Automated EEG-based screening of depression using deep convolutional neural network

•Classification of normal and depression using EEG signals.•Employed a 13-layer deep convolutional neural network model.•Minimum hand-crafted features required in this work.•Obtained accuracy of 93.54% using the left hemisphere EEG data.•Obtained accuracy of 95.49% using the right hemisphere EEG dat...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 161; pp. 103 - 113
Main Authors Acharya, U. Rajendra, Oh, Shu Lih, Hagiwara, Yuki, Tan, Jen Hong, Adeli, Hojjat, Subha, D. P
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.07.2018
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2018.04.012

Cover

Abstract •Classification of normal and depression using EEG signals.•Employed a 13-layer deep convolutional neural network model.•Minimum hand-crafted features required in this work.•Obtained accuracy of 93.54% using the left hemisphere EEG data.•Obtained accuracy of 95.49% using the right hemisphere EEG data. In recent years, advanced neurocomputing and machine learning techniques have been used for Electroencephalogram (EEG)-based diagnosis of various neurological disorders. In this paper, a novel computer model is presented for EEG-based screening of depression using a deep neural network machine learning approach, known as Convolutional Neural Network (CNN). The proposed technique does not require a semi-manually-selected set of features to be fed into a classifier for classification. It learns automatically and adaptively from the input EEG signals to differentiate EEGs obtained from depressive and normal subjects. The model was tested using EEGs obtained from 15 normal and 15 depressed patients. The algorithm attained accuracies of 93.5% and 96.0% using EEG signals from the left and right hemisphere, respectively. It was discovered in this research that the EEG signals from the right hemisphere are more distinctive in depression than those from the left hemisphere. This discovery is consistent with recent research and revelation that the depression is associated with a hyperactive right hemisphere. An exciting extension of this research would be diagnosis of different stages and severity of depression and development of a Depression Severity Index (DSI). [Display omitted]
AbstractList •Classification of normal and depression using EEG signals.•Employed a 13-layer deep convolutional neural network model.•Minimum hand-crafted features required in this work.•Obtained accuracy of 93.54% using the left hemisphere EEG data.•Obtained accuracy of 95.49% using the right hemisphere EEG data. In recent years, advanced neurocomputing and machine learning techniques have been used for Electroencephalogram (EEG)-based diagnosis of various neurological disorders. In this paper, a novel computer model is presented for EEG-based screening of depression using a deep neural network machine learning approach, known as Convolutional Neural Network (CNN). The proposed technique does not require a semi-manually-selected set of features to be fed into a classifier for classification. It learns automatically and adaptively from the input EEG signals to differentiate EEGs obtained from depressive and normal subjects. The model was tested using EEGs obtained from 15 normal and 15 depressed patients. The algorithm attained accuracies of 93.5% and 96.0% using EEG signals from the left and right hemisphere, respectively. It was discovered in this research that the EEG signals from the right hemisphere are more distinctive in depression than those from the left hemisphere. This discovery is consistent with recent research and revelation that the depression is associated with a hyperactive right hemisphere. An exciting extension of this research would be diagnosis of different stages and severity of depression and development of a Depression Severity Index (DSI). [Display omitted]
In recent years, advanced neurocomputing and machine learning techniques have been used for Electroencephalogram (EEG)-based diagnosis of various neurological disorders. In this paper, a novel computer model is presented for EEG-based screening of depression using a deep neural network machine learning approach, known as Convolutional Neural Network (CNN). The proposed technique does not require a semi-manually-selected set of features to be fed into a classifier for classification. It learns automatically and adaptively from the input EEG signals to differentiate EEGs obtained from depressive and normal subjects. The model was tested using EEGs obtained from 15 normal and 15 depressed patients. The algorithm attained accuracies of 93.5% and 96.0% using EEG signals from the left and right hemisphere, respectively. It was discovered in this research that the EEG signals from the right hemisphere are more distinctive in depression than those from the left hemisphere. This discovery is consistent with recent research and revelation that the depression is associated with a hyperactive right hemisphere. An exciting extension of this research would be diagnosis of different stages and severity of depression and development of a Depression Severity Index (DSI).In recent years, advanced neurocomputing and machine learning techniques have been used for Electroencephalogram (EEG)-based diagnosis of various neurological disorders. In this paper, a novel computer model is presented for EEG-based screening of depression using a deep neural network machine learning approach, known as Convolutional Neural Network (CNN). The proposed technique does not require a semi-manually-selected set of features to be fed into a classifier for classification. It learns automatically and adaptively from the input EEG signals to differentiate EEGs obtained from depressive and normal subjects. The model was tested using EEGs obtained from 15 normal and 15 depressed patients. The algorithm attained accuracies of 93.5% and 96.0% using EEG signals from the left and right hemisphere, respectively. It was discovered in this research that the EEG signals from the right hemisphere are more distinctive in depression than those from the left hemisphere. This discovery is consistent with recent research and revelation that the depression is associated with a hyperactive right hemisphere. An exciting extension of this research would be diagnosis of different stages and severity of depression and development of a Depression Severity Index (DSI).
In recent years, advanced neurocomputing and machine learning techniques have been used for Electroencephalogram (EEG)-based diagnosis of various neurological disorders. In this paper, a novel computer model is presented for EEG-based screening of depression using a deep neural network machine learning approach, known as Convolutional Neural Network (CNN). The proposed technique does not require a semi-manually-selected set of features to be fed into a classifier for classification. It learns automatically and adaptively from the input EEG signals to differentiate EEGs obtained from depressive and normal subjects. The model was tested using EEGs obtained from 15 normal and 15 depressed patients. The algorithm attained accuracies of 93.5% and 96.0% using EEG signals from the left and right hemisphere, respectively. It was discovered in this research that the EEG signals from the right hemisphere are more distinctive in depression than those from the left hemisphere. This discovery is consistent with recent research and revelation that the depression is associated with a hyperactive right hemisphere. An exciting extension of this research would be diagnosis of different stages and severity of depression and development of a Depression Severity Index (DSI).
Author Subha, D. P
Oh, Shu Lih
Hagiwara, Yuki
Acharya, U. Rajendra
Adeli, Hojjat
Tan, Jen Hong
Author_xml – sequence: 1
  givenname: U. Rajendra
  surname: Acharya
  fullname: Acharya, U. Rajendra
  email: aru@np.edu.sg
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore
– sequence: 2
  givenname: Shu Lih
  surname: Oh
  fullname: Oh, Shu Lih
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore
– sequence: 3
  givenname: Yuki
  surname: Hagiwara
  fullname: Hagiwara, Yuki
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore
– sequence: 4
  givenname: Jen Hong
  surname: Tan
  fullname: Tan, Jen Hong
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore
– sequence: 5
  givenname: Hojjat
  orcidid: 0000-0001-5718-1453
  surname: Adeli
  fullname: Adeli, Hojjat
  organization: Departments of Neuroscience, Neurology, Biomedical Informatics, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH, United States
– sequence: 6
  givenname: D. P
  surname: Subha
  fullname: Subha, D. P
  organization: Department of Electrical Engineering, National Institute of Technology Calicut, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29852953$$D View this record in MEDLINE/PubMed
BookMark eNqFkD1v1TAUQC1URF8Lf4ABZWRJ8GfiIJaqerSVKjEAs2U718iviR1sp6j_noRXGDqU6V5dnXOHc4ZOQgyA0FuCG4JJ--HQ2Gk2DcVENpg3mNAXaEdkR-tOtOIE7Vaor2mLu1N0lvMBY0yFaF-hU9pLQXvBdujrxVLipAsM1X5_VRud1y3bBBB8-FFFVw0wJ8jZx1AtebsNAHNlY7iP41LWsx6rAEv6M8qvmO5eo5dOjxnePM5z9P3z_tvldX375erm8uK2trxjpYaWauMY1tJx2RligdHBMErAgXFW9NoAN7blWjLbE0ydlIDBaiYcJoyyc_T--HdO8ecCuajJZwvjqAPEJSuKeS94zzBf0XeP6GImGNSc_KTTg_obYgXoEbAp5pzA_UMIVlttdVBbbbXVVpirtfYqySeS9UVvTUrSfnxe_XRUYQ107yGpbD0EC4NPYIsaon9e__hEt6MP3urxDh7-J_8GJgSvRw
CitedBy_id crossref_primary_10_1016_j_neuroimage_2024_120750
crossref_primary_10_3390_s21134269
crossref_primary_10_1016_j_arth_2018_08_028
crossref_primary_10_1109_ACCESS_2023_3270426
crossref_primary_10_1142_S0129065724500539
crossref_primary_10_1155_2022_1381683
crossref_primary_10_1016_j_bspc_2021_103102
crossref_primary_10_1016_j_artmed_2020_101813
crossref_primary_10_1142_S0219519419400049
crossref_primary_10_3934_mbe_2022252
crossref_primary_10_1007_s12539_023_00567_x
crossref_primary_10_1016_j_compbiomed_2022_106473
crossref_primary_10_3390_diagnostics15020210
crossref_primary_10_1007_s13246_020_00897_w
crossref_primary_10_1088_1361_6579_ad00ff
crossref_primary_10_1007_s12559_022_10042_2
crossref_primary_10_1016_j_jneumeth_2021_109209
crossref_primary_10_3390_s20082403
crossref_primary_10_1142_S0129065721300011
crossref_primary_10_1109_ACCESS_2019_2901672
crossref_primary_10_1142_S0129065723500557
crossref_primary_10_1016_j_asoc_2022_109713
crossref_primary_10_1142_S0129065721500015
crossref_primary_10_1007_s13198_024_02591_6
crossref_primary_10_3233_ICA_220676
crossref_primary_10_3934_math_2024805
crossref_primary_10_1016_j_neucom_2023_126901
crossref_primary_10_1142_S0129065722500241
crossref_primary_10_2196_36417
crossref_primary_10_1016_j_compbiomed_2020_103999
crossref_primary_10_1177_1550059420965431
crossref_primary_10_3390_app9081526
crossref_primary_10_1016_j_eswa_2021_116016
crossref_primary_10_1007_s11227_024_06585_w
crossref_primary_10_1016_j_compbiomed_2020_103630
crossref_primary_10_1016_j_bbr_2024_115325
crossref_primary_10_1142_S0219519419400037
crossref_primary_10_3389_fninf_2022_811756
crossref_primary_10_1142_S0219519424400438
crossref_primary_10_1038_s41598_023_43542_8
crossref_primary_10_1109_TNSRE_2023_3336467
crossref_primary_10_1109_ACCESS_2023_3262930
crossref_primary_10_1016_j_artmed_2019_07_004
crossref_primary_10_3390_brainsci12070834
crossref_primary_10_1016_j_artmed_2019_07_006
crossref_primary_10_1177_09544119211017813
crossref_primary_10_3389_fphys_2022_1029298
crossref_primary_10_1142_S0129065719500059
crossref_primary_10_1016_j_infrared_2020_103271
crossref_primary_10_1109_ACCESS_2020_3038397
crossref_primary_10_1016_j_cmpb_2023_107923
crossref_primary_10_3390_s21093050
crossref_primary_10_1155_2021_8897105
crossref_primary_10_1109_TIM_2024_3417598
crossref_primary_10_1016_j_chaos_2023_113472
crossref_primary_10_1016_j_autcon_2019_102836
crossref_primary_10_1088_1741_2552_ad5048
crossref_primary_10_1109_JBHI_2019_2938247
crossref_primary_10_1142_S0219519419400062
crossref_primary_10_1016_j_bspc_2020_102068
crossref_primary_10_1016_j_invent_2021_100422
crossref_primary_10_1007_s40747_021_00408_8
crossref_primary_10_1109_TBCAS_2021_3090995
crossref_primary_10_1785_0120200388
crossref_primary_10_1007_s44174_025_00301_9
crossref_primary_10_1109_ACCESS_2020_2994985
crossref_primary_10_1016_j_cogsys_2018_07_010
crossref_primary_10_1007_s10462_021_09986_y
crossref_primary_10_1016_j_artmed_2019_101711
crossref_primary_10_1142_S0129065723500533
crossref_primary_10_1088_1741_2552_acbe20
crossref_primary_10_1016_j_cmpb_2018_11_006
crossref_primary_10_1016_j_cogsys_2024_101214
crossref_primary_10_1142_S0129065720500719
crossref_primary_10_3390_brainsci14101018
crossref_primary_10_1109_TNSRE_2023_3324343
crossref_primary_10_1142_S0129065722500265
crossref_primary_10_1109_JBHI_2023_3236264
crossref_primary_10_3390_s25020409
crossref_primary_10_1016_j_cmpb_2019_105205
crossref_primary_10_1109_ACCESS_2023_3281453
crossref_primary_10_1166_jmihi_2021_3338
crossref_primary_10_34133_hds_0096
crossref_primary_10_32604_iasc_2021_015049
crossref_primary_10_1007_s13369_020_05080_7
crossref_primary_10_1142_S0129065720500604
crossref_primary_10_1016_j_compbiomed_2023_106782
crossref_primary_10_3390_app12147251
crossref_primary_10_1016_j_inffus_2021_10_012
crossref_primary_10_1142_S012906572050015X
crossref_primary_10_1016_j_ergon_2023_103423
crossref_primary_10_1109_TNSRE_2023_3293051
crossref_primary_10_1016_j_artmed_2019_101724
crossref_primary_10_1016_j_physa_2019_122584
crossref_primary_10_1007_s13755_021_00139_7
crossref_primary_10_1097_BOT_0000000000001454
crossref_primary_10_1109_TIM_2024_3413175
crossref_primary_10_1016_j_bspc_2024_106930
crossref_primary_10_1007_s11571_022_09881_4
crossref_primary_10_3390_e21010037
crossref_primary_10_1080_03772063_2020_1749143
crossref_primary_10_3390_ijerph17030971
crossref_primary_10_1002_brb3_1902
crossref_primary_10_3390_biology13040203
crossref_primary_10_1007_s00500_019_04515_0
crossref_primary_10_1007_s11042_023_14860_w
crossref_primary_10_3233_ICA_230700
crossref_primary_10_1007_s42979_024_02773_w
crossref_primary_10_3390_math11071619
crossref_primary_10_1063_5_0213044
crossref_primary_10_3233_ICA_200617
crossref_primary_10_3389_fnhum_2020_00070
crossref_primary_10_1016_j_bbe_2021_01_001
crossref_primary_10_1016_j_smhl_2021_100221
crossref_primary_10_1109_TIM_2025_3544713
crossref_primary_10_1016_j_apacoust_2021_108078
crossref_primary_10_1109_TBCAS_2023_3292237
crossref_primary_10_1016_j_bspc_2024_107112
crossref_primary_10_1016_j_eplepsyres_2021_106818
crossref_primary_10_1155_2023_1701429
crossref_primary_10_1080_17455030_2023_2226246
crossref_primary_10_1016_j_neucom_2020_05_085
crossref_primary_10_1109_MNET_011_2000064
crossref_primary_10_1142_S012906572450031X
crossref_primary_10_1007_s12559_023_10157_0
crossref_primary_10_33881_2027_1786_rip_17202
crossref_primary_10_1142_S0129065721500337
crossref_primary_10_1088_1741_2552_ab6f15
crossref_primary_10_1111_exsy_12773
crossref_primary_10_1109_ACCESS_2022_3146711
crossref_primary_10_1109_TAFFC_2024_3392904
crossref_primary_10_3390_electronics13010186
crossref_primary_10_1016_j_knosys_2022_110190
crossref_primary_10_1016_j_compbiomed_2018_09_008
crossref_primary_10_1016_j_eswa_2021_116339
crossref_primary_10_1080_09540091_2024_2383894
crossref_primary_10_1016_j_neucom_2025_130008
crossref_primary_10_1016_j_aei_2020_101191
crossref_primary_10_3390_brainsci9090217
crossref_primary_10_1016_j_bspc_2024_107440
crossref_primary_10_1155_2022_7586918
crossref_primary_10_1016_j_bbe_2021_12_005
crossref_primary_10_1142_S0129065722500459
crossref_primary_10_1007_s00521_018_3889_z
crossref_primary_10_1142_S0129065723500223
crossref_primary_10_1002_lio2_354
crossref_primary_10_1016_j_cmpb_2022_107324
crossref_primary_10_3390_ijerph18115780
crossref_primary_10_1016_j_cmpb_2020_105460
crossref_primary_10_1016_j_neulet_2023_137313
crossref_primary_10_1016_j_bspc_2020_102389
crossref_primary_10_3390_math10224177
crossref_primary_10_3390_brainsci12070849
crossref_primary_10_1109_ACCESS_2020_3031725
crossref_primary_10_1016_j_imu_2021_100550
crossref_primary_10_1016_j_bspc_2020_102393
crossref_primary_10_3389_fneur_2021_640526
crossref_primary_10_26862_jkpts_2023_06_30_2_7
crossref_primary_10_32604_csse_2023_029762
crossref_primary_10_1145_3527170
crossref_primary_10_1088_1741_2552_abc902
crossref_primary_10_1016_j_bios_2025_117321
crossref_primary_10_3233_ICA_200638
crossref_primary_10_1177_15500594241273181
crossref_primary_10_1142_S0129065722500587
crossref_primary_10_1515_bmt_2021_0232
crossref_primary_10_1515_tnsci_2022_0234
crossref_primary_10_3233_ICA_210651
crossref_primary_10_1016_j_medengphy_2024_104107
crossref_primary_10_1142_S0129065721500350
crossref_primary_10_1007_s00521_024_10189_z
crossref_primary_10_1016_j_bspc_2022_104260
crossref_primary_10_1080_21681163_2022_2111721
crossref_primary_10_3233_ICA_210655
crossref_primary_10_1142_S0129065723500697
crossref_primary_10_1016_j_compbiomed_2021_104922
crossref_primary_10_1007_s11571_021_09678_x
crossref_primary_10_1016_j_bbe_2021_06_006
crossref_primary_10_1109_ACCESS_2023_3275024
crossref_primary_10_1007_s13246_020_00938_4
crossref_primary_10_1007_s00500_019_04531_0
crossref_primary_10_1007_s11571_020_09619_0
crossref_primary_10_1016_j_pscychresns_2022_111582
crossref_primary_10_4316_AECE_2020_03007
crossref_primary_10_1063_5_0087848
crossref_primary_10_1109_TCBB_2021_3052811
crossref_primary_10_1155_2020_4174857
crossref_primary_10_1177_15500594211018545
crossref_primary_10_3389_fnhum_2020_00284
crossref_primary_10_1007_s11042_024_19741_4
crossref_primary_10_1016_j_compbiomed_2023_106589
crossref_primary_10_1142_S0219519419400013
crossref_primary_10_1007_s11571_021_09689_8
crossref_primary_10_1016_j_heliyon_2024_e36411
crossref_primary_10_1109_TNSRE_2022_3143162
crossref_primary_10_1109_JSAC_2020_3020654
crossref_primary_10_1142_S0129065720500124
crossref_primary_10_3390_app11041761
crossref_primary_10_3390_s23021008
crossref_primary_10_1142_S0129065720500690
crossref_primary_10_1109_JSEN_2021_3085995
crossref_primary_10_3390_s20040969
crossref_primary_10_1007_s11042_023_14799_y
crossref_primary_10_1038_s44184_023_00040_z
crossref_primary_10_1155_2022_4439189
crossref_primary_10_1016_j_imu_2020_100325
crossref_primary_10_1155_2022_7725597
crossref_primary_10_1142_S0219622019500342
crossref_primary_10_1016_j_bspc_2024_106973
crossref_primary_10_1142_S0129065721500428
crossref_primary_10_1016_j_jad_2023_06_007
crossref_primary_10_1038_s41598_023_42796_6
crossref_primary_10_1016_j_bspc_2022_103698
crossref_primary_10_3389_fpsyt_2022_970993
crossref_primary_10_1088_1742_6596_1751_1_012040
crossref_primary_10_3390_brainsci14080778
crossref_primary_10_1142_S0129065722500071
crossref_primary_10_1016_j_compbiomed_2022_105420
crossref_primary_10_1016_j_eng_2019_06_008
crossref_primary_10_1007_s00521_018_3689_5
crossref_primary_10_1109_TIM_2025_3545204
crossref_primary_10_1016_j_knosys_2024_112322
crossref_primary_10_1109_TAI_2024_3394792
crossref_primary_10_1111_2041_210X_14001
crossref_primary_10_1109_ACCESS_2023_3304236
crossref_primary_10_1142_S0129065719500205
crossref_primary_10_3390_diagnostics13101779
crossref_primary_10_3389_fphys_2022_956254
crossref_primary_10_1088_2057_1976_acb942
crossref_primary_10_1038_s41398_020_0780_3
crossref_primary_10_1016_j_csbj_2024_03_022
crossref_primary_10_1016_j_bspc_2021_103293
crossref_primary_10_1016_j_brainresbull_2024_110984
crossref_primary_10_1016_j_bspc_2024_106985
crossref_primary_10_1093_bib_bbaa310
crossref_primary_10_1016_j_jneumeth_2022_109690
crossref_primary_10_1002_ima_22369
crossref_primary_10_1109_JBHI_2023_3336935
crossref_primary_10_1016_j_biopsycho_2021_108117
crossref_primary_10_3390_app13095322
crossref_primary_10_1007_s13534_023_00319_2
crossref_primary_10_1016_j_neubiorev_2019_07_021
crossref_primary_10_1109_ACCESS_2019_2891390
crossref_primary_10_1016_j_compbiomed_2021_105039
crossref_primary_10_1016_j_rineng_2025_104143
crossref_primary_10_1007_s00521_020_05588_x
crossref_primary_10_1016_j_future_2018_08_044
crossref_primary_10_1016_j_neucom_2019_05_088
crossref_primary_10_1016_j_artmed_2019_101789
crossref_primary_10_1109_ACCESS_2018_2883480
crossref_primary_10_1088_2632_072X_ac5f8d
crossref_primary_10_1007_s13246_020_00925_9
crossref_primary_10_1109_TCBB_2023_3257175
crossref_primary_10_3390_app11199218
crossref_primary_10_1177_20552076251324456
crossref_primary_10_18273_revuin_v19n4_2020001
crossref_primary_10_3390_app9142870
crossref_primary_10_3390_life15030394
crossref_primary_10_1016_j_bspc_2023_104923
crossref_primary_10_3389_fpsyt_2024_1346838
crossref_primary_10_1142_S0129065720500677
crossref_primary_10_1016_j_compbiomed_2022_105441
crossref_primary_10_3390_diagnostics14212385
crossref_primary_10_1016_j_patrec_2020_03_009
crossref_primary_10_1038_s41597_022_01211_x
crossref_primary_10_3390_diagnostics13030573
crossref_primary_10_3390_app13042703
crossref_primary_10_1016_j_ibmed_2023_100123
crossref_primary_10_1088_1741_2552_ac7257
crossref_primary_10_1142_S0129065719500102
crossref_primary_10_3389_fpubh_2023_1110088
crossref_primary_10_3390_math11143145
crossref_primary_10_1016_j_medntd_2021_100102
crossref_primary_10_1016_j_compbiomed_2019_103483
crossref_primary_10_1016_j_jad_2019_06_034
crossref_primary_10_1016_j_cmpb_2021_106007
crossref_primary_10_1142_S0129065723500259
crossref_primary_10_3389_fneur_2021_603868
crossref_primary_10_29137_umagd_1232222
crossref_primary_10_1016_j_dsp_2023_103986
crossref_primary_10_1142_S0129065721500556
crossref_primary_10_1016_j_cmpb_2022_107113
crossref_primary_10_1016_j_cmpb_2018_05_014
crossref_primary_10_1016_j_bspc_2022_103496
crossref_primary_10_1007_s13369_019_04197_8
crossref_primary_10_1007_s11831_023_09920_1
crossref_primary_10_1016_j_pnpbp_2022_110705
crossref_primary_10_1016_j_jad_2023_03_038
crossref_primary_10_1016_j_compbiomed_2021_105134
crossref_primary_10_1109_ACCESS_2021_3133326
crossref_primary_10_1016_j_compbiomed_2022_106088
crossref_primary_10_1109_MIS_2024_3363895
crossref_primary_10_1049_cit2_12220
crossref_primary_10_1111_exsy_12803
crossref_primary_10_1007_s11042_024_18341_6
crossref_primary_10_3390_biomedinformatics3010014
crossref_primary_10_1016_j_knosys_2023_111305
crossref_primary_10_1142_S0129065722500150
crossref_primary_10_1142_S0129065722500393
crossref_primary_10_1109_TCDS_2021_3079712
crossref_primary_10_1631_jzus_B2400103
crossref_primary_10_7554_eLife_56481
crossref_primary_10_1016_j_bspc_2023_104873
crossref_primary_10_1038_s41598_025_85890_7
crossref_primary_10_1007_s13755_022_00187_7
crossref_primary_10_1080_03007995_2022_2038487
crossref_primary_10_1109_JBHI_2022_3200522
crossref_primary_10_4108_eetsis_6232
crossref_primary_10_1088_1741_2552_ab0ab5
crossref_primary_10_1371_journal_pone_0299127
crossref_primary_10_1080_17455030_2023_2187237
crossref_primary_10_3390_s23208639
crossref_primary_10_3389_fpsyt_2024_1417253
crossref_primary_10_1007_s10489_021_02426_y
crossref_primary_10_1159_000512985
crossref_primary_10_1007_s10916_019_1345_y
crossref_primary_10_1007_s11517_025_03295_0
crossref_primary_10_1016_j_bpsc_2024_12_014
crossref_primary_10_1016_j_bspc_2023_105270
crossref_primary_10_1007_s11517_019_01959_2
crossref_primary_10_1007_s11571_020_09655_w
crossref_primary_10_1002_ima_22565
crossref_primary_10_1142_S0129065723500077
crossref_primary_10_3390_s20226526
crossref_primary_10_1007_s00521_019_04025_y
crossref_primary_10_1142_S0129065722500046
crossref_primary_10_1038_s44184_023_00038_7
crossref_primary_10_1109_ACCESS_2021_3049427
crossref_primary_10_1016_j_ijmedinf_2019_103983
crossref_primary_10_1152_physiol_00013_2022
crossref_primary_10_1109_TAFFC_2020_3014171
crossref_primary_10_1016_j_bspc_2021_102957
crossref_primary_10_1021_acs_jpca_1c10681
crossref_primary_10_1109_ACCESS_2019_2948857
crossref_primary_10_1109_TAFFC_2022_3210958
crossref_primary_10_1142_S0129065719500138
crossref_primary_10_1109_TASLPRO_2025_3533370
crossref_primary_10_12998_wjcc_v11_i9_1903
crossref_primary_10_3390_ijerph19031192
crossref_primary_10_1142_S0219519423400791
crossref_primary_10_1002_ima_22552
crossref_primary_10_1007_s10548_024_01080_0
crossref_primary_10_1016_j_cmpb_2021_106433
crossref_primary_10_1016_j_inffus_2023_101960
crossref_primary_10_3389_fpsyt_2024_1280935
crossref_primary_10_35234_fumbd_661955
crossref_primary_10_12688_openreseurope_16244_1
crossref_primary_10_1186_s40359_024_01664_2
crossref_primary_10_1016_j_cmpb_2023_107683
crossref_primary_10_1016_j_neucom_2024_128920
crossref_primary_10_1109_TIM_2021_3053999
crossref_primary_10_1142_S0129065721500519
crossref_primary_10_1142_S0129065722500290
crossref_primary_10_1007_s11517_022_02647_4
crossref_primary_10_3390_s24216815
crossref_primary_10_1111_exsy_12957
crossref_primary_10_3390_brainsci12050630
crossref_primary_10_1016_j_bbe_2020_02_002
crossref_primary_10_1109_ACCESS_2022_3197645
crossref_primary_10_1007_s13246_022_01135_1
crossref_primary_10_1016_j_bspc_2023_105497
crossref_primary_10_1016_j_bspc_2022_103568
crossref_primary_10_3389_fnsys_2021_652662
crossref_primary_10_3934_mbe_2021233
crossref_primary_10_1109_TII_2020_2978944
crossref_primary_10_1016_j_compbiomed_2023_106741
crossref_primary_10_1109_TNSRE_2023_3339518
crossref_primary_10_1093_cercor_bhae505
crossref_primary_10_1109_TAFFC_2022_3171782
crossref_primary_10_1109_TNSRE_2019_2913142
crossref_primary_10_1007_s00521_023_08350_1
crossref_primary_10_1142_S0129065720500641
crossref_primary_10_33166_AETiC_2022_02_005
crossref_primary_10_1007_s10489_022_04159_y
crossref_primary_10_3389_fnins_2024_1373515
Cites_doi 10.1016/j.compbiomed.2017.08.022
10.1016/0925-2312(93)90042-2
10.1016/j.cmpb.2012.10.008
10.1111/mice.12297
10.3233/ICA-170538
10.3233/ICA-170551
10.1002/tal.1400
10.1142/S0129065716500398
10.1159/000381950
10.1016/j.future.2017.08.039
10.1142/S012906571750006X
10.1142/S0129065716500465
10.1142/S0129065717500332
10.1109/TBME.2007.905490
10.1166/jmihi.2017.2204
10.1142/S0129065717500022
10.1016/j.bbr.2015.10.036
10.1111/mice.12313
10.1007/s10916-015-0353-9
10.3233/ICA-2010-0345
10.1111/mice.12263
10.1142/S0129065717500204
10.1111/mice.12257
10.1142/S0219519414500353
10.1142/S0129065717500113
10.1142/S0129065717500460
10.1016/j.compbiomed.2017.09.017
10.1016/j.ijpsycho.2012.05.001
10.1142/S0129065716500052
10.1142/S0129065716500337
10.1016/j.jocs.2017.02.006
10.1016/j.ins.2017.08.050
10.1016/j.neures.2010.06.013
10.1142/S0129065716500088
10.1016/j.ins.2017.06.027
10.3348/kjr.2017.18.4.570
10.1142/S0129065716500313
10.1159/000438457
10.1111/j.1467-8667.2004.00360.x
10.1109/TMI.2016.2528162
10.1109/TMI.2016.2538465
10.1142/S0129065716500222
10.1109/TMI.2016.2535302
10.1142/S0129065715500057
10.1142/S0129065716500507
10.1177/1550059413480504
10.1016/j.bspc.2016.07.006
10.1142/S012906571750023X
10.3390/s17061385
10.1016/j.ins.2017.04.012
10.1109/MCI.2010.938364
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmpb.2018.04.012
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
EndPage 113
ExternalDocumentID 29852953
10_1016_j_cmpb_2018_04_012
S0169260718301494
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AFCTW
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c473t-e62abf30a8f487b1ce32db321efebfc59abe4bc64a83c9102f88e0eca35f01323
IEDL.DBID AIKHN
ISSN 0169-2607
1872-7565
IngestDate Thu Sep 04 19:52:15 EDT 2025
Wed Feb 19 02:41:53 EST 2025
Thu Apr 24 23:09:02 EDT 2025
Tue Jul 01 02:40:53 EDT 2025
Fri Feb 23 02:26:01 EST 2024
Tue Aug 26 16:33:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Depression
Electroencephalogram
Convolutional neural network
EEG
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c473t-e62abf30a8f487b1ce32db321efebfc59abe4bc64a83c9102f88e0eca35f01323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5718-1453
PMID 29852953
PQID 2049549304
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2049549304
pubmed_primary_29852953
crossref_primary_10_1016_j_cmpb_2018_04_012
crossref_citationtrail_10_1016_j_cmpb_2018_04_012
elsevier_sciencedirect_doi_10_1016_j_cmpb_2018_04_012
elsevier_clinicalkey_doi_10_1016_j_cmpb_2018_04_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2018
2018-07-00
2018-Jul
20180701
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: July 2018
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Adeli, Ghosh-Dastidar (bib0023) 2010
Jiang, Adeli (bib0029) 2004; 19
Acharya, Sudarshan, Adeli, Santhosh, Koh, Puthankattil, Adeli (bib0030) 2015; 74
Tan, Acharya, Bhandary, Chua, Sivaprasad (bib0049) 2017; 20
Acharya, Fujita, Oh, Hagiwara, Tan, Adam (bib0055) 2017; 405
Rafiei, Khushefati, Demirboga, Adeli (bib0041) 2017; 114
Bruder, Duemepelmann, Piza, Mader, Schulze-Bonhage, Jacobs-Le Van (bib0015) 2017; 27
Arel, Rose, Karnowski (bib0037) 2010; 5
Guo, Wang, Cabrerizo, Adjouadi (bib0007) 2017; 27
Acharya, Fujita, Oh, Adam, Tan, Chua (bib0052) 2017; 946
Acharya, Fujita, Oh, Hagiwara, Tan, Adam (bib0054) 2017; 416
National Institute of Mental Health, Brain basics, obtained from
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib0062) 2014; 15
Yuvaraj, Murugappan, Sundaraj, Omar, Ibrahim, Mohamad, Palaniappan, Acharya, Adeli, Mesquita (bib0013) 2016; 298
He, Zhang, Ren, Sun (bib0058) 2015
Kingma, Ba (bib0061) 2015
2017.
Khedher, Illan, Gorriz, Ramirez, Brahim, Meyer-Baese (bib0035) 2017; 27
Ahmadlou, Adeli, Adeli (bib0026) 2013; 4
Tonoyan, Looney, Mandic, van Hulle (bib0018) 2016; 26
Liao, Wu, Huang, Cheng (bib0033) 2017; 17
Akar, Kara, Latifoğlu, Bilgiç (bib0017) 2016; 26
Ortega-Zamorano, Jerez, Gómez, Franco (bib0039) 2017; 24
Acharya, Fujita, Oh, Raghavendra, Tan, Adam, Gertych, Hagiwara (bib0053) 2018; 79
Ahmadlou, Adeli, Adeli (bib0004) 2012; 85
Ahmadlou, Adeli (bib0025) 2010; 17
Morabito, Campolo, Mammone, Versaci, Franceschetti, Tagliavini, Sofia, Fatuzzo, Gambardella, Labate, Mumoli, Tripodi, Gasparini, Ciancci, Sueri, Ferlazzo, Aguglia (bib0014) 2017; 27
.
Dereymaeker, Pillay, Vervisch, Van Huffel, Naulaers, Jansen, de Vos (bib0016) 2017; 27
Geier, Lehnertz (bib0006) 2017; 27
Hecht (bib0059) 2010; 68
Ortiz-Garcia, Muruilla, Gorriz, Ramirez (bib0040) 2016; 26
Hosseinifard, Moradi, Rostami (bib0027) 2013; 109
Pereira, Pinto, Alves, Silva (bib0047) 2016; 35
Duda, Hart, Stork (bib0063) 2001
Hirschauer, Adeli, Buford (bib0012) 2015; 39
World Health Organization, Depression, obtained from
Rafiei, Adeli (bib0045) 2017; 26
Hung, Adeli (bib0060) 1993; 5
Liu, Wang, Newman, Ying, Thakor (bib0019) 2017; 27
Cogan, Nourani, Harvey, Nagaraddi (bib0005) 2017; 27
Faust, Ang, Puthankattil, Joseph (bib0028) 2014; 14
Direito, Teixeira, Sales, Castelo-Branco, Dourado (bib0008) 2017; 27
Lin, Nie, Ma (bib0044) 2017; 32
Sereshkeh, Trott, Bricout, Chua (bib0020) 2017; 27
Shin, Roth, Gao, Lu, Xu, Nogues, Yao, Mollura, Summers (bib0046) 2016; 35
Cha, Choi, Büyüköztürk (bib0042) 2017; 32
Dai (bib0031) 2017; 32
Zhang, Fei, Wang, Li, Liu, Li, Chen, Yang, Dai, Peng (bib0043) 2017; 31
Lee, Jun, Cho, Lee, Kim, Seo, Kim (bib0057) 2017; 18
Mumtaz, Xia, Ali, Yasin, Hussain, Malik (bib0032) 2017; 31
Koziarski, Cyganek (bib0038) 2017; 24
World Federation for Mental Health, Depression: a global crisis, Occoquan, VA, USA, (2012).
Tan, Fujita, Sivaprasad, Bhandary, Rao, Chua, Acharya (bib0050) 2017; 420
Acharya, Sudarshan, Adeli, Santhosh, Koh, Adeli (bib0021) 2015; 73
Acharya, Oh, Hagiwara, Tan, Adam, Gertych, Tan (bib0056) 2017; 89
Varatharajah, Iyer, Berry, Worrel, Brinkmann (bib0009) 2017; 27
Xu, Zhou, Zhen, Yuan, Wu (bib0024) 2016; 26
Mammone, Bonanno, de Salvo, Marino, Bramanti, Bramanti, Morabito (bib0011) 2017; 27
Subha, Joseph (bib0022) 2012; 12
Bairy, Oh, Hagiwara, Puthankattil, Faust, Niranjan, Acharya (bib0036) 2017; 7
Morabito, Campolo, Labate, Morabito, Bonanno, Bramanti, de Salvo, Marra, Bramanti (bib0010) 2015; 25
Ghosh-Dastidar, Adeli, Dadmehr (bib0034) 2008; 55
U.R. Acharya, S.L. Oh, Y. Hagiwara, J.H. Tan, H. Adeli, Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals, Comput. Biol. Med.
Tajbakhsh, Shin, Gurudu, Hurst, Kendall, Gotway, Liang (bib0048) 2016; 35
Xu (10.1016/j.cmpb.2018.04.012_bib0024) 2016; 26
Khedher (10.1016/j.cmpb.2018.04.012_bib0035) 2017; 27
Lee (10.1016/j.cmpb.2018.04.012_bib0057) 2017; 18
Bairy (10.1016/j.cmpb.2018.04.012_bib0036) 2017; 7
Acharya (10.1016/j.cmpb.2018.04.012_bib0021) 2015; 73
Hirschauer (10.1016/j.cmpb.2018.04.012_bib0012) 2015; 39
Akar (10.1016/j.cmpb.2018.04.012_bib0017) 2016; 26
Morabito (10.1016/j.cmpb.2018.04.012_bib0014) 2017; 27
Tajbakhsh (10.1016/j.cmpb.2018.04.012_bib0048) 2016; 35
Ahmadlou (10.1016/j.cmpb.2018.04.012_bib0026) 2013; 4
Guo (10.1016/j.cmpb.2018.04.012_bib0007) 2017; 27
Dereymaeker (10.1016/j.cmpb.2018.04.012_bib0016) 2017; 27
Rafiei (10.1016/j.cmpb.2018.04.012_bib0045) 2017; 26
Tan (10.1016/j.cmpb.2018.04.012_bib0050) 2017; 420
Liao (10.1016/j.cmpb.2018.04.012_bib0033) 2017; 17
Koziarski (10.1016/j.cmpb.2018.04.012_bib0038) 2017; 24
Liu (10.1016/j.cmpb.2018.04.012_bib0019) 2017; 27
Hosseinifard (10.1016/j.cmpb.2018.04.012_bib0027) 2013; 109
Subha (10.1016/j.cmpb.2018.04.012_bib0022) 2012; 12
Ghosh-Dastidar (10.1016/j.cmpb.2018.04.012_bib0034) 2008; 55
Acharya (10.1016/j.cmpb.2018.04.012_bib0054) 2017; 416
Pereira (10.1016/j.cmpb.2018.04.012_bib0047) 2016; 35
Tonoyan (10.1016/j.cmpb.2018.04.012_bib0018) 2016; 26
He (10.1016/j.cmpb.2018.04.012_bib0058) 2015
Sereshkeh (10.1016/j.cmpb.2018.04.012_bib0020) 2017; 27
Acharya (10.1016/j.cmpb.2018.04.012_bib0052) 2017; 946
Direito (10.1016/j.cmpb.2018.04.012_bib0008) 2017; 27
Cha (10.1016/j.cmpb.2018.04.012_bib0042) 2017; 32
Morabito (10.1016/j.cmpb.2018.04.012_bib0010) 2015; 25
Faust (10.1016/j.cmpb.2018.04.012_bib0028) 2014; 14
Tan (10.1016/j.cmpb.2018.04.012_bib0049) 2017; 20
Acharya (10.1016/j.cmpb.2018.04.012_bib0055) 2017; 405
Duda (10.1016/j.cmpb.2018.04.012_bib0063) 2001
Geier (10.1016/j.cmpb.2018.04.012_bib0006) 2017; 27
Bruder (10.1016/j.cmpb.2018.04.012_bib0015) 2017; 27
Hecht (10.1016/j.cmpb.2018.04.012_bib0059) 2010; 68
Dai (10.1016/j.cmpb.2018.04.012_bib0031) 2017; 32
Cogan (10.1016/j.cmpb.2018.04.012_bib0005) 2017; 27
Zhang (10.1016/j.cmpb.2018.04.012_bib0043) 2017; 31
Kingma (10.1016/j.cmpb.2018.04.012_bib0061) 2015
Ortega-Zamorano (10.1016/j.cmpb.2018.04.012_bib0039) 2017; 24
Mumtaz (10.1016/j.cmpb.2018.04.012_bib0032) 2017; 31
Hung (10.1016/j.cmpb.2018.04.012_bib0060) 1993; 5
Mammone (10.1016/j.cmpb.2018.04.012_bib0011) 2017; 27
Ortiz-Garcia (10.1016/j.cmpb.2018.04.012_bib0040) 2016; 26
Ahmadlou (10.1016/j.cmpb.2018.04.012_bib0025) 2010; 17
Ahmadlou (10.1016/j.cmpb.2018.04.012_bib0004) 2012; 85
Varatharajah (10.1016/j.cmpb.2018.04.012_bib0009) 2017; 27
10.1016/j.cmpb.2018.04.012_bib0051
Srivastava (10.1016/j.cmpb.2018.04.012_bib0062) 2014; 15
Rafiei (10.1016/j.cmpb.2018.04.012_bib0041) 2017; 114
Lin (10.1016/j.cmpb.2018.04.012_bib0044) 2017; 32
Jiang (10.1016/j.cmpb.2018.04.012_bib0029) 2004; 19
Acharya (10.1016/j.cmpb.2018.04.012_bib0030) 2015; 74
Acharya (10.1016/j.cmpb.2018.04.012_bib0056) 2017; 89
Acharya (10.1016/j.cmpb.2018.04.012_bib0053) 2018; 79
Shin (10.1016/j.cmpb.2018.04.012_bib0046) 2016; 35
Arel (10.1016/j.cmpb.2018.04.012_bib0037) 2010; 5
10.1016/j.cmpb.2018.04.012_bib0003
10.1016/j.cmpb.2018.04.012_bib0002
10.1016/j.cmpb.2018.04.012_bib0001
Adeli (10.1016/j.cmpb.2018.04.012_bib0023) 2010
Yuvaraj (10.1016/j.cmpb.2018.04.012_bib0013) 2016; 298
References_xml – volume: 27
  start-page: 19
  year: 2017
  ident: bib0011
  article-title: Permutation disalignment index as an indirect, EEG-based, measure of brain connectivity in MCI and AD patients
  publication-title: Int. J. Neural Syst.
– volume: 17
  start-page: 1385
  year: 2017
  ident: bib0033
  article-title: Major depression detection from EEG signals using kernel eigen-filter-bank common spatial patterns
  publication-title: Sensors
– volume: 27
  start-page: 15
  year: 2017
  ident: bib0014
  article-title: Deep learning representation from electroencephalography of early-stage Creutzfeld-Jakob disease and features for differentiation from rapidly progressive dementia
  publication-title: Int. J. Neural Syst.
– reference: World Federation for Mental Health, Depression: a global crisis, Occoquan, VA, USA, (2012).
– volume: 20
  start-page: 70
  year: 2017
  end-page: 79
  ident: bib0049
  article-title: Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network
  publication-title: J. Comput. Sci.
– volume: 32
  start-page: 344
  year: 2017
  end-page: 357
  ident: bib0031
  article-title: A wavelet support vector machine-based neural network meta model for structural reliability assessment
  publication-title: Comput. Aided Civil Infrastruct. Eng.
– year: 2001
  ident: bib0063
  article-title: Pattern Classification
– year: 2010
  ident: bib0023
  article-title: Automated EEG-Based Diagnosis of Neurological Disorders – Inventing the Future of Neurology
– volume: 32
  start-page: 1025
  year: 2017
  end-page: 1046
  ident: bib0044
  article-title: Structural damage detection with automatic feature-extraction through deep learning
  publication-title: Comput. Aided Civil Infrastruct. Eng.
– volume: 405
  start-page: 81
  year: 2017
  end-page: 90
  ident: bib0055
  article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network
  publication-title: Inf. Sci.
– volume: 27
  start-page: 16
  year: 2017
  ident: bib0019
  article-title: EEG classification with a sequential decision-making method in motor imagery BCI
  publication-title: Int. J. Neural Syst.
– volume: 26
  start-page: 13
  year: 2016
  ident: bib0024
  article-title: Using fractal and local binary pattern features for motor imagery classification of ECOG motor imagery task obtained from the right brain hemisphere
  publication-title: Int. J. Neural Syst.
– volume: 12
  year: 2012
  ident: bib0022
  article-title: Classification of EEG signals in normal and depression conditions by ANN using RWE and signal entropy
  publication-title: J. Mech. Med. Biol.
– reference: U.R. Acharya, S.L. Oh, Y. Hagiwara, J.H. Tan, H. Adeli, Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals, Comput. Biol. Med.,
– volume: 73
  start-page: 329
  year: 2015
  end-page: 336
  ident: bib0021
  article-title: Computer-aided diagnosis of depression using EEG signals
  publication-title: Eur. Neurol.
– volume: 35
  start-page: 1240
  year: 2016
  end-page: 1251
  ident: bib0047
  article-title: Brain tumor segmentation using convolutional neural networks in MRI images
  publication-title: IEEE Trans. Med. Imaging
– volume: 32
  start-page: 361
  year: 2017
  end-page: 378
  ident: bib0042
  article-title: Deep learning-based crack damage detection using convolutional neural networks
  publication-title: Comput. Aided Civil Infrastruct. Eng.
– volume: 18
  start-page: 570
  year: 2017
  end-page: 584
  ident: bib0057
  article-title: Deep learning in medical imaging: general overview
  publication-title: Korean J. Radiol.
– volume: 14
  year: 2014
  ident: bib0028
  article-title: Depression diagnosis support system based on EEG signal entropies
  publication-title: J. Mech. Med. Biol.
– volume: 17
  start-page: 197
  year: 2010
  end-page: 210
  ident: bib0025
  article-title: Enhanced probabilistic neural network with local decision circles: a robust classifier
  publication-title: Integr. Comput. Aided Eng.
– volume: 85
  start-page: 206
  year: 2012
  end-page: 211
  ident: bib0004
  article-title: Fractality analysis of frontal brain in major depressive disorder
  publication-title: Int. J. Psychophysiol.
– volume: 26
  start-page: 23
  year: 2016
  ident: bib0040
  article-title: Ensembles of deep learning architectures for the early diagnosis of Alzheimer's disease
  publication-title: Int. J. Neural Syst.
– volume: 27
  start-page: 18
  year: 2017
  ident: bib0016
  article-title: An automated quiet sleep detection approach in preterm infants as a gateway to assess brain maturation
  publication-title: Int. J. Neural Syst.
– volume: 19
  start-page: 324
  year: 2004
  end-page: 337
  ident: bib0029
  article-title: Wavelet packet-autocorrelation function method for traffic flow pattern analysis
  publication-title: Comput. Aided Civil Infrastruct. Eng.
– volume: 26
  start-page: 15
  year: 2016
  ident: bib0018
  article-title: Discriminating multiple emotional states from EEG using a data-adaptive, multiscale information-theoretic approach
  publication-title: Int. J. .Neural Syst.
– volume: 89
  start-page: 389
  year: 2017
  end-page: 396
  ident: bib0056
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Comput. Biol. Med.
– volume: 68
  start-page: 77
  year: 2010
  end-page: 87
  ident: bib0059
  article-title: Depression and the hyperactive right-hemisphere
  publication-title: Neurosci. Res.
– volume: 26
  start-page: 13
  year: 2016
  ident: bib0017
  article-title: Analysis of the complexity measures in the EEG of Schizophrenia patients
  publication-title: Int. J. Neural Syst.
– volume: 946
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib0052
  article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network
  publication-title: Knowl. Based Syst.
– year: 2015
  ident: bib0061
  article-title: ADAM: A method for stochastic optimization
  publication-title: 3rd International Conference on Learning Representations
– volume: 7
  start-page: 1857
  year: 2017
  end-page: 1862
  ident: bib0036
  article-title: Automated diagnosis of depression electroencephalograph signals using linear prediction coding and higher order spectra features
  publication-title: J. Med. Imaging Health Inf.
– volume: 35
  start-page: 1299
  year: 2016
  end-page: 1312
  ident: bib0048
  article-title: Convolutional neural networks for medical image analysis: full training or fine tuning?
  publication-title: IEEE Trans. Med. Imaging
– volume: 27
  start-page: 14
  year: 2017
  ident: bib0006
  article-title: Which brain regions are important for seizure dynamics in epileptic networks? Influence of link identification and EEG recording montage on node centralities
  publication-title: Int. J. Neural Syst.
– volume: 25
  start-page: 18
  year: 2015
  ident: bib0010
  article-title: A longitudinal EEG study of Alzheimer's disease progression based on a complex network approach
  publication-title: Int. J. Neural Syst.
– volume: 27
  start-page: 18
  year: 2017
  ident: bib0005
  article-title: Multi-biosignal analysis for epileptic seizure monitoring
  publication-title: Int. J. Neural Syst.
– volume: 298
  start-page: 248
  year: 2016
  end-page: 260
  ident: bib0013
  article-title: Brain functional connectivity patterns for emotional state classification in Parkinson's disease patients without dementia
  publication-title: Behav. Brain Res.
– volume: 24
  start-page: 171
  year: 2017
  end-page: 185
  ident: bib0039
  article-title: Layer multiplexing FPGA implementation for deep back-propagation learning
  publication-title: Integr. Comput. Aided Eng.
– year: 2015
  ident: bib0058
  article-title: Delving deep into rectifiers: Surpassing human-level performance on image net classification
  publication-title: IEEE International Conference on Computer Vision,
– volume: 35
  start-page: 1285
  year: 2016
  end-page: 1298
  ident: bib0046
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
– volume: 5
  start-page: 287
  year: 1993
  end-page: 302
  ident: bib0060
  article-title: Parallel backpropagation learning algorithms on cray Y-MP8/864 supercomputer
  publication-title: Neurocomputing
– reference: , 2017.
– reference: World Health Organization, Depression, obtained from
– volume: 24
  start-page: 337
  year: 2017
  end-page: 350
  ident: bib0038
  article-title: Image recognition with deep neural networks in presence of noise – dealing with and taking advantage of distortions
  publication-title: Integr. Comput. Aided Eng.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib0062
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 420
  start-page: 66
  year: 2017
  end-page: 76
  ident: bib0050
  article-title: Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network
  publication-title: Inf. Sci.
– volume: 416
  start-page: 190
  year: 2017
  end-page: 198
  ident: bib0054
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Inf. Sci.
– volume: 39
  start-page: 179
  year: 2015
  ident: bib0012
  article-title: Computer-aided diagnosis of Parkinson's disease using enhanced probabilistic neural network
  publication-title: J. Med. Syst.
– volume: 5
  start-page: 13
  year: 2010
  end-page: 18
  ident: bib0037
  article-title: Researcher frontier: deep machine learning – a new frontier in artificial intelligence research
  publication-title: IEEE Comput. Intell. Mag.
– volume: 27
  start-page: 12
  year: 2017
  ident: bib0009
  article-title: Seizure forecasting and the preictal state in canine epilepsy
  publication-title: Int. J. Neural Syst.
– volume: 27
  start-page: 16
  year: 2017
  ident: bib0020
  article-title: Online EEG classification of covert speech for brain–computer interfacing
  publication-title: Int. J. Neural Syst.
– reference: National Institute of Mental Health, Brain basics, obtained from
– volume: 114
  start-page: 237
  year: 2017
  end-page: 244
  ident: bib0041
  article-title: Supervised deep restricted boltzmann machine for estimation of concrete compressive strength
  publication-title: ACI Mater. J.
– volume: 31
  start-page: 108
  year: 2017
  end-page: 115
  ident: bib0032
  article-title: Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD)
  publication-title: Biomed. Signal Process. Control
– volume: 27
  start-page: 15
  year: 2017
  ident: bib0015
  article-title: Physiological ripples associated with sleep spindles differ in waveform morphology from epileptic ripples
  publication-title: Int. J. Neural Syst.
– volume: 4
  start-page: 175
  year: 2013
  end-page: 181
  ident: bib0026
  article-title: Spatiotemporal analysis of relative convergence of EEGs reveals differences between brain dynamics of depressive women and men
  publication-title: Clin. EEG Neurosci.
– reference: .
– volume: 27
  start-page: 19
  year: 2017
  ident: bib0007
  article-title: A cross-correlated delay shift supervised learning method for spiking neurons with application to interictal spike detection in epilepsy
  publication-title: Int. J. Neural Syst.
– volume: 74
  start-page: 79
  year: 2015
  end-page: 83
  ident: bib0030
  article-title: A novel depression diagnosis index using nonlinear features in EEG signals
  publication-title: Eur. Neurol.
– volume: 31
  start-page: 805
  year: 2017
  end-page: 819
  ident: bib0043
  article-title: Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep learning network
  publication-title: Comput. Aided Civil Infrastruct. Eng.
– volume: 79
  start-page: 952
  year: 2018
  end-page: 959
  ident: bib0053
  article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network
  publication-title: Future Gener. Comput. Syst.
– volume: 55
  start-page: 512
  year: 2008
  end-page: 518
  ident: bib0034
  article-title: Principal component analysis - enhanced cosine radial basis function neural network for robust epilepsy and seizure detection
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 27
  start-page: 15
  year: 2017
  ident: bib0008
  article-title: A realistic seizure prediction study based on multiclass SVM
  publication-title: Int. J. Neural Syst.
– volume: 27
  start-page: 8
  year: 2017
  ident: bib0035
  article-title: Independent component analysis – support vector machine-based computer aided diagnosis system for Alzheimer's with visual support
  publication-title: Int. J. Neural Syst.
– volume: 109
  start-page: 339
  year: 2013
  end-page: 345
  ident: bib0027
  article-title: Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal
  publication-title: Comput. Methods Program Biomed.
– volume: 26
  year: 2017
  ident: bib0045
  article-title: A novel machine learning based algorithm to detect damage in highrise building structures
  publication-title: Struct. Des. Tall Spec. Build.
– volume: 89
  start-page: 389
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0056
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.08.022
– volume: 114
  start-page: 237
  issue: 2
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0041
  article-title: Supervised deep restricted boltzmann machine for estimation of concrete compressive strength
  publication-title: ACI Mater. J.
– year: 2001
  ident: 10.1016/j.cmpb.2018.04.012_bib0063
– volume: 5
  start-page: 287
  issue: 6
  year: 1993
  ident: 10.1016/j.cmpb.2018.04.012_bib0060
  article-title: Parallel backpropagation learning algorithms on cray Y-MP8/864 supercomputer
  publication-title: Neurocomputing
  doi: 10.1016/0925-2312(93)90042-2
– volume: 109
  start-page: 339
  year: 2013
  ident: 10.1016/j.cmpb.2018.04.012_bib0027
  article-title: Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal
  publication-title: Comput. Methods Program Biomed.
  doi: 10.1016/j.cmpb.2012.10.008
– volume: 31
  start-page: 805
  issue: 10
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0043
  article-title: Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep learning network
  publication-title: Comput. Aided Civil Infrastruct. Eng.
  doi: 10.1111/mice.12297
– volume: 24
  start-page: 171
  issue: 2
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0039
  article-title: Layer multiplexing FPGA implementation for deep back-propagation learning
  publication-title: Integr. Comput. Aided Eng.
  doi: 10.3233/ICA-170538
– volume: 26
  start-page: 23
  issue: 7
  year: 2016
  ident: 10.1016/j.cmpb.2018.04.012_bib0040
  article-title: Ensembles of deep learning architectures for the early diagnosis of Alzheimer's disease
  publication-title: Int. J. Neural Syst.
– volume: 24
  start-page: 337
  issue: 4
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0038
  article-title: Image recognition with deep neural networks in presence of noise – dealing with and taking advantage of distortions
  publication-title: Integr. Comput. Aided Eng.
  doi: 10.3233/ICA-170551
– year: 2010
  ident: 10.1016/j.cmpb.2018.04.012_bib0023
– volume: 26
  issue: 18
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0045
  article-title: A novel machine learning based algorithm to detect damage in highrise building structures
  publication-title: Struct. Des. Tall Spec. Build.
  doi: 10.1002/tal.1400
– volume: 27
  start-page: 15
  issue: 2
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0014
  article-title: Deep learning representation from electroencephalography of early-stage Creutzfeld-Jakob disease and features for differentiation from rapidly progressive dementia
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065716500398
– volume: 12
  issue: 4
  year: 2012
  ident: 10.1016/j.cmpb.2018.04.012_bib0022
  article-title: Classification of EEG signals in normal and depression conditions by ANN using RWE and signal entropy
  publication-title: J. Mech. Med. Biol.
– volume: 73
  start-page: 329
  year: 2015
  ident: 10.1016/j.cmpb.2018.04.012_bib0021
  article-title: Computer-aided diagnosis of depression using EEG signals
  publication-title: Eur. Neurol.
  doi: 10.1159/000381950
– volume: 79
  start-page: 952
  issue: 3
  year: 2018
  ident: 10.1016/j.cmpb.2018.04.012_bib0053
  article-title: Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.08.039
– volume: 27
  start-page: 15
  issue: 3
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0008
  article-title: A realistic seizure prediction study based on multiclass SVM
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S012906571750006X
– volume: 946
  start-page: 1
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0052
  article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network
  publication-title: Knowl. Based Syst.
– volume: 27
  start-page: 12
  issue: 1
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0009
  article-title: Seizure forecasting and the preictal state in canine epilepsy
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065716500465
– volume: 27
  start-page: 16
  issue: 8
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0020
  article-title: Online EEG classification of covert speech for brain–computer interfacing
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065717500332
– volume: 55
  start-page: 512
  issue: 2
  year: 2008
  ident: 10.1016/j.cmpb.2018.04.012_bib0034
  article-title: Principal component analysis - enhanced cosine radial basis function neural network for robust epilepsy and seizure detection
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.905490
– volume: 7
  start-page: 1857
  issue: 8
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0036
  article-title: Automated diagnosis of depression electroencephalograph signals using linear prediction coding and higher order spectra features
  publication-title: J. Med. Imaging Health Inf.
  doi: 10.1166/jmihi.2017.2204
– volume: 27
  start-page: 19
  issue: 3
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0007
  article-title: A cross-correlated delay shift supervised learning method for spiking neurons with application to interictal spike detection in epilepsy
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065717500022
– volume: 298
  start-page: 248
  year: 2016
  ident: 10.1016/j.cmpb.2018.04.012_bib0013
  article-title: Brain functional connectivity patterns for emotional state classification in Parkinson's disease patients without dementia
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2015.10.036
– volume: 32
  start-page: 1025
  issue: 12
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0044
  article-title: Structural damage detection with automatic feature-extraction through deep learning
  publication-title: Comput. Aided Civil Infrastruct. Eng.
  doi: 10.1111/mice.12313
– volume: 39
  start-page: 179
  issue: 11
  year: 2015
  ident: 10.1016/j.cmpb.2018.04.012_bib0012
  article-title: Computer-aided diagnosis of Parkinson's disease using enhanced probabilistic neural network
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-015-0353-9
– volume: 17
  start-page: 197
  issue: 3
  year: 2010
  ident: 10.1016/j.cmpb.2018.04.012_bib0025
  article-title: Enhanced probabilistic neural network with local decision circles: a robust classifier
  publication-title: Integr. Comput. Aided Eng.
  doi: 10.3233/ICA-2010-0345
– volume: 32
  start-page: 361
  issue: 5
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0042
  article-title: Deep learning-based crack damage detection using convolutional neural networks
  publication-title: Comput. Aided Civil Infrastruct. Eng.
  doi: 10.1111/mice.12263
– ident: 10.1016/j.cmpb.2018.04.012_bib0003
– volume: 27
  start-page: 19
  issue: 5
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0011
  article-title: Permutation disalignment index as an indirect, EEG-based, measure of brain connectivity in MCI and AD patients
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065717500204
– volume: 32
  start-page: 344
  issue: 4
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0031
  article-title: A wavelet support vector machine-based neural network meta model for structural reliability assessment
  publication-title: Comput. Aided Civil Infrastruct. Eng.
  doi: 10.1111/mice.12257
– volume: 14
  issue: 3
  year: 2014
  ident: 10.1016/j.cmpb.2018.04.012_bib0028
  article-title: Depression diagnosis support system based on EEG signal entropies
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519414500353
– volume: 27
  start-page: 15
  issue: 7
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0015
  article-title: Physiological ripples associated with sleep spindles differ in waveform morphology from epileptic ripples
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065717500113
– volume: 27
  start-page: 16
  issue: 8
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0019
  article-title: EEG classification with a sequential decision-making method in motor imagery BCI
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065717500460
– ident: 10.1016/j.cmpb.2018.04.012_bib0051
  doi: 10.1016/j.compbiomed.2017.09.017
– volume: 85
  start-page: 206
  year: 2012
  ident: 10.1016/j.cmpb.2018.04.012_bib0004
  article-title: Fractality analysis of frontal brain in major depressive disorder
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2012.05.001
– volume: 26
  start-page: 15
  issue: 2
  year: 2016
  ident: 10.1016/j.cmpb.2018.04.012_bib0018
  article-title: Discriminating multiple emotional states from EEG using a data-adaptive, multiscale information-theoretic approach
  publication-title: Int. J. .Neural Syst.
  doi: 10.1142/S0129065716500052
– volume: 27
  start-page: 14
  issue: 1
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0006
  article-title: Which brain regions are important for seizure dynamics in epileptic networks? Influence of link identification and EEG recording montage on node centralities
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065716500337
– volume: 20
  start-page: 70
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0049
  article-title: Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.02.006
– volume: 420
  start-page: 66
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0050
  article-title: Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.08.050
– volume: 68
  start-page: 77
  year: 2010
  ident: 10.1016/j.cmpb.2018.04.012_bib0059
  article-title: Depression and the hyperactive right-hemisphere
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2010.06.013
– ident: 10.1016/j.cmpb.2018.04.012_bib0002
– volume: 26
  start-page: 13
  issue: 2
  year: 2016
  ident: 10.1016/j.cmpb.2018.04.012_bib0017
  article-title: Analysis of the complexity measures in the EEG of Schizophrenia patients
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065716500088
– year: 2015
  ident: 10.1016/j.cmpb.2018.04.012_bib0058
  article-title: Delving deep into rectifiers: Surpassing human-level performance on image net classification
– year: 2015
  ident: 10.1016/j.cmpb.2018.04.012_bib0061
  article-title: ADAM: A method for stochastic optimization
– volume: 416
  start-page: 190
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0054
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.06.027
– volume: 18
  start-page: 570
  issue: 4
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0057
  article-title: Deep learning in medical imaging: general overview
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2017.18.4.570
– volume: 27
  start-page: 18
  issue: 1
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0005
  article-title: Multi-biosignal analysis for epileptic seizure monitoring
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065716500313
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.cmpb.2018.04.012_bib0062
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 74
  start-page: 79
  year: 2015
  ident: 10.1016/j.cmpb.2018.04.012_bib0030
  article-title: A novel depression diagnosis index using nonlinear features in EEG signals
  publication-title: Eur. Neurol.
  doi: 10.1159/000438457
– volume: 19
  start-page: 324
  issue: 5
  year: 2004
  ident: 10.1016/j.cmpb.2018.04.012_bib0029
  article-title: Wavelet packet-autocorrelation function method for traffic flow pattern analysis
  publication-title: Comput. Aided Civil Infrastruct. Eng.
  doi: 10.1111/j.1467-8667.2004.00360.x
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  ident: 10.1016/j.cmpb.2018.04.012_bib0046
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– volume: 35
  start-page: 1240
  issue: 5
  year: 2016
  ident: 10.1016/j.cmpb.2018.04.012_bib0047
  article-title: Brain tumor segmentation using convolutional neural networks in MRI images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2538465
– volume: 26
  start-page: 13
  issue: 6
  year: 2016
  ident: 10.1016/j.cmpb.2018.04.012_bib0024
  article-title: Using fractal and local binary pattern features for motor imagery classification of ECOG motor imagery task obtained from the right brain hemisphere
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065716500222
– volume: 35
  start-page: 1299
  issue: 5
  year: 2016
  ident: 10.1016/j.cmpb.2018.04.012_bib0048
  article-title: Convolutional neural networks for medical image analysis: full training or fine tuning?
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2535302
– volume: 25
  start-page: 18
  issue: 2
  year: 2015
  ident: 10.1016/j.cmpb.2018.04.012_bib0010
  article-title: A longitudinal EEG study of Alzheimer's disease progression based on a complex network approach
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065715500057
– volume: 27
  start-page: 8
  issue: 3
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0035
  article-title: Independent component analysis – support vector machine-based computer aided diagnosis system for Alzheimer's with visual support
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065716500507
– ident: 10.1016/j.cmpb.2018.04.012_bib0001
– volume: 4
  start-page: 175
  issue: 3
  year: 2013
  ident: 10.1016/j.cmpb.2018.04.012_bib0026
  article-title: Spatiotemporal analysis of relative convergence of EEGs reveals differences between brain dynamics of depressive women and men
  publication-title: Clin. EEG Neurosci.
  doi: 10.1177/1550059413480504
– volume: 31
  start-page: 108
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0032
  article-title: Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD)
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.07.006
– volume: 27
  start-page: 18
  issue: 6
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0016
  article-title: An automated quiet sleep detection approach in preterm infants as a gateway to assess brain maturation
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S012906571750023X
– volume: 17
  start-page: 1385
  issue: 6
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0033
  article-title: Major depression detection from EEG signals using kernel eigen-filter-bank common spatial patterns
  publication-title: Sensors
  doi: 10.3390/s17061385
– volume: 405
  start-page: 81
  year: 2017
  ident: 10.1016/j.cmpb.2018.04.012_bib0055
  article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.04.012
– volume: 5
  start-page: 13
  issue: 4
  year: 2010
  ident: 10.1016/j.cmpb.2018.04.012_bib0037
  article-title: Researcher frontier: deep machine learning – a new frontier in artificial intelligence research
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2010.938364
SSID ssj0002556
Score 2.6466782
Snippet •Classification of normal and depression using EEG signals.•Employed a 13-layer deep convolutional neural network model.•Minimum hand-crafted features required...
In recent years, advanced neurocomputing and machine learning techniques have been used for Electroencephalogram (EEG)-based diagnosis of various neurological...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103
SubjectTerms Algorithms
Automatic Data Processing
Computer Simulation
Convolutional neural network
Deep learning
Depression
Depression - diagnostic imaging
Diagnosis, Computer-Assisted - methods
EEG
Electroencephalogram
Electroencephalography
Humans
Machine Learning
Neural Networks (Computer)
Reproducibility of Results
Signal Processing, Computer-Assisted
Title Automated EEG-based screening of depression using deep convolutional neural network
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260718301494
https://dx.doi.org/10.1016/j.cmpb.2018.04.012
https://www.ncbi.nlm.nih.gov/pubmed/29852953
https://www.proquest.com/docview/2049549304
Volume 161
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50BfEivl1fVPAmdTevmhwXWV0VvajgLTRpIop2F929-tvNtGnBgwqeSkOmDZPJPJhvJgBHwWmzypsstSIrUu4InrmCpoYqQ5gtMiWwOPnmNhs98KtH8TgHZ00tDMIqo-6vdXqlreNIL3KzN3l-7t1hHxGK7dEkhgWKz8MCZSoTHVgYXF6PbluFjF226hbfKkWCWDtTw7zs28QgwktWHU8J_ck-_eR_VnbofAWWowOZDOo1rsKcK9dg8SamyNfhbjCbjoMb6opkOLxI0UoVSdANIV4NVioZ-6QFv5YJot6fwoCbJAg_j2IYPo9tLqtHBRLfgIfz4f3ZKI03J6SWn7Jp6jKaG8_6ufQhIDHEOkYLwyhx3hlvhcqN48ZmPJfMBoeBeild39mcCY_JF7YJnXJcum1IJPOZIUXBjBWY-w1Rp5FYgE6FU0SaLpCGX9rGtuJ4u8WrbvBjLxp5rJHHus914HEXjluaSd1U49fZrNkG3ZSLBgWng87_lUq0VN8E6k-6w2andThpmD7JSzeefYRJHHOirM-7sFWLQLt6qiRmTNnOP_-6C0v4VuOA96AzfZ-5_eDtTM0BzJ98koMo019kof2S
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGkIAL4s14FokbKlvz6NLjhAYDNi6AxC1q0gQNQTfBduW3E7fpEAeGxKlSGreRk9iO_PkLwKkL2nRiVRxqHmchMxHuuYyEiiQqojqLE47FyYO7uPfIbp74Uw0uqloYhFV621_a9MJa-5am12ZzPBw275FHhCA9msBjQcIWYJFx2kYC_fPPb5wHcmyVBN9JiN195UwJ8tJvY4X4LlHwnUbkN-_0W_RZeKHLNVj14WPQKUe4DjWTb8DSwCfIN-G-M52MXBBqsqDbvQrRR2WBswzutOp8VDCywQz6mgeIeX92DWYcIPjcL0L3eSS5LB4FRHwLHi-7Dxe90N-bEGrWppPQxCRVlrZSYd1xREXaUJIpSiJjjbKaJ6kyTOmYpYJqFy4QK4RpGZ1SbjH1Qrehno9yswuBoDZWUZZRpTlmft2ZUwksPyfcJJFQDYgqfUntScXxbotXWaHHXiTqWKKOZYtJp-MGnM1kxiWlxtzetJoGWRWLOvMmncWfK8VnUj-W059yJ9VMS7fPMHmS5mY0_XCdGGZEaYs1YKdcArPRk0RgvpTu_fOvx7Dcexj0Zf_67nYfVvBNiQg-gPrkfWoOXdwzUUfFuv4Chef-XA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+EEG-based+screening+of+depression+using+deep+convolutional+neural+network&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Acharya%2C+U.+Rajendra&rft.au=Oh%2C+Shu+Lih&rft.au=Hagiwara%2C+Yuki&rft.au=Tan%2C+Jen+Hong&rft.date=2018-07-01&rft.pub=Elsevier+B.V&rft.issn=0169-2607&rft.eissn=1872-7565&rft.volume=161&rft.spage=103&rft.epage=113&rft_id=info:doi/10.1016%2Fj.cmpb.2018.04.012&rft.externalDocID=S0169260718301494
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon