Application of nature-inspired algorithms and artificial neural network in waterflooding well control optimization
With the aid of machine learning method, namely artificial neural networks, we established data-driven proxy models that could be utilized to maximize the net present value of a waterflooding process by adjusting the well control injection rates over a production period. These data-driven proxies we...
Saved in:
| Published in | Journal of petroleum exploration and production technology Vol. 11; no. 7; pp. 3103 - 3127 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.07.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2190-0558 2190-0566 2190-0566 |
| DOI | 10.1007/s13202-021-01199-x |
Cover
| Abstract | With the aid of machine learning method, namely artificial neural networks, we established data-driven proxy models that could be utilized to maximize the net present value of a waterflooding process by adjusting the well control injection rates over a production period. These data-driven proxies were maneuvered on two different case studies, which included a synthetic 2D reservoir model and a 3D reservoir model (the Egg Model). Regarding the algorithms, we applied two different nature-inspired metaheuristic algorithms, i.e., particle swarm optimization and grey wolf optimization, to perform the optimization task. Pertaining to the development of the proxy models, we demonstrated that the training and blind validation results were excellent (with coefficient of determination,
R
2
being about 0.99). For both case studies and the optimization algorithms employed, the optimization results obtained using the proxy models were all within 5% error (satisfied level of accuracy) compared with reservoir simulator. These results confirm the usefulness of the methodology in developing the proxy models. Besides that, the computational cost of optimization was significantly reduced using the proxies. This further highlights the significant benefits of employing the proxy models for practical use despite being subject to a few constraints. |
|---|---|
| AbstractList | With the aid of machine learning method, namely artificial neural networks, we established data-driven proxy models that could be utilized to maximize the net present value of a waterflooding process by adjusting the well control injection rates over a production period. These data-driven proxies were maneuvered on two different case studies, which included a synthetic 2D reservoir model and a 3D reservoir model (the Egg Model). Regarding the algorithms, we applied two different nature-inspired metaheuristic algorithms, i.e., particle swarm optimization and grey wolf optimization, to perform the optimization task. Pertaining to the development of the proxy models, we demonstrated that the training and blind validation results were excellent (with coefficient of determination,
R
2
being about 0.99). For both case studies and the optimization algorithms employed, the optimization results obtained using the proxy models were all within 5% error (satisfied level of accuracy) compared with reservoir simulator. These results confirm the usefulness of the methodology in developing the proxy models. Besides that, the computational cost of optimization was significantly reduced using the proxies. This further highlights the significant benefits of employing the proxy models for practical use despite being subject to a few constraints. With the aid of machine learning method, namely artificial neural networks, we established data-driven proxy models that could be utilized to maximize the net present value of a waterflooding process by adjusting the well control injection rates over a production period. These data-driven proxies were maneuvered on two different case studies, which included a synthetic 2D reservoir model and a 3D reservoir model (the Egg Model). Regarding the algorithms, we applied two different nature-inspired metaheuristic algorithms, i.e., particle swarm optimization and grey wolf optimization, to perform the optimization task. Pertaining to the development of the proxy models, we demonstrated that the training and blind validation results were excellent (with coefficient of determination, R2 being about 0.99). For both case studies and the optimization algorithms employed, the optimization results obtained using the proxy models were all within 5% error (satisfied level of accuracy) compared with reservoir simulator. These results confirm the usefulness of the methodology in developing the proxy models. Besides that, the computational cost of optimization was significantly reduced using the proxies. This further highlights the significant benefits of employing the proxy models for practical use despite being subject to a few constraints. |
| Author | Ng, Cuthbert Shang Wui Nait Amar, Menad Jahanbani Ghahfarokhi, Ashkan |
| Author_xml | – sequence: 1 givenname: Cuthbert Shang Wui surname: Ng fullname: Ng, Cuthbert Shang Wui email: cuthbert.s.w.ng@ntnu.no organization: Department of Geoscience and Petroleum, Norwegian University of Science and Technology – sequence: 2 givenname: Ashkan surname: Jahanbani Ghahfarokhi fullname: Jahanbani Ghahfarokhi, Ashkan organization: Department of Geoscience and Petroleum, Norwegian University of Science and Technology – sequence: 3 givenname: Menad surname: Nait Amar fullname: Nait Amar, Menad organization: Département Etudes Thermodynamiques, Division Laboratoires |
| BookMark | eNqNkE9P3DAQxS0EElvgC3Cy1HNa_0vsHFeoLUgr9ULPluPYi6nXTseOFvrpCbuolXpAPc2M9H4zb94HdJpycghdU_KJEiI_F8oZYQ1htCGU9n3zdIJWjPakIW3Xnf7pW3WOrkoJAxFMENkzvkKwnqYYrKkhJ5w9TqbO4JqQyhTAjdjEbYZQH3YFm7SMUIMPNpiIk5vhUOo-w08cEt6b6sDHnMeQtnjvYsQ2pwo54jzVsAu_D2cu0Zk3sbirt3qBfnz9cn9z22y-f7u7WW8aKySvje1tr7hVVHRESCGVsJabfrTUd7Yz1g_D6JWSppNqYGr0fOBeckapcEoOhl8gftw7p8k8702MeoKwM_CsKdGvyeljcnpJTh-S008L9fFITZB_za5U_ZhnSItRzdq2FUos4KJSR5WFXAo4r22oh-8qmBDfP8D-Qf_L1dsvZRGnrYO_rt6hXgBvrqUt |
| CitedBy_id | crossref_primary_10_1016_j_geoen_2024_213363 crossref_primary_10_1016_j_geoen_2023_212251 crossref_primary_10_1016_j_eswa_2023_119796 crossref_primary_10_1016_j_fuel_2023_129343 crossref_primary_10_1016_j_petrol_2022_111166 crossref_primary_10_1016_j_petlm_2021_12_008 crossref_primary_10_1016_j_acags_2022_100103 crossref_primary_10_1016_j_petrol_2022_110813 crossref_primary_10_3390_en16083337 crossref_primary_10_1115_1_4065539 crossref_primary_10_1007_s13202_024_01848_x crossref_primary_10_3390_en16083376 crossref_primary_10_1016_j_procs_2025_01_083 crossref_primary_10_1016_j_petrol_2021_109468 crossref_primary_10_1016_j_petrol_2022_110448 crossref_primary_10_1016_j_geoen_2023_211967 crossref_primary_10_1016_j_csite_2023_103858 crossref_primary_10_3390_en16073269 crossref_primary_10_1016_j_acags_2022_100111 crossref_primary_10_1016_j_fuel_2023_128826 crossref_primary_10_1016_j_ptlrs_2025_02_001 crossref_primary_10_1016_j_geoen_2024_212996 crossref_primary_10_1016_j_compchemeng_2022_108107 crossref_primary_10_1007_s11053_025_10458_1 crossref_primary_10_1016_j_geoen_2024_212951 |
| Cites_doi | 10.2118/185691-MS 10.1002/ghg.1414 10.2118/78266-PA 10.1016/j.petrol.2020.107694 10.1016/S1001-6058(14)60009-3 10.2118/943112-g 10.1007/s10596-017-9634-3 10.3390/en12152897 10.1007/s11053-021-09844-2 10.1504/IJOGCT.2018.090966 10.1016/j.cageo.2016.02.022 10.1002/gdj3.21 10.2307/1268522 10.1016/j.jngse.2013.01.003 10.1016/j.petrol.2013.07.009 10.2118/26289-JPT 10.2118/167446-MS 10.1016/j.jngse.2011.08.003 10.1016/j.cageo.2019.104379 10.2118/95322-pa 10.1016/0041-5553(67)90144-9 10.2118/184822-MS 10.1504/IJOGCT.2011.038925 10.1007/s13202-017-0368-5 10.2118/102913-PA 10.3390/fluids4030126 10.3389/fdata.2019.00033 10.1016/j.compchemeng.2018.05.007 10.1016/j.petrol.2015.07.012 10.1016/j.ifacol.2019.06.111 10.1007/978-94-009-5819-7 10.1007/978-3-319-48753-3 10.1002/ghg.1982 10.2118/102492-MS 10.1016/S1876-3804(20)60057-X 10.1016/j.cherd.2013.11.006 10.1007/s10596-017-9666-8 10.2118/184069-MS 10.2118/9781613995600 10.1016/j.petrol.2020.106984 10.3390/pr5030034 10.2523/IPTC-20191-MS 10.1016/B978-0-12-818680-0.00001-1 10.2118/151994-MS 10.2118/101474-MS 10.2118/191327-PA 10.1007/s00366-020-01131-7 10.2118/119098-MS 10.2118/191378-PA 10.2118/107713-MS 10.1007/s10596-012-9303-5 10.1007/s13369-018-3173-7 10.2118/110081-MS 10.1016/j.advengsoft.2013.12.007 10.3390/fluids4020085 10.1016/j.petrol.2017.09.002 10.2118/99959-pa |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7TN 7WY 7WZ 7XB 87Z 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BEZIV BGLVJ BHPHI BKSAR CCPQU DWQXO F1W FR3 FRNLG F~G H96 HCIFZ K60 K6~ KR7 L.- L.G L6V M0C M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY |
| DOI | 10.1007/s13202-021-01199-x |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Oceanic Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Business Premium Collection (Proquest) Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection ABI/INFORM Global (OCUL) Engineering Database (subscription) Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Engineering Collection Business Premium Collection Civil Engineering Abstracts ABI/INFORM Global Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Engineering |
| EISSN | 2190-0566 |
| EndPage | 3127 |
| ExternalDocumentID | 10.1007/s13202-021-01199-x 10_1007_s13202_021_01199_x |
| GroupedDBID | -A0 0R~ 2VQ 3V. 4.4 40G 5VS 7WY 8FE 8FG 8FH 8FL AAFWJ AAJSJ AAKKN ABEEZ ABJCF ABUWG ACACY ACGFS ACIWK ACULB ADBBV ADDVE ADINQ AEUYN AFGXO AFKRA AFPKN AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARCSS BCNDV BENPR BEZIV BGLVJ BHPHI BKSAR BPHCQ C24 C6C CCPQU DWQXO EBLON EBS EJD FRNLG GROUPED_DOAJ HCIFZ HH5 HZ~ IAO IPNFZ ISR ITC K60 K6~ KQ8 L6V L8X LK5 M0C M7R M7S M~E N95 O9- OK1 PCBAR PIMPY PQBIZ PQBZA PQQKQ PROAC PTHSS RIG RNS RSV SEV SOJ TUS U2A AASML AAYXX ABJIA CITATION PHGZM PHGZT PQGLB PUEGO 7TN 7XB 8FD 8FK AZQEC F1W FR3 H96 KR7 L.- L.G PKEHL PQEST PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c473t-c9c983c81460474784cc3a9dc1f6c6acfbbdf887a678b28df3b3f732114e87ba3 |
| IEDL.DBID | U2A |
| ISSN | 2190-0558 2190-0566 |
| IngestDate | Tue Aug 19 09:40:57 EDT 2025 Sat Oct 18 23:13:52 EDT 2025 Wed Oct 01 03:11:16 EDT 2025 Thu Apr 24 22:56:27 EDT 2025 Fri Feb 21 02:48:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 7 |
| Keywords | Data-driven proxy modeling Waterflooding optimization Artificial neural network Nature-inspired algorithms Machine learning |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c473t-c9c983c81460474784cc3a9dc1f6c6acfbbdf887a678b28df3b3f732114e87ba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1007/s13202-021-01199-x |
| PQID | 2555484007 |
| PQPubID | 2034707 |
| PageCount | 25 |
| ParticipantIDs | unpaywall_primary_10_1007_s13202_021_01199_x proquest_journals_2555484007 crossref_citationtrail_10_1007_s13202_021_01199_x crossref_primary_10_1007_s13202_021_01199_x springer_journals_10_1007_s13202_021_01199_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210700 2021-07-00 20210701 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 7 year: 2021 text: 20210700 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Journal of petroleum exploration and production technology |
| PublicationTitleAbbrev | J Petrol Explor Prod Technol |
| PublicationYear | 2021 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | PeacemanDWFundamentals of numerical reservoir simulation1977AmsterdamElsevier Hammersley JM, Handscomb DC (1964) Monte Carlo methods Navrátil J, Kollias G, King AJ, et al (2019) Accelerating physics-based simulations using neural network proxies: an application in oil reservoir modeling. arXiv ZhangKZhangLMYaoJWater flooding optimization with adjoint model under control constraintsJ Hydrodyn201410.1016/S1001-6058(14)60009-3 ShahkaramiAMohagheghSApplications of smart proxies for subsurface modelingPet Explor Dev202010.1016/S1876-3804(20)60057-X MohagheghSDReservoir simulation and modeling based on artificial intelligence and data mining (AI&DM)J Nat Gas Sci Eng201110.1016/j.jngse.2011.08.003 GuyagulerBHorneRNRogersLRosenzweigJJOptimization of well placement in a gulf of Mexico waterflooding projectSPE Reserv Eval Eng200210.2118/78266-PA BruceWAAn electrical device for analyzing oil-reservoir behaviorTrans AIME194310.2118/943112-g He Q, Mohaghegh SD, Liu Z (2016) Reservoir simulation using smart proxy in SACROC unit - Case study. In: SPE Eastern Regional Meeting Mohaghegh SD (2013) Reservoir modeling of shale formations. J. Nat. Gas Sci. Eng. LuRForouzanfarFReynoldsACAn efficient adaptive algorithm for robust control optimization using StoSAGJ Pet Sci Eng201710.1016/j.petrol.2017.09.002 XuCNait AmarMGhrigaMAEvolving support vector regression using Grey Wolf optimization; forecasting the geomechanical properties of rockEng Comput202010.1007/s00366-020-01131-7 JansenJDFonsecaRMKahrobaeiSThe egg model - a geological ensemble for reservoir simulationGeosci Data J201410.1002/gdj3.21 MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw201410.1016/j.advengsoft.2013.12.007 McKayMDBeckmanRJConoverWJA Comparison of three methods for selecting values of input variables in the analysis of output from a computer codeTechnometrics197910.2307/1268522 OgbeiwiPAladeitanYUdebhuluDAn approach to waterflood optimization: case study of the reservoir XJ Pet Explor Prod Technol201810.1007/s13202-017-0368-5 ShahkaramiAMohagheghSGholamiVModeling pressure and saturation distribution in a CO2 storage project using a surrogate reservoir model (SRM)Greenh Gases Sci Technol201410.1002/ghg.1414 BelloutMCEcheverría CiaurriDDurlofskyLJJoint optimization of oil well placement and controlsComput Geosci201210.1007/s10596-012-9303-5 Jansen JD, Douma SD, Brouwer DR, et al (2009) Closed-loop reservoir management. In: SPE Reservoir Simulation Symposium Proceedings Ertekin T, Sun Q (2019) Artificial intelligence applications in reservoir engineering: a status check. Energies Mohaghegh SD, Liu J, Gaskari R, et al (2012) Application of surrogate reservoir model (SRM) to an onshore green field in Saudi Arabia; case study. In: Society of Petroleum Engineers - North Africa Technical Conference and Exhibition 2012, NATC 2012: Managing Hydrocarbon Resources in a Changing Environment Kingma DP, Ba JL (2015) Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings Alenezi F, Mohaghegh S (2017) Developing a smart proxy for the SACROC water-flooding numerical reservoir simulation model. In: SPE Western Regional Meeting Proceedings YousefAAGentilPJensenJLLakeLWA capacitance model to infer interwell connectivity from production- and injection-rate fluctuationsSPE Reserv Eval Eng200610.2118/95322-pa ForouzanfarFReynoldsACWell-placement optimization using a derivative-free methodJ Pet Sci Eng201310.1016/j.petrol.2013.07.009 Mohaghegh SD (2017a) Data-driven reservoir modeling Buduma N, Locascio N (2017) Fundamentals of deep learning : Designing Next-Generation Machine Intelligence Algorithms Udy J, Hansen B, Maddux S, et al (2017) Review of field development optimization of waterflooding, EOR, and well placement focusing on history matching and optimization algorithms. Processes BaumannEJMDaleSIBelloutMCFieldOpt: a powerful and effective programming framework tailored for field development optimizationComput Geosci202010.1016/j.cageo.2019.104379 ShahkaramiAMohagheghSDHajizadehYAssisted history matching using pattern recognition technologyInt J Oil Gas Coal Technol201810.1504/IJOGCT.2018.090966 Mohaghegh SD (2017b) Shale analytics Sayarpour M, Zuluaga E, Kabir CS, Lake LW (2007) The use of capacitance-resistive models for rapid estimation of waterflood performance and optimization. In: Proceedings - SPE Annual Technical Conference and Exhibition Valladão DM, Torrado RR, Flach B, Embid S (2013) On the stochastic response surface methodology for the determination of the development plan of an oil & gas field. In: Society of Petroleum Engineers - SPE Intelligent Energy International 2013: Realising the Full Asset Value VolkovOBelloutMCGradient-based production optimization with simulation-based economic constraintsComput Geosci201710.1007/s10596-017-9634-3 GolzariAHaghighat SefatMJamshidiSDevelopment of an adaptive surrogate model for production optimizationJ Pet Sci Eng201510.1016/j.petrol.2015.07.012 AminiSMohagheghSApplication of machine learning and artificial intelligence in proxy modeling for fluid flow in porous media201910.3390/fluids4030126Fluids Mohaghegh SD, Gaskari R, Maysami M (2017) Shale analytics: Making production and operational decisions based on facts: A case study in marcellus shale. In: Society of Petroleum Engineers - SPE Hydraulic Fracturing Technology Conference and Exhibition 2017 Hemmati-Sarapardeh A, Larestani A, Nait Amar M, Hajirezaie S (2020) Introduction. In: Applications of artificial intelligence techniques in the petroleum industry Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE International Conference on Neural Networks - Conference Proceedings PouladiBKarkevandi-TalkhoonchehASharifiMEnhancement of SPSA algorithm performance using reservoir quality maps: application to coupled well placement and control optimization problemsJ Pet Sci Eng202010.1016/j.petrol.2020.106984 Mohaghegh SD, Hafez H, Gaskari R, et al (2006) Uncertainty analysis of a giant oil field in the middle east using surrogate reservoir model. In: 12th Abu Dhabi international petroleum exhibition and conference, ADIPEC 2006: meeting the increasing oil and gas demand through innovation Nait AmarMZeraibiNJahanbani GhahfarokhiAApplying hybrid support vector regression and genetic algorithm to water alternating CO2 gas EORGreenh Gases Sci Technol202010.1002/ghg.1982 Van EssenGMZandvlietMJVan Den HofPMJRobust waterflooding optimization of multiple geological scenariosSPE J200910.2118/102913-PA Shi Y, Eberhart R (1998) Modified particle swarm optimizer. In: Proceedings of the IEEE Conference on Evolutionary Computation, ICEC Alakeely A, Horne RN (2020) Simulating the behavior of reservoirs with convolutional and recurrent neural networks. SPE Reserv Eval Eng Liang X, Weber DB, Edgar TF, et al (2007) Optimization of oil production based on a capacitance model of production and injection rates. In: SPE Hydrocarbon Economics and Evaluation Symposium Kalantari-DahaghiAMohagheghSDA new practical approach in modelling and simulation of shale gas reservoirs: application to New Albany ShaleInt J Oil, Gas Coal Technol201110.1504/IJOGCT.2011.038925 SobolIMOn the distribution of points in a cube and the approximate evaluation of integralsUSSR Comput Math Math Phys196710.1016/0041-5553(67)90144-9 Teixeira AF, Secchi AR (2019) Machine learning models to support reservoir production optimization. In: IFAC-PapersOnLine ThakurGCWhat is reservoir management?JPT J Pet Technol199610.2118/26289-JPT BabaeiMPanIPerformance comparison of several response surface surrogate models and ensemble methods for water injection optimization under uncertaintyComput Geosci201610.1016/j.cageo.2016.02.022 SarmaPChenWHDurlofskyLJAzizKProduction optimization with adjoint models under nonlinear control-state path inequality constraintsSPE Reserv Eval Eng200810.2118/99959-pa DigeNDiwekarUEfficient sampling algorithm for large-scale optimization under uncertainty problemsComput Chem Eng201811543145410.1016/j.compchemeng.2018.05.007 Mohaghegh SD (2006) Quantifying uncertainties associated with reservoir simulation studies using surrogate reservoir models. In: Proceedings - SPE Annual Technical Conference and Exhibition HongAJBratvoldRBNævdalGRobust production optimization with capacitance-resistance model as precursorComput Geosci201710.1007/s10596-017-9666-8 WangLLiZPAdenutsiCDA novel multi-objective optimization method for well control parameters based on PSO-LSSVR proxy model and NSGA-II algorithmJ Pet Sci Eng202110.1016/j.petrol.2020.107694 ForouzanfarFReynoldsACJoint optimization of number of wells, well locations and controls using a gradient-based algorithmChem Eng Res Des201410.1016/j.cherd.2013.11.006 NgCSWJahanbani GhahfarokhiANait AmarMTorsæterOSmart proxy modeling of a fractured reservoir model for production optimization: implementation of metaheuristic algorithm and probabilistic applicationNat Res Resour202110.1007/s11053-021-09844-2 VidaGShahabMDMohammadMSmart proxy modeling of SACROC CO2-EOR201910.3390/fluids4020085Fluids GuoZReynoldsACRobust life-cycle production optimization with a support-vector-regression proxySPE J201810.2118/191378-PA Nait AmarMZeraibiNRedouaneKOptimization of WAG process using dynamic proxy, genetic algorithm and ant colony optimizationArab J Sci Eng201810.1007/s13369-018-3173-7 HongABratvoldRBLakeLWFast analysis of optimal improved-oil-recovery switch time using a two-factor production model and least-squares Monte Carlo algorithmSPE Reserv Eval Eng201910.2118/191327-PA SD Mohaghegh (1199_CR31) 2011 A Shahkarami (1199_CR48) 2014 1199_CR24 1199_CR25 M Nait Amar (1199_CR38) 2018 1199_CR26 S Mirjalili (1199_CR29) 2014 C Xu (1199_CR60) 2020 P Sarma (1199_CR45) 2008 G Vida (1199_CR57) 2019 F Forouzanfar (1199_CR11) 2013 1199_CR8 1199_CR21 1199_CR2 JD Jansen (1199_CR22) 2014 R Lu (1199_CR27) 2017 1199_CR1 DW Peaceman (1199_CR43) 1977 A Shahkarami (1199_CR49) 2018 MC Bellout (1199_CR6) 2012 Z Guo (1199_CR14) 2018 P Ogbeiwi (1199_CR42) 2018 1199_CR35 K Zhang (1199_CR62) 2014 1199_CR36 1199_CR37 GC Thakur (1199_CR53) 1996 AA Yousef (1199_CR61) 2006 S Amini (1199_CR3) 2019 B Guyaguler (1199_CR15) 2002 O Volkov (1199_CR58) 2017 1199_CR32 1199_CR33 1199_CR34 WA Bruce (1199_CR7) 1943 1199_CR30 1199_CR46 EJM Baumann (1199_CR5) 2020 GM Van Essen (1199_CR56) 2009 IM Sobol (1199_CR51) 1967 A Hong (1199_CR20) 2019 CSW Ng (1199_CR41) 2021 1199_CR40 1199_CR17 M Babaei (1199_CR4) 2016 1199_CR18 A Golzari (1199_CR13) 2015 MD McKay (1199_CR28) 1979 1199_CR16 F Forouzanfar (1199_CR12) 2014 L Wang (1199_CR59) 2021 N Dige (1199_CR9) 2018; 115 A Kalantari-Dahaghi (1199_CR23) 2011 B Pouladi (1199_CR44) 2020 M Nait Amar (1199_CR39) 2020 1199_CR10 1199_CR54 1199_CR55 AJ Hong (1199_CR19) 2017 1199_CR50 A Shahkarami (1199_CR47) 2020 1199_CR52 |
| References_xml | – reference: Jansen JD, Douma SD, Brouwer DR, et al (2009) Closed-loop reservoir management. In: SPE Reservoir Simulation Symposium Proceedings – reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw201410.1016/j.advengsoft.2013.12.007 – reference: Teixeira AF, Secchi AR (2019) Machine learning models to support reservoir production optimization. In: IFAC-PapersOnLine – reference: BruceWAAn electrical device for analyzing oil-reservoir behaviorTrans AIME194310.2118/943112-g – reference: Nait AmarMZeraibiNRedouaneKOptimization of WAG process using dynamic proxy, genetic algorithm and ant colony optimizationArab J Sci Eng201810.1007/s13369-018-3173-7 – reference: ShahkaramiAMohagheghSGholamiVModeling pressure and saturation distribution in a CO2 storage project using a surrogate reservoir model (SRM)Greenh Gases Sci Technol201410.1002/ghg.1414 – reference: OgbeiwiPAladeitanYUdebhuluDAn approach to waterflood optimization: case study of the reservoir XJ Pet Explor Prod Technol201810.1007/s13202-017-0368-5 – reference: ForouzanfarFReynoldsACJoint optimization of number of wells, well locations and controls using a gradient-based algorithmChem Eng Res Des201410.1016/j.cherd.2013.11.006 – reference: Hammersley JM, Handscomb DC (1964) Monte Carlo methods – reference: BabaeiMPanIPerformance comparison of several response surface surrogate models and ensemble methods for water injection optimization under uncertaintyComput Geosci201610.1016/j.cageo.2016.02.022 – reference: HongAJBratvoldRBNævdalGRobust production optimization with capacitance-resistance model as precursorComput Geosci201710.1007/s10596-017-9666-8 – reference: ZhangKZhangLMYaoJWater flooding optimization with adjoint model under control constraintsJ Hydrodyn201410.1016/S1001-6058(14)60009-3 – reference: ThakurGCWhat is reservoir management?JPT J Pet Technol199610.2118/26289-JPT – reference: BaumannEJMDaleSIBelloutMCFieldOpt: a powerful and effective programming framework tailored for field development optimizationComput Geosci202010.1016/j.cageo.2019.104379 – reference: Mohaghegh SD, Hafez H, Gaskari R, et al (2006) Uncertainty analysis of a giant oil field in the middle east using surrogate reservoir model. In: 12th Abu Dhabi international petroleum exhibition and conference, ADIPEC 2006: meeting the increasing oil and gas demand through innovation – reference: ShahkaramiAMohagheghSApplications of smart proxies for subsurface modelingPet Explor Dev202010.1016/S1876-3804(20)60057-X – reference: He Q, Mohaghegh SD, Liu Z (2016) Reservoir simulation using smart proxy in SACROC unit - Case study. In: SPE Eastern Regional Meeting – reference: Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE International Conference on Neural Networks - Conference Proceedings – reference: Sayarpour M, Zuluaga E, Kabir CS, Lake LW (2007) The use of capacitance-resistive models for rapid estimation of waterflood performance and optimization. In: Proceedings - SPE Annual Technical Conference and Exhibition – reference: SobolIMOn the distribution of points in a cube and the approximate evaluation of integralsUSSR Comput Math Math Phys196710.1016/0041-5553(67)90144-9 – reference: PeacemanDWFundamentals of numerical reservoir simulation1977AmsterdamElsevier – reference: Nait AmarMZeraibiNJahanbani GhahfarokhiAApplying hybrid support vector regression and genetic algorithm to water alternating CO2 gas EORGreenh Gases Sci Technol202010.1002/ghg.1982 – reference: AminiSMohagheghSApplication of machine learning and artificial intelligence in proxy modeling for fluid flow in porous media201910.3390/fluids4030126Fluids – reference: WangLLiZPAdenutsiCDA novel multi-objective optimization method for well control parameters based on PSO-LSSVR proxy model and NSGA-II algorithmJ Pet Sci Eng202110.1016/j.petrol.2020.107694 – reference: LuRForouzanfarFReynoldsACAn efficient adaptive algorithm for robust control optimization using StoSAGJ Pet Sci Eng201710.1016/j.petrol.2017.09.002 – reference: Mohaghegh SD (2013) Reservoir modeling of shale formations. J. Nat. Gas Sci. Eng. – reference: Udy J, Hansen B, Maddux S, et al (2017) Review of field development optimization of waterflooding, EOR, and well placement focusing on history matching and optimization algorithms. Processes – reference: Van EssenGMZandvlietMJVan Den HofPMJRobust waterflooding optimization of multiple geological scenariosSPE J200910.2118/102913-PA – reference: Buduma N, Locascio N (2017) Fundamentals of deep learning : Designing Next-Generation Machine Intelligence Algorithms – reference: Valladão DM, Torrado RR, Flach B, Embid S (2013) On the stochastic response surface methodology for the determination of the development plan of an oil & gas field. In: Society of Petroleum Engineers - SPE Intelligent Energy International 2013: Realising the Full Asset Value – reference: Mohaghegh SD (2006) Quantifying uncertainties associated with reservoir simulation studies using surrogate reservoir models. In: Proceedings - SPE Annual Technical Conference and Exhibition – reference: Alenezi F, Mohaghegh S (2017) Developing a smart proxy for the SACROC water-flooding numerical reservoir simulation model. In: SPE Western Regional Meeting Proceedings – reference: VolkovOBelloutMCGradient-based production optimization with simulation-based economic constraintsComput Geosci201710.1007/s10596-017-9634-3 – reference: Shi Y, Eberhart R (1998) Modified particle swarm optimizer. In: Proceedings of the IEEE Conference on Evolutionary Computation, ICEC – reference: GolzariAHaghighat SefatMJamshidiSDevelopment of an adaptive surrogate model for production optimizationJ Pet Sci Eng201510.1016/j.petrol.2015.07.012 – reference: Navrátil J, Kollias G, King AJ, et al (2019) Accelerating physics-based simulations using neural network proxies: an application in oil reservoir modeling. arXiv – reference: BelloutMCEcheverría CiaurriDDurlofskyLJJoint optimization of oil well placement and controlsComput Geosci201210.1007/s10596-012-9303-5 – reference: Ertekin T, Sun Q (2019) Artificial intelligence applications in reservoir engineering: a status check. Energies – reference: McKayMDBeckmanRJConoverWJA Comparison of three methods for selecting values of input variables in the analysis of output from a computer codeTechnometrics197910.2307/1268522 – reference: VidaGShahabMDMohammadMSmart proxy modeling of SACROC CO2-EOR201910.3390/fluids4020085Fluids – reference: NgCSWJahanbani GhahfarokhiANait AmarMTorsæterOSmart proxy modeling of a fractured reservoir model for production optimization: implementation of metaheuristic algorithm and probabilistic applicationNat Res Resour202110.1007/s11053-021-09844-2 – reference: Mohaghegh SD (2017b) Shale analytics – reference: Hemmati-Sarapardeh A, Larestani A, Nait Amar M, Hajirezaie S (2020) Introduction. In: Applications of artificial intelligence techniques in the petroleum industry – reference: PouladiBKarkevandi-TalkhoonchehASharifiMEnhancement of SPSA algorithm performance using reservoir quality maps: application to coupled well placement and control optimization problemsJ Pet Sci Eng202010.1016/j.petrol.2020.106984 – reference: Mohaghegh SD (2017a) Data-driven reservoir modeling – reference: SarmaPChenWHDurlofskyLJAzizKProduction optimization with adjoint models under nonlinear control-state path inequality constraintsSPE Reserv Eval Eng200810.2118/99959-pa – reference: Alakeely A, Horne RN (2020) Simulating the behavior of reservoirs with convolutional and recurrent neural networks. SPE Reserv Eval Eng – reference: JansenJDFonsecaRMKahrobaeiSThe egg model - a geological ensemble for reservoir simulationGeosci Data J201410.1002/gdj3.21 – reference: GuoZReynoldsACRobust life-cycle production optimization with a support-vector-regression proxySPE J201810.2118/191378-PA – reference: Kingma DP, Ba JL (2015) Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings – reference: ForouzanfarFReynoldsACWell-placement optimization using a derivative-free methodJ Pet Sci Eng201310.1016/j.petrol.2013.07.009 – reference: Mohaghegh SD, Gaskari R, Maysami M (2017) Shale analytics: Making production and operational decisions based on facts: A case study in marcellus shale. In: Society of Petroleum Engineers - SPE Hydraulic Fracturing Technology Conference and Exhibition 2017 – reference: ShahkaramiAMohagheghSDHajizadehYAssisted history matching using pattern recognition technologyInt J Oil Gas Coal Technol201810.1504/IJOGCT.2018.090966 – reference: YousefAAGentilPJensenJLLakeLWA capacitance model to infer interwell connectivity from production- and injection-rate fluctuationsSPE Reserv Eval Eng200610.2118/95322-pa – reference: GuyagulerBHorneRNRogersLRosenzweigJJOptimization of well placement in a gulf of Mexico waterflooding projectSPE Reserv Eval Eng200210.2118/78266-PA – reference: MohagheghSDReservoir simulation and modeling based on artificial intelligence and data mining (AI&DM)J Nat Gas Sci Eng201110.1016/j.jngse.2011.08.003 – reference: Kalantari-DahaghiAMohagheghSDA new practical approach in modelling and simulation of shale gas reservoirs: application to New Albany ShaleInt J Oil, Gas Coal Technol201110.1504/IJOGCT.2011.038925 – reference: Mohaghegh SD, Liu J, Gaskari R, et al (2012) Application of surrogate reservoir model (SRM) to an onshore green field in Saudi Arabia; case study. In: Society of Petroleum Engineers - North Africa Technical Conference and Exhibition 2012, NATC 2012: Managing Hydrocarbon Resources in a Changing Environment – reference: DigeNDiwekarUEfficient sampling algorithm for large-scale optimization under uncertainty problemsComput Chem Eng201811543145410.1016/j.compchemeng.2018.05.007 – reference: Liang X, Weber DB, Edgar TF, et al (2007) Optimization of oil production based on a capacitance model of production and injection rates. In: SPE Hydrocarbon Economics and Evaluation Symposium – reference: XuCNait AmarMGhrigaMAEvolving support vector regression using Grey Wolf optimization; forecasting the geomechanical properties of rockEng Comput202010.1007/s00366-020-01131-7 – reference: HongABratvoldRBLakeLWFast analysis of optimal improved-oil-recovery switch time using a two-factor production model and least-squares Monte Carlo algorithmSPE Reserv Eval Eng201910.2118/191327-PA – ident: 1199_CR2 doi: 10.2118/185691-MS – year: 2014 ident: 1199_CR48 publication-title: Greenh Gases Sci Technol doi: 10.1002/ghg.1414 – year: 2002 ident: 1199_CR15 publication-title: SPE Reserv Eval Eng doi: 10.2118/78266-PA – year: 2021 ident: 1199_CR59 publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2020.107694 – year: 2014 ident: 1199_CR62 publication-title: J Hydrodyn doi: 10.1016/S1001-6058(14)60009-3 – year: 1943 ident: 1199_CR7 publication-title: Trans AIME doi: 10.2118/943112-g – year: 2017 ident: 1199_CR58 publication-title: Comput Geosci doi: 10.1007/s10596-017-9634-3 – ident: 1199_CR10 doi: 10.3390/en12152897 – year: 2021 ident: 1199_CR41 publication-title: Nat Res Resour doi: 10.1007/s11053-021-09844-2 – year: 2018 ident: 1199_CR49 publication-title: Int J Oil Gas Coal Technol doi: 10.1504/IJOGCT.2018.090966 – year: 2016 ident: 1199_CR4 publication-title: Comput Geosci doi: 10.1016/j.cageo.2016.02.022 – year: 2014 ident: 1199_CR22 publication-title: Geosci Data J doi: 10.1002/gdj3.21 – year: 1979 ident: 1199_CR28 publication-title: Technometrics doi: 10.2307/1268522 – ident: 1199_CR32 doi: 10.1016/j.jngse.2013.01.003 – year: 2013 ident: 1199_CR11 publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2013.07.009 – year: 1996 ident: 1199_CR53 publication-title: JPT J Pet Technol doi: 10.2118/26289-JPT – ident: 1199_CR55 doi: 10.2118/167446-MS – year: 2011 ident: 1199_CR31 publication-title: J Nat Gas Sci Eng doi: 10.1016/j.jngse.2011.08.003 – year: 2020 ident: 1199_CR5 publication-title: Comput Geosci doi: 10.1016/j.cageo.2019.104379 – year: 2006 ident: 1199_CR61 publication-title: SPE Reserv Eval Eng doi: 10.2118/95322-pa – year: 1967 ident: 1199_CR51 publication-title: USSR Comput Math Math Phys doi: 10.1016/0041-5553(67)90144-9 – ident: 1199_CR37 doi: 10.2118/184822-MS – ident: 1199_CR24 – ident: 1199_CR8 – year: 2011 ident: 1199_CR23 publication-title: Int J Oil, Gas Coal Technol doi: 10.1504/IJOGCT.2011.038925 – year: 2018 ident: 1199_CR42 publication-title: J Pet Explor Prod Technol doi: 10.1007/s13202-017-0368-5 – year: 2009 ident: 1199_CR56 publication-title: SPE J doi: 10.2118/102913-PA – year: 2019 ident: 1199_CR3 doi: 10.3390/fluids4030126 – ident: 1199_CR40 doi: 10.3389/fdata.2019.00033 – volume: 115 start-page: 431 year: 2018 ident: 1199_CR9 publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2018.05.007 – year: 2015 ident: 1199_CR13 publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2015.07.012 – ident: 1199_CR52 doi: 10.1016/j.ifacol.2019.06.111 – ident: 1199_CR16 doi: 10.1007/978-94-009-5819-7 – ident: 1199_CR34 doi: 10.1007/978-3-319-48753-3 – year: 2020 ident: 1199_CR39 publication-title: Greenh Gases Sci Technol doi: 10.1002/ghg.1982 – ident: 1199_CR25 – ident: 1199_CR30 doi: 10.2118/102492-MS – year: 2020 ident: 1199_CR47 publication-title: Pet Explor Dev doi: 10.1016/S1876-3804(20)60057-X – year: 2014 ident: 1199_CR12 publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2013.11.006 – year: 2017 ident: 1199_CR19 publication-title: Comput Geosci doi: 10.1007/s10596-017-9666-8 – ident: 1199_CR17 doi: 10.2118/184069-MS – ident: 1199_CR33 doi: 10.2118/9781613995600 – year: 2020 ident: 1199_CR44 publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2020.106984 – ident: 1199_CR54 doi: 10.3390/pr5030034 – ident: 1199_CR1 doi: 10.2523/IPTC-20191-MS – ident: 1199_CR50 – ident: 1199_CR18 doi: 10.1016/B978-0-12-818680-0.00001-1 – ident: 1199_CR36 doi: 10.2118/151994-MS – ident: 1199_CR35 doi: 10.2118/101474-MS – year: 2019 ident: 1199_CR20 publication-title: SPE Reserv Eval Eng doi: 10.2118/191327-PA – year: 2020 ident: 1199_CR60 publication-title: Eng Comput doi: 10.1007/s00366-020-01131-7 – ident: 1199_CR21 doi: 10.2118/119098-MS – year: 2018 ident: 1199_CR14 publication-title: SPE J doi: 10.2118/191378-PA – ident: 1199_CR26 doi: 10.2118/107713-MS – year: 2012 ident: 1199_CR6 publication-title: Comput Geosci doi: 10.1007/s10596-012-9303-5 – year: 2018 ident: 1199_CR38 publication-title: Arab J Sci Eng doi: 10.1007/s13369-018-3173-7 – ident: 1199_CR46 doi: 10.2118/110081-MS – year: 2014 ident: 1199_CR29 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume-title: Fundamentals of numerical reservoir simulation year: 1977 ident: 1199_CR43 – year: 2019 ident: 1199_CR57 doi: 10.3390/fluids4020085 – year: 2017 ident: 1199_CR27 publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2017.09.002 – year: 2008 ident: 1199_CR45 publication-title: SPE Reserv Eval Eng doi: 10.2118/99959-pa |
| SSID | ssib042407923 ssj0000941014 |
| Score | 1.9988358 |
| Snippet | With the aid of machine learning method, namely artificial neural networks, we established data-driven proxy models that could be utilized to maximize the net... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3103 |
| SubjectTerms | Algorithms Artificial neural networks Case studies Earth and Environmental Science Earth Sciences Energy Systems Geology Heuristic methods Industrial and Production Engineering Industrial Chemistry/Chemical Engineering Machine learning Monitoring/Environmental Analysis Neural networks Offshore Engineering Optimization Original Paper-Production Engineering Ova Particle swarm optimization Reservoirs Simulators Three dimensional models Training Two dimensional models |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60HrQH8YnVKnvwpos2u3kdRFQUESwiCt7CPn1Q09pWrP_enWTT6KV4CiHJLsk32Z3dmfk-gP2Uc22TSNM4MIxypSSVNpLUSNGJteJhx-J-x203un7kN0_h0xx0q1oYTKusxsRioNZ9hXvkR871dc41qnifDj4oqkZhdLWS0BBeWkGfFBRj87AQIDNWAxbOL7t395WFcVy_VAuGtzKvDsVqUYEOa6qPwzDxlTVlfR2qi1PMYkBqtJRO_s5etUs6jaI2YfEzH4jvL9Hr_ZqorlZg2XuY5Kw0iVWYM_kaNH_xDq7D8KwOW5O-JSW7J33NMexuNBG9Z_fq45f3ERG5Ox0WCUXOUgnSXxaHInmcvObkS6DQNaa_u6YJbgUSn_5O-m44evd1nhvweHX5cHFNvfgCVTxmY6pSlSZM4Q7hMUeSfYcjE6lWHRupSCgrpQM5iYWb7WSQaMskszFz60luklgKtgmNvJ-bLSAOOB2kNhAilDxKgtRoaRlHri9mtWEt6FQfNVOemRwFMnpZzamMQGQOiKwAIpu04GD6zKDk5Zh5d7vCKvP_6CirLaoFhxV-9eVZrR1OMf5H59uzO9-BpaCwMEwBbkNjPPw0u87RGcs9b70_KCn5oQ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH-CckAcGONDdALkw27gQmPHSY7VGEKThnZYJThF_oSKNq1KKhh_PX6J0zA0oU07JZEdR7af4_f83vv9AD5nnBuXCkOTyDLKtVZUOaGoVbKfGM3jvsPzju9X4nLIv13H1ytw3uTCVNHujUuyzmlAlKaiPJ0Zd9omviHtN8XwAsQsy-hTzxevwpqIvUbegbXh1Y_BDfLKYab0WVzRdIZ7IULuzJ8b-n1_apXOpZ90A9YXxUz-epTj8aut6OID2KYTdQTKfW9Rqp5-foPv-L-93ILNoKuSQS1cH2HFFtuw8QrBcAfmg9YBTqaO1DihdFSgA98aIse30_movJs8EFn4x3kVmuRlniCQZnWpwtDJqCCPEimzMZDeN03wUJGEQHoy9T-2ScgY3YXhxdefXy5poHGgmiespDrTWco0njWecYTr9xLBZGZ03wktpHZKeXFJE-n3TRWlxjHFXMK8ZcptmijJ9qBTTAu7D8TrPibKXCRlrLhIo8wa5RhH1DDmjGVd6DeTl-uAcY5UG-O8RWfGMc39mObVmOZPXThevjOrET7erX3QyEQeVvtD7s0yb_ghw3wXTpppbYvfa-1kKUt_8fFP_1b9ADrlfGEPvdZUqqOwKF4AwFATAQ priority: 102 providerName: Unpaywall |
| Title | Application of nature-inspired algorithms and artificial neural network in waterflooding well control optimization |
| URI | https://link.springer.com/article/10.1007/s13202-021-01199-x https://www.proquest.com/docview/2555484007 https://link.springer.com/content/pdf/10.1007/s13202-021-01199-x.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2190-0566 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941014 issn: 2190-0566 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2190-0566 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941014 issn: 2190-0566 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2190-0566 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941014 issn: 2190-0566 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2190-0566 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941014 issn: 2190-0566 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2190-0566 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941014 issn: 2190-0566 databaseCode: 8FG dateStart: 20121001 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2190-0566 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941014 issn: 2190-0566 databaseCode: AAJSJ dateStart: 20110501 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2190-0566 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941014 issn: 2190-0566 databaseCode: C24 dateStart: 20110501 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2190-0566 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941014 issn: 2190-0566 databaseCode: C6C dateStart: 20110501 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Open Access Hybrid - NESLI2 2011-2012 customDbUrl: eissn: 2190-0566 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941014 issn: 2190-0566 databaseCode: 40G dateStart: 20110101 isFulltext: true titleUrlDefault: http://link.springer.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 2190-0566 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941014 issn: 2190-0566 databaseCode: U2A dateStart: 20110501 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-6lrH1YazdxrJ1QQ97awWJJX89eqFpCSyUroH2yehzy0idkqR0_e93p9hxB6O0LxK2bAn8k6w73d3vAL7mUlqfJZankRNcGqO59onmTqt-ao2M-57OO76Pk9OJHF3Gl3VQ2LLxdm9MkuFP3Qa7UapvTi4FxFOWc5Qcd2Ki88JZPImKZhZJ0lEapeD32neOEtJSljmKm-7FcVZHz_y_2393qFbs3FhKd-HVbXWj7u_UbPZgMxq-hTe1FMmKNex7sOWqfdh9wC24Dy9PQs7e-3ewKFojNZt7tuby5NOKjOzOMjX7OV9MV7-ul0xVeLkI7kM4LxmRXYYquIqzacXuFKW1Jmd3HITRwR-rnd3ZHH8-13VU53uYDI8vBqe8TrXAjUzFipvc5JkwdB7Yk0Spj6gJlVvT94lJlPFaI6RZqnBv01FmvdDCpwK1R-myVCvxAbareeU-AkP5xEa5j5SKtUyyKHdWeyGJ2Ut460QH-s3nLU3NQ07pMGZly6BMkJQISRkgKf904HDzzs2ahePRpw8a1Mp6RS5LVJ1QOaMs8B04apBsmx_r7WiD9hMG__S83j_D6yjMPXIAPoDt1eLWfUExZ6W78EL2TrDMhljuFMXoxwjrb8fjs3O8O4gklcmgG44RumENYPtkfFZc_QWLkPyR |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROFAOFX2JtNDuoT2VVYl3_TqgiragUCCqKpC4uftsqYKTJkGBP8dvY8Zex_QS9cLJsmyv7Z3Z2Zndme8DeJdLaX2WWJ5GTnBpjObaJ5o7rbqpNTLuelrvOOknvTP57Tw-X4LbphaG0iobm1gZajs0tEb-EV1fdK6JxfvT6C8n1ijaXW0oNFSgVrC7FcRYKOw4cjczDOEmu4dfUd7vo-hg__RLjweWAW5kKqbc5CbPhKGlsB1JaPL4wULl1nR9YhJlvNb4N1mq0KzrKLNeaOFTgYGTdFmqlcB2H8GKFDLH4G_l837_-49GoyXFS02A8qfO4yNyXGK8oxrunTjOQiVPXc9HbOacsiYIii3n1__Olq0LPN-1XYPVq3KkbmZqMLg3MR6sw5Pg0bK9WgWfwpIrn8HaPZzD5zDea7fJ2dCzGk2UX5S0ze8sU4Nf2NXT35cTpko8HVcJTDgyGMFtVocqWZ1dlGymiFib0u2xaUZLjyyk27Mhmr_LUFf6As4eRAwvYbkclm4DGCqKjXIfKRVrmWRR7qz2QhK2mPDWiQ50m04tTEBCJ0KOQdFiOJMgChREUQmiuO7Ah_kzoxoHZOHdm42simATJkWrwR3YbuTXXl7U2vZcxv_x8leLX_4WVnunJ8fF8WH_6DU8jipto_TjTViejq_cFjpZU_0maDKDnw89eO4AeBI3Yg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTtxAEC3BIAU4ILIghhDSh-QUWjDu9naIEApMICQohyBxc3pl0eAZZtHAr-XrUuVlTC6jXDhZlu32UtXl6u5X7wF8SKW0PoksjwMnuDRGc-0jzZ1WndgaGXY8zXf8OI9OLuS3y_ByAf7UtTAEq6xjYhGobd_QHPkepr6YXJOK956vYBE_j7oHg3tOClK00lrLaZQucuYepzh8G30-PUJbfwyC7vGvLye8UhjgRsZizE1q0kQYmgbbl8Qkjw8rVGpNx0cmUsZrjW-SxApDug4S64UWPhY4aJIuibUS2O4iLMXE4k5V6t2vtS9LGinVQ5PbEsFHsrikdUfV2_thmFQ1PGUlH-mYc8JLEAlbyh_-_U82ye9svXYVlif5QD1OVa_35JfYXYe1Kpdlh6XzvYQFl7-C1ScMh69heNgskLO-ZyWPKL_JaYHfWaZ6V_hhx9d3I6Zy3B0W0CXsE4yINotNAVNnNzmbKpLUJqA9Ns1o0pFVQHvWx8B3V1WUvoGLZzHCBrTyfu42gaGL2CD1gVKhllESpM5qLySxiglvnWhDp_6omak40EmKo5c17M1kiAwNkRWGyB7a8Gl2zaBkAJl79nZtq6yKBqOs8d027Nb2aw7Pa213ZuP_uPnW_Ju_hxfYZbLvp-dnb2ElKJyNcMfb0BoPJ-4dZldjvVO4MYPfz91v_gLnSjT8 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH-CckAcGONDdALkw27gQmPHSY7VGEKThnZYJThF_oSKNq1KKhh_PX6J0zA0oU07JZEdR7af4_f83vv9AD5nnBuXCkOTyDLKtVZUOaGoVbKfGM3jvsPzju9X4nLIv13H1ytw3uTCVNHujUuyzmlAlKaiPJ0Zd9omviHtN8XwAsQsy-hTzxevwpqIvUbegbXh1Y_BDfLKYab0WVzRdIZ7IULuzJ8b-n1_apXOpZ90A9YXxUz-epTj8aut6OID2KYTdQTKfW9Rqp5-foPv-L-93ILNoKuSQS1cH2HFFtuw8QrBcAfmg9YBTqaO1DihdFSgA98aIse30_movJs8EFn4x3kVmuRlniCQZnWpwtDJqCCPEimzMZDeN03wUJGEQHoy9T-2ScgY3YXhxdefXy5poHGgmiespDrTWco0njWecYTr9xLBZGZ03wktpHZKeXFJE-n3TRWlxjHFXMK8ZcptmijJ9qBTTAu7D8TrPibKXCRlrLhIo8wa5RhH1DDmjGVd6DeTl-uAcY5UG-O8RWfGMc39mObVmOZPXThevjOrET7erX3QyEQeVvtD7s0yb_ghw3wXTpppbYvfa-1kKUt_8fFP_1b9ADrlfGEPvdZUqqOwKF4AwFATAQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+nature-inspired+algorithms+and+artificial+neural+network+in+waterflooding+well+control+optimization&rft.jtitle=Journal+of+petroleum+exploration+and+production+technology&rft.au=Ng%2C+Cuthbert+Shang+Wui&rft.au=Jahanbani+Ghahfarokhi%2C+Ashkan&rft.au=Nait+Amar%2C+Menad&rft.date=2021-07-01&rft.pub=Springer+International+Publishing&rft.issn=2190-0558&rft.eissn=2190-0566&rft.volume=11&rft.issue=7&rft.spage=3103&rft.epage=3127&rft_id=info:doi/10.1007%2Fs13202-021-01199-x&rft.externalDocID=10_1007_s13202_021_01199_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-0558&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-0558&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-0558&client=summon |