High-throughput continuous dielectrophoretic separation of neural stem cells

We created an integrated microfluidic cell separation system that incorporates hydrophoresis and dielectrophoresis modules to facilitate high-throughput continuous cell separation. The hydrophoresis module consists of a serpentine channel with ridges and trenches to generate a diverging fluid flow t...

Full description

Saved in:
Bibliographic Details
Published inBiomicrofluidics Vol. 13; no. 6; pp. 064111 - 64125
Main Authors Jiang, Alan Y. L., Yale, Andrew R., Aghaamoo, Mohammad, Lee, Do-Hyun, Lee, Abraham P., Adams, Tayloria N. G., Flanagan, Lisa A.
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 01.11.2019
AIP Publishing LLC
Subjects
Online AccessGet full text
ISSN1932-1058
1932-1058
DOI10.1063/1.5128797

Cover

Abstract We created an integrated microfluidic cell separation system that incorporates hydrophoresis and dielectrophoresis modules to facilitate high-throughput continuous cell separation. The hydrophoresis module consists of a serpentine channel with ridges and trenches to generate a diverging fluid flow that focuses cells into two streams along the channel edges. The dielectrophoresis module is composed of a chevron-shaped electrode array. Separation in the dielectrophoresis module is driven by inherent cell electrophysiological properties and does not require cell-type-specific labels. The chevron shape of the electrode array couples with fluid flow in the channel to enable continuous sorting of cells to increase throughput. We tested the new system with mouse neural stem cells since their electrophysiological properties reflect their differentiation capacity (e.g., whether they will differentiate into astrocytes or neurons). The goal of our experiments was to enrich astrocyte-biased cells. Sorting parameters were optimized for each batch of neural stem cells to ensure effective and consistent separations. The continuous sorting design of the device significantly improved sorting throughput and reproducibility. Sorting yielded two cell fractions, and we found that astrocyte-biased cells were enriched in one fraction and depleted from the other. This is an advantage of the new continuous sorting device over traditional dielectrophoresis-based sorting platforms that target a subset of cells for enrichment but do not provide a corresponding depleted population. The new microfluidic dielectrophoresis cell separation system improves label-free cell sorting by increasing throughput and delivering enriched and depleted cell subpopulations in a single sort.
AbstractList We created an integrated microfluidic cell separation system that incorporates hydrophoresis and dielectrophoresis modules to facilitate high-throughput continuous cell separation. The hydrophoresis module consists of a serpentine channel with ridges and trenches to generate a diverging fluid flow that focuses cells into two streams along the channel edges. The dielectrophoresis module is composed of a chevron-shaped electrode array. Separation in the dielectrophoresis module is driven by inherent cell electrophysiological properties and does not require cell-type-specific labels. The chevron shape of the electrode array couples with fluid flow in the channel to enable continuous sorting of cells to increase throughput. We tested the new system with mouse neural stem cells since their electrophysiological properties reflect their differentiation capacity (e.g., whether they will differentiate into astrocytes or neurons). The goal of our experiments was to enrich astrocyte-biased cells. Sorting parameters were optimized for each batch of neural stem cells to ensure effective and consistent separations. The continuous sorting design of the device significantly improved sorting throughput and reproducibility. Sorting yielded two cell fractions, and we found that astrocyte-biased cells were enriched in one fraction and depleted from the other. This is an advantage of the new continuous sorting device over traditional dielectrophoresis-based sorting platforms that target a subset of cells for enrichment but do not provide a corresponding depleted population. The new microfluidic dielectrophoresis cell separation system improves label-free cell sorting by increasing throughput and delivering enriched and depleted cell subpopulations in a single sort.We created an integrated microfluidic cell separation system that incorporates hydrophoresis and dielectrophoresis modules to facilitate high-throughput continuous cell separation. The hydrophoresis module consists of a serpentine channel with ridges and trenches to generate a diverging fluid flow that focuses cells into two streams along the channel edges. The dielectrophoresis module is composed of a chevron-shaped electrode array. Separation in the dielectrophoresis module is driven by inherent cell electrophysiological properties and does not require cell-type-specific labels. The chevron shape of the electrode array couples with fluid flow in the channel to enable continuous sorting of cells to increase throughput. We tested the new system with mouse neural stem cells since their electrophysiological properties reflect their differentiation capacity (e.g., whether they will differentiate into astrocytes or neurons). The goal of our experiments was to enrich astrocyte-biased cells. Sorting parameters were optimized for each batch of neural stem cells to ensure effective and consistent separations. The continuous sorting design of the device significantly improved sorting throughput and reproducibility. Sorting yielded two cell fractions, and we found that astrocyte-biased cells were enriched in one fraction and depleted from the other. This is an advantage of the new continuous sorting device over traditional dielectrophoresis-based sorting platforms that target a subset of cells for enrichment but do not provide a corresponding depleted population. The new microfluidic dielectrophoresis cell separation system improves label-free cell sorting by increasing throughput and delivering enriched and depleted cell subpopulations in a single sort.
We created an integrated microfluidic cell separation system that incorporates hydrophoresis and dielectrophoresis modules to facilitate high-throughput continuous cell separation. The hydrophoresis module consists of a serpentine channel with ridges and trenches to generate a diverging fluid flow that focuses cells into two streams along the channel edges. The dielectrophoresis module is composed of a chevron-shaped electrode array. Separation in the dielectrophoresis module is driven by inherent cell electrophysiological properties and does not require cell-type-specific labels. The chevron shape of the electrode array couples with fluid flow in the channel to enable continuous sorting of cells to increase throughput. We tested the new system with mouse neural stem cells since their electrophysiological properties reflect their differentiation capacity (e.g., whether they will differentiate into astrocytes or neurons). The goal of our experiments was to enrich astrocyte-biased cells. Sorting parameters were optimized for each batch of neural stem cells to ensure effective and consistent separations. The continuous sorting design of the device significantly improved sorting throughput and reproducibility. Sorting yielded two cell fractions, and we found that astrocyte-biased cells were enriched in one fraction and depleted from the other. This is an advantage of the new continuous sorting device over traditional dielectrophoresis-based sorting platforms that target a subset of cells for enrichment but do not provide a corresponding depleted population. The new microfluidic dielectrophoresis cell separation system improves label-free cell sorting by increasing throughput and delivering enriched and depleted cell subpopulations in a single sort.
Author Yale, Andrew R.
Adams, Tayloria N. G.
Aghaamoo, Mohammad
Lee, Do-Hyun
Flanagan, Lisa A.
Lee, Abraham P.
Jiang, Alan Y. L.
Author_xml – sequence: 1
  givenname: Alan Y. L.
  surname: Jiang
  fullname: Jiang, Alan Y. L.
  organization: 5Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697-2580, USA
– sequence: 2
  givenname: Andrew R.
  surname: Yale
  fullname: Yale, Andrew R.
  organization: 5Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697-2580, USA
– sequence: 3
  givenname: Mohammad
  surname: Aghaamoo
  fullname: Aghaamoo, Mohammad
  organization: Department of Biomedical Engineering, University of California, Irvine
– sequence: 4
  givenname: Do-Hyun
  surname: Lee
  fullname: Lee, Do-Hyun
  organization: Department of Biomedical Engineering, University of California, Irvine
– sequence: 5
  givenname: Abraham P.
  surname: Lee
  fullname: Lee, Abraham P.
  organization: Department of Biomedical Engineering, University of California, Irvine
– sequence: 6
  givenname: Tayloria N. G.
  surname: Adams
  fullname: Adams, Tayloria N. G.
  organization: 5Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697-2580, USA
– sequence: 7
  givenname: Lisa A.
  surname: Flanagan
  fullname: Flanagan, Lisa A.
  organization: 5Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697-2580, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31737160$$D View this record in MEDLINE/PubMed
BookMark eNqdkU1r3DAQhkVJaD4P-QPBkEtbcKIPS7IvgRLaJrCQS3IWsjxeK3glR5ID_ffVdnebNPTUy2hAz7y878wR2nPeAUJnBF8SLNgVueSE1rKRH9AhaRgtCeb13pv-AB3F-IQxJ5LSj-iAEckkEfgQLW7tcijTEPy8HKY5Fca7ZN3s51h0FkYwKfhp8AGSNUWESQedrHeF7wsHc9BjEROsCgPjGE_Qfq_HCKfb9xg9fv_2cHNbLu5_3N18XZSmkiyVHW0xtJ1gDHpo2hp3XGrRAaNSGDCy6SUQTRsBxvBWS8MN17xqhRCyr5ueHaPrje40tyvoDLiUjagp2JUOP5XXVv394-yglv5FiZqzGtMs8GkrEPzzDDGplY3rCNpBTq4oI5xTkUtGL96hT34OLsdbUxUhVSVwps7fOvpjZbfoDFxtABN8jAF6ZWz6vcls0I6KYLU-pSJqe8o88fndxE70X-yXDRt3qv8Hv_jwCqqp69kvcIq7vw
CODEN BIOMGB
CitedBy_id crossref_primary_10_1021_acsbiomaterials_1c00083
crossref_primary_10_1002_elps_202100031
crossref_primary_10_1016_j_chroma_2024_465155
crossref_primary_10_1002_elps_202300027
crossref_primary_10_3390_mi11080734
crossref_primary_10_1021_acscombsci_0c00109
crossref_primary_10_1063_1_5141082
crossref_primary_10_1038_s41598_022_20886_1
crossref_primary_10_3390_s24217098
crossref_primary_10_1002_elps_202100135
crossref_primary_10_3390_mi15030345
crossref_primary_10_1002_elps_202300202
crossref_primary_10_1063_5_0025056
crossref_primary_10_3390_mi14101813
crossref_primary_10_1002_elps_202300091
crossref_primary_10_3390_mi16020236
crossref_primary_10_3390_bios14030119
crossref_primary_10_1021_acs_analchem_4c00485
crossref_primary_10_1038_s41378_024_00654_z
crossref_primary_10_1038_s42003_021_02651_8
crossref_primary_10_1039_D4LC00622D
crossref_primary_10_3390_s20185095
crossref_primary_10_1021_acssensors_1c00887
crossref_primary_10_3390_mi13010117
crossref_primary_10_1002_elps_8113
crossref_primary_10_1002_elps_202000233
crossref_primary_10_1002_elps_202100241
crossref_primary_10_1002_elps_202000213
crossref_primary_10_1002_elps_202400027
crossref_primary_10_1126_sciadv_adm8597
crossref_primary_10_3390_mi11040391
crossref_primary_10_1021_acssensors_0c02022
crossref_primary_10_1002_elps_202100326
crossref_primary_10_3390_mi11050513
crossref_primary_10_3390_mi11090832
crossref_primary_10_1007_s00604_021_04748_7
crossref_primary_10_1039_D1LC00724F
crossref_primary_10_1039_D0RA06271E
crossref_primary_10_1016_j_biotechadv_2023_108271
crossref_primary_10_1063_5_0131806
crossref_primary_10_1088_1361_6439_ac333e
crossref_primary_10_1002_elps_202200203
crossref_primary_10_1021_acs_chemrev_2c00212
Cites_doi 10.1039/C4LC01417K
10.1021/acs.analchem.6b04666
10.1002/1522-2683(200207)23:13<2057::AID-ELPS2057>3.0.CO;2-X
10.1016/j.neures.2017.09.011
10.1016/j.aca.2017.02.024
10.1063/1.2723669
10.1111/j.1749-6632.1974.tb26787.x
10.1039/c2ib20171b
10.1063/1.3517230
10.1039/b910587e
10.1063/1.5049149
10.1016/j.stemcr.2018.08.011
10.1016/S0006-3495(99)77483-7
10.1063/1.4902371
10.1063/1.4866045
10.1063/1.3608135
10.1371/journal.pone.0025458
10.1007/s40778-018-0124-x
10.1002/elps.200800166
10.1063/1.3456626
10.1016/j.ymeth.2017.08.016
10.1002/elps.201400397
10.1039/C4LC01253D
10.1039/b906137a
10.1073/pnas.0507719102
10.1634/stemcells.2007-0810
10.1002/elps.201200417
10.1002/stem.1535
10.1016/j.bbagen.2006.01.018
10.1039/C5IB00109A
10.1002/elps.201700488
10.1038/nn.2210
ContentType Journal Article
Copyright Author(s)
2019 Author(s).
2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
2019 Author(s). 2019 Author(s)
Copyright_xml – notice: Author(s)
– notice: 2019 Author(s).
– notice: 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
– notice: 2019 Author(s). 2019 Author(s)
DBID AJDQP
AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
5PM
DOI 10.1063/1.5128797
DatabaseName AIP Open Access Journals
CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

CrossRef
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1932-1058
ExternalDocumentID PMC6853802
31737160
10_1063_1_5128797
bmf
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: DBI-1612261
  funderid: https://doi.org/10.13039/100000001
– fundername: National Science Foundation
  grantid: IOS-1254060
  funderid: https://doi.org/10.13039/100000001
– fundername: National Science Foundation
  grantid: IIP-1841509
  funderid: https://doi.org/10.13039/100000001
– fundername: University of California President's and Chancellor's Postdoctoral Fellowship
– fundername: National Institutes of Health
  grantid: NS082174
  funderid: https://doi.org/10.13039/100000002
– fundername: California Institute for Regenerative Medicine
  grantid: RB5-07254
  funderid: https://doi.org/10.13039/100000900
– fundername: Brython Davis Fellowship
– fundername: NINDS NIH HHS
  grantid: T32 NS082174
– fundername: NCATS NIH HHS
  grantid: UL1 TR001414
– fundername: ;
– fundername: ; ;
  grantid: NS082174
– fundername: ; ;
  grantid: IIP-1841509
– fundername: ; ;
  grantid: RB5-07254
– fundername: ; ;
  grantid: DBI-1612261
– fundername: ; ;
  grantid: IOS-1254060
GroupedDBID 1UP
2-P
23N
2WC
4.4
53G
5GY
5VS
6J9
AAAAW
AABDS
AAEUA
AAKDD
AAPUP
AAYIH
ABFTF
ABJNI
ACBRY
ACGFO
ACGFS
ACZLF
ADBBV
ADCTM
AEGXH
AEJMO
AENEX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJDQP
AJJCW
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AQWKA
ATXIE
AWQPM
BAWUL
BPZLN
C1A
CS3
DU5
E3Z
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
GX1
HYE
M71
OK1
P2P
RIP
RNS
RPM
RQS
TR2
AAGWI
AAYXX
ABJGX
ADMLS
CITATION
OVT
NPM
8FD
H8D
L7M
7X8
5PM
ID FETCH-LOGICAL-c473t-d2b0ebd633efe9b80d57a6de3276cec79f7e1a296ecc5ba7c5c5a54b6667f89f3
IEDL.DBID AJDQP
ISSN 1932-1058
IngestDate Thu Aug 21 18:29:46 EDT 2025
Thu Sep 04 17:20:37 EDT 2025
Mon Jun 30 04:21:23 EDT 2025
Wed Feb 19 02:31:05 EST 2025
Sun Jul 06 05:06:34 EDT 2025
Thu Apr 24 22:56:46 EDT 2025
Wed Nov 11 00:04:56 EST 2020
Fri Jun 21 00:19:30 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License 1932-1058/2019/13(6)/064111/15
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
2019 Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c473t-d2b0ebd633efe9b80d57a6de3276cec79f7e1a296ecc5ba7c5c5a54b6667f89f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4990-0611
0000-0001-8378-6616
0000-0002-1120-8902
0000-0002-1633-6460
0000-0003-1972-3930
OpenAccessLink http://dx.doi.org/10.1063/1.5128797
PMID 31737160
PQID 2314114460
PQPubID 2050670
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6853802
crossref_citationtrail_10_1063_1_5128797
crossref_primary_10_1063_1_5128797
scitation_primary_10_1063_1_5128797
proquest_miscellaneous_2315526155
pubmed_primary_31737160
proquest_journals_2314114460
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle Biomicrofluidics
PublicationTitleAlternate Biomicrofluidics
PublicationYear 2019
Publisher American Institute of Physics
AIP Publishing LLC
Publisher_xml – name: American Institute of Physics
– name: AIP Publishing LLC
References Adams, Jiang, Vyas, Flanagan (c1) 2018
Hyun, Jung (c11) 2013
Labeed, Coley, Hughes (c13) 2006
Simon, Li, Arulmoli, McDonnell, Akil, Nourse, Lee, Flanagan (c26) 2014
Pethig (c23) 2010
Song, Choi (c27) 2014
Chen, Pohl (c2) 1974
Fernandez, Rohani, Farmehini, Swami (c8) 2017
Vykoukal, Gascoyne, Vykoukal (c31) 2009
Mulhall, Cardnell, Hoettges, Labeed, Hughes (c21) 2015
Rohani, Moore, Kashatus, Sesaki, Kashatus, Swami (c25) 2017
Cheng, Chang, Hou, Chang (c3) 2007
Flanagan, Lu, Wang, Marchenko, Jeon, Lee, Monuki (c9) 2008
Song, Kim, Lee, Choi (c28) 2015a
Yan, Zhang, Yuan, Lovrecz, Alici, Du, Zhu, Li (c34) 2015
Lee, Aghaamoo, Adams, Flanagan (c15) 2018a
Song, Rosano, Wang, Garson, Prabhakarpandian, Pant, Klarmann, Perantoni, Alvarez, Lai (c29) 2015b
Martinsen, Grimnes, Schwan (c20) 2002
Yale, Nourse, Lee, Ahmed, Arulmoli, Jiang, McDonnell, Botten, Lee, Monuki, Demetriou, Flanagan (c32) 2018
Pethig, Bressler, Carswell-Crumpton, Chen, Foster-Haje, Garcia-Ojeda, Lee, Lock, Talary, Tate (c24) 2002
Hu, Bessette, Qian, Meinhart, Daugherty, Soh (c10) 2005
Chin, Hughes, Coley, Labeed (c5) 2006; 1
Lee, Li, Jiang, Lee (c16) 2018b
Lepore, Rauck, Dejea, Pardo, Rao, Rothstein, Maragakis (c17) 2008
Yamanaka, Komine (c33) 2018
Srivastava, Daggolu, Burgess, Minerick (c30) 2008
Labeed, Lu, Mulhall, Marchenko, Hoettges, Estrada, Lee, Hughes, Flanagan (c14) 2011
Cristofanilli, De Gasperis, Zhang, Hung, Gascoyne, Hortobagyi (c7) 2002
Cheng, Froude, Zhu, Chang, Chang (c4) 2009
Choi, Park (c6) 2010
Mahabadi, Labeed, Hughes (c19) 2018
Nourse, Prieto, Dickson, Lu, Pathak, Tombola, Demetriou, Lee, Flanagan (c22) 2014
Kuczenski, Chang, Revzin (c12) 2011
Yang, Huang, Wang, Wang, Becker, Gascoyne (c35) 1999
Lu, Barrios, Dickson, Nourse, Lee, Flanagan (c18) 2012
(2023062719160187400_c4) 2009; 9
(2023062719160187400_c9) 2008; 26
(2023062719160187400_c21) 2015; 7
(2023062719160187400_c30) 2008; 29
(2023062719160187400_c33) 2018; 126
(2023062719160187400_c26) 2014; 8
(2023062719160187400_c6) 2010; 4
(2023062719160187400_c12) 2011; 5
(2023062719160187400_c32) 2018; 11
(2023062719160187400_c35) 1999; 76
(2023062719160187400_c27) 2014; 104
(2023062719160187400_c28) 2015; 15
(2023062719160187400_c31) 2009; 1
(2023062719160187400_c22) 2014; 32
(2023062719160187400_c25) 2017; 89
(2023062719160187400_c18) 2012; 4
(2023062719160187400_c15) 2018; 4
(2023062719160187400_c19) 2018; 39
(2023062719160187400_c14) 2011; 6
(2023062719160187400_c24) 2002; 23
(2023062719160187400_c11) 2013; 34
(2023062719160187400_c1) 2018; 133
(2023062719160187400_c10) 2005; 102
(2023062719160187400_c13) 2006; 1760
(2023062719160187400_c20) 2002; 20
(2023062719160187400_c8) 2017; 966
(2023062719160187400_c16) 2018; 12
(2023062719160187400_c34) 2015; 36
(2023062719160187400_c7) 2002; 8
(2023062719160187400_c5) 2006; 1
(2023062719160187400_c17) 2008; 11
(2023062719160187400_c3) 2007; 1
(2023062719160187400_c23) 2010; 4
(2023062719160187400_c29) 2015; 15
(2023062719160187400_c2) 1974; 238
References_xml – start-page: 1320
  year: 2015b
  ident: c29
  article-title: Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis
  publication-title: Lab Chip
– start-page: 176
  year: 1974
  ident: c2
  article-title: Biological dielectrophoresis: The behavior of lone cells in a nonuniform electric field
  publication-title: Ann. N. Y. Acad. Sci.
– start-page: 032005
  year: 2011
  ident: c12
  article-title: Dielectrophoretic microfluidic device for the continuous sorting of Escherichia coli from blood cells
  publication-title: Biomicrofluidics
– start-page: 31
  year: 2018
  ident: c33
  article-title: The multi-dimensional roles of astrocytes in ALS
  publication-title: Neurosci. Res.
– start-page: 021503
  year: 2007
  ident: c3
  article-title: An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting
  publication-title: Biomicrofluidics
– start-page: 116
  year: 2018a
  ident: c15
  article-title: It’s electric: When technology gives a boost to stem cell science
  publication-title: Curr. Stem Cell Rep.
– start-page: 054104
  year: 2018b
  ident: c16
  article-title: An integrated microfluidic platform for size-selective single-cell trapping of monocytes from blood
  publication-title: Biomicrofluidics
– start-page: 022811
  year: 2010
  ident: c23
  article-title: Review article—Dielectrophoresis: Status of the theory, technology, and applications
  publication-title: Biomicrofluidics
– start-page: 869
  year: 2018
  ident: c32
  article-title: Cell surface N-glycans influence electrophysiological properties and fate potential of neural stem cells
  publication-title: Stem Cell Rep.
– start-page: 91
  year: 2018
  ident: c1
  article-title: Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis
  publication-title: Methods
– start-page: 1028
  year: 2013
  ident: c11
  article-title: Microfluidic devices for the isolation of circulating rare cells: A focus on affinity-based, dielectrophoresis, and hydrophoresis
  publication-title: Electrophoresis
– start-page: 2643
  year: 2002
  ident: c20
  article-title: Interface phenomena and dielectric properties of biological tissue
  publication-title: Encycl. Surf. Colloid Sci.
– start-page: 074106
  year: 2014
  ident: c27
  article-title: Inertial modulation of hydrophoretic cell sorting and focusing
  publication-title: Appl. Phys. Lett.
– start-page: 5757
  year: 2017
  ident: c25
  article-title: Label-free quantification of intracellular mitochondrial dynamics using dielectrophoresis
  publication-title: Anal. Chem.
– start-page: 11
  year: 2017
  ident: c8
  article-title: Review: Microbial analysis in dielectrophoretic microfluidic systems
  publication-title: Anal. Chim. Acta
– start-page: 1104
  year: 2018
  ident: c19
  article-title: Dielectrophoretic analysis of treated cancer cells for rapid assessment of treatment efficacy
  publication-title: Electrophoresis
– start-page: 15757
  year: 2005
  ident: c10
  article-title: Marker-specific sorting of rare cells using dielectrophoresis
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– start-page: e25458
  year: 2011
  ident: c14
  article-title: Biophysical characteristics reveal neural stem cell differentiation potential
  publication-title: PLoS One
– start-page: 656
  year: 2008
  ident: c9
  article-title: Unique dielectric properties distinguish stem cells and their differentiated progeny
  publication-title: Stem Cells
– volume: 1
  start-page: 333
  year: 2006
  ident: c5
  article-title: Rapid assessment of early biophysical changes in K562 cells during apoptosis determined using dielectrophoresis
  publication-title: Int. J. Nanomed.
– start-page: 477
  year: 2009
  ident: c31
  article-title: Dielectric characterization of complete mononuclear and polymorphonuclear blood cell subpopulations for label-free discrimination
  publication-title: Integr. Biol.
– start-page: 3307
  year: 1999
  ident: c35
  article-title: Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion
  publication-title: Biophys. J.
– start-page: 5033
  year: 2008
  ident: c30
  article-title: Dielectrophoretic characterization of erythrocytes: Positive ABO blood types
  publication-title: Electrophoresis
– start-page: 2057
  year: 2002
  ident: c24
  article-title: Dielectrophoretic studies of the activation of human T lymphocytes using a newly developed cell profiling system
  publication-title: Electrophoresis
– start-page: 1294
  year: 2008
  ident: c17
  article-title: Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease
  publication-title: Nat. Neurosci.
– start-page: 1223
  year: 2012
  ident: c18
  article-title: Advancing practical usage of microtechnology: A study of the functional consequences of dielectrophoresis on neural stem cells
  publication-title: Integr. Biol.
– start-page: 064106
  year: 2014
  ident: c26
  article-title: Increasing label-free stem cell sorting capacity to reach transplantation-scale throughput
  publication-title: Biomicrofluidics
– start-page: 1250
  year: 2015a
  ident: c28
  article-title: A continuous-flow microfluidic syringe filter for size-based cell sorting
  publication-title: Lab Chip
– start-page: 1396
  year: 2015
  ident: c21
  article-title: Apoptosis progression studied using parallel dielectrophoresis electrophysiological analysis and flow cytometry
  publication-title: Integr. Biol.
– start-page: 706
  year: 2014
  ident: c22
  article-title: Membrane biophysics define neuron and astrocyte progenitors in the neural lineage
  publication-title: Stem Cells
– start-page: 3193
  year: 2009
  ident: c4
  article-title: A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis
  publication-title: Lab Chip
– start-page: 46503
  year: 2010
  ident: c6
  article-title: Two-step photolithography to fabricate multilevel microchannels
  publication-title: Biomicrofluidics
– start-page: 615
  year: 2002
  ident: c7
  article-title: Automated electrorotation to reveal dielectric variations related to HER-2/neu overexpression in MCF-7 sublines
  publication-title: Clin. Cancer Res.
– start-page: 922
  year: 2006
  ident: c13
  article-title: Differences in the biophysical properties of membrane and cytoplasm of apoptotic cells revealed using dielectrophoresis
  publication-title: Biochim. Biophys. Acta
– start-page: 284
  year: 2015
  ident: c34
  article-title: A hybrid dielectrophoretic and hydrophoretic microchip for particle sorting using integrated prefocusing and sorting steps
  publication-title: Electrophoresis
– volume: 15
  start-page: 1250
  year: 2015
  ident: 2023062719160187400_c28
  article-title: A continuous-flow microfluidic syringe filter for size-based cell sorting
  publication-title: Lab Chip
  doi: 10.1039/C4LC01417K
– volume: 89
  start-page: 5757
  issue: 11
  year: 2017
  ident: 2023062719160187400_c25
  article-title: Label-free quantification of intracellular mitochondrial dynamics using dielectrophoresis
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b04666
– volume: 1
  start-page: 333
  issue: 3
  year: 2006
  ident: 2023062719160187400_c5
  article-title: Rapid assessment of early biophysical changes in K562 cells during apoptosis determined using dielectrophoresis
  publication-title: Int. J. Nanomed.
– volume: 20
  start-page: 2643
  year: 2002
  ident: 2023062719160187400_c20
  article-title: Interface phenomena and dielectric properties of biological tissue
  publication-title: Encycl. Surf. Colloid Sci.
– volume: 23
  start-page: 2057
  issue: 13
  year: 2002
  ident: 2023062719160187400_c24
  article-title: Dielectrophoretic studies of the activation of human T lymphocytes using a newly developed cell profiling system
  publication-title: Electrophoresis
  doi: 10.1002/1522-2683(200207)23:13<2057::AID-ELPS2057>3.0.CO;2-X
– volume: 126
  start-page: 31
  year: 2018
  ident: 2023062719160187400_c33
  article-title: The multi-dimensional roles of astrocytes in ALS
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2017.09.011
– volume: 966
  start-page: 11
  year: 2017
  ident: 2023062719160187400_c8
  article-title: Review: Microbial analysis in dielectrophoretic microfluidic systems
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2017.02.024
– volume: 1
  start-page: 021503
  year: 2007
  ident: 2023062719160187400_c3
  article-title: An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting
  publication-title: Biomicrofluidics
  doi: 10.1063/1.2723669
– volume: 8
  start-page: 615
  issue: 2
  year: 2002
  ident: 2023062719160187400_c7
  article-title: Automated electrorotation to reveal dielectric variations related to HER-2/neu overexpression in MCF-7 sublines
  publication-title: Clin. Cancer Res.
– volume: 238
  start-page: 176
  year: 1974
  ident: 2023062719160187400_c2
  article-title: Biological dielectrophoresis: The behavior of lone cells in a nonuniform electric field
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1974.tb26787.x
– volume: 4
  start-page: 1223
  issue: 10
  year: 2012
  ident: 2023062719160187400_c18
  article-title: Advancing practical usage of microtechnology: A study of the functional consequences of dielectrophoresis on neural stem cells
  publication-title: Integr. Biol.
  doi: 10.1039/c2ib20171b
– volume: 4
  start-page: 46503
  year: 2010
  ident: 2023062719160187400_c6
  article-title: Two-step photolithography to fabricate multilevel microchannels
  publication-title: Biomicrofluidics
  doi: 10.1063/1.3517230
– volume: 9
  start-page: 3193
  issue: 22
  year: 2009
  ident: 2023062719160187400_c4
  article-title: A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis
  publication-title: Lab Chip
  doi: 10.1039/b910587e
– volume: 12
  start-page: 054104
  year: 2018
  ident: 2023062719160187400_c16
  article-title: An integrated microfluidic platform for size-selective single-cell trapping of monocytes from blood
  publication-title: Biomicrofluidics
  doi: 10.1063/1.5049149
– volume: 11
  start-page: 869
  issue: 4
  year: 2018
  ident: 2023062719160187400_c32
  article-title: Cell surface N-glycans influence electrophysiological properties and fate potential of neural stem cells
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2018.08.011
– volume: 76
  start-page: 3307
  issue: 6
  year: 1999
  ident: 2023062719160187400_c35
  article-title: Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(99)77483-7
– volume: 8
  start-page: 064106
  issue: 6
  year: 2014
  ident: 2023062719160187400_c26
  article-title: Increasing label-free stem cell sorting capacity to reach transplantation-scale throughput
  publication-title: Biomicrofluidics
  doi: 10.1063/1.4902371
– volume: 104
  start-page: 074106
  year: 2014
  ident: 2023062719160187400_c27
  article-title: Inertial modulation of hydrophoretic cell sorting and focusing
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4866045
– volume: 5
  start-page: 032005
  issue: 3
  year: 2011
  ident: 2023062719160187400_c12
  article-title: Dielectrophoretic microfluidic device for the continuous sorting of Escherichia coli from blood cells
  publication-title: Biomicrofluidics
  doi: 10.1063/1.3608135
– volume: 6
  start-page: e25458
  issue: 9
  year: 2011
  ident: 2023062719160187400_c14
  article-title: Biophysical characteristics reveal neural stem cell differentiation potential
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0025458
– volume: 4
  start-page: 116
  issue: 2
  year: 2018
  ident: 2023062719160187400_c15
  article-title: It’s electric: When technology gives a boost to stem cell science
  publication-title: Curr. Stem Cell Rep.
  doi: 10.1007/s40778-018-0124-x
– volume: 29
  start-page: 5033
  issue: 24
  year: 2008
  ident: 2023062719160187400_c30
  article-title: Dielectrophoretic characterization of erythrocytes: Positive ABO blood types
  publication-title: Electrophoresis
  doi: 10.1002/elps.200800166
– volume: 4
  start-page: 022811
  issue: 2
  year: 2010
  ident: 2023062719160187400_c23
  article-title: Review article—Dielectrophoresis: Status of the theory, technology, and applications
  publication-title: Biomicrofluidics
  doi: 10.1063/1.3456626
– volume: 133
  start-page: 91
  year: 2018
  ident: 2023062719160187400_c1
  article-title: Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis
  publication-title: Methods
  doi: 10.1016/j.ymeth.2017.08.016
– volume: 36
  start-page: 284
  issue: 2
  year: 2015
  ident: 2023062719160187400_c34
  article-title: A hybrid dielectrophoretic and hydrophoretic microchip for particle sorting using integrated prefocusing and sorting steps
  publication-title: Electrophoresis
  doi: 10.1002/elps.201400397
– volume: 15
  start-page: 1320
  issue: 5
  year: 2015
  ident: 2023062719160187400_c29
  article-title: Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis
  publication-title: Lab Chip
  doi: 10.1039/C4LC01253D
– volume: 1
  start-page: 477
  issue: 7
  year: 2009
  ident: 2023062719160187400_c31
  article-title: Dielectric characterization of complete mononuclear and polymorphonuclear blood cell subpopulations for label-free discrimination
  publication-title: Integr. Biol.
  doi: 10.1039/b906137a
– volume: 102
  start-page: 15757
  issue: 44
  year: 2005
  ident: 2023062719160187400_c10
  article-title: Marker-specific sorting of rare cells using dielectrophoresis
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0507719102
– volume: 26
  start-page: 656
  year: 2008
  ident: 2023062719160187400_c9
  article-title: Unique dielectric properties distinguish stem cells and their differentiated progeny
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2007-0810
– volume: 34
  start-page: 1028
  issue: 7
  year: 2013
  ident: 2023062719160187400_c11
  article-title: Microfluidic devices for the isolation of circulating rare cells: A focus on affinity-based, dielectrophoresis, and hydrophoresis
  publication-title: Electrophoresis
  doi: 10.1002/elps.201200417
– volume: 32
  start-page: 706
  issue: 3
  year: 2014
  ident: 2023062719160187400_c22
  article-title: Membrane biophysics define neuron and astrocyte progenitors in the neural lineage
  publication-title: Stem Cells
  doi: 10.1002/stem.1535
– volume: 1760
  start-page: 922
  issue: 6
  year: 2006
  ident: 2023062719160187400_c13
  article-title: Differences in the biophysical properties of membrane and cytoplasm of apoptotic cells revealed using dielectrophoresis
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2006.01.018
– volume: 7
  start-page: 1396
  issue: 11
  year: 2015
  ident: 2023062719160187400_c21
  article-title: Apoptosis progression studied using parallel dielectrophoresis electrophysiological analysis and flow cytometry
  publication-title: Integr. Biol.
  doi: 10.1039/C5IB00109A
– volume: 39
  start-page: 1104
  issue: 8
  year: 2018
  ident: 2023062719160187400_c19
  article-title: Dielectrophoretic analysis of treated cancer cells for rapid assessment of treatment efficacy
  publication-title: Electrophoresis
  doi: 10.1002/elps.201700488
– volume: 11
  start-page: 1294
  issue: 11
  year: 2008
  ident: 2023062719160187400_c17
  article-title: Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2210
SSID ssj0051722
Score 2.3883908
Snippet We created an integrated microfluidic cell separation system that incorporates hydrophoresis and dielectrophoresis modules to facilitate high-throughput...
SourceID pubmedcentral
proquest
pubmed
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 064111
SubjectTerms Arrays
Depletion
Dielectrophoresis
Electrodes
Enrichment
Fluid dynamics
Fluid flow
Microfluidics
Modules
Regular
Separation
Serpentine
Stem cells
Title High-throughput continuous dielectrophoretic separation of neural stem cells
URI http://dx.doi.org/10.1063/1.5128797
https://www.ncbi.nlm.nih.gov/pubmed/31737160
https://www.proquest.com/docview/2314114460
https://www.proquest.com/docview/2315526155
https://pubmed.ncbi.nlm.nih.gov/PMC6853802
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xOCwcELA8yktZ4MAli-NnckQ8hVaIlRapt8iObbUSSiva8vsZNw9aASvOnjjJfHZmJjP-BuAUzTbx3JOYemNjrpSJdSJ97DwpEq0MkWZaIPsg7574fVd0F-Dkiwy-ZOfJb7RJqcrUIixT3Lq4dJcv7q_-PjYfXIE2mDakQbMXzJuaD_7jxzLIH2h1qgT4jI25WYe12jmMLio0N2DBlZuwOkMZ-BP-hMKMuO6uM5yMo1Br3i8nGMBHtl83tRn2qsOJ0chV1N6DMhr4KHBX4vSBujkKP-xHW_B0c_3v8i6uOyLEBVdsHFtqiDNWMua8y0xKrFBaWsdQMYUrVOaVSzTNJAIjjFaFKIQW3GCMonyaebYNS-WgdLsQkRTR05lUBRfcU5OlWheUS8KsSqykHThrlJc3WgldK57zadpasjzJaz134LgVHVYcGZ8JHTQI5PU2GeXoXPIkRKSkA7_aYVzgQQm6dKi7ICMEDenTDuxUgLV3QeeHYcCHV6s5KFuBQJ49P1L2e1MSbYl-SkrwNU9a0P_38J9IvQ5e3iXyofV735prH1bQ6cqq84wHsDR-mbhDdGzG5qhe2EeweNtN3gAyV_kH
linkProvider American Institute of Physics
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BeygcEG-2FAiPAxe3jp_JsQKqpSwVSK3UW2THtrpSyUbd3f5-xhsn3VUrxNkTx5lxMt9kxt8AfEK3TYMIlLBgHRFaW2JyFYgPtM6NtlTZVYHsiRqfieNzeZ5qc-JZGFzEfN9M21US3_4JB0mB5BIx57K9IRxQ_CDfR29V6FLfh22tqMZNvX14_PX3r_5TLNE7s55OaP2CTSd0C1neLpDcQX_UpcbXvM_RY3iUYGN22C3zCdzzzVN4uEYm-AwmsWSDpL477XKRxSr0abPE0D5z09Tupr3oji1mc9-Rfs-abBayyGqJ00dS5yz-yp8_h7Ojb6dfxiT1SiC10HxBHLPUW6c498GXtqBOaqOc50yr2te6DNrnhpUKTSat0bWspZHCYvSiQ1EG_gK2mlnjX0FGC7SrKZWuhRSB2bIwpmZCUe507hQbwedeeVWvldjP4rJaJbQVr_Iq6XkEHwbRtmPPuEtor7dAlV6geYWwU-QxVqUjeD8M49aPSjCNR91FGSlZTKyO4GVnsOEuCIs4hoJ4td4w5SAQabU3R5rpxYpeWyGCKSg-5sfB6P9a_B1S17OrG4mqdWH3v-Z6Bzvj05-TavL95MdreIDQrOxOPe7B1uJq6d8g_FnYt2mT_wUisQUk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-throughput+continuous+dielectrophoretic+separation+of+neural+stem+cells&rft.jtitle=Biomicrofluidics&rft.au=Jiang%2C+Alan+Y+L&rft.au=Yale%2C+Andrew+R&rft.au=Aghaamoo%2C+Mohammad&rft.au=Lee%2C+Do-Hyun&rft.date=2019-11-01&rft.issn=1932-1058&rft.eissn=1932-1058&rft.volume=13&rft.issue=6&rft.spage=064111&rft_id=info:doi/10.1063%2F1.5128797&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-1058&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-1058&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-1058&client=summon