalin-fixed paraffin-embedded (FFPE) tissue sections, and metaphase chromosome spreads. We detail procedures for sample preparation, antibody and DNA staining, immunofluorescence imaging, antibody elution, and image processing. This protocol is adapted for high-throughput analysis of fixed cultured cells and addresses sample-specific challenges such as intrinsic tissue autofluorescence and chromosome fragility. For complete details on the use and execution of this protocol for fixed cultured cells, please refer to Comandante-Lou et al.1 [Display omitted] •Three variants of an iterative imaging protocol for cellular and subcellular analysis•Highly multiplexed immunofluorescence staining and antibody elution in diverse samples•Streamlined image processing steps for cultured cells, tissue sections, and chromosomes Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics. We present a protocol to generate highly multiplexed spatial data at cellular and subcellular resolutions using iterative indirect immunofluorescence imaging (4i). We describe streamlined steps for using 4i across fixed cultured cells, formalin-fixed paraffin-embedded (FFPE) tissue sections, and metaphase chromosome spreads. We detail procedures for sample preparation, antibody and DNA staining, immunofluorescence imaging, antibody elution, and image processing. This protocol is adapted for high-throughput analysis of fixed cultured cells and addresses sample-specific challenges such as intrinsic tissue autofluorescence and chromosome fragility.
We present a protocol to generate highly multiplexed spatial data at cellular and subcellular resolutions using iterative indirect immunofluorescence imaging (4i). We describe streamlined steps for using 4i across fixed cultured cells, formalin-fixed paraffin-embedded (FFPE) tissue sections, and metaphase chromosome spreads. We detail procedures for sample preparation, antibody and DNA staining, immunofluorescence imaging, antibody elution, and image processing. This protocol is adapted for high-throughput analysis of fixed cultured cells and addresses sample-specific challenges such as intrinsic tissue autofluorescence and chromosome fragility. For complete details on the use and execution of this protocol for fixed cultured cells, please refer to Comandante-Lou et al. .
We present a protocol to generate highly multiplexed spatial data at cellular and subcellular resolutions using iterative indirect immunofluorescence imaging (4i). We describe streamlined steps for using 4i across fixed cultured cells, formalin-fixed paraffin-embedded (FFPE) tissue sections, and metaphase chromosome spreads. We detail procedures for sample preparation, antibody and DNA staining, immunofluorescence imaging, antibody elution, and image processing. This protocol is adapted for high-throughput analysis of fixed cultured cells and addresses sample-specific challenges such as intrinsic tissue autofluorescence and chromosome fragility.For complete details on the use and execution of this protocol for fixed cultured cells, please refer to Comandante-Lou et al.1 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
ArticleNumber 103190
Author Janes, Kevin A.
Fallahi-Sichani, Mohammad
Hsu, Jeffrey
Nguyen, Kimberly T.
Bujnowska, Magda
Author_xml – sequence: 1
  givenname: Jeffrey
  surname: Hsu
  fullname: Hsu, Jeffrey
  organization: Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22908, USA
– sequence: 2
  givenname: Kimberly T.
  surname: Nguyen
  fullname: Nguyen, Kimberly T.
  organization: Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22908, USA
– sequence: 3
  givenname: Magda
  surname: Bujnowska
  fullname: Bujnowska, Magda
  organization: Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22908, USA
– sequence: 4
  givenname: Kevin A.
  surname: Janes
  fullname: Janes, Kevin A.
  organization: Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
– sequence: 5
  givenname: Mohammad
  orcidid: 0000-0003-0917-3525
  surname: Fallahi-Sichani
  fullname: Fallahi-Sichani, Mohammad
  email: fallahi@virginia.edu
  organization: Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39002133$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUtFARLaV_gAPykQO7-CtOLCGhqipQqRIc4Gw5zsuuV4kdbGcFJ_56HVKq9sLJ9nsz8-R58xKd-OABodeUbCmh8v1h-2uKYcsIE6XAqSLP0BmTUm6olPXJo_spukjpQAhhFWWCNi_QKVflRTk_Q3--xZCDDQPuQ8QuQzTZHQE737kINmM3jrMP_TCHCMmCt6U3mp3zu4LBdh7yHKHDFoYhvcPZpTQDToXpgi8F4zs8QjbT3iTAdh_DGFIYC2SKYLr0Cj3vzZDg4v48Rz8-XX-_-rK5_fr55urydmNFzfMGLDU17VsuiWhUZQgljbGsYWCEYJxCy5SoesPbpqp61dc1ZZUUTSubulHK8HN0s-p2wRz0FMsf4m8djNN_CyHutInZ2QG0rBnhUAna2VaorlNVbY3hfdFuwbayaH1ctaa5HaErpuRohieiTzve7fUuHDWlnFBGFoW39wox_JwhZT26tFhoPIQ5aU5qVcZSxQr0zeNhD1P-rbAA2AqwMaQUoX-AUKKXqOiDXqKil6joNSqF9GElQfH86CDqZN2y3HXrxRT3P_odURLJzg
Cites_doi 10.1186/gb-2006-7-10-r100
10.7554/eLife.31657
10.1038/ncomms14836
10.1038/ncomms9390
10.1038/s41592-021-01308-y
10.1016/j.celrep.2022.111147
10.1126/science.aar7042
10.1093/bioinformatics/btac544
10.1038/nmeth.2019
10.1023/B:VISI.0000029664.99615.94
10.21769/BioProtoc.4712
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
2024 The Author(s) 2024
Copyright_xml – notice: 2024 The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2024 The Author(s) 2024
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.xpro.2024.103190
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2666-1667
ExternalDocumentID oai_doaj_org_article_67203e541dcb49dd957caa3f3b8becb6
PMC11301206
39002133
10_1016_j_xpro_2024_103190
S2666166724003551
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM133404
– fundername: NCI NIH HHS
  grantid: R01 CA249229
– fundername: NCI NIH HHS
  grantid: P30 CA044579
– fundername: NCI NIH HHS
  grantid: T32 CA009109
– fundername: NCI NIH HHS
  grantid: U54 CA274499
– fundername: NIGMS NIH HHS
  grantid: T32 GM007267
– fundername: NIGMS NIH HHS
  grantid: T32 GM145443
GroupedDBID 0R~
53G
6I.
AAEDW
AAFTH
AAMRU
AAXUO
ADVLN
AEXQZ
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
RPM
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c473t-ec1a71fb3604895a0108ac282ea44231eb2945fa3b855f9f77125648b687899a3
IEDL.DBID DOA
ISSN 2666-1667
IngestDate Wed Aug 27 01:30:58 EDT 2025
Tue Sep 30 17:08:06 EDT 2025
Fri Jul 11 02:33:46 EDT 2025
Mon Jul 21 06:04:10 EDT 2025
Wed Oct 01 06:28:10 EDT 2025
Sat Mar 29 16:12:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Microscopy
Systems biology
Cell Biology
Cancer
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c473t-ec1a71fb3604895a0108ac282ea44231eb2945fa3b855f9f77125648b687899a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Technical contact
These authors contributed equally
Lead contact
ORCID 0000-0003-0917-3525
OpenAccessLink https://doaj.org/article/67203e541dcb49dd957caa3f3b8becb6
PMID 39002133
PQID 3079957192
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_67203e541dcb49dd957caa3f3b8becb6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11301206
proquest_miscellaneous_3079957192
pubmed_primary_39002133
crossref_primary_10_1016_j_xpro_2024_103190
elsevier_sciencedirect_doi_10_1016_j_xpro_2024_103190
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-20
PublicationDateYYYYMMDD 2024-09-20
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-20
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle STAR protocols
PublicationTitleAlternate STAR Protoc
PublicationYear 2024
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Carpenter, Jones, Lamprecht, Clarke, Kang, Friman, Guertin, Chang, Lindquist, Moffat (bib5) 2006; 7
Lin, Fallahi-Sichani, Sorger (bib9) 2015; 6
Gut, Herrmann, Pelkmans (bib2) 2018; 361
Comandante-Lou, Baumann, Fallahi-Sichani (bib1) 2022; 40
Schindelin, Arganda-Carreras, Frise, Kaynig, Longair, Pietzsch, Preibisch, Rueden, Saalfeld, Schmid (bib6) 2012; 9
Lowe (bib7) 2004; 60
Lin, Izar, Wang, Yapp, Mei, Shah, Santagata, Sorger (bib10) 2018; 7
Muhlich, Chen, Yapp, Russell, Santagata, Sorger (bib3) 2022; 38
Schapiro, Sokolov, Yapp, Chen, Muhlich, Hess, Creason, Nirmal, Baker, Nariya (bib8) 2022; 19
Peng, Thorn, Schroeder, Wang, Theis, Marr, Navab (bib4) 2017; 8
Kramer, Del Castillo, Pelkmans, Gut (bib11) 2023; 13
Lin (10.1016/j.xpro.2024.103190_bib9) 2015; 6
Lin (10.1016/j.xpro.2024.103190_bib10) 2018; 7
Comandante-Lou (10.1016/j.xpro.2024.103190_bib1) 2022; 40
Carpenter (10.1016/j.xpro.2024.103190_bib5) 2006; 7
Gut (10.1016/j.xpro.2024.103190_bib2) 2018; 361
Kramer (10.1016/j.xpro.2024.103190_bib11) 2023; 13
Schindelin (10.1016/j.xpro.2024.103190_bib6) 2012; 9
Lowe (10.1016/j.xpro.2024.103190_bib7) 2004; 60
Muhlich (10.1016/j.xpro.2024.103190_bib3) 2022; 38
Schapiro (10.1016/j.xpro.2024.103190_bib8) 2022; 19
Peng (10.1016/j.xpro.2024.103190_bib4) 2017; 8
References_xml – volume: 40
  year: 2022
  ident: bib1
  article-title: AP-1 transcription factor network explains diverse patterns of cellular plasticity in melanoma cells
  publication-title: Cell Rep.
– volume: 361
  year: 2018
  ident: bib2
  article-title: Multiplexed protein maps link subcellular organization to cellular states
  publication-title: Science
– volume: 8
  year: 2017
  ident: bib4
  article-title: A BaSiC tool for background and shading correction of optical microscopy images
  publication-title: Nat. Commun.
– volume: 6
  start-page: 8390
  year: 2015
  ident: bib9
  article-title: Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method
  publication-title: Nat. Commun.
– volume: 7
  year: 2018
  ident: bib10
  article-title: Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes
  publication-title: Elife
– volume: 38
  start-page: 4613
  year: 2022
  end-page: 4621
  ident: bib3
  article-title: Stitching and registering highly multiplexed whole-slide images of tissues and tumors using ASHLAR
  publication-title: Bioinformatics
– volume: 19
  start-page: 311
  year: 2022
  end-page: 315
  ident: bib8
  article-title: MCMICRO: a scalable, modular image-processing pipeline for multiplexed tissue imaging
  publication-title: Nat. Methods
– volume: 60
  start-page: 91
  year: 2004
  end-page: 110
  ident: bib7
  article-title: Distinctive Image Features from Scale-Invariant Keypoints
  publication-title: Int. J. Comput. Vis.
– volume: 7
  year: 2006
  ident: bib5
  article-title: CellProfiler: image analysis software for identifying and quantifying cell phenotypes
  publication-title: Genome Biol.
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  ident: bib6
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
– volume: 13
  year: 2023
  ident: bib11
  article-title: Iterative Indirect Immunofluorescence Imaging (4i) on Adherent Cells and Tissue Sections
  publication-title: Bio. Protoc.
– volume: 7
  year: 2006
  ident: 10.1016/j.xpro.2024.103190_bib5
  article-title: CellProfiler: image analysis software for identifying and quantifying cell phenotypes
  publication-title: Genome Biol.
  doi: 10.1186/gb-2006-7-10-r100
– volume: 7
  year: 2018
  ident: 10.1016/j.xpro.2024.103190_bib10
  article-title: Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes
  publication-title: Elife
  doi: 10.7554/eLife.31657
– volume: 8
  year: 2017
  ident: 10.1016/j.xpro.2024.103190_bib4
  article-title: A BaSiC tool for background and shading correction of optical microscopy images
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14836
– volume: 6
  start-page: 8390
  year: 2015
  ident: 10.1016/j.xpro.2024.103190_bib9
  article-title: Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9390
– volume: 19
  start-page: 311
  year: 2022
  ident: 10.1016/j.xpro.2024.103190_bib8
  article-title: MCMICRO: a scalable, modular image-processing pipeline for multiplexed tissue imaging
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01308-y
– volume: 40
  year: 2022
  ident: 10.1016/j.xpro.2024.103190_bib1
  article-title: AP-1 transcription factor network explains diverse patterns of cellular plasticity in melanoma cells
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.111147
– volume: 361
  year: 2018
  ident: 10.1016/j.xpro.2024.103190_bib2
  article-title: Multiplexed protein maps link subcellular organization to cellular states
  publication-title: Science
  doi: 10.1126/science.aar7042
– volume: 38
  start-page: 4613
  year: 2022
  ident: 10.1016/j.xpro.2024.103190_bib3
  article-title: Stitching and registering highly multiplexed whole-slide images of tissues and tumors using ASHLAR
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac544
– volume: 9
  start-page: 676
  year: 2012
  ident: 10.1016/j.xpro.2024.103190_bib6
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 60
  start-page: 91
  year: 2004
  ident: 10.1016/j.xpro.2024.103190_bib7
  article-title: Distinctive Image Features from Scale-Invariant Keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 13
  year: 2023
  ident: 10.1016/j.xpro.2024.103190_bib11
  article-title: Iterative Indirect Immunofluorescence Imaging (4i) on Adherent Cells and Tissue Sections
  publication-title: Bio. Protoc.
  doi: 10.21769/BioProtoc.4712
SSID ssj0002512418
Score 2.279313
Snippet We present a protocol to generate highly multiplexed spatial data at cellular and subcellular resolutions using iterative indirect immunofluorescence imaging...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 103190
SubjectTerms Animals
Cancer
Cell Biology
Cells, Cultured
Fluorescent Antibody Technique, Indirect - methods
Humans
Metaphase
Microscopy
Microscopy, Fluorescence - methods
Protocol
Systems biology
Title Protocol for iterative indirect immunofluorescence imaging in cultured cells, tissue sections, and metaphase chromosome spreads
URI https://dx.doi.org/10.1016/j.xpro.2024.103190
https://www.ncbi.nlm.nih.gov/pubmed/39002133
https://www.proquest.com/docview/3079957192
https://pubmed.ncbi.nlm.nih.gov/PMC11301206
https://doaj.org/article/67203e541dcb49dd957caa3f3b8becb6
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2666-1667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002512418
  issn: 2666-1667
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2666-1667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002512418
  issn: 2666-1667
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2666-1667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002512418
  issn: 2666-1667
  databaseCode: AKRWK
  dateStart: 20200619
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2666-1667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002512418
  issn: 2666-1667
  databaseCode: RPM
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUQp14qEKVNCysjcSsRcewk9hGqIoQE6gEkbpbj2NpFbLLaZCVu_fXO2Fm020r0wjWx4nhmPPPGHj8TclpZaz1nTQrmIlPhIUFRTpapZbiLxJnlgaz69q68fhA3j8XjxlVfWBMW6YGj4M5L3Cd0hWCNrYVqGlVU1hjueS2h-zqQbUMY20im0Adj1BZMjqdkYkHXC7gkSAhzgQfNGTrhjUgUCPu3AtK_gPPvusmNQHS1Rz6OCJJexD_fJzuuPSC_fy27oQOlUgChNFIlgx-juCONPo3O8BxI559X3TIQOFl4Nw83FEEbGvk3XENxHb8_o0NQB-1DnVYLD0zb0LkbzGIKUY_aKRbx9d0cmiwAdTb9J_Jw9fP-x3U63q2QWlHxIXWWmYr5mpcwhVVhIC2TxkL-5YwAhMUg4Vai8AbEXBRe-aoCJFQKWZeyghTN8EOy23at-0KoKPGwrcmUNBnI3EvlVOZkbTzL6yZnCfm-lrNeRAoNva4te9KoFY1a0VErCblEVby2RPrr8ACMQo9Gof9nFAkp1orUI5KI0oZPzd7s_GStdQ3TDGVuWteteg2uUEEvgIcT8jlawesvcoVIifOEyC372BrD9pt2Ng1U3gwgBMuz8ut7jPob-YBjwWqWPDsiu8Ny5Y4BMg31JMyOSVjL-gO7jxl4
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protocol+for+iterative+indirect+immunofluorescence+imaging+in+cultured+cells%2C+tissue+sections%2C+and+metaphase+chromosome+spreads&rft.jtitle=STAR+protocols&rft.au=Hsu%2C+Jeffrey&rft.au=Nguyen%2C+Kimberly+T&rft.au=Bujnowska%2C+Magda&rft.au=Janes%2C+Kevin+A&rft.date=2024-09-20&rft.issn=2666-1667&rft.eissn=2666-1667&rft.volume=5&rft.issue=3&rft.spage=103190&rft_id=info:doi/10.1016%2Fj.xpro.2024.103190&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-1667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-1667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-1667&client=summon