Automated EEG-based screening of depression using deep convolutional neural network
•Classification of normal and depression using EEG signals.•Employed a 13-layer deep convolutional neural network model.•Minimum hand-crafted features required in this work.•Obtained accuracy of 93.54% using the left hemisphere EEG data.•Obtained accuracy of 95.49% using the right hemisphere EEG dat...
Saved in:
Published in | Computer methods and programs in biomedicine Vol. 161; pp. 103 - 113 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.07.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0169-2607 1872-7565 1872-7565 |
DOI | 10.1016/j.cmpb.2018.04.012 |
Cover
Abstract | •Classification of normal and depression using EEG signals.•Employed a 13-layer deep convolutional neural network model.•Minimum hand-crafted features required in this work.•Obtained accuracy of 93.54% using the left hemisphere EEG data.•Obtained accuracy of 95.49% using the right hemisphere EEG data.
In recent years, advanced neurocomputing and machine learning techniques have been used for Electroencephalogram (EEG)-based diagnosis of various neurological disorders. In this paper, a novel computer model is presented for EEG-based screening of depression using a deep neural network machine learning approach, known as Convolutional Neural Network (CNN). The proposed technique does not require a semi-manually-selected set of features to be fed into a classifier for classification. It learns automatically and adaptively from the input EEG signals to differentiate EEGs obtained from depressive and normal subjects. The model was tested using EEGs obtained from 15 normal and 15 depressed patients. The algorithm attained accuracies of 93.5% and 96.0% using EEG signals from the left and right hemisphere, respectively. It was discovered in this research that the EEG signals from the right hemisphere are more distinctive in depression than those from the left hemisphere. This discovery is consistent with recent research and revelation that the depression is associated with a hyperactive right hemisphere. An exciting extension of this research would be diagnosis of different stages and severity of depression and development of a Depression Severity Index (DSI).
[Display omitted] |
---|---|
AbstractList | •Classification of normal and depression using EEG signals.•Employed a 13-layer deep convolutional neural network model.•Minimum hand-crafted features required in this work.•Obtained accuracy of 93.54% using the left hemisphere EEG data.•Obtained accuracy of 95.49% using the right hemisphere EEG data.
In recent years, advanced neurocomputing and machine learning techniques have been used for Electroencephalogram (EEG)-based diagnosis of various neurological disorders. In this paper, a novel computer model is presented for EEG-based screening of depression using a deep neural network machine learning approach, known as Convolutional Neural Network (CNN). The proposed technique does not require a semi-manually-selected set of features to be fed into a classifier for classification. It learns automatically and adaptively from the input EEG signals to differentiate EEGs obtained from depressive and normal subjects. The model was tested using EEGs obtained from 15 normal and 15 depressed patients. The algorithm attained accuracies of 93.5% and 96.0% using EEG signals from the left and right hemisphere, respectively. It was discovered in this research that the EEG signals from the right hemisphere are more distinctive in depression than those from the left hemisphere. This discovery is consistent with recent research and revelation that the depression is associated with a hyperactive right hemisphere. An exciting extension of this research would be diagnosis of different stages and severity of depression and development of a Depression Severity Index (DSI).
[Display omitted] In recent years, advanced neurocomputing and machine learning techniques have been used for Electroencephalogram (EEG)-based diagnosis of various neurological disorders. In this paper, a novel computer model is presented for EEG-based screening of depression using a deep neural network machine learning approach, known as Convolutional Neural Network (CNN). The proposed technique does not require a semi-manually-selected set of features to be fed into a classifier for classification. It learns automatically and adaptively from the input EEG signals to differentiate EEGs obtained from depressive and normal subjects. The model was tested using EEGs obtained from 15 normal and 15 depressed patients. The algorithm attained accuracies of 93.5% and 96.0% using EEG signals from the left and right hemisphere, respectively. It was discovered in this research that the EEG signals from the right hemisphere are more distinctive in depression than those from the left hemisphere. This discovery is consistent with recent research and revelation that the depression is associated with a hyperactive right hemisphere. An exciting extension of this research would be diagnosis of different stages and severity of depression and development of a Depression Severity Index (DSI).In recent years, advanced neurocomputing and machine learning techniques have been used for Electroencephalogram (EEG)-based diagnosis of various neurological disorders. In this paper, a novel computer model is presented for EEG-based screening of depression using a deep neural network machine learning approach, known as Convolutional Neural Network (CNN). The proposed technique does not require a semi-manually-selected set of features to be fed into a classifier for classification. It learns automatically and adaptively from the input EEG signals to differentiate EEGs obtained from depressive and normal subjects. The model was tested using EEGs obtained from 15 normal and 15 depressed patients. The algorithm attained accuracies of 93.5% and 96.0% using EEG signals from the left and right hemisphere, respectively. It was discovered in this research that the EEG signals from the right hemisphere are more distinctive in depression than those from the left hemisphere. This discovery is consistent with recent research and revelation that the depression is associated with a hyperactive right hemisphere. An exciting extension of this research would be diagnosis of different stages and severity of depression and development of a Depression Severity Index (DSI). In recent years, advanced neurocomputing and machine learning techniques have been used for Electroencephalogram (EEG)-based diagnosis of various neurological disorders. In this paper, a novel computer model is presented for EEG-based screening of depression using a deep neural network machine learning approach, known as Convolutional Neural Network (CNN). The proposed technique does not require a semi-manually-selected set of features to be fed into a classifier for classification. It learns automatically and adaptively from the input EEG signals to differentiate EEGs obtained from depressive and normal subjects. The model was tested using EEGs obtained from 15 normal and 15 depressed patients. The algorithm attained accuracies of 93.5% and 96.0% using EEG signals from the left and right hemisphere, respectively. It was discovered in this research that the EEG signals from the right hemisphere are more distinctive in depression than those from the left hemisphere. This discovery is consistent with recent research and revelation that the depression is associated with a hyperactive right hemisphere. An exciting extension of this research would be diagnosis of different stages and severity of depression and development of a Depression Severity Index (DSI). |
Author | Subha, D. P Oh, Shu Lih Hagiwara, Yuki Acharya, U. Rajendra Adeli, Hojjat Tan, Jen Hong |
Author_xml | – sequence: 1 givenname: U. Rajendra surname: Acharya fullname: Acharya, U. Rajendra email: aru@np.edu.sg organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore – sequence: 2 givenname: Shu Lih surname: Oh fullname: Oh, Shu Lih organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore – sequence: 3 givenname: Yuki surname: Hagiwara fullname: Hagiwara, Yuki organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore – sequence: 4 givenname: Jen Hong surname: Tan fullname: Tan, Jen Hong organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore – sequence: 5 givenname: Hojjat orcidid: 0000-0001-5718-1453 surname: Adeli fullname: Adeli, Hojjat organization: Departments of Neuroscience, Neurology, Biomedical Informatics, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH, United States – sequence: 6 givenname: D. P surname: Subha fullname: Subha, D. P organization: Department of Electrical Engineering, National Institute of Technology Calicut, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29852953$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkD1v1TAUQC1URF8Lf4ABZWRJ8GfiIJaqerSVKjEAs2U718iviR1sp6j_noRXGDqU6V5dnXOHc4ZOQgyA0FuCG4JJ--HQ2Gk2DcVENpg3mNAXaEdkR-tOtOIE7Vaor2mLu1N0lvMBY0yFaF-hU9pLQXvBdujrxVLipAsM1X5_VRud1y3bBBB8-FFFVw0wJ8jZx1AtebsNAHNlY7iP41LWsx6rAEv6M8qvmO5eo5dOjxnePM5z9P3z_tvldX375erm8uK2trxjpYaWauMY1tJx2RligdHBMErAgXFW9NoAN7blWjLbE0ydlIDBaiYcJoyyc_T--HdO8ecCuajJZwvjqAPEJSuKeS94zzBf0XeP6GImGNSc_KTTg_obYgXoEbAp5pzA_UMIVlttdVBbbbXVVpirtfYqySeS9UVvTUrSfnxe_XRUYQ107yGpbD0EC4NPYIsaon9e__hEt6MP3urxDh7-J_8GJgSvRw |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2024_120750 crossref_primary_10_3390_s21134269 crossref_primary_10_1016_j_arth_2018_08_028 crossref_primary_10_1109_ACCESS_2023_3270426 crossref_primary_10_1142_S0129065724500539 crossref_primary_10_1155_2022_1381683 crossref_primary_10_1016_j_bspc_2021_103102 crossref_primary_10_1016_j_artmed_2020_101813 crossref_primary_10_1142_S0219519419400049 crossref_primary_10_3934_mbe_2022252 crossref_primary_10_1007_s12539_023_00567_x crossref_primary_10_1016_j_compbiomed_2022_106473 crossref_primary_10_3390_diagnostics15020210 crossref_primary_10_1007_s13246_020_00897_w crossref_primary_10_1088_1361_6579_ad00ff crossref_primary_10_1007_s12559_022_10042_2 crossref_primary_10_1016_j_jneumeth_2021_109209 crossref_primary_10_3390_s20082403 crossref_primary_10_1142_S0129065721300011 crossref_primary_10_1109_ACCESS_2019_2901672 crossref_primary_10_1142_S0129065723500557 crossref_primary_10_1016_j_asoc_2022_109713 crossref_primary_10_1142_S0129065721500015 crossref_primary_10_1007_s13198_024_02591_6 crossref_primary_10_3233_ICA_220676 crossref_primary_10_3934_math_2024805 crossref_primary_10_1016_j_neucom_2023_126901 crossref_primary_10_1142_S0129065722500241 crossref_primary_10_2196_36417 crossref_primary_10_1016_j_compbiomed_2020_103999 crossref_primary_10_1177_1550059420965431 crossref_primary_10_3390_app9081526 crossref_primary_10_1016_j_eswa_2021_116016 crossref_primary_10_1007_s11227_024_06585_w crossref_primary_10_1016_j_compbiomed_2020_103630 crossref_primary_10_1016_j_bbr_2024_115325 crossref_primary_10_1142_S0219519419400037 crossref_primary_10_3389_fninf_2022_811756 crossref_primary_10_1142_S0219519424400438 crossref_primary_10_1038_s41598_023_43542_8 crossref_primary_10_1109_TNSRE_2023_3336467 crossref_primary_10_1109_ACCESS_2023_3262930 crossref_primary_10_1016_j_artmed_2019_07_004 crossref_primary_10_3390_brainsci12070834 crossref_primary_10_1016_j_artmed_2019_07_006 crossref_primary_10_1177_09544119211017813 crossref_primary_10_3389_fphys_2022_1029298 crossref_primary_10_1142_S0129065719500059 crossref_primary_10_1016_j_infrared_2020_103271 crossref_primary_10_1109_ACCESS_2020_3038397 crossref_primary_10_1016_j_cmpb_2023_107923 crossref_primary_10_3390_s21093050 crossref_primary_10_1155_2021_8897105 crossref_primary_10_1109_TIM_2024_3417598 crossref_primary_10_1016_j_chaos_2023_113472 crossref_primary_10_1016_j_autcon_2019_102836 crossref_primary_10_1088_1741_2552_ad5048 crossref_primary_10_1109_JBHI_2019_2938247 crossref_primary_10_1142_S0219519419400062 crossref_primary_10_1016_j_bspc_2020_102068 crossref_primary_10_1016_j_invent_2021_100422 crossref_primary_10_1007_s40747_021_00408_8 crossref_primary_10_1109_TBCAS_2021_3090995 crossref_primary_10_1785_0120200388 crossref_primary_10_1007_s44174_025_00301_9 crossref_primary_10_1109_ACCESS_2020_2994985 crossref_primary_10_1016_j_cogsys_2018_07_010 crossref_primary_10_1007_s10462_021_09986_y crossref_primary_10_1016_j_artmed_2019_101711 crossref_primary_10_1142_S0129065723500533 crossref_primary_10_1088_1741_2552_acbe20 crossref_primary_10_1016_j_cmpb_2018_11_006 crossref_primary_10_1016_j_cogsys_2024_101214 crossref_primary_10_1142_S0129065720500719 crossref_primary_10_3390_brainsci14101018 crossref_primary_10_1109_TNSRE_2023_3324343 crossref_primary_10_1142_S0129065722500265 crossref_primary_10_1109_JBHI_2023_3236264 crossref_primary_10_3390_s25020409 crossref_primary_10_1016_j_cmpb_2019_105205 crossref_primary_10_1109_ACCESS_2023_3281453 crossref_primary_10_1166_jmihi_2021_3338 crossref_primary_10_34133_hds_0096 crossref_primary_10_32604_iasc_2021_015049 crossref_primary_10_1007_s13369_020_05080_7 crossref_primary_10_1142_S0129065720500604 crossref_primary_10_1016_j_compbiomed_2023_106782 crossref_primary_10_3390_app12147251 crossref_primary_10_1016_j_inffus_2021_10_012 crossref_primary_10_1142_S012906572050015X crossref_primary_10_1016_j_ergon_2023_103423 crossref_primary_10_1109_TNSRE_2023_3293051 crossref_primary_10_1016_j_artmed_2019_101724 crossref_primary_10_1016_j_physa_2019_122584 crossref_primary_10_1007_s13755_021_00139_7 crossref_primary_10_1097_BOT_0000000000001454 crossref_primary_10_1109_TIM_2024_3413175 crossref_primary_10_1016_j_bspc_2024_106930 crossref_primary_10_1007_s11571_022_09881_4 crossref_primary_10_3390_e21010037 crossref_primary_10_1080_03772063_2020_1749143 crossref_primary_10_3390_ijerph17030971 crossref_primary_10_1002_brb3_1902 crossref_primary_10_3390_biology13040203 crossref_primary_10_1007_s00500_019_04515_0 crossref_primary_10_1007_s11042_023_14860_w crossref_primary_10_3233_ICA_230700 crossref_primary_10_1007_s42979_024_02773_w crossref_primary_10_3390_math11071619 crossref_primary_10_1063_5_0213044 crossref_primary_10_3233_ICA_200617 crossref_primary_10_3389_fnhum_2020_00070 crossref_primary_10_1016_j_bbe_2021_01_001 crossref_primary_10_1016_j_smhl_2021_100221 crossref_primary_10_1109_TIM_2025_3544713 crossref_primary_10_1016_j_apacoust_2021_108078 crossref_primary_10_1109_TBCAS_2023_3292237 crossref_primary_10_1016_j_bspc_2024_107112 crossref_primary_10_1016_j_eplepsyres_2021_106818 crossref_primary_10_1155_2023_1701429 crossref_primary_10_1080_17455030_2023_2226246 crossref_primary_10_1016_j_neucom_2020_05_085 crossref_primary_10_1109_MNET_011_2000064 crossref_primary_10_1142_S012906572450031X crossref_primary_10_1007_s12559_023_10157_0 crossref_primary_10_33881_2027_1786_rip_17202 crossref_primary_10_1142_S0129065721500337 crossref_primary_10_1088_1741_2552_ab6f15 crossref_primary_10_1111_exsy_12773 crossref_primary_10_1109_ACCESS_2022_3146711 crossref_primary_10_1109_TAFFC_2024_3392904 crossref_primary_10_3390_electronics13010186 crossref_primary_10_1016_j_knosys_2022_110190 crossref_primary_10_1016_j_compbiomed_2018_09_008 crossref_primary_10_1016_j_eswa_2021_116339 crossref_primary_10_1080_09540091_2024_2383894 crossref_primary_10_1016_j_neucom_2025_130008 crossref_primary_10_1016_j_aei_2020_101191 crossref_primary_10_3390_brainsci9090217 crossref_primary_10_1016_j_bspc_2024_107440 crossref_primary_10_1155_2022_7586918 crossref_primary_10_1016_j_bbe_2021_12_005 crossref_primary_10_1142_S0129065722500459 crossref_primary_10_1007_s00521_018_3889_z crossref_primary_10_1142_S0129065723500223 crossref_primary_10_1002_lio2_354 crossref_primary_10_1016_j_cmpb_2022_107324 crossref_primary_10_3390_ijerph18115780 crossref_primary_10_1016_j_cmpb_2020_105460 crossref_primary_10_1016_j_neulet_2023_137313 crossref_primary_10_1016_j_bspc_2020_102389 crossref_primary_10_3390_math10224177 crossref_primary_10_3390_brainsci12070849 crossref_primary_10_1109_ACCESS_2020_3031725 crossref_primary_10_1016_j_imu_2021_100550 crossref_primary_10_1016_j_bspc_2020_102393 crossref_primary_10_3389_fneur_2021_640526 crossref_primary_10_26862_jkpts_2023_06_30_2_7 crossref_primary_10_32604_csse_2023_029762 crossref_primary_10_1145_3527170 crossref_primary_10_1088_1741_2552_abc902 crossref_primary_10_1016_j_bios_2025_117321 crossref_primary_10_3233_ICA_200638 crossref_primary_10_1177_15500594241273181 crossref_primary_10_1142_S0129065722500587 crossref_primary_10_1515_bmt_2021_0232 crossref_primary_10_1515_tnsci_2022_0234 crossref_primary_10_3233_ICA_210651 crossref_primary_10_1016_j_medengphy_2024_104107 crossref_primary_10_1142_S0129065721500350 crossref_primary_10_1007_s00521_024_10189_z crossref_primary_10_1016_j_bspc_2022_104260 crossref_primary_10_1080_21681163_2022_2111721 crossref_primary_10_3233_ICA_210655 crossref_primary_10_1142_S0129065723500697 crossref_primary_10_1016_j_compbiomed_2021_104922 crossref_primary_10_1007_s11571_021_09678_x crossref_primary_10_1016_j_bbe_2021_06_006 crossref_primary_10_1109_ACCESS_2023_3275024 crossref_primary_10_1007_s13246_020_00938_4 crossref_primary_10_1007_s00500_019_04531_0 crossref_primary_10_1007_s11571_020_09619_0 crossref_primary_10_1016_j_pscychresns_2022_111582 crossref_primary_10_4316_AECE_2020_03007 crossref_primary_10_1063_5_0087848 crossref_primary_10_1109_TCBB_2021_3052811 crossref_primary_10_1155_2020_4174857 crossref_primary_10_1177_15500594211018545 crossref_primary_10_3389_fnhum_2020_00284 crossref_primary_10_1007_s11042_024_19741_4 crossref_primary_10_1016_j_compbiomed_2023_106589 crossref_primary_10_1142_S0219519419400013 crossref_primary_10_1007_s11571_021_09689_8 crossref_primary_10_1016_j_heliyon_2024_e36411 crossref_primary_10_1109_TNSRE_2022_3143162 crossref_primary_10_1109_JSAC_2020_3020654 crossref_primary_10_1142_S0129065720500124 crossref_primary_10_3390_app11041761 crossref_primary_10_3390_s23021008 crossref_primary_10_1142_S0129065720500690 crossref_primary_10_1109_JSEN_2021_3085995 crossref_primary_10_3390_s20040969 crossref_primary_10_1007_s11042_023_14799_y crossref_primary_10_1038_s44184_023_00040_z crossref_primary_10_1155_2022_4439189 crossref_primary_10_1016_j_imu_2020_100325 crossref_primary_10_1155_2022_7725597 crossref_primary_10_1142_S0219622019500342 crossref_primary_10_1016_j_bspc_2024_106973 crossref_primary_10_1142_S0129065721500428 crossref_primary_10_1016_j_jad_2023_06_007 crossref_primary_10_1038_s41598_023_42796_6 crossref_primary_10_1016_j_bspc_2022_103698 crossref_primary_10_3389_fpsyt_2022_970993 crossref_primary_10_1088_1742_6596_1751_1_012040 crossref_primary_10_3390_brainsci14080778 crossref_primary_10_1142_S0129065722500071 crossref_primary_10_1016_j_compbiomed_2022_105420 crossref_primary_10_1016_j_eng_2019_06_008 crossref_primary_10_1007_s00521_018_3689_5 crossref_primary_10_1109_TIM_2025_3545204 crossref_primary_10_1016_j_knosys_2024_112322 crossref_primary_10_1109_TAI_2024_3394792 crossref_primary_10_1111_2041_210X_14001 crossref_primary_10_1109_ACCESS_2023_3304236 crossref_primary_10_1142_S0129065719500205 crossref_primary_10_3390_diagnostics13101779 crossref_primary_10_3389_fphys_2022_956254 crossref_primary_10_1088_2057_1976_acb942 crossref_primary_10_1038_s41398_020_0780_3 crossref_primary_10_1016_j_csbj_2024_03_022 crossref_primary_10_1016_j_bspc_2021_103293 crossref_primary_10_1016_j_brainresbull_2024_110984 crossref_primary_10_1016_j_bspc_2024_106985 crossref_primary_10_1093_bib_bbaa310 crossref_primary_10_1016_j_jneumeth_2022_109690 crossref_primary_10_1002_ima_22369 crossref_primary_10_1109_JBHI_2023_3336935 crossref_primary_10_1016_j_biopsycho_2021_108117 crossref_primary_10_3390_app13095322 crossref_primary_10_1007_s13534_023_00319_2 crossref_primary_10_1016_j_neubiorev_2019_07_021 crossref_primary_10_1109_ACCESS_2019_2891390 crossref_primary_10_1016_j_compbiomed_2021_105039 crossref_primary_10_1016_j_rineng_2025_104143 crossref_primary_10_1007_s00521_020_05588_x crossref_primary_10_1016_j_future_2018_08_044 crossref_primary_10_1016_j_neucom_2019_05_088 crossref_primary_10_1016_j_artmed_2019_101789 crossref_primary_10_1109_ACCESS_2018_2883480 crossref_primary_10_1088_2632_072X_ac5f8d crossref_primary_10_1007_s13246_020_00925_9 crossref_primary_10_1109_TCBB_2023_3257175 crossref_primary_10_3390_app11199218 crossref_primary_10_1177_20552076251324456 crossref_primary_10_18273_revuin_v19n4_2020001 crossref_primary_10_3390_app9142870 crossref_primary_10_3390_life15030394 crossref_primary_10_1016_j_bspc_2023_104923 crossref_primary_10_3389_fpsyt_2024_1346838 crossref_primary_10_1142_S0129065720500677 crossref_primary_10_1016_j_compbiomed_2022_105441 crossref_primary_10_3390_diagnostics14212385 crossref_primary_10_1016_j_patrec_2020_03_009 crossref_primary_10_1038_s41597_022_01211_x crossref_primary_10_3390_diagnostics13030573 crossref_primary_10_3390_app13042703 crossref_primary_10_1016_j_ibmed_2023_100123 crossref_primary_10_1088_1741_2552_ac7257 crossref_primary_10_1142_S0129065719500102 crossref_primary_10_3389_fpubh_2023_1110088 crossref_primary_10_3390_math11143145 crossref_primary_10_1016_j_medntd_2021_100102 crossref_primary_10_1016_j_compbiomed_2019_103483 crossref_primary_10_1016_j_jad_2019_06_034 crossref_primary_10_1016_j_cmpb_2021_106007 crossref_primary_10_1142_S0129065723500259 crossref_primary_10_3389_fneur_2021_603868 crossref_primary_10_29137_umagd_1232222 crossref_primary_10_1016_j_dsp_2023_103986 crossref_primary_10_1142_S0129065721500556 crossref_primary_10_1016_j_cmpb_2022_107113 crossref_primary_10_1016_j_cmpb_2018_05_014 crossref_primary_10_1016_j_bspc_2022_103496 crossref_primary_10_1007_s13369_019_04197_8 crossref_primary_10_1007_s11831_023_09920_1 crossref_primary_10_1016_j_pnpbp_2022_110705 crossref_primary_10_1016_j_jad_2023_03_038 crossref_primary_10_1016_j_compbiomed_2021_105134 crossref_primary_10_1109_ACCESS_2021_3133326 crossref_primary_10_1016_j_compbiomed_2022_106088 crossref_primary_10_1109_MIS_2024_3363895 crossref_primary_10_1049_cit2_12220 crossref_primary_10_1111_exsy_12803 crossref_primary_10_1007_s11042_024_18341_6 crossref_primary_10_3390_biomedinformatics3010014 crossref_primary_10_1016_j_knosys_2023_111305 crossref_primary_10_1142_S0129065722500150 crossref_primary_10_1142_S0129065722500393 crossref_primary_10_1109_TCDS_2021_3079712 crossref_primary_10_1631_jzus_B2400103 crossref_primary_10_7554_eLife_56481 crossref_primary_10_1016_j_bspc_2023_104873 crossref_primary_10_1038_s41598_025_85890_7 crossref_primary_10_1007_s13755_022_00187_7 crossref_primary_10_1080_03007995_2022_2038487 crossref_primary_10_1109_JBHI_2022_3200522 crossref_primary_10_4108_eetsis_6232 crossref_primary_10_1088_1741_2552_ab0ab5 crossref_primary_10_1371_journal_pone_0299127 crossref_primary_10_1080_17455030_2023_2187237 crossref_primary_10_3390_s23208639 crossref_primary_10_3389_fpsyt_2024_1417253 crossref_primary_10_1007_s10489_021_02426_y crossref_primary_10_1159_000512985 crossref_primary_10_1007_s10916_019_1345_y crossref_primary_10_1007_s11517_025_03295_0 crossref_primary_10_1016_j_bpsc_2024_12_014 crossref_primary_10_1016_j_bspc_2023_105270 crossref_primary_10_1007_s11517_019_01959_2 crossref_primary_10_1007_s11571_020_09655_w crossref_primary_10_1002_ima_22565 crossref_primary_10_1142_S0129065723500077 crossref_primary_10_3390_s20226526 crossref_primary_10_1007_s00521_019_04025_y crossref_primary_10_1142_S0129065722500046 crossref_primary_10_1038_s44184_023_00038_7 crossref_primary_10_1109_ACCESS_2021_3049427 crossref_primary_10_1016_j_ijmedinf_2019_103983 crossref_primary_10_1152_physiol_00013_2022 crossref_primary_10_1109_TAFFC_2020_3014171 crossref_primary_10_1016_j_bspc_2021_102957 crossref_primary_10_1021_acs_jpca_1c10681 crossref_primary_10_1109_ACCESS_2019_2948857 crossref_primary_10_1109_TAFFC_2022_3210958 crossref_primary_10_1142_S0129065719500138 crossref_primary_10_1109_TASLPRO_2025_3533370 crossref_primary_10_12998_wjcc_v11_i9_1903 crossref_primary_10_3390_ijerph19031192 crossref_primary_10_1142_S0219519423400791 crossref_primary_10_1002_ima_22552 crossref_primary_10_1007_s10548_024_01080_0 crossref_primary_10_1016_j_cmpb_2021_106433 crossref_primary_10_1016_j_inffus_2023_101960 crossref_primary_10_3389_fpsyt_2024_1280935 crossref_primary_10_35234_fumbd_661955 crossref_primary_10_12688_openreseurope_16244_1 crossref_primary_10_1186_s40359_024_01664_2 crossref_primary_10_1016_j_cmpb_2023_107683 crossref_primary_10_1016_j_neucom_2024_128920 crossref_primary_10_1109_TIM_2021_3053999 crossref_primary_10_1142_S0129065721500519 crossref_primary_10_1142_S0129065722500290 crossref_primary_10_1007_s11517_022_02647_4 crossref_primary_10_3390_s24216815 crossref_primary_10_1111_exsy_12957 crossref_primary_10_3390_brainsci12050630 crossref_primary_10_1016_j_bbe_2020_02_002 crossref_primary_10_1109_ACCESS_2022_3197645 crossref_primary_10_1007_s13246_022_01135_1 crossref_primary_10_1016_j_bspc_2023_105497 crossref_primary_10_1016_j_bspc_2022_103568 crossref_primary_10_3389_fnsys_2021_652662 crossref_primary_10_3934_mbe_2021233 crossref_primary_10_1109_TII_2020_2978944 crossref_primary_10_1016_j_compbiomed_2023_106741 crossref_primary_10_1109_TNSRE_2023_3339518 crossref_primary_10_1093_cercor_bhae505 crossref_primary_10_1109_TAFFC_2022_3171782 crossref_primary_10_1109_TNSRE_2019_2913142 crossref_primary_10_1007_s00521_023_08350_1 crossref_primary_10_1142_S0129065720500641 crossref_primary_10_33166_AETiC_2022_02_005 crossref_primary_10_1007_s10489_022_04159_y crossref_primary_10_3389_fnins_2024_1373515 |
Cites_doi | 10.1016/j.compbiomed.2017.08.022 10.1016/0925-2312(93)90042-2 10.1016/j.cmpb.2012.10.008 10.1111/mice.12297 10.3233/ICA-170538 10.3233/ICA-170551 10.1002/tal.1400 10.1142/S0129065716500398 10.1159/000381950 10.1016/j.future.2017.08.039 10.1142/S012906571750006X 10.1142/S0129065716500465 10.1142/S0129065717500332 10.1109/TBME.2007.905490 10.1166/jmihi.2017.2204 10.1142/S0129065717500022 10.1016/j.bbr.2015.10.036 10.1111/mice.12313 10.1007/s10916-015-0353-9 10.3233/ICA-2010-0345 10.1111/mice.12263 10.1142/S0129065717500204 10.1111/mice.12257 10.1142/S0219519414500353 10.1142/S0129065717500113 10.1142/S0129065717500460 10.1016/j.compbiomed.2017.09.017 10.1016/j.ijpsycho.2012.05.001 10.1142/S0129065716500052 10.1142/S0129065716500337 10.1016/j.jocs.2017.02.006 10.1016/j.ins.2017.08.050 10.1016/j.neures.2010.06.013 10.1142/S0129065716500088 10.1016/j.ins.2017.06.027 10.3348/kjr.2017.18.4.570 10.1142/S0129065716500313 10.1159/000438457 10.1111/j.1467-8667.2004.00360.x 10.1109/TMI.2016.2528162 10.1109/TMI.2016.2538465 10.1142/S0129065716500222 10.1109/TMI.2016.2535302 10.1142/S0129065715500057 10.1142/S0129065716500507 10.1177/1550059413480504 10.1016/j.bspc.2016.07.006 10.1142/S012906571750023X 10.3390/s17061385 10.1016/j.ins.2017.04.012 10.1109/MCI.2010.938364 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.cmpb.2018.04.012 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-7565 |
EndPage | 113 |
ExternalDocumentID | 29852953 10_1016_j_cmpb_2018_04_012 S0169260718301494 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- AACTN AAIAV ABLVK ABTAH ABYKQ AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAYXX AFCTW AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c473t-e62abf30a8f487b1ce32db321efebfc59abe4bc64a83c9102f88e0eca35f01323 |
IEDL.DBID | AIKHN |
ISSN | 0169-2607 1872-7565 |
IngestDate | Thu Sep 04 19:52:15 EDT 2025 Wed Feb 19 02:41:53 EST 2025 Thu Apr 24 23:09:02 EDT 2025 Tue Jul 01 02:40:53 EDT 2025 Fri Feb 23 02:26:01 EST 2024 Tue Aug 26 16:33:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Depression Electroencephalogram Convolutional neural network EEG |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c473t-e62abf30a8f487b1ce32db321efebfc59abe4bc64a83c9102f88e0eca35f01323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5718-1453 |
PMID | 29852953 |
PQID | 2049549304 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2049549304 pubmed_primary_29852953 crossref_primary_10_1016_j_cmpb_2018_04_012 crossref_citationtrail_10_1016_j_cmpb_2018_04_012 elsevier_sciencedirect_doi_10_1016_j_cmpb_2018_04_012 elsevier_clinicalkey_doi_10_1016_j_cmpb_2018_04_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2018 2018-07-00 2018-Jul 20180701 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: July 2018 |
PublicationDecade | 2010 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Computer methods and programs in biomedicine |
PublicationTitleAlternate | Comput Methods Programs Biomed |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Adeli, Ghosh-Dastidar (bib0023) 2010 Jiang, Adeli (bib0029) 2004; 19 Acharya, Sudarshan, Adeli, Santhosh, Koh, Puthankattil, Adeli (bib0030) 2015; 74 Tan, Acharya, Bhandary, Chua, Sivaprasad (bib0049) 2017; 20 Acharya, Fujita, Oh, Hagiwara, Tan, Adam (bib0055) 2017; 405 Rafiei, Khushefati, Demirboga, Adeli (bib0041) 2017; 114 Bruder, Duemepelmann, Piza, Mader, Schulze-Bonhage, Jacobs-Le Van (bib0015) 2017; 27 Arel, Rose, Karnowski (bib0037) 2010; 5 Guo, Wang, Cabrerizo, Adjouadi (bib0007) 2017; 27 Acharya, Fujita, Oh, Adam, Tan, Chua (bib0052) 2017; 946 Acharya, Fujita, Oh, Hagiwara, Tan, Adam (bib0054) 2017; 416 National Institute of Mental Health, Brain basics, obtained from Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib0062) 2014; 15 Yuvaraj, Murugappan, Sundaraj, Omar, Ibrahim, Mohamad, Palaniappan, Acharya, Adeli, Mesquita (bib0013) 2016; 298 He, Zhang, Ren, Sun (bib0058) 2015 Kingma, Ba (bib0061) 2015 2017. Khedher, Illan, Gorriz, Ramirez, Brahim, Meyer-Baese (bib0035) 2017; 27 Ahmadlou, Adeli, Adeli (bib0026) 2013; 4 Tonoyan, Looney, Mandic, van Hulle (bib0018) 2016; 26 Liao, Wu, Huang, Cheng (bib0033) 2017; 17 Akar, Kara, Latifoğlu, Bilgiç (bib0017) 2016; 26 Ortega-Zamorano, Jerez, Gómez, Franco (bib0039) 2017; 24 Acharya, Fujita, Oh, Raghavendra, Tan, Adam, Gertych, Hagiwara (bib0053) 2018; 79 Ahmadlou, Adeli, Adeli (bib0004) 2012; 85 Ahmadlou, Adeli (bib0025) 2010; 17 Morabito, Campolo, Mammone, Versaci, Franceschetti, Tagliavini, Sofia, Fatuzzo, Gambardella, Labate, Mumoli, Tripodi, Gasparini, Ciancci, Sueri, Ferlazzo, Aguglia (bib0014) 2017; 27 . Dereymaeker, Pillay, Vervisch, Van Huffel, Naulaers, Jansen, de Vos (bib0016) 2017; 27 Geier, Lehnertz (bib0006) 2017; 27 Hecht (bib0059) 2010; 68 Ortiz-Garcia, Muruilla, Gorriz, Ramirez (bib0040) 2016; 26 Hosseinifard, Moradi, Rostami (bib0027) 2013; 109 Pereira, Pinto, Alves, Silva (bib0047) 2016; 35 Duda, Hart, Stork (bib0063) 2001 Hirschauer, Adeli, Buford (bib0012) 2015; 39 World Health Organization, Depression, obtained from Rafiei, Adeli (bib0045) 2017; 26 Hung, Adeli (bib0060) 1993; 5 Liu, Wang, Newman, Ying, Thakor (bib0019) 2017; 27 Cogan, Nourani, Harvey, Nagaraddi (bib0005) 2017; 27 Faust, Ang, Puthankattil, Joseph (bib0028) 2014; 14 Direito, Teixeira, Sales, Castelo-Branco, Dourado (bib0008) 2017; 27 Lin, Nie, Ma (bib0044) 2017; 32 Sereshkeh, Trott, Bricout, Chua (bib0020) 2017; 27 Shin, Roth, Gao, Lu, Xu, Nogues, Yao, Mollura, Summers (bib0046) 2016; 35 Cha, Choi, Büyüköztürk (bib0042) 2017; 32 Dai (bib0031) 2017; 32 Zhang, Fei, Wang, Li, Liu, Li, Chen, Yang, Dai, Peng (bib0043) 2017; 31 Lee, Jun, Cho, Lee, Kim, Seo, Kim (bib0057) 2017; 18 Mumtaz, Xia, Ali, Yasin, Hussain, Malik (bib0032) 2017; 31 Koziarski, Cyganek (bib0038) 2017; 24 World Federation for Mental Health, Depression: a global crisis, Occoquan, VA, USA, (2012). Tan, Fujita, Sivaprasad, Bhandary, Rao, Chua, Acharya (bib0050) 2017; 420 Acharya, Sudarshan, Adeli, Santhosh, Koh, Adeli (bib0021) 2015; 73 Acharya, Oh, Hagiwara, Tan, Adam, Gertych, Tan (bib0056) 2017; 89 Varatharajah, Iyer, Berry, Worrel, Brinkmann (bib0009) 2017; 27 Xu, Zhou, Zhen, Yuan, Wu (bib0024) 2016; 26 Mammone, Bonanno, de Salvo, Marino, Bramanti, Bramanti, Morabito (bib0011) 2017; 27 Subha, Joseph (bib0022) 2012; 12 Bairy, Oh, Hagiwara, Puthankattil, Faust, Niranjan, Acharya (bib0036) 2017; 7 Morabito, Campolo, Labate, Morabito, Bonanno, Bramanti, de Salvo, Marra, Bramanti (bib0010) 2015; 25 Ghosh-Dastidar, Adeli, Dadmehr (bib0034) 2008; 55 U.R. Acharya, S.L. Oh, Y. Hagiwara, J.H. Tan, H. Adeli, Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals, Comput. Biol. Med. Tajbakhsh, Shin, Gurudu, Hurst, Kendall, Gotway, Liang (bib0048) 2016; 35 Xu (10.1016/j.cmpb.2018.04.012_bib0024) 2016; 26 Khedher (10.1016/j.cmpb.2018.04.012_bib0035) 2017; 27 Lee (10.1016/j.cmpb.2018.04.012_bib0057) 2017; 18 Bairy (10.1016/j.cmpb.2018.04.012_bib0036) 2017; 7 Acharya (10.1016/j.cmpb.2018.04.012_bib0021) 2015; 73 Hirschauer (10.1016/j.cmpb.2018.04.012_bib0012) 2015; 39 Akar (10.1016/j.cmpb.2018.04.012_bib0017) 2016; 26 Morabito (10.1016/j.cmpb.2018.04.012_bib0014) 2017; 27 Tajbakhsh (10.1016/j.cmpb.2018.04.012_bib0048) 2016; 35 Ahmadlou (10.1016/j.cmpb.2018.04.012_bib0026) 2013; 4 Guo (10.1016/j.cmpb.2018.04.012_bib0007) 2017; 27 Dereymaeker (10.1016/j.cmpb.2018.04.012_bib0016) 2017; 27 Rafiei (10.1016/j.cmpb.2018.04.012_bib0045) 2017; 26 Tan (10.1016/j.cmpb.2018.04.012_bib0050) 2017; 420 Liao (10.1016/j.cmpb.2018.04.012_bib0033) 2017; 17 Koziarski (10.1016/j.cmpb.2018.04.012_bib0038) 2017; 24 Liu (10.1016/j.cmpb.2018.04.012_bib0019) 2017; 27 Hosseinifard (10.1016/j.cmpb.2018.04.012_bib0027) 2013; 109 Subha (10.1016/j.cmpb.2018.04.012_bib0022) 2012; 12 Ghosh-Dastidar (10.1016/j.cmpb.2018.04.012_bib0034) 2008; 55 Acharya (10.1016/j.cmpb.2018.04.012_bib0054) 2017; 416 Pereira (10.1016/j.cmpb.2018.04.012_bib0047) 2016; 35 Tonoyan (10.1016/j.cmpb.2018.04.012_bib0018) 2016; 26 He (10.1016/j.cmpb.2018.04.012_bib0058) 2015 Sereshkeh (10.1016/j.cmpb.2018.04.012_bib0020) 2017; 27 Acharya (10.1016/j.cmpb.2018.04.012_bib0052) 2017; 946 Direito (10.1016/j.cmpb.2018.04.012_bib0008) 2017; 27 Cha (10.1016/j.cmpb.2018.04.012_bib0042) 2017; 32 Morabito (10.1016/j.cmpb.2018.04.012_bib0010) 2015; 25 Faust (10.1016/j.cmpb.2018.04.012_bib0028) 2014; 14 Tan (10.1016/j.cmpb.2018.04.012_bib0049) 2017; 20 Acharya (10.1016/j.cmpb.2018.04.012_bib0055) 2017; 405 Duda (10.1016/j.cmpb.2018.04.012_bib0063) 2001 Geier (10.1016/j.cmpb.2018.04.012_bib0006) 2017; 27 Bruder (10.1016/j.cmpb.2018.04.012_bib0015) 2017; 27 Hecht (10.1016/j.cmpb.2018.04.012_bib0059) 2010; 68 Dai (10.1016/j.cmpb.2018.04.012_bib0031) 2017; 32 Cogan (10.1016/j.cmpb.2018.04.012_bib0005) 2017; 27 Zhang (10.1016/j.cmpb.2018.04.012_bib0043) 2017; 31 Kingma (10.1016/j.cmpb.2018.04.012_bib0061) 2015 Ortega-Zamorano (10.1016/j.cmpb.2018.04.012_bib0039) 2017; 24 Mumtaz (10.1016/j.cmpb.2018.04.012_bib0032) 2017; 31 Hung (10.1016/j.cmpb.2018.04.012_bib0060) 1993; 5 Mammone (10.1016/j.cmpb.2018.04.012_bib0011) 2017; 27 Ortiz-Garcia (10.1016/j.cmpb.2018.04.012_bib0040) 2016; 26 Ahmadlou (10.1016/j.cmpb.2018.04.012_bib0025) 2010; 17 Ahmadlou (10.1016/j.cmpb.2018.04.012_bib0004) 2012; 85 Varatharajah (10.1016/j.cmpb.2018.04.012_bib0009) 2017; 27 10.1016/j.cmpb.2018.04.012_bib0051 Srivastava (10.1016/j.cmpb.2018.04.012_bib0062) 2014; 15 Rafiei (10.1016/j.cmpb.2018.04.012_bib0041) 2017; 114 Lin (10.1016/j.cmpb.2018.04.012_bib0044) 2017; 32 Jiang (10.1016/j.cmpb.2018.04.012_bib0029) 2004; 19 Acharya (10.1016/j.cmpb.2018.04.012_bib0030) 2015; 74 Acharya (10.1016/j.cmpb.2018.04.012_bib0056) 2017; 89 Acharya (10.1016/j.cmpb.2018.04.012_bib0053) 2018; 79 Shin (10.1016/j.cmpb.2018.04.012_bib0046) 2016; 35 Arel (10.1016/j.cmpb.2018.04.012_bib0037) 2010; 5 10.1016/j.cmpb.2018.04.012_bib0003 10.1016/j.cmpb.2018.04.012_bib0002 10.1016/j.cmpb.2018.04.012_bib0001 Adeli (10.1016/j.cmpb.2018.04.012_bib0023) 2010 Yuvaraj (10.1016/j.cmpb.2018.04.012_bib0013) 2016; 298 |
References_xml | – volume: 27 start-page: 19 year: 2017 ident: bib0011 article-title: Permutation disalignment index as an indirect, EEG-based, measure of brain connectivity in MCI and AD patients publication-title: Int. J. Neural Syst. – volume: 17 start-page: 1385 year: 2017 ident: bib0033 article-title: Major depression detection from EEG signals using kernel eigen-filter-bank common spatial patterns publication-title: Sensors – volume: 27 start-page: 15 year: 2017 ident: bib0014 article-title: Deep learning representation from electroencephalography of early-stage Creutzfeld-Jakob disease and features for differentiation from rapidly progressive dementia publication-title: Int. J. Neural Syst. – reference: World Federation for Mental Health, Depression: a global crisis, Occoquan, VA, USA, (2012). – volume: 20 start-page: 70 year: 2017 end-page: 79 ident: bib0049 article-title: Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network publication-title: J. Comput. Sci. – volume: 32 start-page: 344 year: 2017 end-page: 357 ident: bib0031 article-title: A wavelet support vector machine-based neural network meta model for structural reliability assessment publication-title: Comput. Aided Civil Infrastruct. Eng. – year: 2001 ident: bib0063 article-title: Pattern Classification – year: 2010 ident: bib0023 article-title: Automated EEG-Based Diagnosis of Neurological Disorders – Inventing the Future of Neurology – volume: 32 start-page: 1025 year: 2017 end-page: 1046 ident: bib0044 article-title: Structural damage detection with automatic feature-extraction through deep learning publication-title: Comput. Aided Civil Infrastruct. Eng. – volume: 405 start-page: 81 year: 2017 end-page: 90 ident: bib0055 article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network publication-title: Inf. Sci. – volume: 27 start-page: 16 year: 2017 ident: bib0019 article-title: EEG classification with a sequential decision-making method in motor imagery BCI publication-title: Int. J. Neural Syst. – volume: 26 start-page: 13 year: 2016 ident: bib0024 article-title: Using fractal and local binary pattern features for motor imagery classification of ECOG motor imagery task obtained from the right brain hemisphere publication-title: Int. J. Neural Syst. – volume: 12 year: 2012 ident: bib0022 article-title: Classification of EEG signals in normal and depression conditions by ANN using RWE and signal entropy publication-title: J. Mech. Med. Biol. – reference: U.R. Acharya, S.L. Oh, Y. Hagiwara, J.H. Tan, H. Adeli, Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals, Comput. Biol. Med., – volume: 73 start-page: 329 year: 2015 end-page: 336 ident: bib0021 article-title: Computer-aided diagnosis of depression using EEG signals publication-title: Eur. Neurol. – volume: 35 start-page: 1240 year: 2016 end-page: 1251 ident: bib0047 article-title: Brain tumor segmentation using convolutional neural networks in MRI images publication-title: IEEE Trans. Med. Imaging – volume: 32 start-page: 361 year: 2017 end-page: 378 ident: bib0042 article-title: Deep learning-based crack damage detection using convolutional neural networks publication-title: Comput. Aided Civil Infrastruct. Eng. – volume: 18 start-page: 570 year: 2017 end-page: 584 ident: bib0057 article-title: Deep learning in medical imaging: general overview publication-title: Korean J. Radiol. – volume: 14 year: 2014 ident: bib0028 article-title: Depression diagnosis support system based on EEG signal entropies publication-title: J. Mech. Med. Biol. – volume: 17 start-page: 197 year: 2010 end-page: 210 ident: bib0025 article-title: Enhanced probabilistic neural network with local decision circles: a robust classifier publication-title: Integr. Comput. Aided Eng. – volume: 85 start-page: 206 year: 2012 end-page: 211 ident: bib0004 article-title: Fractality analysis of frontal brain in major depressive disorder publication-title: Int. J. Psychophysiol. – volume: 26 start-page: 23 year: 2016 ident: bib0040 article-title: Ensembles of deep learning architectures for the early diagnosis of Alzheimer's disease publication-title: Int. J. Neural Syst. – volume: 27 start-page: 18 year: 2017 ident: bib0016 article-title: An automated quiet sleep detection approach in preterm infants as a gateway to assess brain maturation publication-title: Int. J. Neural Syst. – volume: 19 start-page: 324 year: 2004 end-page: 337 ident: bib0029 article-title: Wavelet packet-autocorrelation function method for traffic flow pattern analysis publication-title: Comput. Aided Civil Infrastruct. Eng. – volume: 26 start-page: 15 year: 2016 ident: bib0018 article-title: Discriminating multiple emotional states from EEG using a data-adaptive, multiscale information-theoretic approach publication-title: Int. J. .Neural Syst. – volume: 89 start-page: 389 year: 2017 end-page: 396 ident: bib0056 article-title: A deep convolutional neural network model to classify heartbeats publication-title: Comput. Biol. Med. – volume: 68 start-page: 77 year: 2010 end-page: 87 ident: bib0059 article-title: Depression and the hyperactive right-hemisphere publication-title: Neurosci. Res. – volume: 26 start-page: 13 year: 2016 ident: bib0017 article-title: Analysis of the complexity measures in the EEG of Schizophrenia patients publication-title: Int. J. Neural Syst. – volume: 946 start-page: 1 year: 2017 end-page: 10 ident: bib0052 article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network publication-title: Knowl. Based Syst. – year: 2015 ident: bib0061 article-title: ADAM: A method for stochastic optimization publication-title: 3rd International Conference on Learning Representations – volume: 7 start-page: 1857 year: 2017 end-page: 1862 ident: bib0036 article-title: Automated diagnosis of depression electroencephalograph signals using linear prediction coding and higher order spectra features publication-title: J. Med. Imaging Health Inf. – volume: 35 start-page: 1299 year: 2016 end-page: 1312 ident: bib0048 article-title: Convolutional neural networks for medical image analysis: full training or fine tuning? publication-title: IEEE Trans. Med. Imaging – volume: 27 start-page: 14 year: 2017 ident: bib0006 article-title: Which brain regions are important for seizure dynamics in epileptic networks? Influence of link identification and EEG recording montage on node centralities publication-title: Int. J. Neural Syst. – volume: 25 start-page: 18 year: 2015 ident: bib0010 article-title: A longitudinal EEG study of Alzheimer's disease progression based on a complex network approach publication-title: Int. J. Neural Syst. – volume: 27 start-page: 18 year: 2017 ident: bib0005 article-title: Multi-biosignal analysis for epileptic seizure monitoring publication-title: Int. J. Neural Syst. – volume: 298 start-page: 248 year: 2016 end-page: 260 ident: bib0013 article-title: Brain functional connectivity patterns for emotional state classification in Parkinson's disease patients without dementia publication-title: Behav. Brain Res. – volume: 24 start-page: 171 year: 2017 end-page: 185 ident: bib0039 article-title: Layer multiplexing FPGA implementation for deep back-propagation learning publication-title: Integr. Comput. Aided Eng. – year: 2015 ident: bib0058 article-title: Delving deep into rectifiers: Surpassing human-level performance on image net classification publication-title: IEEE International Conference on Computer Vision, – volume: 35 start-page: 1285 year: 2016 end-page: 1298 ident: bib0046 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans. Med. Imaging – volume: 5 start-page: 287 year: 1993 end-page: 302 ident: bib0060 article-title: Parallel backpropagation learning algorithms on cray Y-MP8/864 supercomputer publication-title: Neurocomputing – reference: , 2017. – reference: World Health Organization, Depression, obtained from – volume: 24 start-page: 337 year: 2017 end-page: 350 ident: bib0038 article-title: Image recognition with deep neural networks in presence of noise – dealing with and taking advantage of distortions publication-title: Integr. Comput. Aided Eng. – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bib0062 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 420 start-page: 66 year: 2017 end-page: 76 ident: bib0050 article-title: Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network publication-title: Inf. Sci. – volume: 416 start-page: 190 year: 2017 end-page: 198 ident: bib0054 article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals publication-title: Inf. Sci. – volume: 39 start-page: 179 year: 2015 ident: bib0012 article-title: Computer-aided diagnosis of Parkinson's disease using enhanced probabilistic neural network publication-title: J. Med. Syst. – volume: 5 start-page: 13 year: 2010 end-page: 18 ident: bib0037 article-title: Researcher frontier: deep machine learning – a new frontier in artificial intelligence research publication-title: IEEE Comput. Intell. Mag. – volume: 27 start-page: 12 year: 2017 ident: bib0009 article-title: Seizure forecasting and the preictal state in canine epilepsy publication-title: Int. J. Neural Syst. – volume: 27 start-page: 16 year: 2017 ident: bib0020 article-title: Online EEG classification of covert speech for brain–computer interfacing publication-title: Int. J. Neural Syst. – reference: National Institute of Mental Health, Brain basics, obtained from – volume: 114 start-page: 237 year: 2017 end-page: 244 ident: bib0041 article-title: Supervised deep restricted boltzmann machine for estimation of concrete compressive strength publication-title: ACI Mater. J. – volume: 31 start-page: 108 year: 2017 end-page: 115 ident: bib0032 article-title: Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD) publication-title: Biomed. Signal Process. Control – volume: 27 start-page: 15 year: 2017 ident: bib0015 article-title: Physiological ripples associated with sleep spindles differ in waveform morphology from epileptic ripples publication-title: Int. J. Neural Syst. – volume: 4 start-page: 175 year: 2013 end-page: 181 ident: bib0026 article-title: Spatiotemporal analysis of relative convergence of EEGs reveals differences between brain dynamics of depressive women and men publication-title: Clin. EEG Neurosci. – reference: . – volume: 27 start-page: 19 year: 2017 ident: bib0007 article-title: A cross-correlated delay shift supervised learning method for spiking neurons with application to interictal spike detection in epilepsy publication-title: Int. J. Neural Syst. – volume: 74 start-page: 79 year: 2015 end-page: 83 ident: bib0030 article-title: A novel depression diagnosis index using nonlinear features in EEG signals publication-title: Eur. Neurol. – volume: 31 start-page: 805 year: 2017 end-page: 819 ident: bib0043 article-title: Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep learning network publication-title: Comput. Aided Civil Infrastruct. Eng. – volume: 79 start-page: 952 year: 2018 end-page: 959 ident: bib0053 article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network publication-title: Future Gener. Comput. Syst. – volume: 55 start-page: 512 year: 2008 end-page: 518 ident: bib0034 article-title: Principal component analysis - enhanced cosine radial basis function neural network for robust epilepsy and seizure detection publication-title: IEEE Trans. Biomed. Eng. – volume: 27 start-page: 15 year: 2017 ident: bib0008 article-title: A realistic seizure prediction study based on multiclass SVM publication-title: Int. J. Neural Syst. – volume: 27 start-page: 8 year: 2017 ident: bib0035 article-title: Independent component analysis – support vector machine-based computer aided diagnosis system for Alzheimer's with visual support publication-title: Int. J. Neural Syst. – volume: 109 start-page: 339 year: 2013 end-page: 345 ident: bib0027 article-title: Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal publication-title: Comput. Methods Program Biomed. – volume: 26 year: 2017 ident: bib0045 article-title: A novel machine learning based algorithm to detect damage in highrise building structures publication-title: Struct. Des. Tall Spec. Build. – volume: 89 start-page: 389 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0056 article-title: A deep convolutional neural network model to classify heartbeats publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.08.022 – volume: 114 start-page: 237 issue: 2 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0041 article-title: Supervised deep restricted boltzmann machine for estimation of concrete compressive strength publication-title: ACI Mater. J. – year: 2001 ident: 10.1016/j.cmpb.2018.04.012_bib0063 – volume: 5 start-page: 287 issue: 6 year: 1993 ident: 10.1016/j.cmpb.2018.04.012_bib0060 article-title: Parallel backpropagation learning algorithms on cray Y-MP8/864 supercomputer publication-title: Neurocomputing doi: 10.1016/0925-2312(93)90042-2 – volume: 109 start-page: 339 year: 2013 ident: 10.1016/j.cmpb.2018.04.012_bib0027 article-title: Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal publication-title: Comput. Methods Program Biomed. doi: 10.1016/j.cmpb.2012.10.008 – volume: 31 start-page: 805 issue: 10 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0043 article-title: Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep learning network publication-title: Comput. Aided Civil Infrastruct. Eng. doi: 10.1111/mice.12297 – volume: 24 start-page: 171 issue: 2 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0039 article-title: Layer multiplexing FPGA implementation for deep back-propagation learning publication-title: Integr. Comput. Aided Eng. doi: 10.3233/ICA-170538 – volume: 26 start-page: 23 issue: 7 year: 2016 ident: 10.1016/j.cmpb.2018.04.012_bib0040 article-title: Ensembles of deep learning architectures for the early diagnosis of Alzheimer's disease publication-title: Int. J. Neural Syst. – volume: 24 start-page: 337 issue: 4 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0038 article-title: Image recognition with deep neural networks in presence of noise – dealing with and taking advantage of distortions publication-title: Integr. Comput. Aided Eng. doi: 10.3233/ICA-170551 – year: 2010 ident: 10.1016/j.cmpb.2018.04.012_bib0023 – volume: 26 issue: 18 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0045 article-title: A novel machine learning based algorithm to detect damage in highrise building structures publication-title: Struct. Des. Tall Spec. Build. doi: 10.1002/tal.1400 – volume: 27 start-page: 15 issue: 2 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0014 article-title: Deep learning representation from electroencephalography of early-stage Creutzfeld-Jakob disease and features for differentiation from rapidly progressive dementia publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500398 – volume: 12 issue: 4 year: 2012 ident: 10.1016/j.cmpb.2018.04.012_bib0022 article-title: Classification of EEG signals in normal and depression conditions by ANN using RWE and signal entropy publication-title: J. Mech. Med. Biol. – volume: 73 start-page: 329 year: 2015 ident: 10.1016/j.cmpb.2018.04.012_bib0021 article-title: Computer-aided diagnosis of depression using EEG signals publication-title: Eur. Neurol. doi: 10.1159/000381950 – volume: 79 start-page: 952 issue: 3 year: 2018 ident: 10.1016/j.cmpb.2018.04.012_bib0053 article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.08.039 – volume: 27 start-page: 15 issue: 3 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0008 article-title: A realistic seizure prediction study based on multiclass SVM publication-title: Int. J. Neural Syst. doi: 10.1142/S012906571750006X – volume: 946 start-page: 1 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0052 article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network publication-title: Knowl. Based Syst. – volume: 27 start-page: 12 issue: 1 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0009 article-title: Seizure forecasting and the preictal state in canine epilepsy publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500465 – volume: 27 start-page: 16 issue: 8 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0020 article-title: Online EEG classification of covert speech for brain–computer interfacing publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065717500332 – volume: 55 start-page: 512 issue: 2 year: 2008 ident: 10.1016/j.cmpb.2018.04.012_bib0034 article-title: Principal component analysis - enhanced cosine radial basis function neural network for robust epilepsy and seizure detection publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.905490 – volume: 7 start-page: 1857 issue: 8 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0036 article-title: Automated diagnosis of depression electroencephalograph signals using linear prediction coding and higher order spectra features publication-title: J. Med. Imaging Health Inf. doi: 10.1166/jmihi.2017.2204 – volume: 27 start-page: 19 issue: 3 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0007 article-title: A cross-correlated delay shift supervised learning method for spiking neurons with application to interictal spike detection in epilepsy publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065717500022 – volume: 298 start-page: 248 year: 2016 ident: 10.1016/j.cmpb.2018.04.012_bib0013 article-title: Brain functional connectivity patterns for emotional state classification in Parkinson's disease patients without dementia publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2015.10.036 – volume: 32 start-page: 1025 issue: 12 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0044 article-title: Structural damage detection with automatic feature-extraction through deep learning publication-title: Comput. Aided Civil Infrastruct. Eng. doi: 10.1111/mice.12313 – volume: 39 start-page: 179 issue: 11 year: 2015 ident: 10.1016/j.cmpb.2018.04.012_bib0012 article-title: Computer-aided diagnosis of Parkinson's disease using enhanced probabilistic neural network publication-title: J. Med. Syst. doi: 10.1007/s10916-015-0353-9 – volume: 17 start-page: 197 issue: 3 year: 2010 ident: 10.1016/j.cmpb.2018.04.012_bib0025 article-title: Enhanced probabilistic neural network with local decision circles: a robust classifier publication-title: Integr. Comput. Aided Eng. doi: 10.3233/ICA-2010-0345 – volume: 32 start-page: 361 issue: 5 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0042 article-title: Deep learning-based crack damage detection using convolutional neural networks publication-title: Comput. Aided Civil Infrastruct. Eng. doi: 10.1111/mice.12263 – ident: 10.1016/j.cmpb.2018.04.012_bib0003 – volume: 27 start-page: 19 issue: 5 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0011 article-title: Permutation disalignment index as an indirect, EEG-based, measure of brain connectivity in MCI and AD patients publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065717500204 – volume: 32 start-page: 344 issue: 4 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0031 article-title: A wavelet support vector machine-based neural network meta model for structural reliability assessment publication-title: Comput. Aided Civil Infrastruct. Eng. doi: 10.1111/mice.12257 – volume: 14 issue: 3 year: 2014 ident: 10.1016/j.cmpb.2018.04.012_bib0028 article-title: Depression diagnosis support system based on EEG signal entropies publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519414500353 – volume: 27 start-page: 15 issue: 7 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0015 article-title: Physiological ripples associated with sleep spindles differ in waveform morphology from epileptic ripples publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065717500113 – volume: 27 start-page: 16 issue: 8 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0019 article-title: EEG classification with a sequential decision-making method in motor imagery BCI publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065717500460 – ident: 10.1016/j.cmpb.2018.04.012_bib0051 doi: 10.1016/j.compbiomed.2017.09.017 – volume: 85 start-page: 206 year: 2012 ident: 10.1016/j.cmpb.2018.04.012_bib0004 article-title: Fractality analysis of frontal brain in major depressive disorder publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2012.05.001 – volume: 26 start-page: 15 issue: 2 year: 2016 ident: 10.1016/j.cmpb.2018.04.012_bib0018 article-title: Discriminating multiple emotional states from EEG using a data-adaptive, multiscale information-theoretic approach publication-title: Int. J. .Neural Syst. doi: 10.1142/S0129065716500052 – volume: 27 start-page: 14 issue: 1 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0006 article-title: Which brain regions are important for seizure dynamics in epileptic networks? Influence of link identification and EEG recording montage on node centralities publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500337 – volume: 20 start-page: 70 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0049 article-title: Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.02.006 – volume: 420 start-page: 66 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0050 article-title: Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.08.050 – volume: 68 start-page: 77 year: 2010 ident: 10.1016/j.cmpb.2018.04.012_bib0059 article-title: Depression and the hyperactive right-hemisphere publication-title: Neurosci. Res. doi: 10.1016/j.neures.2010.06.013 – ident: 10.1016/j.cmpb.2018.04.012_bib0002 – volume: 26 start-page: 13 issue: 2 year: 2016 ident: 10.1016/j.cmpb.2018.04.012_bib0017 article-title: Analysis of the complexity measures in the EEG of Schizophrenia patients publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500088 – year: 2015 ident: 10.1016/j.cmpb.2018.04.012_bib0058 article-title: Delving deep into rectifiers: Surpassing human-level performance on image net classification – year: 2015 ident: 10.1016/j.cmpb.2018.04.012_bib0061 article-title: ADAM: A method for stochastic optimization – volume: 416 start-page: 190 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0054 article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.06.027 – volume: 18 start-page: 570 issue: 4 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0057 article-title: Deep learning in medical imaging: general overview publication-title: Korean J. Radiol. doi: 10.3348/kjr.2017.18.4.570 – volume: 27 start-page: 18 issue: 1 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0005 article-title: Multi-biosignal analysis for epileptic seizure monitoring publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500313 – volume: 15 start-page: 1929 year: 2014 ident: 10.1016/j.cmpb.2018.04.012_bib0062 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 74 start-page: 79 year: 2015 ident: 10.1016/j.cmpb.2018.04.012_bib0030 article-title: A novel depression diagnosis index using nonlinear features in EEG signals publication-title: Eur. Neurol. doi: 10.1159/000438457 – volume: 19 start-page: 324 issue: 5 year: 2004 ident: 10.1016/j.cmpb.2018.04.012_bib0029 article-title: Wavelet packet-autocorrelation function method for traffic flow pattern analysis publication-title: Comput. Aided Civil Infrastruct. Eng. doi: 10.1111/j.1467-8667.2004.00360.x – volume: 35 start-page: 1285 issue: 5 year: 2016 ident: 10.1016/j.cmpb.2018.04.012_bib0046 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528162 – volume: 35 start-page: 1240 issue: 5 year: 2016 ident: 10.1016/j.cmpb.2018.04.012_bib0047 article-title: Brain tumor segmentation using convolutional neural networks in MRI images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2538465 – volume: 26 start-page: 13 issue: 6 year: 2016 ident: 10.1016/j.cmpb.2018.04.012_bib0024 article-title: Using fractal and local binary pattern features for motor imagery classification of ECOG motor imagery task obtained from the right brain hemisphere publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500222 – volume: 35 start-page: 1299 issue: 5 year: 2016 ident: 10.1016/j.cmpb.2018.04.012_bib0048 article-title: Convolutional neural networks for medical image analysis: full training or fine tuning? publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2535302 – volume: 25 start-page: 18 issue: 2 year: 2015 ident: 10.1016/j.cmpb.2018.04.012_bib0010 article-title: A longitudinal EEG study of Alzheimer's disease progression based on a complex network approach publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065715500057 – volume: 27 start-page: 8 issue: 3 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0035 article-title: Independent component analysis – support vector machine-based computer aided diagnosis system for Alzheimer's with visual support publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500507 – ident: 10.1016/j.cmpb.2018.04.012_bib0001 – volume: 4 start-page: 175 issue: 3 year: 2013 ident: 10.1016/j.cmpb.2018.04.012_bib0026 article-title: Spatiotemporal analysis of relative convergence of EEGs reveals differences between brain dynamics of depressive women and men publication-title: Clin. EEG Neurosci. doi: 10.1177/1550059413480504 – volume: 31 start-page: 108 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0032 article-title: Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD) publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2016.07.006 – volume: 27 start-page: 18 issue: 6 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0016 article-title: An automated quiet sleep detection approach in preterm infants as a gateway to assess brain maturation publication-title: Int. J. Neural Syst. doi: 10.1142/S012906571750023X – volume: 17 start-page: 1385 issue: 6 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0033 article-title: Major depression detection from EEG signals using kernel eigen-filter-bank common spatial patterns publication-title: Sensors doi: 10.3390/s17061385 – volume: 405 start-page: 81 year: 2017 ident: 10.1016/j.cmpb.2018.04.012_bib0055 article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.04.012 – volume: 5 start-page: 13 issue: 4 year: 2010 ident: 10.1016/j.cmpb.2018.04.012_bib0037 article-title: Researcher frontier: deep machine learning – a new frontier in artificial intelligence research publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2010.938364 |
SSID | ssj0002556 |
Score | 2.6466782 |
Snippet | •Classification of normal and depression using EEG signals.•Employed a 13-layer deep convolutional neural network model.•Minimum hand-crafted features required... In recent years, advanced neurocomputing and machine learning techniques have been used for Electroencephalogram (EEG)-based diagnosis of various neurological... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 103 |
SubjectTerms | Algorithms Automatic Data Processing Computer Simulation Convolutional neural network Deep learning Depression Depression - diagnostic imaging Diagnosis, Computer-Assisted - methods EEG Electroencephalogram Electroencephalography Humans Machine Learning Neural Networks (Computer) Reproducibility of Results Signal Processing, Computer-Assisted |
Title | Automated EEG-based screening of depression using deep convolutional neural network |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260718301494 https://dx.doi.org/10.1016/j.cmpb.2018.04.012 https://www.ncbi.nlm.nih.gov/pubmed/29852953 https://www.proquest.com/docview/2049549304 |
Volume | 161 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50BfEivl1fVPAmdTevmhwXWV0VvajgLTRpIop2F929-tvNtGnBgwqeSkOmDZPJPJhvJgBHwWmzypsstSIrUu4InrmCpoYqQ5gtMiWwOPnmNhs98KtH8TgHZ00tDMIqo-6vdXqlreNIL3KzN3l-7t1hHxGK7dEkhgWKz8MCZSoTHVgYXF6PbluFjF226hbfKkWCWDtTw7zs28QgwktWHU8J_ck-_eR_VnbofAWWowOZDOo1rsKcK9dg8SamyNfhbjCbjoMb6opkOLxI0UoVSdANIV4NVioZ-6QFv5YJot6fwoCbJAg_j2IYPo9tLqtHBRLfgIfz4f3ZKI03J6SWn7Jp6jKaG8_6ufQhIDHEOkYLwyhx3hlvhcqN48ZmPJfMBoeBeild39mcCY_JF7YJnXJcum1IJPOZIUXBjBWY-w1Rp5FYgE6FU0SaLpCGX9rGtuJ4u8WrbvBjLxp5rJHHus914HEXjluaSd1U49fZrNkG3ZSLBgWng87_lUq0VN8E6k-6w2andThpmD7JSzeefYRJHHOirM-7sFWLQLt6qiRmTNnOP_-6C0v4VuOA96AzfZ-5_eDtTM0BzJ98koMo019kof2S |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGkIAL4s14FokbKlvz6NLjhAYDNi6AxC1q0gQNQTfBduW3E7fpEAeGxKlSGreRk9iO_PkLwKkL2nRiVRxqHmchMxHuuYyEiiQqojqLE47FyYO7uPfIbp74Uw0uqloYhFV621_a9MJa-5am12ZzPBw275FHhCA9msBjQcIWYJFx2kYC_fPPb5wHcmyVBN9JiN195UwJ8tJvY4X4LlHwnUbkN-_0W_RZeKHLNVj14WPQKUe4DjWTb8DSwCfIN-G-M52MXBBqsqDbvQrRR2WBswzutOp8VDCywQz6mgeIeX92DWYcIPjcL0L3eSS5LB4FRHwLHi-7Dxe90N-bEGrWppPQxCRVlrZSYd1xREXaUJIpSiJjjbKaJ6kyTOmYpYJqFy4QK4RpGZ1SbjH1Qrehno9yswuBoDZWUZZRpTlmft2ZUwksPyfcJJFQDYgqfUntScXxbotXWaHHXiTqWKKOZYtJp-MGnM1kxiWlxtzetJoGWRWLOvMmncWfK8VnUj-W059yJ9VMS7fPMHmS5mY0_XCdGGZEaYs1YKdcArPRk0RgvpTu_fOvx7Dcexj0Zf_67nYfVvBNiQg-gPrkfWoOXdwzUUfFuv4Chef-XA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+EEG-based+screening+of+depression+using+deep+convolutional+neural+network&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Acharya%2C+U.+Rajendra&rft.au=Oh%2C+Shu+Lih&rft.au=Hagiwara%2C+Yuki&rft.au=Tan%2C+Jen+Hong&rft.date=2018-07-01&rft.pub=Elsevier+B.V&rft.issn=0169-2607&rft.eissn=1872-7565&rft.volume=161&rft.spage=103&rft.epage=113&rft_id=info:doi/10.1016%2Fj.cmpb.2018.04.012&rft.externalDocID=S0169260718301494 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |