High-throughput continuous dielectrophoretic separation of neural stem cells
We created an integrated microfluidic cell separation system that incorporates hydrophoresis and dielectrophoresis modules to facilitate high-throughput continuous cell separation. The hydrophoresis module consists of a serpentine channel with ridges and trenches to generate a diverging fluid flow t...
Saved in:
Published in | Biomicrofluidics Vol. 13; no. 6; pp. 064111 - 64125 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
01.11.2019
AIP Publishing LLC |
Subjects | |
Online Access | Get full text |
ISSN | 1932-1058 1932-1058 |
DOI | 10.1063/1.5128797 |
Cover
Abstract | We created an integrated microfluidic cell separation system that incorporates hydrophoresis and dielectrophoresis modules to facilitate high-throughput continuous cell separation. The hydrophoresis module consists of a serpentine channel with ridges and trenches to generate a diverging fluid flow that focuses cells into two streams along the channel edges. The dielectrophoresis module is composed of a chevron-shaped electrode array. Separation in the dielectrophoresis module is driven by inherent cell electrophysiological properties and does not require cell-type-specific labels. The chevron shape of the electrode array couples with fluid flow in the channel to enable continuous sorting of cells to increase throughput. We tested the new system with mouse neural stem cells since their electrophysiological properties reflect their differentiation capacity (e.g., whether they will differentiate into astrocytes or neurons). The goal of our experiments was to enrich astrocyte-biased cells. Sorting parameters were optimized for each batch of neural stem cells to ensure effective and consistent separations. The continuous sorting design of the device significantly improved sorting throughput and reproducibility. Sorting yielded two cell fractions, and we found that astrocyte-biased cells were enriched in one fraction and depleted from the other. This is an advantage of the new continuous sorting device over traditional dielectrophoresis-based sorting platforms that target a subset of cells for enrichment but do not provide a corresponding depleted population. The new microfluidic dielectrophoresis cell separation system improves label-free cell sorting by increasing throughput and delivering enriched and depleted cell subpopulations in a single sort. |
---|---|
AbstractList | We created an integrated microfluidic cell separation system that incorporates hydrophoresis and dielectrophoresis modules to facilitate high-throughput continuous cell separation. The hydrophoresis module consists of a serpentine channel with ridges and trenches to generate a diverging fluid flow that focuses cells into two streams along the channel edges. The dielectrophoresis module is composed of a chevron-shaped electrode array. Separation in the dielectrophoresis module is driven by inherent cell electrophysiological properties and does not require cell-type-specific labels. The chevron shape of the electrode array couples with fluid flow in the channel to enable continuous sorting of cells to increase throughput. We tested the new system with mouse neural stem cells since their electrophysiological properties reflect their differentiation capacity (e.g., whether they will differentiate into astrocytes or neurons). The goal of our experiments was to enrich astrocyte-biased cells. Sorting parameters were optimized for each batch of neural stem cells to ensure effective and consistent separations. The continuous sorting design of the device significantly improved sorting throughput and reproducibility. Sorting yielded two cell fractions, and we found that astrocyte-biased cells were enriched in one fraction and depleted from the other. This is an advantage of the new continuous sorting device over traditional dielectrophoresis-based sorting platforms that target a subset of cells for enrichment but do not provide a corresponding depleted population. The new microfluidic dielectrophoresis cell separation system improves label-free cell sorting by increasing throughput and delivering enriched and depleted cell subpopulations in a single sort.We created an integrated microfluidic cell separation system that incorporates hydrophoresis and dielectrophoresis modules to facilitate high-throughput continuous cell separation. The hydrophoresis module consists of a serpentine channel with ridges and trenches to generate a diverging fluid flow that focuses cells into two streams along the channel edges. The dielectrophoresis module is composed of a chevron-shaped electrode array. Separation in the dielectrophoresis module is driven by inherent cell electrophysiological properties and does not require cell-type-specific labels. The chevron shape of the electrode array couples with fluid flow in the channel to enable continuous sorting of cells to increase throughput. We tested the new system with mouse neural stem cells since their electrophysiological properties reflect their differentiation capacity (e.g., whether they will differentiate into astrocytes or neurons). The goal of our experiments was to enrich astrocyte-biased cells. Sorting parameters were optimized for each batch of neural stem cells to ensure effective and consistent separations. The continuous sorting design of the device significantly improved sorting throughput and reproducibility. Sorting yielded two cell fractions, and we found that astrocyte-biased cells were enriched in one fraction and depleted from the other. This is an advantage of the new continuous sorting device over traditional dielectrophoresis-based sorting platforms that target a subset of cells for enrichment but do not provide a corresponding depleted population. The new microfluidic dielectrophoresis cell separation system improves label-free cell sorting by increasing throughput and delivering enriched and depleted cell subpopulations in a single sort. We created an integrated microfluidic cell separation system that incorporates hydrophoresis and dielectrophoresis modules to facilitate high-throughput continuous cell separation. The hydrophoresis module consists of a serpentine channel with ridges and trenches to generate a diverging fluid flow that focuses cells into two streams along the channel edges. The dielectrophoresis module is composed of a chevron-shaped electrode array. Separation in the dielectrophoresis module is driven by inherent cell electrophysiological properties and does not require cell-type-specific labels. The chevron shape of the electrode array couples with fluid flow in the channel to enable continuous sorting of cells to increase throughput. We tested the new system with mouse neural stem cells since their electrophysiological properties reflect their differentiation capacity (e.g., whether they will differentiate into astrocytes or neurons). The goal of our experiments was to enrich astrocyte-biased cells. Sorting parameters were optimized for each batch of neural stem cells to ensure effective and consistent separations. The continuous sorting design of the device significantly improved sorting throughput and reproducibility. Sorting yielded two cell fractions, and we found that astrocyte-biased cells were enriched in one fraction and depleted from the other. This is an advantage of the new continuous sorting device over traditional dielectrophoresis-based sorting platforms that target a subset of cells for enrichment but do not provide a corresponding depleted population. The new microfluidic dielectrophoresis cell separation system improves label-free cell sorting by increasing throughput and delivering enriched and depleted cell subpopulations in a single sort. |
Author | Yale, Andrew R. Adams, Tayloria N. G. Aghaamoo, Mohammad Lee, Do-Hyun Flanagan, Lisa A. Lee, Abraham P. Jiang, Alan Y. L. |
Author_xml | – sequence: 1 givenname: Alan Y. L. surname: Jiang fullname: Jiang, Alan Y. L. organization: 5Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697-2580, USA – sequence: 2 givenname: Andrew R. surname: Yale fullname: Yale, Andrew R. organization: 5Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697-2580, USA – sequence: 3 givenname: Mohammad surname: Aghaamoo fullname: Aghaamoo, Mohammad organization: Department of Biomedical Engineering, University of California, Irvine – sequence: 4 givenname: Do-Hyun surname: Lee fullname: Lee, Do-Hyun organization: Department of Biomedical Engineering, University of California, Irvine – sequence: 5 givenname: Abraham P. surname: Lee fullname: Lee, Abraham P. organization: Department of Biomedical Engineering, University of California, Irvine – sequence: 6 givenname: Tayloria N. G. surname: Adams fullname: Adams, Tayloria N. G. organization: 5Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697-2580, USA – sequence: 7 givenname: Lisa A. surname: Flanagan fullname: Flanagan, Lisa A. organization: 5Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697-2580, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31737160$$D View this record in MEDLINE/PubMed |
BookMark | eNqdkU1r3DAQhkVJaD4P-QPBkEtbcKIPS7IvgRLaJrCQS3IWsjxeK3glR5ID_ffVdnebNPTUy2hAz7y878wR2nPeAUJnBF8SLNgVueSE1rKRH9AhaRgtCeb13pv-AB3F-IQxJ5LSj-iAEckkEfgQLW7tcijTEPy8HKY5Fca7ZN3s51h0FkYwKfhp8AGSNUWESQedrHeF7wsHc9BjEROsCgPjGE_Qfq_HCKfb9xg9fv_2cHNbLu5_3N18XZSmkiyVHW0xtJ1gDHpo2hp3XGrRAaNSGDCy6SUQTRsBxvBWS8MN17xqhRCyr5ueHaPrje40tyvoDLiUjagp2JUOP5XXVv394-yglv5FiZqzGtMs8GkrEPzzDDGplY3rCNpBTq4oI5xTkUtGL96hT34OLsdbUxUhVSVwps7fOvpjZbfoDFxtABN8jAF6ZWz6vcls0I6KYLU-pSJqe8o88fndxE70X-yXDRt3qv8Hv_jwCqqp69kvcIq7vw |
CODEN | BIOMGB |
CitedBy_id | crossref_primary_10_1021_acsbiomaterials_1c00083 crossref_primary_10_1002_elps_202100031 crossref_primary_10_1016_j_chroma_2024_465155 crossref_primary_10_1002_elps_202300027 crossref_primary_10_3390_mi11080734 crossref_primary_10_1021_acscombsci_0c00109 crossref_primary_10_1063_1_5141082 crossref_primary_10_1038_s41598_022_20886_1 crossref_primary_10_3390_s24217098 crossref_primary_10_1002_elps_202100135 crossref_primary_10_3390_mi15030345 crossref_primary_10_1002_elps_202300202 crossref_primary_10_1063_5_0025056 crossref_primary_10_3390_mi14101813 crossref_primary_10_1002_elps_202300091 crossref_primary_10_3390_mi16020236 crossref_primary_10_3390_bios14030119 crossref_primary_10_1021_acs_analchem_4c00485 crossref_primary_10_1038_s41378_024_00654_z crossref_primary_10_1038_s42003_021_02651_8 crossref_primary_10_1039_D4LC00622D crossref_primary_10_3390_s20185095 crossref_primary_10_1021_acssensors_1c00887 crossref_primary_10_3390_mi13010117 crossref_primary_10_1002_elps_8113 crossref_primary_10_1002_elps_202000233 crossref_primary_10_1002_elps_202100241 crossref_primary_10_1002_elps_202000213 crossref_primary_10_1002_elps_202400027 crossref_primary_10_1126_sciadv_adm8597 crossref_primary_10_3390_mi11040391 crossref_primary_10_1021_acssensors_0c02022 crossref_primary_10_1002_elps_202100326 crossref_primary_10_3390_mi11050513 crossref_primary_10_3390_mi11090832 crossref_primary_10_1007_s00604_021_04748_7 crossref_primary_10_1039_D1LC00724F crossref_primary_10_1039_D0RA06271E crossref_primary_10_1016_j_biotechadv_2023_108271 crossref_primary_10_1063_5_0131806 crossref_primary_10_1088_1361_6439_ac333e crossref_primary_10_1002_elps_202200203 crossref_primary_10_1021_acs_chemrev_2c00212 |
Cites_doi | 10.1039/C4LC01417K 10.1021/acs.analchem.6b04666 10.1002/1522-2683(200207)23:13<2057::AID-ELPS2057>3.0.CO;2-X 10.1016/j.neures.2017.09.011 10.1016/j.aca.2017.02.024 10.1063/1.2723669 10.1111/j.1749-6632.1974.tb26787.x 10.1039/c2ib20171b 10.1063/1.3517230 10.1039/b910587e 10.1063/1.5049149 10.1016/j.stemcr.2018.08.011 10.1016/S0006-3495(99)77483-7 10.1063/1.4902371 10.1063/1.4866045 10.1063/1.3608135 10.1371/journal.pone.0025458 10.1007/s40778-018-0124-x 10.1002/elps.200800166 10.1063/1.3456626 10.1016/j.ymeth.2017.08.016 10.1002/elps.201400397 10.1039/C4LC01253D 10.1039/b906137a 10.1073/pnas.0507719102 10.1634/stemcells.2007-0810 10.1002/elps.201200417 10.1002/stem.1535 10.1016/j.bbagen.2006.01.018 10.1039/C5IB00109A 10.1002/elps.201700488 10.1038/nn.2210 |
ContentType | Journal Article |
Copyright | Author(s) 2019 Author(s). 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 2019 Author(s). 2019 Author(s) |
Copyright_xml | – notice: Author(s) – notice: 2019 Author(s). – notice: 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). – notice: 2019 Author(s). 2019 Author(s) |
DBID | AJDQP AAYXX CITATION NPM 8FD H8D L7M 7X8 5PM |
DOI | 10.1063/1.5128797 |
DatabaseName | AIP Open Access Journals CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1932-1058 |
ExternalDocumentID | PMC6853802 31737160 10_1063_1_5128797 bmf |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Science Foundation grantid: DBI-1612261 funderid: https://doi.org/10.13039/100000001 – fundername: National Science Foundation grantid: IOS-1254060 funderid: https://doi.org/10.13039/100000001 – fundername: National Science Foundation grantid: IIP-1841509 funderid: https://doi.org/10.13039/100000001 – fundername: University of California President's and Chancellor's Postdoctoral Fellowship – fundername: National Institutes of Health grantid: NS082174 funderid: https://doi.org/10.13039/100000002 – fundername: California Institute for Regenerative Medicine grantid: RB5-07254 funderid: https://doi.org/10.13039/100000900 – fundername: Brython Davis Fellowship – fundername: NINDS NIH HHS grantid: T32 NS082174 – fundername: NCATS NIH HHS grantid: UL1 TR001414 – fundername: ; – fundername: ; ; grantid: NS082174 – fundername: ; ; grantid: IIP-1841509 – fundername: ; ; grantid: RB5-07254 – fundername: ; ; grantid: DBI-1612261 – fundername: ; ; grantid: IOS-1254060 |
GroupedDBID | 1UP 2-P 23N 2WC 4.4 53G 5GY 5VS 6J9 AAAAW AABDS AAEUA AAKDD AAPUP AAYIH ABFTF ABJNI ACBRY ACGFO ACGFS ACZLF ADBBV ADCTM AEGXH AEJMO AENEX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJDQP AJJCW ALEPV ALMA_UNASSIGNED_HOLDINGS AOIJS AQWKA ATXIE AWQPM BAWUL BPZLN C1A CS3 DU5 E3Z EBS EJD ESX F5P FDOHQ FFFMQ GX1 HYE M71 OK1 P2P RIP RNS RPM RQS TR2 AAGWI AAYXX ABJGX ADMLS CITATION OVT NPM 8FD H8D L7M 7X8 5PM |
ID | FETCH-LOGICAL-c473t-d2b0ebd633efe9b80d57a6de3276cec79f7e1a296ecc5ba7c5c5a54b6667f89f3 |
IEDL.DBID | AJDQP |
ISSN | 1932-1058 |
IngestDate | Thu Aug 21 18:29:46 EDT 2025 Thu Sep 04 17:20:37 EDT 2025 Mon Jun 30 04:21:23 EDT 2025 Wed Feb 19 02:31:05 EST 2025 Sun Jul 06 05:06:34 EDT 2025 Thu Apr 24 22:56:46 EDT 2025 Wed Nov 11 00:04:56 EST 2020 Fri Jun 21 00:19:30 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | 1932-1058/2019/13(6)/064111/15 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 2019 Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c473t-d2b0ebd633efe9b80d57a6de3276cec79f7e1a296ecc5ba7c5c5a54b6667f89f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4990-0611 0000-0001-8378-6616 0000-0002-1120-8902 0000-0002-1633-6460 0000-0003-1972-3930 |
OpenAccessLink | http://dx.doi.org/10.1063/1.5128797 |
PMID | 31737160 |
PQID | 2314114460 |
PQPubID | 2050670 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6853802 crossref_citationtrail_10_1063_1_5128797 crossref_primary_10_1063_1_5128797 scitation_primary_10_1063_1_5128797 proquest_miscellaneous_2315526155 pubmed_primary_31737160 proquest_journals_2314114460 |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | Biomicrofluidics |
PublicationTitleAlternate | Biomicrofluidics |
PublicationYear | 2019 |
Publisher | American Institute of Physics AIP Publishing LLC |
Publisher_xml | – name: American Institute of Physics – name: AIP Publishing LLC |
References | Adams, Jiang, Vyas, Flanagan (c1) 2018 Hyun, Jung (c11) 2013 Labeed, Coley, Hughes (c13) 2006 Simon, Li, Arulmoli, McDonnell, Akil, Nourse, Lee, Flanagan (c26) 2014 Pethig (c23) 2010 Song, Choi (c27) 2014 Chen, Pohl (c2) 1974 Fernandez, Rohani, Farmehini, Swami (c8) 2017 Vykoukal, Gascoyne, Vykoukal (c31) 2009 Mulhall, Cardnell, Hoettges, Labeed, Hughes (c21) 2015 Rohani, Moore, Kashatus, Sesaki, Kashatus, Swami (c25) 2017 Cheng, Chang, Hou, Chang (c3) 2007 Flanagan, Lu, Wang, Marchenko, Jeon, Lee, Monuki (c9) 2008 Song, Kim, Lee, Choi (c28) 2015a Yan, Zhang, Yuan, Lovrecz, Alici, Du, Zhu, Li (c34) 2015 Lee, Aghaamoo, Adams, Flanagan (c15) 2018a Song, Rosano, Wang, Garson, Prabhakarpandian, Pant, Klarmann, Perantoni, Alvarez, Lai (c29) 2015b Martinsen, Grimnes, Schwan (c20) 2002 Yale, Nourse, Lee, Ahmed, Arulmoli, Jiang, McDonnell, Botten, Lee, Monuki, Demetriou, Flanagan (c32) 2018 Pethig, Bressler, Carswell-Crumpton, Chen, Foster-Haje, Garcia-Ojeda, Lee, Lock, Talary, Tate (c24) 2002 Hu, Bessette, Qian, Meinhart, Daugherty, Soh (c10) 2005 Chin, Hughes, Coley, Labeed (c5) 2006; 1 Lee, Li, Jiang, Lee (c16) 2018b Lepore, Rauck, Dejea, Pardo, Rao, Rothstein, Maragakis (c17) 2008 Yamanaka, Komine (c33) 2018 Srivastava, Daggolu, Burgess, Minerick (c30) 2008 Labeed, Lu, Mulhall, Marchenko, Hoettges, Estrada, Lee, Hughes, Flanagan (c14) 2011 Cristofanilli, De Gasperis, Zhang, Hung, Gascoyne, Hortobagyi (c7) 2002 Cheng, Froude, Zhu, Chang, Chang (c4) 2009 Choi, Park (c6) 2010 Mahabadi, Labeed, Hughes (c19) 2018 Nourse, Prieto, Dickson, Lu, Pathak, Tombola, Demetriou, Lee, Flanagan (c22) 2014 Kuczenski, Chang, Revzin (c12) 2011 Yang, Huang, Wang, Wang, Becker, Gascoyne (c35) 1999 Lu, Barrios, Dickson, Nourse, Lee, Flanagan (c18) 2012 (2023062719160187400_c4) 2009; 9 (2023062719160187400_c9) 2008; 26 (2023062719160187400_c21) 2015; 7 (2023062719160187400_c30) 2008; 29 (2023062719160187400_c33) 2018; 126 (2023062719160187400_c26) 2014; 8 (2023062719160187400_c6) 2010; 4 (2023062719160187400_c12) 2011; 5 (2023062719160187400_c32) 2018; 11 (2023062719160187400_c35) 1999; 76 (2023062719160187400_c27) 2014; 104 (2023062719160187400_c28) 2015; 15 (2023062719160187400_c31) 2009; 1 (2023062719160187400_c22) 2014; 32 (2023062719160187400_c25) 2017; 89 (2023062719160187400_c18) 2012; 4 (2023062719160187400_c15) 2018; 4 (2023062719160187400_c19) 2018; 39 (2023062719160187400_c14) 2011; 6 (2023062719160187400_c24) 2002; 23 (2023062719160187400_c11) 2013; 34 (2023062719160187400_c1) 2018; 133 (2023062719160187400_c10) 2005; 102 (2023062719160187400_c13) 2006; 1760 (2023062719160187400_c20) 2002; 20 (2023062719160187400_c8) 2017; 966 (2023062719160187400_c16) 2018; 12 (2023062719160187400_c34) 2015; 36 (2023062719160187400_c7) 2002; 8 (2023062719160187400_c5) 2006; 1 (2023062719160187400_c17) 2008; 11 (2023062719160187400_c3) 2007; 1 (2023062719160187400_c23) 2010; 4 (2023062719160187400_c29) 2015; 15 (2023062719160187400_c2) 1974; 238 |
References_xml | – start-page: 1320 year: 2015b ident: c29 article-title: Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis publication-title: Lab Chip – start-page: 176 year: 1974 ident: c2 article-title: Biological dielectrophoresis: The behavior of lone cells in a nonuniform electric field publication-title: Ann. N. Y. Acad. Sci. – start-page: 032005 year: 2011 ident: c12 article-title: Dielectrophoretic microfluidic device for the continuous sorting of Escherichia coli from blood cells publication-title: Biomicrofluidics – start-page: 31 year: 2018 ident: c33 article-title: The multi-dimensional roles of astrocytes in ALS publication-title: Neurosci. Res. – start-page: 021503 year: 2007 ident: c3 article-title: An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting publication-title: Biomicrofluidics – start-page: 116 year: 2018a ident: c15 article-title: It’s electric: When technology gives a boost to stem cell science publication-title: Curr. Stem Cell Rep. – start-page: 054104 year: 2018b ident: c16 article-title: An integrated microfluidic platform for size-selective single-cell trapping of monocytes from blood publication-title: Biomicrofluidics – start-page: 022811 year: 2010 ident: c23 article-title: Review article—Dielectrophoresis: Status of the theory, technology, and applications publication-title: Biomicrofluidics – start-page: 869 year: 2018 ident: c32 article-title: Cell surface N-glycans influence electrophysiological properties and fate potential of neural stem cells publication-title: Stem Cell Rep. – start-page: 91 year: 2018 ident: c1 article-title: Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis publication-title: Methods – start-page: 1028 year: 2013 ident: c11 article-title: Microfluidic devices for the isolation of circulating rare cells: A focus on affinity-based, dielectrophoresis, and hydrophoresis publication-title: Electrophoresis – start-page: 2643 year: 2002 ident: c20 article-title: Interface phenomena and dielectric properties of biological tissue publication-title: Encycl. Surf. Colloid Sci. – start-page: 074106 year: 2014 ident: c27 article-title: Inertial modulation of hydrophoretic cell sorting and focusing publication-title: Appl. Phys. Lett. – start-page: 5757 year: 2017 ident: c25 article-title: Label-free quantification of intracellular mitochondrial dynamics using dielectrophoresis publication-title: Anal. Chem. – start-page: 11 year: 2017 ident: c8 article-title: Review: Microbial analysis in dielectrophoretic microfluidic systems publication-title: Anal. Chim. Acta – start-page: 1104 year: 2018 ident: c19 article-title: Dielectrophoretic analysis of treated cancer cells for rapid assessment of treatment efficacy publication-title: Electrophoresis – start-page: 15757 year: 2005 ident: c10 article-title: Marker-specific sorting of rare cells using dielectrophoresis publication-title: Proc. Natl. Acad. Sci. U.S.A. – start-page: e25458 year: 2011 ident: c14 article-title: Biophysical characteristics reveal neural stem cell differentiation potential publication-title: PLoS One – start-page: 656 year: 2008 ident: c9 article-title: Unique dielectric properties distinguish stem cells and their differentiated progeny publication-title: Stem Cells – volume: 1 start-page: 333 year: 2006 ident: c5 article-title: Rapid assessment of early biophysical changes in K562 cells during apoptosis determined using dielectrophoresis publication-title: Int. J. Nanomed. – start-page: 477 year: 2009 ident: c31 article-title: Dielectric characterization of complete mononuclear and polymorphonuclear blood cell subpopulations for label-free discrimination publication-title: Integr. Biol. – start-page: 3307 year: 1999 ident: c35 article-title: Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion publication-title: Biophys. J. – start-page: 5033 year: 2008 ident: c30 article-title: Dielectrophoretic characterization of erythrocytes: Positive ABO blood types publication-title: Electrophoresis – start-page: 2057 year: 2002 ident: c24 article-title: Dielectrophoretic studies of the activation of human T lymphocytes using a newly developed cell profiling system publication-title: Electrophoresis – start-page: 1294 year: 2008 ident: c17 article-title: Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease publication-title: Nat. Neurosci. – start-page: 1223 year: 2012 ident: c18 article-title: Advancing practical usage of microtechnology: A study of the functional consequences of dielectrophoresis on neural stem cells publication-title: Integr. Biol. – start-page: 064106 year: 2014 ident: c26 article-title: Increasing label-free stem cell sorting capacity to reach transplantation-scale throughput publication-title: Biomicrofluidics – start-page: 1250 year: 2015a ident: c28 article-title: A continuous-flow microfluidic syringe filter for size-based cell sorting publication-title: Lab Chip – start-page: 1396 year: 2015 ident: c21 article-title: Apoptosis progression studied using parallel dielectrophoresis electrophysiological analysis and flow cytometry publication-title: Integr. Biol. – start-page: 706 year: 2014 ident: c22 article-title: Membrane biophysics define neuron and astrocyte progenitors in the neural lineage publication-title: Stem Cells – start-page: 3193 year: 2009 ident: c4 article-title: A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis publication-title: Lab Chip – start-page: 46503 year: 2010 ident: c6 article-title: Two-step photolithography to fabricate multilevel microchannels publication-title: Biomicrofluidics – start-page: 615 year: 2002 ident: c7 article-title: Automated electrorotation to reveal dielectric variations related to HER-2/neu overexpression in MCF-7 sublines publication-title: Clin. Cancer Res. – start-page: 922 year: 2006 ident: c13 article-title: Differences in the biophysical properties of membrane and cytoplasm of apoptotic cells revealed using dielectrophoresis publication-title: Biochim. Biophys. Acta – start-page: 284 year: 2015 ident: c34 article-title: A hybrid dielectrophoretic and hydrophoretic microchip for particle sorting using integrated prefocusing and sorting steps publication-title: Electrophoresis – volume: 15 start-page: 1250 year: 2015 ident: 2023062719160187400_c28 article-title: A continuous-flow microfluidic syringe filter for size-based cell sorting publication-title: Lab Chip doi: 10.1039/C4LC01417K – volume: 89 start-page: 5757 issue: 11 year: 2017 ident: 2023062719160187400_c25 article-title: Label-free quantification of intracellular mitochondrial dynamics using dielectrophoresis publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b04666 – volume: 1 start-page: 333 issue: 3 year: 2006 ident: 2023062719160187400_c5 article-title: Rapid assessment of early biophysical changes in K562 cells during apoptosis determined using dielectrophoresis publication-title: Int. J. Nanomed. – volume: 20 start-page: 2643 year: 2002 ident: 2023062719160187400_c20 article-title: Interface phenomena and dielectric properties of biological tissue publication-title: Encycl. Surf. Colloid Sci. – volume: 23 start-page: 2057 issue: 13 year: 2002 ident: 2023062719160187400_c24 article-title: Dielectrophoretic studies of the activation of human T lymphocytes using a newly developed cell profiling system publication-title: Electrophoresis doi: 10.1002/1522-2683(200207)23:13<2057::AID-ELPS2057>3.0.CO;2-X – volume: 126 start-page: 31 year: 2018 ident: 2023062719160187400_c33 article-title: The multi-dimensional roles of astrocytes in ALS publication-title: Neurosci. Res. doi: 10.1016/j.neures.2017.09.011 – volume: 966 start-page: 11 year: 2017 ident: 2023062719160187400_c8 article-title: Review: Microbial analysis in dielectrophoretic microfluidic systems publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2017.02.024 – volume: 1 start-page: 021503 year: 2007 ident: 2023062719160187400_c3 article-title: An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting publication-title: Biomicrofluidics doi: 10.1063/1.2723669 – volume: 8 start-page: 615 issue: 2 year: 2002 ident: 2023062719160187400_c7 article-title: Automated electrorotation to reveal dielectric variations related to HER-2/neu overexpression in MCF-7 sublines publication-title: Clin. Cancer Res. – volume: 238 start-page: 176 year: 1974 ident: 2023062719160187400_c2 article-title: Biological dielectrophoresis: The behavior of lone cells in a nonuniform electric field publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.1974.tb26787.x – volume: 4 start-page: 1223 issue: 10 year: 2012 ident: 2023062719160187400_c18 article-title: Advancing practical usage of microtechnology: A study of the functional consequences of dielectrophoresis on neural stem cells publication-title: Integr. Biol. doi: 10.1039/c2ib20171b – volume: 4 start-page: 46503 year: 2010 ident: 2023062719160187400_c6 article-title: Two-step photolithography to fabricate multilevel microchannels publication-title: Biomicrofluidics doi: 10.1063/1.3517230 – volume: 9 start-page: 3193 issue: 22 year: 2009 ident: 2023062719160187400_c4 article-title: A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis publication-title: Lab Chip doi: 10.1039/b910587e – volume: 12 start-page: 054104 year: 2018 ident: 2023062719160187400_c16 article-title: An integrated microfluidic platform for size-selective single-cell trapping of monocytes from blood publication-title: Biomicrofluidics doi: 10.1063/1.5049149 – volume: 11 start-page: 869 issue: 4 year: 2018 ident: 2023062719160187400_c32 article-title: Cell surface N-glycans influence electrophysiological properties and fate potential of neural stem cells publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2018.08.011 – volume: 76 start-page: 3307 issue: 6 year: 1999 ident: 2023062719160187400_c35 article-title: Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion publication-title: Biophys. J. doi: 10.1016/S0006-3495(99)77483-7 – volume: 8 start-page: 064106 issue: 6 year: 2014 ident: 2023062719160187400_c26 article-title: Increasing label-free stem cell sorting capacity to reach transplantation-scale throughput publication-title: Biomicrofluidics doi: 10.1063/1.4902371 – volume: 104 start-page: 074106 year: 2014 ident: 2023062719160187400_c27 article-title: Inertial modulation of hydrophoretic cell sorting and focusing publication-title: Appl. Phys. Lett. doi: 10.1063/1.4866045 – volume: 5 start-page: 032005 issue: 3 year: 2011 ident: 2023062719160187400_c12 article-title: Dielectrophoretic microfluidic device for the continuous sorting of Escherichia coli from blood cells publication-title: Biomicrofluidics doi: 10.1063/1.3608135 – volume: 6 start-page: e25458 issue: 9 year: 2011 ident: 2023062719160187400_c14 article-title: Biophysical characteristics reveal neural stem cell differentiation potential publication-title: PLoS One doi: 10.1371/journal.pone.0025458 – volume: 4 start-page: 116 issue: 2 year: 2018 ident: 2023062719160187400_c15 article-title: It’s electric: When technology gives a boost to stem cell science publication-title: Curr. Stem Cell Rep. doi: 10.1007/s40778-018-0124-x – volume: 29 start-page: 5033 issue: 24 year: 2008 ident: 2023062719160187400_c30 article-title: Dielectrophoretic characterization of erythrocytes: Positive ABO blood types publication-title: Electrophoresis doi: 10.1002/elps.200800166 – volume: 4 start-page: 022811 issue: 2 year: 2010 ident: 2023062719160187400_c23 article-title: Review article—Dielectrophoresis: Status of the theory, technology, and applications publication-title: Biomicrofluidics doi: 10.1063/1.3456626 – volume: 133 start-page: 91 year: 2018 ident: 2023062719160187400_c1 article-title: Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis publication-title: Methods doi: 10.1016/j.ymeth.2017.08.016 – volume: 36 start-page: 284 issue: 2 year: 2015 ident: 2023062719160187400_c34 article-title: A hybrid dielectrophoretic and hydrophoretic microchip for particle sorting using integrated prefocusing and sorting steps publication-title: Electrophoresis doi: 10.1002/elps.201400397 – volume: 15 start-page: 1320 issue: 5 year: 2015 ident: 2023062719160187400_c29 article-title: Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis publication-title: Lab Chip doi: 10.1039/C4LC01253D – volume: 1 start-page: 477 issue: 7 year: 2009 ident: 2023062719160187400_c31 article-title: Dielectric characterization of complete mononuclear and polymorphonuclear blood cell subpopulations for label-free discrimination publication-title: Integr. Biol. doi: 10.1039/b906137a – volume: 102 start-page: 15757 issue: 44 year: 2005 ident: 2023062719160187400_c10 article-title: Marker-specific sorting of rare cells using dielectrophoresis publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0507719102 – volume: 26 start-page: 656 year: 2008 ident: 2023062719160187400_c9 article-title: Unique dielectric properties distinguish stem cells and their differentiated progeny publication-title: Stem Cells doi: 10.1634/stemcells.2007-0810 – volume: 34 start-page: 1028 issue: 7 year: 2013 ident: 2023062719160187400_c11 article-title: Microfluidic devices for the isolation of circulating rare cells: A focus on affinity-based, dielectrophoresis, and hydrophoresis publication-title: Electrophoresis doi: 10.1002/elps.201200417 – volume: 32 start-page: 706 issue: 3 year: 2014 ident: 2023062719160187400_c22 article-title: Membrane biophysics define neuron and astrocyte progenitors in the neural lineage publication-title: Stem Cells doi: 10.1002/stem.1535 – volume: 1760 start-page: 922 issue: 6 year: 2006 ident: 2023062719160187400_c13 article-title: Differences in the biophysical properties of membrane and cytoplasm of apoptotic cells revealed using dielectrophoresis publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2006.01.018 – volume: 7 start-page: 1396 issue: 11 year: 2015 ident: 2023062719160187400_c21 article-title: Apoptosis progression studied using parallel dielectrophoresis electrophysiological analysis and flow cytometry publication-title: Integr. Biol. doi: 10.1039/C5IB00109A – volume: 39 start-page: 1104 issue: 8 year: 2018 ident: 2023062719160187400_c19 article-title: Dielectrophoretic analysis of treated cancer cells for rapid assessment of treatment efficacy publication-title: Electrophoresis doi: 10.1002/elps.201700488 – volume: 11 start-page: 1294 issue: 11 year: 2008 ident: 2023062719160187400_c17 article-title: Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease publication-title: Nat. Neurosci. doi: 10.1038/nn.2210 |
SSID | ssj0051722 |
Score | 2.3883908 |
Snippet | We created an integrated microfluidic cell separation system that incorporates hydrophoresis and dielectrophoresis modules to facilitate high-throughput... |
SourceID | pubmedcentral proquest pubmed crossref scitation |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 064111 |
SubjectTerms | Arrays Depletion Dielectrophoresis Electrodes Enrichment Fluid dynamics Fluid flow Microfluidics Modules Regular Separation Serpentine Stem cells |
Title | High-throughput continuous dielectrophoretic separation of neural stem cells |
URI | http://dx.doi.org/10.1063/1.5128797 https://www.ncbi.nlm.nih.gov/pubmed/31737160 https://www.proquest.com/docview/2314114460 https://www.proquest.com/docview/2315526155 https://pubmed.ncbi.nlm.nih.gov/PMC6853802 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xOCwcELA8yktZ4MAli-NnckQ8hVaIlRapt8iObbUSSiva8vsZNw9aASvOnjjJfHZmJjP-BuAUzTbx3JOYemNjrpSJdSJ97DwpEq0MkWZaIPsg7574fVd0F-Dkiwy-ZOfJb7RJqcrUIixT3Lq4dJcv7q_-PjYfXIE2mDakQbMXzJuaD_7jxzLIH2h1qgT4jI25WYe12jmMLio0N2DBlZuwOkMZ-BP-hMKMuO6uM5yMo1Br3i8nGMBHtl83tRn2qsOJ0chV1N6DMhr4KHBX4vSBujkKP-xHW_B0c_3v8i6uOyLEBVdsHFtqiDNWMua8y0xKrFBaWsdQMYUrVOaVSzTNJAIjjFaFKIQW3GCMonyaebYNS-WgdLsQkRTR05lUBRfcU5OlWheUS8KsSqykHThrlJc3WgldK57zadpasjzJaz134LgVHVYcGZ8JHTQI5PU2GeXoXPIkRKSkA7_aYVzgQQm6dKi7ICMEDenTDuxUgLV3QeeHYcCHV6s5KFuBQJ49P1L2e1MSbYl-SkrwNU9a0P_38J9IvQ5e3iXyofV735prH1bQ6cqq84wHsDR-mbhDdGzG5qhe2EeweNtN3gAyV_kH |
linkProvider | American Institute of Physics |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BeygcEG-2FAiPAxe3jp_JsQKqpSwVSK3UW2THtrpSyUbd3f5-xhsn3VUrxNkTx5lxMt9kxt8AfEK3TYMIlLBgHRFaW2JyFYgPtM6NtlTZVYHsiRqfieNzeZ5qc-JZGFzEfN9M21US3_4JB0mB5BIx57K9IRxQ_CDfR29V6FLfh22tqMZNvX14_PX3r_5TLNE7s55OaP2CTSd0C1neLpDcQX_UpcbXvM_RY3iUYGN22C3zCdzzzVN4uEYm-AwmsWSDpL477XKRxSr0abPE0D5z09Tupr3oji1mc9-Rfs-abBayyGqJ00dS5yz-yp8_h7Ojb6dfxiT1SiC10HxBHLPUW6c498GXtqBOaqOc50yr2te6DNrnhpUKTSat0bWspZHCYvSiQ1EG_gK2mlnjX0FGC7SrKZWuhRSB2bIwpmZCUe507hQbwedeeVWvldjP4rJaJbQVr_Iq6XkEHwbRtmPPuEtor7dAlV6geYWwU-QxVqUjeD8M49aPSjCNR91FGSlZTKyO4GVnsOEuCIs4hoJ4td4w5SAQabU3R5rpxYpeWyGCKSg-5sfB6P9a_B1S17OrG4mqdWH3v-Z6Bzvj05-TavL95MdreIDQrOxOPe7B1uJq6d8g_FnYt2mT_wUisQUk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-throughput+continuous+dielectrophoretic+separation+of+neural+stem+cells&rft.jtitle=Biomicrofluidics&rft.au=Jiang%2C+Alan+Y+L&rft.au=Yale%2C+Andrew+R&rft.au=Aghaamoo%2C+Mohammad&rft.au=Lee%2C+Do-Hyun&rft.date=2019-11-01&rft.issn=1932-1058&rft.eissn=1932-1058&rft.volume=13&rft.issue=6&rft.spage=064111&rft_id=info:doi/10.1063%2F1.5128797&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-1058&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-1058&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-1058&client=summon |