Application of nature-inspired algorithms and artificial neural network in waterflooding well control optimization

With the aid of machine learning method, namely artificial neural networks, we established data-driven proxy models that could be utilized to maximize the net present value of a waterflooding process by adjusting the well control injection rates over a production period. These data-driven proxies we...

Full description

Saved in:
Bibliographic Details
Published inJournal of petroleum exploration and production technology Vol. 11; no. 7; pp. 3103 - 3127
Main Authors Ng, Cuthbert Shang Wui, Jahanbani Ghahfarokhi, Ashkan, Nait Amar, Menad
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.07.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2190-0558
2190-0566
2190-0566
DOI10.1007/s13202-021-01199-x

Cover

Abstract With the aid of machine learning method, namely artificial neural networks, we established data-driven proxy models that could be utilized to maximize the net present value of a waterflooding process by adjusting the well control injection rates over a production period. These data-driven proxies were maneuvered on two different case studies, which included a synthetic 2D reservoir model and a 3D reservoir model (the Egg Model). Regarding the algorithms, we applied two different nature-inspired metaheuristic algorithms, i.e., particle swarm optimization and grey wolf optimization, to perform the optimization task. Pertaining to the development of the proxy models, we demonstrated that the training and blind validation results were excellent (with coefficient of determination, R 2 being about 0.99). For both case studies and the optimization algorithms employed, the optimization results obtained using the proxy models were all within 5% error (satisfied level of accuracy) compared with reservoir simulator. These results confirm the usefulness of the methodology in developing the proxy models. Besides that, the computational cost of optimization was significantly reduced using the proxies. This further highlights the significant benefits of employing the proxy models for practical use despite being subject to a few constraints.
AbstractList With the aid of machine learning method, namely artificial neural networks, we established data-driven proxy models that could be utilized to maximize the net present value of a waterflooding process by adjusting the well control injection rates over a production period. These data-driven proxies were maneuvered on two different case studies, which included a synthetic 2D reservoir model and a 3D reservoir model (the Egg Model). Regarding the algorithms, we applied two different nature-inspired metaheuristic algorithms, i.e., particle swarm optimization and grey wolf optimization, to perform the optimization task. Pertaining to the development of the proxy models, we demonstrated that the training and blind validation results were excellent (with coefficient of determination, R 2 being about 0.99). For both case studies and the optimization algorithms employed, the optimization results obtained using the proxy models were all within 5% error (satisfied level of accuracy) compared with reservoir simulator. These results confirm the usefulness of the methodology in developing the proxy models. Besides that, the computational cost of optimization was significantly reduced using the proxies. This further highlights the significant benefits of employing the proxy models for practical use despite being subject to a few constraints.
With the aid of machine learning method, namely artificial neural networks, we established data-driven proxy models that could be utilized to maximize the net present value of a waterflooding process by adjusting the well control injection rates over a production period. These data-driven proxies were maneuvered on two different case studies, which included a synthetic 2D reservoir model and a 3D reservoir model (the Egg Model). Regarding the algorithms, we applied two different nature-inspired metaheuristic algorithms, i.e., particle swarm optimization and grey wolf optimization, to perform the optimization task. Pertaining to the development of the proxy models, we demonstrated that the training and blind validation results were excellent (with coefficient of determination, R2 being about 0.99). For both case studies and the optimization algorithms employed, the optimization results obtained using the proxy models were all within 5% error (satisfied level of accuracy) compared with reservoir simulator. These results confirm the usefulness of the methodology in developing the proxy models. Besides that, the computational cost of optimization was significantly reduced using the proxies. This further highlights the significant benefits of employing the proxy models for practical use despite being subject to a few constraints.
Author Ng, Cuthbert Shang Wui
Nait Amar, Menad
Jahanbani Ghahfarokhi, Ashkan
Author_xml – sequence: 1
  givenname: Cuthbert Shang Wui
  surname: Ng
  fullname: Ng, Cuthbert Shang Wui
  email: cuthbert.s.w.ng@ntnu.no
  organization: Department of Geoscience and Petroleum, Norwegian University of Science and Technology
– sequence: 2
  givenname: Ashkan
  surname: Jahanbani Ghahfarokhi
  fullname: Jahanbani Ghahfarokhi, Ashkan
  organization: Department of Geoscience and Petroleum, Norwegian University of Science and Technology
– sequence: 3
  givenname: Menad
  surname: Nait Amar
  fullname: Nait Amar, Menad
  organization: Département Etudes Thermodynamiques, Division Laboratoires
BookMark eNqNkE9P3DAQxS0EElvgC3Cy1HNa_0vsHFeoLUgr9ULPluPYi6nXTseOFvrpCbuolXpAPc2M9H4zb94HdJpycghdU_KJEiI_F8oZYQ1htCGU9n3zdIJWjPakIW3Xnf7pW3WOrkoJAxFMENkzvkKwnqYYrKkhJ5w9TqbO4JqQyhTAjdjEbYZQH3YFm7SMUIMPNpiIk5vhUOo-w08cEt6b6sDHnMeQtnjvYsQ2pwo54jzVsAu_D2cu0Zk3sbirt3qBfnz9cn9z22y-f7u7WW8aKySvje1tr7hVVHRESCGVsJabfrTUd7Yz1g_D6JWSppNqYGr0fOBeckapcEoOhl8gftw7p8k8702MeoKwM_CsKdGvyeljcnpJTh-S008L9fFITZB_za5U_ZhnSItRzdq2FUos4KJSR5WFXAo4r22oh-8qmBDfP8D-Qf_L1dsvZRGnrYO_rt6hXgBvrqUt
CitedBy_id crossref_primary_10_1016_j_geoen_2024_213363
crossref_primary_10_1016_j_geoen_2023_212251
crossref_primary_10_1016_j_eswa_2023_119796
crossref_primary_10_1016_j_fuel_2023_129343
crossref_primary_10_1016_j_petrol_2022_111166
crossref_primary_10_1016_j_petlm_2021_12_008
crossref_primary_10_1016_j_acags_2022_100103
crossref_primary_10_1016_j_petrol_2022_110813
crossref_primary_10_3390_en16083337
crossref_primary_10_1115_1_4065539
crossref_primary_10_1007_s13202_024_01848_x
crossref_primary_10_3390_en16083376
crossref_primary_10_1016_j_procs_2025_01_083
crossref_primary_10_1016_j_petrol_2021_109468
crossref_primary_10_1016_j_petrol_2022_110448
crossref_primary_10_1016_j_geoen_2023_211967
crossref_primary_10_1016_j_csite_2023_103858
crossref_primary_10_3390_en16073269
crossref_primary_10_1016_j_acags_2022_100111
crossref_primary_10_1016_j_fuel_2023_128826
crossref_primary_10_1016_j_ptlrs_2025_02_001
crossref_primary_10_1016_j_geoen_2024_212996
crossref_primary_10_1016_j_compchemeng_2022_108107
crossref_primary_10_1007_s11053_025_10458_1
crossref_primary_10_1016_j_geoen_2024_212951
Cites_doi 10.2118/185691-MS
10.1002/ghg.1414
10.2118/78266-PA
10.1016/j.petrol.2020.107694
10.1016/S1001-6058(14)60009-3
10.2118/943112-g
10.1007/s10596-017-9634-3
10.3390/en12152897
10.1007/s11053-021-09844-2
10.1504/IJOGCT.2018.090966
10.1016/j.cageo.2016.02.022
10.1002/gdj3.21
10.2307/1268522
10.1016/j.jngse.2013.01.003
10.1016/j.petrol.2013.07.009
10.2118/26289-JPT
10.2118/167446-MS
10.1016/j.jngse.2011.08.003
10.1016/j.cageo.2019.104379
10.2118/95322-pa
10.1016/0041-5553(67)90144-9
10.2118/184822-MS
10.1504/IJOGCT.2011.038925
10.1007/s13202-017-0368-5
10.2118/102913-PA
10.3390/fluids4030126
10.3389/fdata.2019.00033
10.1016/j.compchemeng.2018.05.007
10.1016/j.petrol.2015.07.012
10.1016/j.ifacol.2019.06.111
10.1007/978-94-009-5819-7
10.1007/978-3-319-48753-3
10.1002/ghg.1982
10.2118/102492-MS
10.1016/S1876-3804(20)60057-X
10.1016/j.cherd.2013.11.006
10.1007/s10596-017-9666-8
10.2118/184069-MS
10.2118/9781613995600
10.1016/j.petrol.2020.106984
10.3390/pr5030034
10.2523/IPTC-20191-MS
10.1016/B978-0-12-818680-0.00001-1
10.2118/151994-MS
10.2118/101474-MS
10.2118/191327-PA
10.1007/s00366-020-01131-7
10.2118/119098-MS
10.2118/191378-PA
10.2118/107713-MS
10.1007/s10596-012-9303-5
10.1007/s13369-018-3173-7
10.2118/110081-MS
10.1016/j.advengsoft.2013.12.007
10.3390/fluids4020085
10.1016/j.petrol.2017.09.002
10.2118/99959-pa
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7TN
7WY
7WZ
7XB
87Z
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
H96
HCIFZ
K60
K6~
KR7
L.-
L.G
L6V
M0C
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOI 10.1007/s13202-021-01199-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Oceanic Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Business Premium Collection (Proquest)
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
ABI/INFORM Global (OCUL)
Engineering Database (subscription)
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Business Premium Collection
Civil Engineering Abstracts
ABI/INFORM Global
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 2190-0566
EndPage 3127
ExternalDocumentID 10.1007/s13202-021-01199-x
10_1007_s13202_021_01199_x
GroupedDBID -A0
0R~
2VQ
3V.
4.4
40G
5VS
7WY
8FE
8FG
8FH
8FL
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABJCF
ABUWG
ACACY
ACGFS
ACIWK
ACULB
ADBBV
ADDVE
ADINQ
AEUYN
AFGXO
AFKRA
AFPKN
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARCSS
BCNDV
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
BPHCQ
C24
C6C
CCPQU
DWQXO
EBLON
EBS
EJD
FRNLG
GROUPED_DOAJ
HCIFZ
HH5
HZ~
IAO
IPNFZ
ISR
ITC
K60
K6~
KQ8
L6V
L8X
LK5
M0C
M7R
M7S
M~E
N95
O9-
OK1
PCBAR
PIMPY
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
RIG
RNS
RSV
SEV
SOJ
TUS
U2A
AASML
AAYXX
ABJIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7TN
7XB
8FD
8FK
AZQEC
F1W
FR3
H96
KR7
L.-
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c473t-c9c983c81460474784cc3a9dc1f6c6acfbbdf887a678b28df3b3f732114e87ba3
IEDL.DBID U2A
ISSN 2190-0558
2190-0566
IngestDate Tue Aug 19 09:40:57 EDT 2025
Sat Oct 18 23:13:52 EDT 2025
Wed Oct 01 03:11:16 EDT 2025
Thu Apr 24 22:56:27 EDT 2025
Fri Feb 21 02:48:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 7
Keywords Data-driven proxy modeling
Waterflooding optimization
Artificial neural network
Nature-inspired algorithms
Machine learning
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c473t-c9c983c81460474784cc3a9dc1f6c6acfbbdf887a678b28df3b3f732114e87ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s13202-021-01199-x
PQID 2555484007
PQPubID 2034707
PageCount 25
ParticipantIDs unpaywall_primary_10_1007_s13202_021_01199_x
proquest_journals_2555484007
crossref_citationtrail_10_1007_s13202_021_01199_x
crossref_primary_10_1007_s13202_021_01199_x
springer_journals_10_1007_s13202_021_01199_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210700
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 7
  year: 2021
  text: 20210700
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of petroleum exploration and production technology
PublicationTitleAbbrev J Petrol Explor Prod Technol
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References PeacemanDWFundamentals of numerical reservoir simulation1977AmsterdamElsevier
Hammersley JM, Handscomb DC (1964) Monte Carlo methods
Navrátil J, Kollias G, King AJ, et al (2019) Accelerating physics-based simulations using neural network proxies: an application in oil reservoir modeling. arXiv
ZhangKZhangLMYaoJWater flooding optimization with adjoint model under control constraintsJ Hydrodyn201410.1016/S1001-6058(14)60009-3
ShahkaramiAMohagheghSApplications of smart proxies for subsurface modelingPet Explor Dev202010.1016/S1876-3804(20)60057-X
MohagheghSDReservoir simulation and modeling based on artificial intelligence and data mining (AI&DM)J Nat Gas Sci Eng201110.1016/j.jngse.2011.08.003
GuyagulerBHorneRNRogersLRosenzweigJJOptimization of well placement in a gulf of Mexico waterflooding projectSPE Reserv Eval Eng200210.2118/78266-PA
BruceWAAn electrical device for analyzing oil-reservoir behaviorTrans AIME194310.2118/943112-g
He Q, Mohaghegh SD, Liu Z (2016) Reservoir simulation using smart proxy in SACROC unit - Case study. In: SPE Eastern Regional Meeting
Mohaghegh SD (2013) Reservoir modeling of shale formations. J. Nat. Gas Sci. Eng.
LuRForouzanfarFReynoldsACAn efficient adaptive algorithm for robust control optimization using StoSAGJ Pet Sci Eng201710.1016/j.petrol.2017.09.002
XuCNait AmarMGhrigaMAEvolving support vector regression using Grey Wolf optimization; forecasting the geomechanical properties of rockEng Comput202010.1007/s00366-020-01131-7
JansenJDFonsecaRMKahrobaeiSThe egg model - a geological ensemble for reservoir simulationGeosci Data J201410.1002/gdj3.21
MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw201410.1016/j.advengsoft.2013.12.007
McKayMDBeckmanRJConoverWJA Comparison of three methods for selecting values of input variables in the analysis of output from a computer codeTechnometrics197910.2307/1268522
OgbeiwiPAladeitanYUdebhuluDAn approach to waterflood optimization: case study of the reservoir XJ Pet Explor Prod Technol201810.1007/s13202-017-0368-5
ShahkaramiAMohagheghSGholamiVModeling pressure and saturation distribution in a CO2 storage project using a surrogate reservoir model (SRM)Greenh Gases Sci Technol201410.1002/ghg.1414
BelloutMCEcheverría CiaurriDDurlofskyLJJoint optimization of oil well placement and controlsComput Geosci201210.1007/s10596-012-9303-5
Jansen JD, Douma SD, Brouwer DR, et al (2009) Closed-loop reservoir management. In: SPE Reservoir Simulation Symposium Proceedings
Ertekin T, Sun Q (2019) Artificial intelligence applications in reservoir engineering: a status check. Energies
Mohaghegh SD, Liu J, Gaskari R, et al (2012) Application of surrogate reservoir model (SRM) to an onshore green field in Saudi Arabia; case study. In: Society of Petroleum Engineers - North Africa Technical Conference and Exhibition 2012, NATC 2012: Managing Hydrocarbon Resources in a Changing Environment
Kingma DP, Ba JL (2015) Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings
Alenezi F, Mohaghegh S (2017) Developing a smart proxy for the SACROC water-flooding numerical reservoir simulation model. In: SPE Western Regional Meeting Proceedings
YousefAAGentilPJensenJLLakeLWA capacitance model to infer interwell connectivity from production- and injection-rate fluctuationsSPE Reserv Eval Eng200610.2118/95322-pa
ForouzanfarFReynoldsACWell-placement optimization using a derivative-free methodJ Pet Sci Eng201310.1016/j.petrol.2013.07.009
Mohaghegh SD (2017a) Data-driven reservoir modeling
Buduma N, Locascio N (2017) Fundamentals of deep learning : Designing Next-Generation Machine Intelligence Algorithms
Udy J, Hansen B, Maddux S, et al (2017) Review of field development optimization of waterflooding, EOR, and well placement focusing on history matching and optimization algorithms. Processes
BaumannEJMDaleSIBelloutMCFieldOpt: a powerful and effective programming framework tailored for field development optimizationComput Geosci202010.1016/j.cageo.2019.104379
ShahkaramiAMohagheghSDHajizadehYAssisted history matching using pattern recognition technologyInt J Oil Gas Coal Technol201810.1504/IJOGCT.2018.090966
Mohaghegh SD (2017b) Shale analytics
Sayarpour M, Zuluaga E, Kabir CS, Lake LW (2007) The use of capacitance-resistive models for rapid estimation of waterflood performance and optimization. In: Proceedings - SPE Annual Technical Conference and Exhibition
Valladão DM, Torrado RR, Flach B, Embid S (2013) On the stochastic response surface methodology for the determination of the development plan of an oil & gas field. In: Society of Petroleum Engineers - SPE Intelligent Energy International 2013: Realising the Full Asset Value
VolkovOBelloutMCGradient-based production optimization with simulation-based economic constraintsComput Geosci201710.1007/s10596-017-9634-3
GolzariAHaghighat SefatMJamshidiSDevelopment of an adaptive surrogate model for production optimizationJ Pet Sci Eng201510.1016/j.petrol.2015.07.012
AminiSMohagheghSApplication of machine learning and artificial intelligence in proxy modeling for fluid flow in porous media201910.3390/fluids4030126Fluids
Mohaghegh SD, Gaskari R, Maysami M (2017) Shale analytics: Making production and operational decisions based on facts: A case study in marcellus shale. In: Society of Petroleum Engineers - SPE Hydraulic Fracturing Technology Conference and Exhibition 2017
Hemmati-Sarapardeh A, Larestani A, Nait Amar M, Hajirezaie S (2020) Introduction. In: Applications of artificial intelligence techniques in the petroleum industry
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE International Conference on Neural Networks - Conference Proceedings
PouladiBKarkevandi-TalkhoonchehASharifiMEnhancement of SPSA algorithm performance using reservoir quality maps: application to coupled well placement and control optimization problemsJ Pet Sci Eng202010.1016/j.petrol.2020.106984
Mohaghegh SD, Hafez H, Gaskari R, et al (2006) Uncertainty analysis of a giant oil field in the middle east using surrogate reservoir model. In: 12th Abu Dhabi international petroleum exhibition and conference, ADIPEC 2006: meeting the increasing oil and gas demand through innovation
Nait AmarMZeraibiNJahanbani GhahfarokhiAApplying hybrid support vector regression and genetic algorithm to water alternating CO2 gas EORGreenh Gases Sci Technol202010.1002/ghg.1982
Van EssenGMZandvlietMJVan Den HofPMJRobust waterflooding optimization of multiple geological scenariosSPE J200910.2118/102913-PA
Shi Y, Eberhart R (1998) Modified particle swarm optimizer. In: Proceedings of the IEEE Conference on Evolutionary Computation, ICEC
Alakeely A, Horne RN (2020) Simulating the behavior of reservoirs with convolutional and recurrent neural networks. SPE Reserv Eval Eng
Liang X, Weber DB, Edgar TF, et al (2007) Optimization of oil production based on a capacitance model of production and injection rates. In: SPE Hydrocarbon Economics and Evaluation Symposium
Kalantari-DahaghiAMohagheghSDA new practical approach in modelling and simulation of shale gas reservoirs: application to New Albany ShaleInt J Oil, Gas Coal Technol201110.1504/IJOGCT.2011.038925
SobolIMOn the distribution of points in a cube and the approximate evaluation of integralsUSSR Comput Math Math Phys196710.1016/0041-5553(67)90144-9
Teixeira AF, Secchi AR (2019) Machine learning models to support reservoir production optimization. In: IFAC-PapersOnLine
ThakurGCWhat is reservoir management?JPT J Pet Technol199610.2118/26289-JPT
BabaeiMPanIPerformance comparison of several response surface surrogate models and ensemble methods for water injection optimization under uncertaintyComput Geosci201610.1016/j.cageo.2016.02.022
SarmaPChenWHDurlofskyLJAzizKProduction optimization with adjoint models under nonlinear control-state path inequality constraintsSPE Reserv Eval Eng200810.2118/99959-pa
DigeNDiwekarUEfficient sampling algorithm for large-scale optimization under uncertainty problemsComput Chem Eng201811543145410.1016/j.compchemeng.2018.05.007
Mohaghegh SD (2006) Quantifying uncertainties associated with reservoir simulation studies using surrogate reservoir models. In: Proceedings - SPE Annual Technical Conference and Exhibition
HongAJBratvoldRBNævdalGRobust production optimization with capacitance-resistance model as precursorComput Geosci201710.1007/s10596-017-9666-8
WangLLiZPAdenutsiCDA novel multi-objective optimization method for well control parameters based on PSO-LSSVR proxy model and NSGA-II algorithmJ Pet Sci Eng202110.1016/j.petrol.2020.107694
ForouzanfarFReynoldsACJoint optimization of number of wells, well locations and controls using a gradient-based algorithmChem Eng Res Des201410.1016/j.cherd.2013.11.006
NgCSWJahanbani GhahfarokhiANait AmarMTorsæterOSmart proxy modeling of a fractured reservoir model for production optimization: implementation of metaheuristic algorithm and probabilistic applicationNat Res Resour202110.1007/s11053-021-09844-2
VidaGShahabMDMohammadMSmart proxy modeling of SACROC CO2-EOR201910.3390/fluids4020085Fluids
GuoZReynoldsACRobust life-cycle production optimization with a support-vector-regression proxySPE J201810.2118/191378-PA
Nait AmarMZeraibiNRedouaneKOptimization of WAG process using dynamic proxy, genetic algorithm and ant colony optimizationArab J Sci Eng201810.1007/s13369-018-3173-7
HongABratvoldRBLakeLWFast analysis of optimal improved-oil-recovery switch time using a two-factor production model and least-squares Monte Carlo algorithmSPE Reserv Eval Eng201910.2118/191327-PA
SD Mohaghegh (1199_CR31) 2011
A Shahkarami (1199_CR48) 2014
1199_CR24
1199_CR25
M Nait Amar (1199_CR38) 2018
1199_CR26
S Mirjalili (1199_CR29) 2014
C Xu (1199_CR60) 2020
P Sarma (1199_CR45) 2008
G Vida (1199_CR57) 2019
F Forouzanfar (1199_CR11) 2013
1199_CR8
1199_CR21
1199_CR2
JD Jansen (1199_CR22) 2014
R Lu (1199_CR27) 2017
1199_CR1
DW Peaceman (1199_CR43) 1977
A Shahkarami (1199_CR49) 2018
MC Bellout (1199_CR6) 2012
Z Guo (1199_CR14) 2018
P Ogbeiwi (1199_CR42) 2018
1199_CR35
K Zhang (1199_CR62) 2014
1199_CR36
1199_CR37
GC Thakur (1199_CR53) 1996
AA Yousef (1199_CR61) 2006
S Amini (1199_CR3) 2019
B Guyaguler (1199_CR15) 2002
O Volkov (1199_CR58) 2017
1199_CR32
1199_CR33
1199_CR34
WA Bruce (1199_CR7) 1943
1199_CR30
1199_CR46
EJM Baumann (1199_CR5) 2020
GM Van Essen (1199_CR56) 2009
IM Sobol (1199_CR51) 1967
A Hong (1199_CR20) 2019
CSW Ng (1199_CR41) 2021
1199_CR40
1199_CR17
M Babaei (1199_CR4) 2016
1199_CR18
A Golzari (1199_CR13) 2015
MD McKay (1199_CR28) 1979
1199_CR16
F Forouzanfar (1199_CR12) 2014
L Wang (1199_CR59) 2021
N Dige (1199_CR9) 2018; 115
A Kalantari-Dahaghi (1199_CR23) 2011
B Pouladi (1199_CR44) 2020
M Nait Amar (1199_CR39) 2020
1199_CR10
1199_CR54
1199_CR55
AJ Hong (1199_CR19) 2017
1199_CR50
A Shahkarami (1199_CR47) 2020
1199_CR52
References_xml – reference: Jansen JD, Douma SD, Brouwer DR, et al (2009) Closed-loop reservoir management. In: SPE Reservoir Simulation Symposium Proceedings
– reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw201410.1016/j.advengsoft.2013.12.007
– reference: Teixeira AF, Secchi AR (2019) Machine learning models to support reservoir production optimization. In: IFAC-PapersOnLine
– reference: BruceWAAn electrical device for analyzing oil-reservoir behaviorTrans AIME194310.2118/943112-g
– reference: Nait AmarMZeraibiNRedouaneKOptimization of WAG process using dynamic proxy, genetic algorithm and ant colony optimizationArab J Sci Eng201810.1007/s13369-018-3173-7
– reference: ShahkaramiAMohagheghSGholamiVModeling pressure and saturation distribution in a CO2 storage project using a surrogate reservoir model (SRM)Greenh Gases Sci Technol201410.1002/ghg.1414
– reference: OgbeiwiPAladeitanYUdebhuluDAn approach to waterflood optimization: case study of the reservoir XJ Pet Explor Prod Technol201810.1007/s13202-017-0368-5
– reference: ForouzanfarFReynoldsACJoint optimization of number of wells, well locations and controls using a gradient-based algorithmChem Eng Res Des201410.1016/j.cherd.2013.11.006
– reference: Hammersley JM, Handscomb DC (1964) Monte Carlo methods
– reference: BabaeiMPanIPerformance comparison of several response surface surrogate models and ensemble methods for water injection optimization under uncertaintyComput Geosci201610.1016/j.cageo.2016.02.022
– reference: HongAJBratvoldRBNævdalGRobust production optimization with capacitance-resistance model as precursorComput Geosci201710.1007/s10596-017-9666-8
– reference: ZhangKZhangLMYaoJWater flooding optimization with adjoint model under control constraintsJ Hydrodyn201410.1016/S1001-6058(14)60009-3
– reference: ThakurGCWhat is reservoir management?JPT J Pet Technol199610.2118/26289-JPT
– reference: BaumannEJMDaleSIBelloutMCFieldOpt: a powerful and effective programming framework tailored for field development optimizationComput Geosci202010.1016/j.cageo.2019.104379
– reference: Mohaghegh SD, Hafez H, Gaskari R, et al (2006) Uncertainty analysis of a giant oil field in the middle east using surrogate reservoir model. In: 12th Abu Dhabi international petroleum exhibition and conference, ADIPEC 2006: meeting the increasing oil and gas demand through innovation
– reference: ShahkaramiAMohagheghSApplications of smart proxies for subsurface modelingPet Explor Dev202010.1016/S1876-3804(20)60057-X
– reference: He Q, Mohaghegh SD, Liu Z (2016) Reservoir simulation using smart proxy in SACROC unit - Case study. In: SPE Eastern Regional Meeting
– reference: Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE International Conference on Neural Networks - Conference Proceedings
– reference: Sayarpour M, Zuluaga E, Kabir CS, Lake LW (2007) The use of capacitance-resistive models for rapid estimation of waterflood performance and optimization. In: Proceedings - SPE Annual Technical Conference and Exhibition
– reference: SobolIMOn the distribution of points in a cube and the approximate evaluation of integralsUSSR Comput Math Math Phys196710.1016/0041-5553(67)90144-9
– reference: PeacemanDWFundamentals of numerical reservoir simulation1977AmsterdamElsevier
– reference: Nait AmarMZeraibiNJahanbani GhahfarokhiAApplying hybrid support vector regression and genetic algorithm to water alternating CO2 gas EORGreenh Gases Sci Technol202010.1002/ghg.1982
– reference: AminiSMohagheghSApplication of machine learning and artificial intelligence in proxy modeling for fluid flow in porous media201910.3390/fluids4030126Fluids
– reference: WangLLiZPAdenutsiCDA novel multi-objective optimization method for well control parameters based on PSO-LSSVR proxy model and NSGA-II algorithmJ Pet Sci Eng202110.1016/j.petrol.2020.107694
– reference: LuRForouzanfarFReynoldsACAn efficient adaptive algorithm for robust control optimization using StoSAGJ Pet Sci Eng201710.1016/j.petrol.2017.09.002
– reference: Mohaghegh SD (2013) Reservoir modeling of shale formations. J. Nat. Gas Sci. Eng.
– reference: Udy J, Hansen B, Maddux S, et al (2017) Review of field development optimization of waterflooding, EOR, and well placement focusing on history matching and optimization algorithms. Processes
– reference: Van EssenGMZandvlietMJVan Den HofPMJRobust waterflooding optimization of multiple geological scenariosSPE J200910.2118/102913-PA
– reference: Buduma N, Locascio N (2017) Fundamentals of deep learning : Designing Next-Generation Machine Intelligence Algorithms
– reference: Valladão DM, Torrado RR, Flach B, Embid S (2013) On the stochastic response surface methodology for the determination of the development plan of an oil & gas field. In: Society of Petroleum Engineers - SPE Intelligent Energy International 2013: Realising the Full Asset Value
– reference: Mohaghegh SD (2006) Quantifying uncertainties associated with reservoir simulation studies using surrogate reservoir models. In: Proceedings - SPE Annual Technical Conference and Exhibition
– reference: Alenezi F, Mohaghegh S (2017) Developing a smart proxy for the SACROC water-flooding numerical reservoir simulation model. In: SPE Western Regional Meeting Proceedings
– reference: VolkovOBelloutMCGradient-based production optimization with simulation-based economic constraintsComput Geosci201710.1007/s10596-017-9634-3
– reference: Shi Y, Eberhart R (1998) Modified particle swarm optimizer. In: Proceedings of the IEEE Conference on Evolutionary Computation, ICEC
– reference: GolzariAHaghighat SefatMJamshidiSDevelopment of an adaptive surrogate model for production optimizationJ Pet Sci Eng201510.1016/j.petrol.2015.07.012
– reference: Navrátil J, Kollias G, King AJ, et al (2019) Accelerating physics-based simulations using neural network proxies: an application in oil reservoir modeling. arXiv
– reference: BelloutMCEcheverría CiaurriDDurlofskyLJJoint optimization of oil well placement and controlsComput Geosci201210.1007/s10596-012-9303-5
– reference: Ertekin T, Sun Q (2019) Artificial intelligence applications in reservoir engineering: a status check. Energies
– reference: McKayMDBeckmanRJConoverWJA Comparison of three methods for selecting values of input variables in the analysis of output from a computer codeTechnometrics197910.2307/1268522
– reference: VidaGShahabMDMohammadMSmart proxy modeling of SACROC CO2-EOR201910.3390/fluids4020085Fluids
– reference: NgCSWJahanbani GhahfarokhiANait AmarMTorsæterOSmart proxy modeling of a fractured reservoir model for production optimization: implementation of metaheuristic algorithm and probabilistic applicationNat Res Resour202110.1007/s11053-021-09844-2
– reference: Mohaghegh SD (2017b) Shale analytics
– reference: Hemmati-Sarapardeh A, Larestani A, Nait Amar M, Hajirezaie S (2020) Introduction. In: Applications of artificial intelligence techniques in the petroleum industry
– reference: PouladiBKarkevandi-TalkhoonchehASharifiMEnhancement of SPSA algorithm performance using reservoir quality maps: application to coupled well placement and control optimization problemsJ Pet Sci Eng202010.1016/j.petrol.2020.106984
– reference: Mohaghegh SD (2017a) Data-driven reservoir modeling
– reference: SarmaPChenWHDurlofskyLJAzizKProduction optimization with adjoint models under nonlinear control-state path inequality constraintsSPE Reserv Eval Eng200810.2118/99959-pa
– reference: Alakeely A, Horne RN (2020) Simulating the behavior of reservoirs with convolutional and recurrent neural networks. SPE Reserv Eval Eng
– reference: JansenJDFonsecaRMKahrobaeiSThe egg model - a geological ensemble for reservoir simulationGeosci Data J201410.1002/gdj3.21
– reference: GuoZReynoldsACRobust life-cycle production optimization with a support-vector-regression proxySPE J201810.2118/191378-PA
– reference: Kingma DP, Ba JL (2015) Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings
– reference: ForouzanfarFReynoldsACWell-placement optimization using a derivative-free methodJ Pet Sci Eng201310.1016/j.petrol.2013.07.009
– reference: Mohaghegh SD, Gaskari R, Maysami M (2017) Shale analytics: Making production and operational decisions based on facts: A case study in marcellus shale. In: Society of Petroleum Engineers - SPE Hydraulic Fracturing Technology Conference and Exhibition 2017
– reference: ShahkaramiAMohagheghSDHajizadehYAssisted history matching using pattern recognition technologyInt J Oil Gas Coal Technol201810.1504/IJOGCT.2018.090966
– reference: YousefAAGentilPJensenJLLakeLWA capacitance model to infer interwell connectivity from production- and injection-rate fluctuationsSPE Reserv Eval Eng200610.2118/95322-pa
– reference: GuyagulerBHorneRNRogersLRosenzweigJJOptimization of well placement in a gulf of Mexico waterflooding projectSPE Reserv Eval Eng200210.2118/78266-PA
– reference: MohagheghSDReservoir simulation and modeling based on artificial intelligence and data mining (AI&DM)J Nat Gas Sci Eng201110.1016/j.jngse.2011.08.003
– reference: Kalantari-DahaghiAMohagheghSDA new practical approach in modelling and simulation of shale gas reservoirs: application to New Albany ShaleInt J Oil, Gas Coal Technol201110.1504/IJOGCT.2011.038925
– reference: Mohaghegh SD, Liu J, Gaskari R, et al (2012) Application of surrogate reservoir model (SRM) to an onshore green field in Saudi Arabia; case study. In: Society of Petroleum Engineers - North Africa Technical Conference and Exhibition 2012, NATC 2012: Managing Hydrocarbon Resources in a Changing Environment
– reference: DigeNDiwekarUEfficient sampling algorithm for large-scale optimization under uncertainty problemsComput Chem Eng201811543145410.1016/j.compchemeng.2018.05.007
– reference: Liang X, Weber DB, Edgar TF, et al (2007) Optimization of oil production based on a capacitance model of production and injection rates. In: SPE Hydrocarbon Economics and Evaluation Symposium
– reference: XuCNait AmarMGhrigaMAEvolving support vector regression using Grey Wolf optimization; forecasting the geomechanical properties of rockEng Comput202010.1007/s00366-020-01131-7
– reference: HongABratvoldRBLakeLWFast analysis of optimal improved-oil-recovery switch time using a two-factor production model and least-squares Monte Carlo algorithmSPE Reserv Eval Eng201910.2118/191327-PA
– ident: 1199_CR2
  doi: 10.2118/185691-MS
– year: 2014
  ident: 1199_CR48
  publication-title: Greenh Gases Sci Technol
  doi: 10.1002/ghg.1414
– year: 2002
  ident: 1199_CR15
  publication-title: SPE Reserv Eval Eng
  doi: 10.2118/78266-PA
– year: 2021
  ident: 1199_CR59
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2020.107694
– year: 2014
  ident: 1199_CR62
  publication-title: J Hydrodyn
  doi: 10.1016/S1001-6058(14)60009-3
– year: 1943
  ident: 1199_CR7
  publication-title: Trans AIME
  doi: 10.2118/943112-g
– year: 2017
  ident: 1199_CR58
  publication-title: Comput Geosci
  doi: 10.1007/s10596-017-9634-3
– ident: 1199_CR10
  doi: 10.3390/en12152897
– year: 2021
  ident: 1199_CR41
  publication-title: Nat Res Resour
  doi: 10.1007/s11053-021-09844-2
– year: 2018
  ident: 1199_CR49
  publication-title: Int J Oil Gas Coal Technol
  doi: 10.1504/IJOGCT.2018.090966
– year: 2016
  ident: 1199_CR4
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2016.02.022
– year: 2014
  ident: 1199_CR22
  publication-title: Geosci Data J
  doi: 10.1002/gdj3.21
– year: 1979
  ident: 1199_CR28
  publication-title: Technometrics
  doi: 10.2307/1268522
– ident: 1199_CR32
  doi: 10.1016/j.jngse.2013.01.003
– year: 2013
  ident: 1199_CR11
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2013.07.009
– year: 1996
  ident: 1199_CR53
  publication-title: JPT J Pet Technol
  doi: 10.2118/26289-JPT
– ident: 1199_CR55
  doi: 10.2118/167446-MS
– year: 2011
  ident: 1199_CR31
  publication-title: J Nat Gas Sci Eng
  doi: 10.1016/j.jngse.2011.08.003
– year: 2020
  ident: 1199_CR5
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2019.104379
– year: 2006
  ident: 1199_CR61
  publication-title: SPE Reserv Eval Eng
  doi: 10.2118/95322-pa
– year: 1967
  ident: 1199_CR51
  publication-title: USSR Comput Math Math Phys
  doi: 10.1016/0041-5553(67)90144-9
– ident: 1199_CR37
  doi: 10.2118/184822-MS
– ident: 1199_CR24
– ident: 1199_CR8
– year: 2011
  ident: 1199_CR23
  publication-title: Int J Oil, Gas Coal Technol
  doi: 10.1504/IJOGCT.2011.038925
– year: 2018
  ident: 1199_CR42
  publication-title: J Pet Explor Prod Technol
  doi: 10.1007/s13202-017-0368-5
– year: 2009
  ident: 1199_CR56
  publication-title: SPE J
  doi: 10.2118/102913-PA
– year: 2019
  ident: 1199_CR3
  doi: 10.3390/fluids4030126
– ident: 1199_CR40
  doi: 10.3389/fdata.2019.00033
– volume: 115
  start-page: 431
  year: 2018
  ident: 1199_CR9
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2018.05.007
– year: 2015
  ident: 1199_CR13
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2015.07.012
– ident: 1199_CR52
  doi: 10.1016/j.ifacol.2019.06.111
– ident: 1199_CR16
  doi: 10.1007/978-94-009-5819-7
– ident: 1199_CR34
  doi: 10.1007/978-3-319-48753-3
– year: 2020
  ident: 1199_CR39
  publication-title: Greenh Gases Sci Technol
  doi: 10.1002/ghg.1982
– ident: 1199_CR25
– ident: 1199_CR30
  doi: 10.2118/102492-MS
– year: 2020
  ident: 1199_CR47
  publication-title: Pet Explor Dev
  doi: 10.1016/S1876-3804(20)60057-X
– year: 2014
  ident: 1199_CR12
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2013.11.006
– year: 2017
  ident: 1199_CR19
  publication-title: Comput Geosci
  doi: 10.1007/s10596-017-9666-8
– ident: 1199_CR17
  doi: 10.2118/184069-MS
– ident: 1199_CR33
  doi: 10.2118/9781613995600
– year: 2020
  ident: 1199_CR44
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2020.106984
– ident: 1199_CR54
  doi: 10.3390/pr5030034
– ident: 1199_CR1
  doi: 10.2523/IPTC-20191-MS
– ident: 1199_CR50
– ident: 1199_CR18
  doi: 10.1016/B978-0-12-818680-0.00001-1
– ident: 1199_CR36
  doi: 10.2118/151994-MS
– ident: 1199_CR35
  doi: 10.2118/101474-MS
– year: 2019
  ident: 1199_CR20
  publication-title: SPE Reserv Eval Eng
  doi: 10.2118/191327-PA
– year: 2020
  ident: 1199_CR60
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-01131-7
– ident: 1199_CR21
  doi: 10.2118/119098-MS
– year: 2018
  ident: 1199_CR14
  publication-title: SPE J
  doi: 10.2118/191378-PA
– ident: 1199_CR26
  doi: 10.2118/107713-MS
– year: 2012
  ident: 1199_CR6
  publication-title: Comput Geosci
  doi: 10.1007/s10596-012-9303-5
– year: 2018
  ident: 1199_CR38
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-018-3173-7
– ident: 1199_CR46
  doi: 10.2118/110081-MS
– year: 2014
  ident: 1199_CR29
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume-title: Fundamentals of numerical reservoir simulation
  year: 1977
  ident: 1199_CR43
– year: 2019
  ident: 1199_CR57
  doi: 10.3390/fluids4020085
– year: 2017
  ident: 1199_CR27
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2017.09.002
– year: 2008
  ident: 1199_CR45
  publication-title: SPE Reserv Eval Eng
  doi: 10.2118/99959-pa
SSID ssib042407923
ssj0000941014
Score 1.9988358
Snippet With the aid of machine learning method, namely artificial neural networks, we established data-driven proxy models that could be utilized to maximize the net...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3103
SubjectTerms Algorithms
Artificial neural networks
Case studies
Earth and Environmental Science
Earth Sciences
Energy Systems
Geology
Heuristic methods
Industrial and Production Engineering
Industrial Chemistry/Chemical Engineering
Machine learning
Monitoring/Environmental Analysis
Neural networks
Offshore Engineering
Optimization
Original Paper-Production Engineering
Ova
Particle swarm optimization
Reservoirs
Simulators
Three dimensional models
Training
Two dimensional models
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60HrQH8YnVKnvwpos2u3kdRFQUESwiCt7CPn1Q09pWrP_enWTT6KV4CiHJLsk32Z3dmfk-gP2Uc22TSNM4MIxypSSVNpLUSNGJteJhx-J-x203un7kN0_h0xx0q1oYTKusxsRioNZ9hXvkR871dc41qnifDj4oqkZhdLWS0BBeWkGfFBRj87AQIDNWAxbOL7t395WFcVy_VAuGtzKvDsVqUYEOa6qPwzDxlTVlfR2qi1PMYkBqtJRO_s5etUs6jaI2YfEzH4jvL9Hr_ZqorlZg2XuY5Kw0iVWYM_kaNH_xDq7D8KwOW5O-JSW7J33NMexuNBG9Z_fq45f3ERG5Ox0WCUXOUgnSXxaHInmcvObkS6DQNaa_u6YJbgUSn_5O-m44evd1nhvweHX5cHFNvfgCVTxmY6pSlSZM4Q7hMUeSfYcjE6lWHRupSCgrpQM5iYWb7WSQaMskszFz60luklgKtgmNvJ-bLSAOOB2kNhAilDxKgtRoaRlHri9mtWEt6FQfNVOemRwFMnpZzamMQGQOiKwAIpu04GD6zKDk5Zh5d7vCKvP_6CirLaoFhxV-9eVZrR1OMf5H59uzO9-BpaCwMEwBbkNjPPw0u87RGcs9b70_KCn5oQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH-CckAcGONDdALkw27gQmPHSY7VGEKThnZYJThF_oSKNq1KKhh_PX6J0zA0oU07JZEdR7af4_f83vv9AD5nnBuXCkOTyDLKtVZUOaGoVbKfGM3jvsPzju9X4nLIv13H1ytw3uTCVNHujUuyzmlAlKaiPJ0Zd9omviHtN8XwAsQsy-hTzxevwpqIvUbegbXh1Y_BDfLKYab0WVzRdIZ7IULuzJ8b-n1_apXOpZ90A9YXxUz-epTj8aut6OID2KYTdQTKfW9Rqp5-foPv-L-93ILNoKuSQS1cH2HFFtuw8QrBcAfmg9YBTqaO1DihdFSgA98aIse30_movJs8EFn4x3kVmuRlniCQZnWpwtDJqCCPEimzMZDeN03wUJGEQHoy9T-2ScgY3YXhxdefXy5poHGgmiespDrTWco0njWecYTr9xLBZGZ03wktpHZKeXFJE-n3TRWlxjHFXMK8ZcptmijJ9qBTTAu7D8TrPibKXCRlrLhIo8wa5RhH1DDmjGVd6DeTl-uAcY5UG-O8RWfGMc39mObVmOZPXThevjOrET7erX3QyEQeVvtD7s0yb_ghw3wXTpppbYvfa-1kKUt_8fFP_1b9ADrlfGEPvdZUqqOwKF4AwFATAQ
  priority: 102
  providerName: Unpaywall
Title Application of nature-inspired algorithms and artificial neural network in waterflooding well control optimization
URI https://link.springer.com/article/10.1007/s13202-021-01199-x
https://www.proquest.com/docview/2555484007
https://link.springer.com/content/pdf/10.1007/s13202-021-01199-x.pdf
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2190-0566
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941014
  issn: 2190-0566
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2190-0566
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941014
  issn: 2190-0566
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2190-0566
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941014
  issn: 2190-0566
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2190-0566
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941014
  issn: 2190-0566
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2190-0566
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941014
  issn: 2190-0566
  databaseCode: 8FG
  dateStart: 20121001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2190-0566
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941014
  issn: 2190-0566
  databaseCode: AAJSJ
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2190-0566
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941014
  issn: 2190-0566
  databaseCode: C24
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2190-0566
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941014
  issn: 2190-0566
  databaseCode: C6C
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Open Access Hybrid - NESLI2 2011-2012
  customDbUrl:
  eissn: 2190-0566
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941014
  issn: 2190-0566
  databaseCode: 40G
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://link.springer.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 2190-0566
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941014
  issn: 2190-0566
  databaseCode: U2A
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-6lrH1YazdxrJ1QQ97awWJJX89eqFpCSyUroH2yehzy0idkqR0_e93p9hxB6O0LxK2bAn8k6w73d3vAL7mUlqfJZankRNcGqO59onmTqt-ao2M-57OO76Pk9OJHF3Gl3VQ2LLxdm9MkuFP3Qa7UapvTi4FxFOWc5Qcd2Ki88JZPImKZhZJ0lEapeD32neOEtJSljmKm-7FcVZHz_y_2393qFbs3FhKd-HVbXWj7u_UbPZgMxq-hTe1FMmKNex7sOWqfdh9wC24Dy9PQs7e-3ewKFojNZt7tuby5NOKjOzOMjX7OV9MV7-ul0xVeLkI7kM4LxmRXYYquIqzacXuFKW1Jmd3HITRwR-rnd3ZHH8-13VU53uYDI8vBqe8TrXAjUzFipvc5JkwdB7Yk0Spj6gJlVvT94lJlPFaI6RZqnBv01FmvdDCpwK1R-myVCvxAbareeU-AkP5xEa5j5SKtUyyKHdWeyGJ2Ut460QH-s3nLU3NQ07pMGZly6BMkJQISRkgKf904HDzzs2ahePRpw8a1Mp6RS5LVJ1QOaMs8B04apBsmx_r7WiD9hMG__S83j_D6yjMPXIAPoDt1eLWfUExZ6W78EL2TrDMhljuFMXoxwjrb8fjs3O8O4gklcmgG44RumENYPtkfFZc_QWLkPyR
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROFAOFX2JtNDuoT2VVYl3_TqgiragUCCqKpC4uftsqYKTJkGBP8dvY8Zex_QS9cLJsmyv7Z3Z2Zndme8DeJdLaX2WWJ5GTnBpjObaJ5o7rbqpNTLuelrvOOknvTP57Tw-X4LbphaG0iobm1gZajs0tEb-EV1fdK6JxfvT6C8n1ijaXW0oNFSgVrC7FcRYKOw4cjczDOEmu4dfUd7vo-hg__RLjweWAW5kKqbc5CbPhKGlsB1JaPL4wULl1nR9YhJlvNb4N1mq0KzrKLNeaOFTgYGTdFmqlcB2H8GKFDLH4G_l837_-49GoyXFS02A8qfO4yNyXGK8oxrunTjOQiVPXc9HbOacsiYIii3n1__Olq0LPN-1XYPVq3KkbmZqMLg3MR6sw5Pg0bK9WgWfwpIrn8HaPZzD5zDea7fJ2dCzGk2UX5S0ze8sU4Nf2NXT35cTpko8HVcJTDgyGMFtVocqWZ1dlGymiFib0u2xaUZLjyyk27Mhmr_LUFf6As4eRAwvYbkclm4DGCqKjXIfKRVrmWRR7qz2QhK2mPDWiQ50m04tTEBCJ0KOQdFiOJMgChREUQmiuO7Ah_kzoxoHZOHdm42simATJkWrwR3YbuTXXl7U2vZcxv_x8leLX_4WVnunJ8fF8WH_6DU8jipto_TjTViejq_cFjpZU_0maDKDnw89eO4AeBI3Yg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTtxAEC3BIAU4ILIghhDSh-QUWjDu9naIEApMICQohyBxc3pl0eAZZtHAr-XrUuVlTC6jXDhZlu32UtXl6u5X7wF8SKW0PoksjwMnuDRGc-0jzZ1WndgaGXY8zXf8OI9OLuS3y_ByAf7UtTAEq6xjYhGobd_QHPkepr6YXJOK956vYBE_j7oHg3tOClK00lrLaZQucuYepzh8G30-PUJbfwyC7vGvLye8UhjgRsZizE1q0kQYmgbbl8Qkjw8rVGpNx0cmUsZrjW-SxApDug4S64UWPhY4aJIuibUS2O4iLMXE4k5V6t2vtS9LGinVQ5PbEsFHsrikdUfV2_thmFQ1PGUlH-mYc8JLEAlbyh_-_U82ye9svXYVlif5QD1OVa_35JfYXYe1Kpdlh6XzvYQFl7-C1ScMh69heNgskLO-ZyWPKL_JaYHfWaZ6V_hhx9d3I6Zy3B0W0CXsE4yINotNAVNnNzmbKpLUJqA9Ns1o0pFVQHvWx8B3V1WUvoGLZzHCBrTyfu42gaGL2CD1gVKhllESpM5qLySxiglvnWhDp_6omak40EmKo5c17M1kiAwNkRWGyB7a8Gl2zaBkAJl79nZtq6yKBqOs8d027Nb2aw7Pa213ZuP_uPnW_Ju_hxfYZbLvp-dnb2ElKJyNcMfb0BoPJ-4dZldjvVO4MYPfz91v_gLnSjT8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH-CckAcGONDdALkw27gQmPHSY7VGEKThnZYJThF_oSKNq1KKhh_PX6J0zA0oU07JZEdR7af4_f83vv9AD5nnBuXCkOTyDLKtVZUOaGoVbKfGM3jvsPzju9X4nLIv13H1ytw3uTCVNHujUuyzmlAlKaiPJ0Zd9omviHtN8XwAsQsy-hTzxevwpqIvUbegbXh1Y_BDfLKYab0WVzRdIZ7IULuzJ8b-n1_apXOpZ90A9YXxUz-epTj8aut6OID2KYTdQTKfW9Rqp5-foPv-L-93ILNoKuSQS1cH2HFFtuw8QrBcAfmg9YBTqaO1DihdFSgA98aIse30_movJs8EFn4x3kVmuRlniCQZnWpwtDJqCCPEimzMZDeN03wUJGEQHoy9T-2ScgY3YXhxdefXy5poHGgmiespDrTWco0njWecYTr9xLBZGZ03wktpHZKeXFJE-n3TRWlxjHFXMK8ZcptmijJ9qBTTAu7D8TrPibKXCRlrLhIo8wa5RhH1DDmjGVd6DeTl-uAcY5UG-O8RWfGMc39mObVmOZPXThevjOrET7erX3QyEQeVvtD7s0yb_ghw3wXTpppbYvfa-1kKUt_8fFP_1b9ADrlfGEPvdZUqqOwKF4AwFATAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+nature-inspired+algorithms+and+artificial+neural+network+in+waterflooding+well+control+optimization&rft.jtitle=Journal+of+petroleum+exploration+and+production+technology&rft.au=Ng%2C+Cuthbert+Shang+Wui&rft.au=Jahanbani+Ghahfarokhi%2C+Ashkan&rft.au=Nait+Amar%2C+Menad&rft.date=2021-07-01&rft.pub=Springer+International+Publishing&rft.issn=2190-0558&rft.eissn=2190-0566&rft.volume=11&rft.issue=7&rft.spage=3103&rft.epage=3127&rft_id=info:doi/10.1007%2Fs13202-021-01199-x&rft.externalDocID=10_1007_s13202_021_01199_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-0558&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-0558&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-0558&client=summon