Digital PCR for determination of cytochrome P450 2D6 and sulfotransferase 1A1 gene copy number variations

CYP2D6 and SULT1A1 occasionally show copy number variations (CNVs), with a larger number generally indicating greater enzymic activity. However, those variations are difficult to calculate using standard methods. With digital PCR, a recently introduced method for CNV analysis, DNA molecules are subj...

Full description

Saved in:
Bibliographic Details
Published inDrug Discoveries & Therapeutics Vol. 11; no. 6; pp. 336 - 341
Main Authors Tadano, Yousuke, Kubota, Takahiro, Motoi, Yutaro, Hashimoto, Hiroshi, Honma, Hiroyuki, Watanabe, Kazufumi
Format Journal Article
LanguageEnglish
Published Japan International Research and Cooperation Association for Bio & Socio-Sciences Advancement 2017
Subjects
Online AccessGet full text
ISSN1881-7831
1881-784X
DOI10.5582/ddt.2017.01057

Cover

Abstract CYP2D6 and SULT1A1 occasionally show copy number variations (CNVs), with a larger number generally indicating greater enzymic activity. However, those variations are difficult to calculate using standard methods. With digital PCR, a recently introduced method for CNV analysis, DNA molecules are subjected to limited dilution and separated into nano-scale droplets prior to a PCR assay. Absolute quantitation of copy number can then be performed with high accuracy and sensitivity by determining the number of droplets showing an amplified signal for the target gene. This is the first report of analyses of CYP2D6 and SULT1A1 CNVs using a digital PCR method with blood sample from Japanese subject. Primers and probes were synthesized for the target and reference genes, and copy number calculation was performed using a QX200 Droplet Digital PCR System. Our results showed that the copy numbers in CYP2D6*5 hetero, non-CNV, and CYP2D6xN subjects were 1, 2, and 3 to 4, respectively. In addition, in non-CNV and multiplication subjects, the number of copies for SULT1A1 was 2 and 3 to 6, respectively. We found that the present digital PCR method was useful as well as accurate. In the future, a combined genotyping, allele distinction, and copy number calculation technique will be helpful for analysis of enzymic activity.
AbstractList CYP2D6 and SULT1A1 occasionally show copy number variations (CNVs), with a larger number generally indicating greater enzymic activity. However, those variations are difficult to calculate using standard methods. With digital PCR, a recently introduced method for CNV analysis, DNA molecules are subjected to limited dilution and separated into nano-scale droplets prior to a PCR assay. Absolute quantitation of copy number can then be performed with high accuracy and sensitivity by determining the number of droplets showing an amplified signal for the target gene. This is the first report of analyses of CYP2D6 and SULT1A1 CNVs using a digital PCR method with blood sample from Japanese subject. Primers and probes were synthesized for the target and reference genes, and copy number calculation was performed using a QX200 Droplet Digital PCR System. Our results showed that the copy numbers in CYP2D6*5 hetero, non-CNV, and CYP2D6xN subjects were 1, 2, and 3 to 4, respectively. In addition, in non-CNV and multiplication subjects, the number of copies for SULT1A1 was 2 and 3 to 6, respectively. We found that the present digital PCR method was useful as well as accurate. In the future, a combined genotyping, allele distinction, and copy number calculation technique will be helpful for analysis of enzymic activity.
CYP2D6 and SULT1A1 occasionally show copy number variations (CNVs), with a larger number generally indicating greater enzymic activity. However, those variations are difficult to calculate using standard methods. With digital PCR, a recently introduced method for CNV analysis, DNA molecules are subjected to limited dilution and separated into nano-scale droplets prior to a PCR assay. Absolute quantitation of copy number can then be performed with high accuracy and sensitivity by determining the number of droplets showing an amplified signal for the target gene. This is the first report of analyses of CYP2D6 and SULT1A1 CNVs using a digital PCR method with blood sample from Japanese subject. Primers and probes were synthesized for the target and reference genes, and copy number calculation was performed using a QX200 Droplet Digital PCR System. Our results showed that the copy numbers in CYP2D6*5 hetero, non-CNV, and CYP2D6xN subjects were 1, 2, and 3 to 4, respectively. In addition, in non-CNV and multiplication subjects, the number of copies for SULT1A1 was 2 and 3 to 6, respectively. We found that the present digital PCR method was useful as well as accurate. In the future, a combined genotyping, allele distinction, and copy number calculation technique will be helpful for analysis of enzymic activity.CYP2D6 and SULT1A1 occasionally show copy number variations (CNVs), with a larger number generally indicating greater enzymic activity. However, those variations are difficult to calculate using standard methods. With digital PCR, a recently introduced method for CNV analysis, DNA molecules are subjected to limited dilution and separated into nano-scale droplets prior to a PCR assay. Absolute quantitation of copy number can then be performed with high accuracy and sensitivity by determining the number of droplets showing an amplified signal for the target gene. This is the first report of analyses of CYP2D6 and SULT1A1 CNVs using a digital PCR method with blood sample from Japanese subject. Primers and probes were synthesized for the target and reference genes, and copy number calculation was performed using a QX200 Droplet Digital PCR System. Our results showed that the copy numbers in CYP2D6*5 hetero, non-CNV, and CYP2D6xN subjects were 1, 2, and 3 to 4, respectively. In addition, in non-CNV and multiplication subjects, the number of copies for SULT1A1 was 2 and 3 to 6, respectively. We found that the present digital PCR method was useful as well as accurate. In the future, a combined genotyping, allele distinction, and copy number calculation technique will be helpful for analysis of enzymic activity.
Author Watanabe, Kazufumi
Honma, Hiroyuki
Hashimoto, Hiroshi
Tadano, Yousuke
Kubota, Takahiro
Motoi, Yutaro
Author_xml – sequence: 1
  fullname: Tadano, Yousuke
  organization: Niigata University of Pharmacy and Applied Life Sciences
– sequence: 1
  fullname: Kubota, Takahiro
  organization: Niigata University of Pharmacy and Applied Life Sciences
– sequence: 1
  fullname: Motoi, Yutaro
  organization: Niigata University of Pharmacy and Applied Life Sciences
– sequence: 1
  fullname: Hashimoto, Hiroshi
  organization: Hokkaido System Science Co., Ltd
– sequence: 1
  fullname: Honma, Hiroyuki
  organization: Niigata University of Pharmacy and Applied Life Sciences
– sequence: 1
  fullname: Watanabe, Kazufumi
  organization: Hokkaido System Science Co., Ltd
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29332892$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1r3DAQhkVJaT6aa49Fx152K1kflo9ht20KgYSSQG9ClsYbBVvaSnJg_33t3WQLheggDeh5Bmbec3QSYgCEPlGyFEJVX50ry4rQekkoEfU7dEaVoota8d8nx5rRU3SZ8xOZjuCKKvEBnVYNY5VqqjPk137ji-nx3eoX7mLCDgqkwQdTfAw4dtjuSrSPKQ6A77gguFpLbILDeey7WJIJuYNkMmB6RfEGAmAbtzscxqGFhJ9N8vtW-SN635k-w-XLe4Eevn-7X10vbm5__Fxd3Swsr1lZOCZUy6TjhojKgORSEFtT62rJKbO8sdC1jjbKOSaZbZVhtmtqS-VsGcUu0JdD322Kf0bIRQ8-W-h7EyCOWU9qI1QjGzqhn1_QsR3A6W3yg0k7_bqeCeAHwKaYc4JO22lZ8zjT4L7XlOg5CD0Foecg9D6ISVv-p712flNYH4SnXMwGjrhJxdse9jilWs7XP-34bR9N0hDYX5nqoZc
CitedBy_id crossref_primary_10_3390_ijms252413493
crossref_primary_10_1016_j_jmoldx_2019_06_007
crossref_primary_10_1111_jgh_14406
crossref_primary_10_1038_s41398_024_02809_y
Cites_doi 10.1016/S0140-6736(00)03167-6
10.1016/j.ejps.2006.02.008
10.1097/00008571-199508000-00005
10.1124/dmd.30.8.869
10.1016/S0140-6736(77)91430-1
10.1007/BF00541938
10.1016/S0026-895X(25)09721-4
10.1093/hmg/4.12.2251
10.1038/clpt.1986.40
10.1093/carcin/23.11.1897
10.1002/cncr.24111
10.1124/jpet.104.065607
10.7314/APJCP.2012.13.12.6101
10.1073/pnas.90.24.11825
10.1038/clpt.1989.126
10.1124/dmd.108.023242
10.1097/00008571-199804000-00010
10.1097/00008571-199608000-00008
10.1016/S0009-9236(98)90040-6
10.1002/jbt.10048
10.1111/j.1365-2125.1991.tb03939.x
10.1002/cpt1979265584
10.1016/S0006-2952(02)00994-2
10.1093/nar/gkn518
10.1007/BF00316090
10.1038/clpt.1985.194
10.1016/S0027-5107(02)00122-7
10.1007/BF00195139
10.1097/00008571-200211000-00011
10.1006/bbrc.1997.7466
10.1093/annonc/mdn155
10.1093/hmg/ddl468
10.1371/journal.pone.0076648
10.1186/bcr1640
10.1016/S0022-3565(25)10669-1
10.1111/j.1365-2125.1987.tb03080.x
10.1097/00004850-198604000-00002
10.1016/j.cccn.2004.03.002
10.1056/NEJM198212163072505
10.1046/j.1365-2125.2003.01782.x
ContentType Journal Article
Copyright 2017 International Research and Cooperation Association for Bio & Socio-Sciences Advancement
Copyright_xml – notice: 2017 International Research and Cooperation Association for Bio & Socio-Sciences Advancement
DBID AAYXX
CITATION
NPM
7X8
DOI 10.5582/ddt.2017.01057
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1881-784X
EndPage 341
ExternalDocumentID 29332892
10_5582_ddt_2017_01057
article_ddt_11_6_11_2017_01057_article_char_en
Genre Journal Article
GroupedDBID ---
53G
7.U
ABDBF
ACUHS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
DIK
EBD
EMOBN
ESX
F5P
JSF
JSH
KQ8
MK0
OK1
P2P
RJT
RZJ
SV3
TUS
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c473t-d358b36d4a052ae64650c71cd76413c49cefbd198dd363cb8a3cf97c16b36da83
ISSN 1881-7831
IngestDate Fri Jul 11 07:04:00 EDT 2025
Thu Apr 03 07:09:20 EDT 2025
Thu Apr 24 22:53:43 EDT 2025
Thu Jul 03 08:17:28 EDT 2025
Wed Sep 03 06:29:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords copy number variation
digital PCR
sulfotransferase 1A1
Cytochrome P450 2D6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c473t-d358b36d4a052ae64650c71cd76413c49cefbd198dd363cb8a3cf97c16b36da83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/ddt/11/6/11_2017.01057/_article/-char/en
PMID 29332892
PQID 1989589691
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1989589691
pubmed_primary_29332892
crossref_citationtrail_10_5582_ddt_2017_01057
crossref_primary_10_5582_ddt_2017_01057
jstage_primary_article_ddt_11_6_11_2017_01057_article_char_en
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Drug Discoveries & Therapeutics
PublicationTitleAlternate DD&T
PublicationYear 2017
Publisher International Research and Cooperation Association for Bio & Socio-Sciences Advancement
Publisher_xml – name: International Research and Cooperation Association for Bio & Socio-Sciences Advancement
References 3. Woosley RL, Roden DM, Dai GH, Wang T, Altenbern D, Oates J, Wilkinson GR. Co-inheritance of the polymorphic metabolism of encainide and debrisoquin. Clin Pharmacol Ther. 1986; 39:282-287.
34. Ohtake E, Kakihara F, Matsumoto N, Ozawa S, Ohno Y, Hasegawa S, Suzuki H, Kubota T. Frequency distribution of phenol sulfotransferase 1A1 activity in platelet cells from healthy Japanese subjects. Eur J Pharm Sci. 2006; 28:272-277.
12. Meyer UA. Pharmacogenetics and adverse drug reactions. Lancet. 2000; 356:1667-1671.
25. Ishiguro A, Kubota T, Sasaki H, Yamada Y, Iga T. Common mutant alleles of CYP2D6 causing the defect of CYP2D6 enzyme activity in a Japanese population. Br J Clin Pharmacol. 2003; 55:414-415.
28. Mitsunaga Y, Kubota T, Ishiguro A, Yamada Y, Sasaki H, Chiba K, Iga T. Frequent occurrence of CYP2D6*10 duplication allele in a Japanese population. Mutat Res. 2002; 505:83-85.
36. Hebbring SJ, Adjei AA, Baer JL, Jenkins GD, Zhang J, Cunningham JM, Schaid DJ, Weinshilboum RM, Thibodeau SN. Human SULT1A1 gene: Copy number differences and functional implications. Hum Mol Genet. 2007; 16:463-470.
16. Sakuyama K, Sasaki T, Ujiie S, Obata K, Mizugaki M, Ishikawa M, Hiratsuka M. Functional characterization of 17 CYP2D6 allelic variants (CYP2D6.2, 10, 14A-B, 18, 27, 36, 39, 47-51, 53-55, and 57). Drug Metab Dispos. 2008; 36:2460-2467.
31. Dalén P, Dahl ML, Bernal RML, Nordin J, Bertilsson L. 10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther. 1998; 63:444-452.
41. Xu Y, Sun Y, Yao L, Shi L, Wu Y, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, He L, Li P, Xie Y. Association between CYP2D6*10 genotype and survival of breast cancer patients receiving tamoxifen treatment. Ann Oncol Off J Eur Soc Med Oncol. 2008; 19:1423-1429.
2. Baumann P, Jonzier-Perey M, Koeb L, Küpfer A, Tinguely D, Schöpf J. Amitriptyline pharmacokinetics and clinical response: II. Metabolic polymorphism assessed by hydroxylation of debrisoquine and mephenytoin. Int Clin Psychopharmacol. 1986; 1:102-112.
18. Alván G, Bechtel P, Iselius L, Gundert-Remy U. Hydroxylation polymorphisms of debrisoquine and mephenytoin in European populations. Eur J Clin Pharmacol. 1990; 39:533-537.
27. Sachse C, Brockmöller J, Hildebrand M, Müller K, Roots I. Correctness of prediction of the CYP2D6 phenotype confirmed by genotyping 47 intermediate and poor metabolizers of debrisoquine. Pharmacogenetics. 1998; 8:181-185.
38. Qin J, Jones RC, Ramakrishnan R. Studying copy number variations using a nanofluidic platform. Nucleic Acids Res. 2008; 36:e116.
1. Lennard MS, Silas JH, Freestone S, Ramsay LE, Tucker GT, Woods HF. Oxidation phenotype − A major determinant of metoprolol metabolism and response. N Engl J Med. 1982; 307:1558-1560.
24. Sohn DR, Shin SG, Park CW, Kusaka M, Chiba K, Ishizaki T. Metoprolol oxidation polymorphism in a Korean population: Comparison with native Japanese and Chinese populations. Br J Clin Pharmacol. 1991; 32:504-507.
14. Hanioka N, Kimura S, Meyer UA, Gonzalez FJ. The human CYP2D locus associated with a common genetic defect in drug oxidation: a G1934→A base change in intron 3 of a mutant CYP2D6 allele results in an aberrant 3' splice recognition site. Am J Hum Genet. 1990; 47:994-1001.
39. Johansson I, Lundqvist E, Dahl ML, Ingelman-Sundberg M. PCR-based genotyping for duplicated and deleted CYP2D6 genes. Pharmacogenetics. 1996; 6:351-355.
6. Desta Z, Ward BA, Soukhova NV, Flockhart DA. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: Prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther. 2004; 310:1062-1075.
30. Chida M, Ariyoshi N, Yokoi T, Nemoto N, Inaba M, Kinoshita M, Kamataki T. New allelic arrangement CYP2D6*36x2 found in a Japanese poor metabolizer of debrisoquine. Pharmacogenetics. 2002; 12:659-662.
42. Gjerde J, Hauglid M, Breilid H, Lundgren S, Varhaug JE, Kisanga ER, Mellgren G, Steen VM, Lien EA. Effects of CYP2D6 and SULT1A1 genotypes including SULT1A1 gene copy number on tamoxifen metabolism. Ann Oncol Off J Eur Soc. Med Oncol. 2008; 19:56-61.
29. Ishiguro A, Kubota T, Ishikawa H, Iga T. Metabolic activity of dextromethorphan O-demethylation in healthy Japanese volunteers carrying duplicated CYP2D6 genes: Duplicated allele of CYP2D6*10 does not increase CYP2D6 metabolic activity. Clin Chim Acta. 2004; 344:201-204.
7. Daly AK. Molecular basis of polymorphic drug metabolism. J Mol Med. 1995; 73:539-553.
10. Johansson I, Oscarson M, Yue QY, Bertilsson L, Sjöqvist F, Ingelman-Sundberg M. Genetic analysis of the Chinese cytochrome P4502D locus: Characterization of variant CYP2D6 genes present in subjects with diminished capacity for debrisoquine hydroxylation. Mol Pharmacol. 1994; 46:452-459.
17. Ishiguro A, Kubota T, Soya Y, Sasaki H, Yagyu O, Takarada Y, Iga T. High-throughput detection of multiple genetic polymorphisms influencing drug metabolism with mismatch primers in allele-specific polymerase chain reaction. Anal. Biochem. 2005; 337:256-261.
20. Woolhouse NM, Andoh B, Mahgoub A, Sloan TP, Idle JR, Smith RL. Debrisoquin hydroxylation polymorphism among Ghanaians and Caucasians. Clin Pharmacol Ther. 1979; 26:584-591.
8. Mahgoub A, Idle JR, Dring LG, Lancaster R, Smith RL. Polymorphic hydroxylation of Debrisoquine in man. Lancet. 1977; 2:584-586.
46. Motamedi S, Majidzadeh K, Mazaheri M, Anbiaie R, Mortazavizadeh SM, Esmaeili R. Tamoxifen resistance and CYP2D6 copy numbers in breast cancer patients. Asian Pac J Cancer Prev. 2012; 13:6101-6104.
4. Crewe HK, Notley LM, Wunsch RM, Lennard MS, Gillam EMJ. Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: Formation of the 4-hydroxy, 4'-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab Dispos. 2002; 30:869-874.
21. Nakamura K, Goto F, Ray WA, McAllister CB, Jacqz E, Wilkinson GR, Branch RA. Interethnic differences in genetic polymorphism of debrisoquin and mephenytoin hydroxylation between Japanese and Caucasian populations. Clin Pharmacol Ther. 1985; 38:402-408.
23. Horai Y, Nakano M, Ishizaki T, Ishikawa K, Zhou HH, Zhou BI, Liao CL, Zhang LM. Metoprolol and mephenytoin oxidation polymorphisms in Far Eastern Oriental subjects: Japanese versus mainland Chinese. Clin Pharmacol Ther. 1989; 46:198-207.
5. Boocock DJ, Brown K, Gibbs AH, Sanchez E, Turteltaub KW, White IN. Identification of human CYP forms involved in the activation of tamoxifen and irreversible binding to DNA. Carcinogenesis. 2002; 23:1897-1901.
45. Lum DWK, Perel P, Hingorani AD, Holmes MV. CYP2D6 genotype and tamoxifen response for breast cancer: A systematic review and meta-analysis. PLoS One. 2013; 8:e76648.
32. Nishiyama T, Ogura K, Nakano H, Ohnuma T, Kaku T, Hiratsuka A, Muro K, Watabe T. Reverse geometrical selectivity in glucuronidation and sulfation of cis- and trans-4-hydroxytamoxifens by human liver UDPglucuronosyltransferases and sulfotransferases. Biochem Pharmacol. 2002; 63:1817-1830.
43. Wegman P, Elingarami S, Carstensen J, Stal O, Nordenskjold B, Wingren S. Genetic variants of CYP3A5, CYP2D6, SULT1A1, UGT2B15 and tamoxifen response in postmenopausal patients with breast cancer. Breast Cancer Res. 2007; 9:R7.
13. The Human Cytochrome P450 (CYP) Allele Nomenclature Database. https://www.cypalleles.ki.se/cyp2d6.htm (accessed October 25, 2017).
15. Steen VM, Molven A, Aarskog NK, Gulbrandsen AK. Homologous unequal cross-over involving a 2.8 kb direct repeat as a mechanism for the generation of allelic variants of human cytochrome P450 CYP2D6 gene. Hum Mol Genet. 1995; 4:2251-2257.
26. Dahl ML, Johansson I, Bertilsson L, Ingelman-Sundberg M, Sjöqvist F. Ultrarapid hydroxylation of debrisoquine in a Swedish population. Analysis of the molecular genetic basis. J Pharmacol Exp Ther. 1995; 274:516-520.
44. Okishiro M, Taguchi T, Jin KS, Shimazu K, Tamaki Y, Noguchi S. Genetic polymorphisms of CYP2D6*10 and CYP2C19*2, *3 are not associated with prognosis, endometrial thickness, or bone mineral density in Japanese breast cancer patients treated with adjuvant tamoxifen. Cancer. 2009; 115:952-961.
37. Yu X, Kubota T, Dhakal I, Hasegawa S, Williams S, Ozawa S, Kadlubar S. Copy number variation in sulfotransferase isoform 1A1 (SULT1A1) is significantly associated with enzymatic activity in Japanese subjects. Pharmgenomics Pers Med. 2013; 6:19-24.
19. Lou YC, Ying L, Bertilsson L, Sjöqvist F. Low frequency of slow debrisoquine hydroxylation in a native Chinese population. Lancet. 1987; 2:852-853.
9. Küpfer A, Preisig R. Pharmacogenetics of mephenytoin: A new drug hydroxylation polymorphism in man. Eur J Clin Pharmacol. 1984; 26:753-759.
11. Johansson I, Lundqvist E, Bertilsson L, Dahl ML, Sjöqvist F, Ingelman-Sundberg M. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci U S A. 1993; 90:11825-11829.
22. Ishizaki T, Eichelbaum M, Horai Y, Hashimoto K, Chiba K, Dengler HJ. Evidence for polymorphic oxidation of sparteine in Japanese subjects. Br J Clin Pharmacol. 1987; 23:482-485.
33. Chen G, Yin S, Maiti S, Shao X. 4-Hydroxytamoxifen sulfation metabolism. J Biochem Mol Toxicol. 2002; 16:279-285.
40. Steen VM, Andreassen OA, Daly AK, Tefre T, Børresen AL, Idle JR, Gulbrandsen AK. Detection of the poor metabolizer-associated CYP2D6(D) gene deletion allele by long-PCR technology. Pharmacogenetics. 1995; 5:215-223.
35. Raftogianis RB, Wood TC, Otterness DM, Van Loon JA, Weinshilboum RM. Phenol sulfotransferase pharmacogenetics in humans: Association of common SULT1A1 alleles with TS PST phenotype. Biochem Biophys Res Commun. 1997; 239:298-304.
22
44
23
45
24
46
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
References_xml – reference: 32. Nishiyama T, Ogura K, Nakano H, Ohnuma T, Kaku T, Hiratsuka A, Muro K, Watabe T. Reverse geometrical selectivity in glucuronidation and sulfation of cis- and trans-4-hydroxytamoxifens by human liver UDPglucuronosyltransferases and sulfotransferases. Biochem Pharmacol. 2002; 63:1817-1830.
– reference: 42. Gjerde J, Hauglid M, Breilid H, Lundgren S, Varhaug JE, Kisanga ER, Mellgren G, Steen VM, Lien EA. Effects of CYP2D6 and SULT1A1 genotypes including SULT1A1 gene copy number on tamoxifen metabolism. Ann Oncol Off J Eur Soc. Med Oncol. 2008; 19:56-61.
– reference: 40. Steen VM, Andreassen OA, Daly AK, Tefre T, Børresen AL, Idle JR, Gulbrandsen AK. Detection of the poor metabolizer-associated CYP2D6(D) gene deletion allele by long-PCR technology. Pharmacogenetics. 1995; 5:215-223.
– reference: 7. Daly AK. Molecular basis of polymorphic drug metabolism. J Mol Med. 1995; 73:539-553.
– reference: 18. Alván G, Bechtel P, Iselius L, Gundert-Remy U. Hydroxylation polymorphisms of debrisoquine and mephenytoin in European populations. Eur J Clin Pharmacol. 1990; 39:533-537.
– reference: 34. Ohtake E, Kakihara F, Matsumoto N, Ozawa S, Ohno Y, Hasegawa S, Suzuki H, Kubota T. Frequency distribution of phenol sulfotransferase 1A1 activity in platelet cells from healthy Japanese subjects. Eur J Pharm Sci. 2006; 28:272-277.
– reference: 27. Sachse C, Brockmöller J, Hildebrand M, Müller K, Roots I. Correctness of prediction of the CYP2D6 phenotype confirmed by genotyping 47 intermediate and poor metabolizers of debrisoquine. Pharmacogenetics. 1998; 8:181-185.
– reference: 19. Lou YC, Ying L, Bertilsson L, Sjöqvist F. Low frequency of slow debrisoquine hydroxylation in a native Chinese population. Lancet. 1987; 2:852-853.
– reference: 45. Lum DWK, Perel P, Hingorani AD, Holmes MV. CYP2D6 genotype and tamoxifen response for breast cancer: A systematic review and meta-analysis. PLoS One. 2013; 8:e76648.
– reference: 4. Crewe HK, Notley LM, Wunsch RM, Lennard MS, Gillam EMJ. Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: Formation of the 4-hydroxy, 4'-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab Dispos. 2002; 30:869-874.
– reference: 17. Ishiguro A, Kubota T, Soya Y, Sasaki H, Yagyu O, Takarada Y, Iga T. High-throughput detection of multiple genetic polymorphisms influencing drug metabolism with mismatch primers in allele-specific polymerase chain reaction. Anal. Biochem. 2005; 337:256-261.
– reference: 39. Johansson I, Lundqvist E, Dahl ML, Ingelman-Sundberg M. PCR-based genotyping for duplicated and deleted CYP2D6 genes. Pharmacogenetics. 1996; 6:351-355.
– reference: 13. The Human Cytochrome P450 (CYP) Allele Nomenclature Database. https://www.cypalleles.ki.se/cyp2d6.htm (accessed October 25, 2017).
– reference: 44. Okishiro M, Taguchi T, Jin KS, Shimazu K, Tamaki Y, Noguchi S. Genetic polymorphisms of CYP2D6*10 and CYP2C19*2, *3 are not associated with prognosis, endometrial thickness, or bone mineral density in Japanese breast cancer patients treated with adjuvant tamoxifen. Cancer. 2009; 115:952-961.
– reference: 35. Raftogianis RB, Wood TC, Otterness DM, Van Loon JA, Weinshilboum RM. Phenol sulfotransferase pharmacogenetics in humans: Association of common SULT1A1 alleles with TS PST phenotype. Biochem Biophys Res Commun. 1997; 239:298-304.
– reference: 2. Baumann P, Jonzier-Perey M, Koeb L, Küpfer A, Tinguely D, Schöpf J. Amitriptyline pharmacokinetics and clinical response: II. Metabolic polymorphism assessed by hydroxylation of debrisoquine and mephenytoin. Int Clin Psychopharmacol. 1986; 1:102-112.
– reference: 46. Motamedi S, Majidzadeh K, Mazaheri M, Anbiaie R, Mortazavizadeh SM, Esmaeili R. Tamoxifen resistance and CYP2D6 copy numbers in breast cancer patients. Asian Pac J Cancer Prev. 2012; 13:6101-6104.
– reference: 36. Hebbring SJ, Adjei AA, Baer JL, Jenkins GD, Zhang J, Cunningham JM, Schaid DJ, Weinshilboum RM, Thibodeau SN. Human SULT1A1 gene: Copy number differences and functional implications. Hum Mol Genet. 2007; 16:463-470.
– reference: 14. Hanioka N, Kimura S, Meyer UA, Gonzalez FJ. The human CYP2D locus associated with a common genetic defect in drug oxidation: a G1934→A base change in intron 3 of a mutant CYP2D6 allele results in an aberrant 3' splice recognition site. Am J Hum Genet. 1990; 47:994-1001.
– reference: 3. Woosley RL, Roden DM, Dai GH, Wang T, Altenbern D, Oates J, Wilkinson GR. Co-inheritance of the polymorphic metabolism of encainide and debrisoquin. Clin Pharmacol Ther. 1986; 39:282-287.
– reference: 31. Dalén P, Dahl ML, Bernal RML, Nordin J, Bertilsson L. 10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther. 1998; 63:444-452.
– reference: 26. Dahl ML, Johansson I, Bertilsson L, Ingelman-Sundberg M, Sjöqvist F. Ultrarapid hydroxylation of debrisoquine in a Swedish population. Analysis of the molecular genetic basis. J Pharmacol Exp Ther. 1995; 274:516-520.
– reference: 10. Johansson I, Oscarson M, Yue QY, Bertilsson L, Sjöqvist F, Ingelman-Sundberg M. Genetic analysis of the Chinese cytochrome P4502D locus: Characterization of variant CYP2D6 genes present in subjects with diminished capacity for debrisoquine hydroxylation. Mol Pharmacol. 1994; 46:452-459.
– reference: 12. Meyer UA. Pharmacogenetics and adverse drug reactions. Lancet. 2000; 356:1667-1671.
– reference: 1. Lennard MS, Silas JH, Freestone S, Ramsay LE, Tucker GT, Woods HF. Oxidation phenotype − A major determinant of metoprolol metabolism and response. N Engl J Med. 1982; 307:1558-1560.
– reference: 21. Nakamura K, Goto F, Ray WA, McAllister CB, Jacqz E, Wilkinson GR, Branch RA. Interethnic differences in genetic polymorphism of debrisoquin and mephenytoin hydroxylation between Japanese and Caucasian populations. Clin Pharmacol Ther. 1985; 38:402-408.
– reference: 41. Xu Y, Sun Y, Yao L, Shi L, Wu Y, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, He L, Li P, Xie Y. Association between CYP2D6*10 genotype and survival of breast cancer patients receiving tamoxifen treatment. Ann Oncol Off J Eur Soc Med Oncol. 2008; 19:1423-1429.
– reference: 8. Mahgoub A, Idle JR, Dring LG, Lancaster R, Smith RL. Polymorphic hydroxylation of Debrisoquine in man. Lancet. 1977; 2:584-586.
– reference: 11. Johansson I, Lundqvist E, Bertilsson L, Dahl ML, Sjöqvist F, Ingelman-Sundberg M. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci U S A. 1993; 90:11825-11829.
– reference: 16. Sakuyama K, Sasaki T, Ujiie S, Obata K, Mizugaki M, Ishikawa M, Hiratsuka M. Functional characterization of 17 CYP2D6 allelic variants (CYP2D6.2, 10, 14A-B, 18, 27, 36, 39, 47-51, 53-55, and 57). Drug Metab Dispos. 2008; 36:2460-2467.
– reference: 29. Ishiguro A, Kubota T, Ishikawa H, Iga T. Metabolic activity of dextromethorphan O-demethylation in healthy Japanese volunteers carrying duplicated CYP2D6 genes: Duplicated allele of CYP2D6*10 does not increase CYP2D6 metabolic activity. Clin Chim Acta. 2004; 344:201-204.
– reference: 38. Qin J, Jones RC, Ramakrishnan R. Studying copy number variations using a nanofluidic platform. Nucleic Acids Res. 2008; 36:e116.
– reference: 24. Sohn DR, Shin SG, Park CW, Kusaka M, Chiba K, Ishizaki T. Metoprolol oxidation polymorphism in a Korean population: Comparison with native Japanese and Chinese populations. Br J Clin Pharmacol. 1991; 32:504-507.
– reference: 9. Küpfer A, Preisig R. Pharmacogenetics of mephenytoin: A new drug hydroxylation polymorphism in man. Eur J Clin Pharmacol. 1984; 26:753-759.
– reference: 25. Ishiguro A, Kubota T, Sasaki H, Yamada Y, Iga T. Common mutant alleles of CYP2D6 causing the defect of CYP2D6 enzyme activity in a Japanese population. Br J Clin Pharmacol. 2003; 55:414-415.
– reference: 22. Ishizaki T, Eichelbaum M, Horai Y, Hashimoto K, Chiba K, Dengler HJ. Evidence for polymorphic oxidation of sparteine in Japanese subjects. Br J Clin Pharmacol. 1987; 23:482-485.
– reference: 23. Horai Y, Nakano M, Ishizaki T, Ishikawa K, Zhou HH, Zhou BI, Liao CL, Zhang LM. Metoprolol and mephenytoin oxidation polymorphisms in Far Eastern Oriental subjects: Japanese versus mainland Chinese. Clin Pharmacol Ther. 1989; 46:198-207.
– reference: 30. Chida M, Ariyoshi N, Yokoi T, Nemoto N, Inaba M, Kinoshita M, Kamataki T. New allelic arrangement CYP2D6*36x2 found in a Japanese poor metabolizer of debrisoquine. Pharmacogenetics. 2002; 12:659-662.
– reference: 15. Steen VM, Molven A, Aarskog NK, Gulbrandsen AK. Homologous unequal cross-over involving a 2.8 kb direct repeat as a mechanism for the generation of allelic variants of human cytochrome P450 CYP2D6 gene. Hum Mol Genet. 1995; 4:2251-2257.
– reference: 6. Desta Z, Ward BA, Soukhova NV, Flockhart DA. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: Prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther. 2004; 310:1062-1075.
– reference: 37. Yu X, Kubota T, Dhakal I, Hasegawa S, Williams S, Ozawa S, Kadlubar S. Copy number variation in sulfotransferase isoform 1A1 (SULT1A1) is significantly associated with enzymatic activity in Japanese subjects. Pharmgenomics Pers Med. 2013; 6:19-24.
– reference: 33. Chen G, Yin S, Maiti S, Shao X. 4-Hydroxytamoxifen sulfation metabolism. J Biochem Mol Toxicol. 2002; 16:279-285.
– reference: 20. Woolhouse NM, Andoh B, Mahgoub A, Sloan TP, Idle JR, Smith RL. Debrisoquin hydroxylation polymorphism among Ghanaians and Caucasians. Clin Pharmacol Ther. 1979; 26:584-591.
– reference: 28. Mitsunaga Y, Kubota T, Ishiguro A, Yamada Y, Sasaki H, Chiba K, Iga T. Frequent occurrence of CYP2D6*10 duplication allele in a Japanese population. Mutat Res. 2002; 505:83-85.
– reference: 43. Wegman P, Elingarami S, Carstensen J, Stal O, Nordenskjold B, Wingren S. Genetic variants of CYP3A5, CYP2D6, SULT1A1, UGT2B15 and tamoxifen response in postmenopausal patients with breast cancer. Breast Cancer Res. 2007; 9:R7.
– reference: 5. Boocock DJ, Brown K, Gibbs AH, Sanchez E, Turteltaub KW, White IN. Identification of human CYP forms involved in the activation of tamoxifen and irreversible binding to DNA. Carcinogenesis. 2002; 23:1897-1901.
– ident: 12
  doi: 10.1016/S0140-6736(00)03167-6
– ident: 34
  doi: 10.1016/j.ejps.2006.02.008
– ident: 40
  doi: 10.1097/00008571-199508000-00005
– ident: 4
  doi: 10.1124/dmd.30.8.869
– ident: 8
  doi: 10.1016/S0140-6736(77)91430-1
– ident: 9
  doi: 10.1007/BF00541938
– ident: 10
  doi: 10.1016/S0026-895X(25)09721-4
– ident: 15
  doi: 10.1093/hmg/4.12.2251
– ident: 3
  doi: 10.1038/clpt.1986.40
– ident: 5
  doi: 10.1093/carcin/23.11.1897
– ident: 44
  doi: 10.1002/cncr.24111
– ident: 6
  doi: 10.1124/jpet.104.065607
– ident: 37
– ident: 46
  doi: 10.7314/APJCP.2012.13.12.6101
– ident: 11
  doi: 10.1073/pnas.90.24.11825
– ident: 23
  doi: 10.1038/clpt.1989.126
– ident: 14
– ident: 16
  doi: 10.1124/dmd.108.023242
– ident: 27
  doi: 10.1097/00008571-199804000-00010
– ident: 39
  doi: 10.1097/00008571-199608000-00008
– ident: 31
  doi: 10.1016/S0009-9236(98)90040-6
– ident: 33
  doi: 10.1002/jbt.10048
– ident: 24
  doi: 10.1111/j.1365-2125.1991.tb03939.x
– ident: 17
– ident: 20
  doi: 10.1002/cpt1979265584
– ident: 42
– ident: 32
  doi: 10.1016/S0006-2952(02)00994-2
– ident: 38
  doi: 10.1093/nar/gkn518
– ident: 18
  doi: 10.1007/BF00316090
– ident: 21
  doi: 10.1038/clpt.1985.194
– ident: 28
  doi: 10.1016/S0027-5107(02)00122-7
– ident: 7
  doi: 10.1007/BF00195139
– ident: 19
– ident: 30
  doi: 10.1097/00008571-200211000-00011
– ident: 13
– ident: 35
  doi: 10.1006/bbrc.1997.7466
– ident: 41
  doi: 10.1093/annonc/mdn155
– ident: 36
  doi: 10.1093/hmg/ddl468
– ident: 45
  doi: 10.1371/journal.pone.0076648
– ident: 43
  doi: 10.1186/bcr1640
– ident: 26
  doi: 10.1016/S0022-3565(25)10669-1
– ident: 22
  doi: 10.1111/j.1365-2125.1987.tb03080.x
– ident: 2
  doi: 10.1097/00004850-198604000-00002
– ident: 29
  doi: 10.1016/j.cccn.2004.03.002
– ident: 1
  doi: 10.1056/NEJM198212163072505
– ident: 25
  doi: 10.1046/j.1365-2125.2003.01782.x
SSID ssj0000548185
Score 2.0491579
Snippet CYP2D6 and SULT1A1 occasionally show copy number variations (CNVs), with a larger number generally indicating greater enzymic activity. However, those...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 336
SubjectTerms copy number variation
Cytochrome P450 2D6
digital PCR
sulfotransferase 1A1
Title Digital PCR for determination of cytochrome P450 2D6 and sulfotransferase 1A1 gene copy number variations
URI https://www.jstage.jst.go.jp/article/ddt/11/6/11_2017.01057/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/29332892
https://www.proquest.com/docview/1989589691
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Drug Discoveries & Therapeutics, 2017/12/31, Vol.11(6), pp.336-341
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FlAMXxJvw0iKhcnDdZv1Y2wcOaUNVIRVFKJXKydqHHUKbOEptpPTXM-P1KxWRgIuVeCfeKN-X8Tfr2RlCPmhHCjFMA1sI6dtekEZ2KOEtE1KG6dCXUuKC_vlXfnbhfbn0L3u9oru7JJeH6vaP-0r-B1U4B7jiLtl_QLa5KJyA14AvHAFhOP4VxuP5DHt-WJOTb2W6oK5zW2oZqDZ5pn5gRQJr4vlDyxnz8mnBTXGdZnmpWZM13McsNmLYTBlT11cby7QJsX5BHN1Z0Ksk7HhdzPC5jsLkz3m5asutzjauRqSfZ3lW5gp8L3Kxztqle9CjQiYml-O2SIvFvCFXtlyUavZsvs42xVUzMBValE3CLXBPN8VV0l2tMNsyK9cahswOwsrn176XdTjWdaSuKYty18H7fogFY7XGNFgWHGJ_z6BrCACtFiXcoGNciCad9kbXpB_WQ_fInhNw7vTJ3uh4fHzaLM6BjkUhg8F6_a1NwU-c_2h7diwnXV1vS9vc_wnyfpbsjlxKBTN9RB5WoQcdGR49Jr1k-YTsT0zt8s0BnXYwPKD7dNJWNd88JfOKbBTIRoFsdItsNEtpSzaKZKNANgpko3fJRoFsFMlGkWzUkI22ZHtGLk4_T0_O7KpPh628wM1t7fqhdLn2xNB3RMI9UP0qYEoHHCSS8iKVpFKzKNTa5a6SoXBVGgWKcfyUCN3npL_MlslLQtNIK6xQKSGa8gIJVk6ihCcZ1nDiLB0Qu_6FY1UVscdeKtcxBLMITgzgxAhOXIIzIB8b-5Up37LT8pMBrLGr_talHUTJHA-tfTOMuyPBGQ3I-xrnGDw0PnYTywT-EjFmJfphxCM2IC8MAZo5aua82jnymjzASc2q3xvSz9dF8hZ0cC7fVaz9DZI6tEo
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+PCR+for+determination+of+cytochrome+P450+2D6+and+sulfotransferase+1A1+gene+copy+number+variations&rft.jtitle=Drug+discoveries+%26+therapeutics&rft.au=Motoi%2C+Yutaro&rft.au=Watanabe%2C+Kazufumi&rft.au=Honma%2C+Hiroyuki&rft.au=Tadano%2C+Yousuke&rft.date=2017&rft.issn=1881-7831&rft.volume=11&rft.issue=6&rft.spage=336&rft_id=info:doi/10.5582%2Fddt.2017.01057&rft_id=info%3Apmid%2F29332892&rft.externalDocID=29332892
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1881-7831&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1881-7831&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1881-7831&client=summon