Fast Approximate Inference for Arbitrarily Large Semiparametric Regression Models via Message Passing

We show how the notion of message passing can be used to streamline the algebra and computer coding for fast approximate inference in large Bayesian semiparametric regression models. In particular, this approach is amenable to handling arbitrarily large models of particular types once a set of primi...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 112; no. 517; pp. 137 - 168
Main Author Wand, M. P.
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 02.01.2017
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0162-1459
1537-274X
1537-274X
DOI10.1080/01621459.2016.1197833

Cover

Abstract We show how the notion of message passing can be used to streamline the algebra and computer coding for fast approximate inference in large Bayesian semiparametric regression models. In particular, this approach is amenable to handling arbitrarily large models of particular types once a set of primitive operations is established. The approach is founded upon a message passing formulation of mean field variational Bayes that utilizes factor graph representations of statistical models. The underlying principles apply to general Bayesian hierarchical models although we focus on semiparametric regression. The notion of factor graph fragments is introduced and is shown to facilitate compartmentalization of the required algebra and coding. The resultant algorithms have ready-to-implement closed form expressions and allow a broad class of arbitrarily large semiparametric regression models to be handled. Ongoing software projects such as Infer.NET and Stan support variational-type inference for particular model classes. This article is not concerned with software packages per se and focuses on the underlying tenets of scalable variational inference algorithms. Supplementary materials for this article are available online.
AbstractList We show how the notion of message passing can be used to streamline the algebra and computer coding for fast approximate inference in large Bayesian semiparametric regression models. In particular, this approach is amenable to handling arbitrarily large models of particular types once a set of primitive operations is established. The approach is founded upon a message passing formulation of mean field variational Bayes that utilizes factor graph representations of statistical models. The underlying principles apply to general Bayesian hierarchical models although we focus on semiparametric regression. The notion of factor graph fragments is introduced and is shown to facilitate compartmentalization of the required algebra and coding. The resultant algorithms have ready-to-implement closed form expressions and allow a broad class of arbitrarily large semiparametric regression models to be handled. Ongoing software projects such as Infer.NET and Stan support variational-type inference for particular model classes. This article is not concerned with software packages per se and focuses on the underlying tenets of scalable variational inference algorithms. Supplementary materials for this article are available online.
We show how the notion ofmessage passing can be used to streamline the algebra and computer coding for fast approximate inference in large Bayesian semiparametric regression models. In particular, this approach is amenable to handling arbitrarily large models of particular types once a set of primitive operations is established. The approach is founded upon a message passing formulation of mean field variational Bayes that utilizes factor graph representations of statistical models. The underlying principles apply to general Bayesian hierarchical models although we focus on semiparametric regression. The notion of factor graph fragments is introduced and is shown to facilitate compartmentalization of the required algebra and coding. The resultant algorithms have ready-to-implement closed form expressions and allow a broad class of arbitrarily large semiparametric regression models to be handled. Ongoing software projects such as lnfer.NET and Stan support variational-type inference for particular model classes. This article is not concerned with software packages per se and focuses on the underlying tenets of scalable variational inference algorithms.
Author Wand, M. P.
Author_xml – sequence: 1
  givenname: M. P.
  orcidid: 0000-0003-2555-896X
  surname: Wand
  fullname: Wand, M. P.
  email: matt.wand@uts.edu.au
  organization: Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology (QUT)
BookMark eNqNkU9vFCEYh4mpidvqR2hC4sXLrDDMDEy8uGlabbKNxj-JN_IOAxs2DKzAWvfby2Sqhx5ULhDe5we8D-fozAevEbqkZE2JIK8J7WratP26Lqs1pT0XjD1BK9oyXtW8-XaGVjNTzdAzdJ7SnpTBhVghfQMp483hEMNPO0HW-NYbHbVXGpsQ8SYONkeI1p3wFuJO4896sgeIMOkcrcKf9C7qlGzw-C6M2iX8wwK-K1tQ4I9QSn73HD014JJ-8TBfoK8311-u3lfbD-9urzbbSjWc5UrUrGfKENXofgQiekGpboQigxkHxYZBjc1guNHtOPaiVswQ6JkQPSjWwgDsAnXLuUd_gNM9OCcPsbQVT5ISOcuSv2XJWZZ8kFWCr5Zg8fD9qFOWk01KOwdeh2MqMCGsZU03oy8foftwjL60JWvGOOdN1_FCvVkoFUNKURupbIZcNBWb1v3zOe2j9P-2cbnk9imH-CfUtKTmPWlL_e1St7587gT3IbpRZji5EE0Er2yS7O9X_AJTmLp1
CitedBy_id crossref_primary_10_1016_j_csda_2024_108055
crossref_primary_10_1080_10705511_2022_2053857
crossref_primary_10_1016_j_csda_2024_108094
crossref_primary_10_1214_23_BA1393
crossref_primary_10_1111_anzs_12339
crossref_primary_10_2139_ssrn_3438754
crossref_primary_10_1214_23_STS886
crossref_primary_10_1002_sta4_196
crossref_primary_10_1016_j_ijar_2018_11_002
crossref_primary_10_1002_wics_1461
crossref_primary_10_2139_ssrn_3961872
crossref_primary_10_1007_s11222_023_10317_0
crossref_primary_10_1080_07350015_2019_1677472
crossref_primary_10_1093_biostatistics_kxab021
crossref_primary_10_1080_1351847X_2020_1789684
crossref_primary_10_1007_s42952_019_00033_9
crossref_primary_10_3390_psych4010007
crossref_primary_10_1214_19_STS712
crossref_primary_10_1080_10618600_2020_1869025
crossref_primary_10_1214_22_STS875
crossref_primary_10_2139_ssrn_3246473
crossref_primary_10_1111_anzs_12199
crossref_primary_10_1016_j_ijforecast_2023_05_002
crossref_primary_10_1016_j_csda_2020_107088
crossref_primary_10_1080_01621459_2016_1270044
crossref_primary_10_1080_10618600_2022_2096622
crossref_primary_10_1080_10618600_2019_1629942
crossref_primary_10_1002_sim_9991
crossref_primary_10_3390_e23070807
Cites_doi 10.1002/bimj.201500007
10.1093/oso/9780198524847.001.0001
10.1214/06-BA117A
10.1002/sim.2193
10.1111/1467-9876.00385
10.1002/9781118445112.stat01205.pub2
10.1198/tast.2010.09058
10.1214/09-EJS525
10.1162/neco.2006.18.8.1790
10.1214/13-BA815
10.1002/sim.6737
10.1198/jasa.2011.tm10301
10.1111/j.1467-842X.2009.00538.x
10.1056/NEJM198910263211703
10.1201/9781420010404
10.1016/j.csda.2006.10.028
10.1201/9781420011579
10.1214/088342304000000026
10.1561/2200000001
10.1198/tast.2011.10169
10.1002/9780470973394
10.1080/01621459.1995.10476599
10.18637/jss.v037.i05
10.1017/CBO9780511755453
10.1198/016214508000000337
10.1080/10618600.2013.810150
10.1111/1467-9876.00154
10.1214/11-EJS652
10.1214/13-STS418
10.1201/b13613
10.1111/anzs.12105
10.1109/18.910572
10.1080/10691898.1993.11910459
10.1023/A:1008932416310
10.1214/14-BA932
10.1007/s11222-012-9314-z
10.1111/j.0006-341X.2001.00539.x
10.1002/sim.1991
10.1080/01621459.1993.10476321
10.1111/j.1467-842X.2008.00507.x
10.1214/06-BA105
10.1109/TKDE.2014.2334326
ContentType Journal Article
Copyright 2017 American Statistical Association 2017
Copyright © 2017 American Statistical Association
2017 American Statistical Association
Copyright_xml – notice: 2017 American Statistical Association 2017
– notice: Copyright © 2017 American Statistical Association
– notice: 2017 American Statistical Association
DBID AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
ADTOC
UNPAY
DOI 10.1080/01621459.2016.1197833
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

International Bibliography of the Social Sciences (IBSS)

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 168
ExternalDocumentID oai:figshare.com:article/3462980
10_1080_01621459_2016_1197833
45027905
1197833
Genre Discussion
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABRLO
ABTAI
ABUFD
ABXSQ
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADXHL
AEISY
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGDLA
AGLNM
AGMYJ
AHDZW
AIHAF
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FJW
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IPNFZ
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
KYCEM
LJTGL
LU7
M4Z
MS~
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
ZUP
~S~
ADYSH
AFSUE
ALIPV
AMPGV
AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
.-4
.GJ
07G
1OL
3R3
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAFWJ
AAIKQ
AAKBW
ABEFU
ABJCF
ABUWG
ACAGQ
ACGEE
ACTCW
ADBBV
ADTOC
ADULT
AEUMN
AFKRA
AFQQW
AGCQS
AGLEN
AGROQ
AHMOU
AI.
ALCKM
AMATQ
AMEWO
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CRFIH
DMQIW
DWIFK
DWQXO
E.L
FEDTE
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HVGLF
IVXBP
K9-
KQ8
L6V
M0C
M0R
M0T
M1P
M2O
M2P
M7S
MVM
NHB
NUSFT
P-O
PADUT
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RNS
S0X
SJN
TAQ
TFMCV
UB9
UKHRP
UNPAY
UQL
VH1
VOH
WHG
YXB
YYP
ZCG
ZGI
ZXP
ID FETCH-LOGICAL-c473t-82393cf0c4e9da089811e48c0bfdbc3bbcd4bf7fe5dd982c3f0a93889ac35aba3
IEDL.DBID UNPAY
ISSN 0162-1459
1537-274X
IngestDate Sun Oct 26 03:24:34 EDT 2025
Thu Oct 02 23:59:18 EDT 2025
Mon Oct 06 18:14:50 EDT 2025
Wed Oct 01 03:21:29 EDT 2025
Thu Apr 24 23:02:50 EDT 2025
Thu May 29 09:14:59 EDT 2025
Mon Oct 20 23:48:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 517
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c473t-82393cf0c4e9da089811e48c0bfdbc3bbcd4bf7fe5dd982c3f0a93889ac35aba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2555-896X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://figshare.com/articles/journal_contribution/Fast_Approximate_Inference_for_Arbitrarily_Large_Semiparametric_Regression_Models_via_Message_Passing/3462980
PQID 2337774667
PQPubID 41715
PageCount 32
ParticipantIDs proquest_journals_2337774667
informaworld_taylorfrancis_310_1080_01621459_2016_1197833
crossref_citationtrail_10_1080_01621459_2016_1197833
jstor_primary_45027905
proquest_miscellaneous_2000353463
unpaywall_primary_10_1080_01621459_2016_1197833
crossref_primary_10_1080_01621459_2016_1197833
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-02
PublicationDateYYYYMMDD 2017-01-02
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-02
  day: 02
PublicationDecade 2010
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group,LLC
– name: Taylor & Francis Ltd
References cit0033
cit0034
cit0031
cit0032
Winn J. (cit0061) 2005; 6
Luts J. (cit0039) 2017
cit0030
Hodges J. S. (cit0023) 2013
cit0037
Bishop C. M. (cit0005) 2006
cit0038
cit0035
cit0036
cit0020
cit0021
cit0062
cit0063
cit0060
Wand M. P. (cit0057) 2014; 15
Knowles D. A. (cit0029) 2011; 24
Gelman A. (cit0016) 2014
Diggle P. (cit0008) 2002
cit0028
cit0026
cit0027
cit0024
cit0025
cit0011
cit0055
cit0012
cit0056
cit0053
cit0010
cit0054
cit0051
cit0050
cit0019
cit0018
Ghosh S. (cit0017) 2015
cit0059
cit0014
cit0058
cit0044
cit0001
Frey B. J. (cit0013) 1998
cit0045
cit0043
cit0040
Minka T. (cit0041) 2005; 2005
Bishop C. M. (cit0004) 2003
Gelman A. (cit0015) 2007
Minka T. (cit0042) 2008; 2008
cit0009
cit0006
cit0007
cit0048
cit0049
cit0046
cit0003
cit0047
References_xml – ident: cit0032
  doi: 10.1002/bimj.201500007
– volume-title: Analysis of Longitudinal Data
  year: 2002
  ident: cit0008
  doi: 10.1093/oso/9780198524847.001.0001
– volume-title: Bayesian Data Analysis
  year: 2014
  ident: cit0016
– ident: cit0014
  doi: 10.1214/06-BA117A
– ident: cit0021
  doi: 10.1002/sim.2193
– ident: cit0028
  doi: 10.1111/1467-9876.00385
– ident: cit0003
  doi: 10.1002/9781118445112.stat01205.pub2
– volume: 2005
  year: 2005
  ident: cit0041
  publication-title: Microsoft Research Technical Report Series
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: cit0005
– ident: cit0044
  doi: 10.1198/tast.2010.09058
– ident: cit0031
– ident: cit0049
  doi: 10.1214/09-EJS525
– ident: cit0050
– volume-title: Distributed Systems: An Algorithmic Approach (2nd ed.)
  year: 2015
  ident: cit0017
– ident: cit0018
  doi: 10.1162/neco.2006.18.8.1790
– volume-title: Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects
  year: 2013
  ident: cit0023
– ident: cit0025
  doi: 10.1214/13-BA815
– ident: cit0033
  doi: 10.1002/sim.6737
– volume: 24
  start-page: 1701
  volume-title: Advances in Neural Information Processing Systems
  year: 2011
  ident: cit0029
– ident: cit0011
  doi: 10.1198/jasa.2011.tm10301
– ident: cit0056
  doi: 10.1111/j.1467-842X.2009.00538.x
– ident: cit0046
  doi: 10.1056/NEJM198910263211703
– ident: cit0062
  doi: 10.1201/9781420010404
– ident: cit0006
  doi: 10.1016/j.csda.2006.10.028
– volume: 15
  start-page: 1351
  year: 2014
  ident: cit0057
  publication-title: Journal of Machine Learning Research
– year: 2017
  ident: cit0039
  publication-title: Journal of Statistical Software, in press
– ident: cit0012
  doi: 10.1201/9781420011579
– ident: cit0027
  doi: 10.1214/088342304000000026
– volume: 2008
  year: 2008
  ident: cit0042
  publication-title: Microsoft Research Technical Report Series
– volume: 6
  start-page: 661
  year: 2005
  ident: cit0061
  publication-title: Journal of Machine Learning Research
– ident: cit0055
  doi: 10.1561/2200000001
– ident: cit0060
  doi: 10.1198/tast.2011.10169
– ident: cit0019
  doi: 10.1002/9780470973394
– ident: cit0009
  doi: 10.1080/01621459.1995.10476599
– ident: cit0040
  doi: 10.18637/jss.v037.i05
– ident: cit0048
  doi: 10.1017/CBO9780511755453
– ident: cit0045
  doi: 10.1198/016214508000000337
– ident: cit0037
  doi: 10.1080/10618600.2013.810150
– ident: cit0054
  doi: 10.1111/1467-9876.00154
– ident: cit0059
  doi: 10.1214/11-EJS652
– ident: cit0051
  doi: 10.1214/13-STS418
– ident: cit0035
  doi: 10.1201/b13613
– ident: cit0020
  doi: 10.1111/anzs.12105
– ident: cit0030
  doi: 10.1109/18.910572
– start-page: 793
  volume-title: Advances in Neural Information Processing Systems
  year: 2003
  ident: cit0004
– volume-title: Data Analysis using Regression and Multilevel/Hierarchical Models
  year: 2007
  ident: cit0015
– ident: cit0034
  doi: 10.1080/10691898.1993.11910459
– ident: cit0026
  doi: 10.1023/A:1008932416310
– ident: cit0038
  doi: 10.1214/14-BA932
– ident: cit0063
  doi: 10.1007/s11222-012-9314-z
– ident: cit0043
– ident: cit0007
  doi: 10.1111/j.0006-341X.2001.00539.x
– year: 1998
  ident: cit0013
  publication-title: Proceedings of the 35th Allerton Conference on Communication, Control and Computing 1997
– ident: cit0010
  doi: 10.1002/sim.1991
– ident: cit0047
– ident: cit0001
  doi: 10.1080/01621459.1993.10476321
– ident: cit0053
– ident: cit0058
  doi: 10.1111/j.1467-842X.2008.00507.x
– ident: cit0024
  doi: 10.1214/06-BA105
– ident: cit0036
  doi: 10.1109/TKDE.2014.2334326
SSID ssj0000788
Score 2.4433002
Snippet We show how the notion of message passing can be used to streamline the algebra and computer coding for fast approximate inference in large Bayesian...
We show how the notion ofmessage passing can be used to streamline the algebra and computer coding for fast approximate inference in large Bayesian...
SourceID unpaywall
proquest
crossref
jstor
informaworld
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 137
SubjectTerms Algebra
Algorithms
Bayesian analysis
Coding
computer software
computers
equations
Factor graphs
Fragments
Generalized additive models
Generalized linear mixed models
Graph representations
Graphical representations
Inference
Low-rank smoothing splines
Mathematical analysis
Mean field variational Bayes
Message passing
Regression analysis
Regression models
Scalable statistical methodology
Software packages
Statistical analysis
Statistical methods
Statistical models
Statistics
Theory and Methods
Variational message passing
Title Fast Approximate Inference for Arbitrarily Large Semiparametric Regression Models via Message Passing
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2016.1197833
https://www.jstor.org/stable/45027905
https://www.proquest.com/docview/2337774667
https://www.proquest.com/docview/2000353463
https://figshare.com/articles/journal_contribution/Fast_Approximate_Inference_for_Arbitrarily_Large_Semiparametric_Regression_Models_via_Message_Passing/3462980
UnpaywallVersion submittedVersion
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: AMVHM
  dateStart: 20121201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: AHDZW
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1db9MwFLW27oG98D1RGJOReE2bxB9JHitENRCrJqBSebJsx9kismxq043xa_gr_DPubZzS8jJ449lxcmKd2Cf2vecS8joP04xHRga5li4ABR4GWeZ0YJJYCpj-8khgNvLJRB5P-fuZmO2QH10uTFGeLc71vN1I6mLDhn5c1Sp829eBGo71olEjdN7-VoK6c-pdlyKnQO-p0dyUmLleVrfqA0ZVq0_uokRD7QusVWXVR3fWhprWCuuOVQt1XWp1gpVH4OJT0K6weAwZl3GWhrtkTwpQ-z2yN52cjr60luFxEPFVPTaYN5IAfvBmXZIQ2ndDOzZj_Jgc4HFdytjW8rdljtoFRG5J3XvL-krf3uiq2lj1xg_Iz2682mCXr4NlYwb2-x9Wkv_zgD4k973kpqMW1SOy4-rHZB9VdmtS_YQ4xEQ3MNE1JgqY6AYmusJEtzHR35hoi4kCJuoxUY_pKZmO335-cxz4-hOB5QlrghTt4WwRWu6yXAOp0yhyPLWhKXJjmTE256ZICifyPEtjy4pQZyxNM22Z0EazA9KrL2v3jNDEZgVPEh07KbiGq2VkXJ4LoQuuQSL2Ce9ooaw3Z8caIZWKOg9XzyaFbFKeTX0yWHe7at1J7uqQbXJONattoaKt4aLYHX0PVgRdP4mLMEZ_tz457BirPLEWKmYsgV8LKZM-ebVuhrkLD6R07S6XCyyBGjIBhIB7D9dM_7s3ef7PPV6Q_Rg1Ge6fxYek18yX7iUoysYckV0WTo78p_0L4_x9tg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHNoL74qFAkbimm0Sv-JjhVhtYXeFoJV6s_ysItK0YrNA-fV48lh2kVCReo7H0Thj-4s9830IvXVpIWlmeOI090lE4GkipdeJETlncflzGYNq5PmCT0_phzN2tlELA2mV8A8dOqKIdq2GyQ2H0UNK3GGEKUCwDXUmGR_DRVhByF10j0WwDyoGJF38WY1Fqz0JJgnYDFU8_-pma3_aYi8dMha3sOjuqr7S1z90VW1sS5MHyA4OddkoX8erxoztr7-4Hm_n8UN0v0et-KgLs0fojq8foz0Aqh3P8xPkJ3rZ4CNgKP9ZRhTs8fFQSoijc9HUlFDhX1bXeAbZ5_iLvyiBePwCNL0s_uzPu5TcGoM-W7XE30uN56DQEht_ihg_brJP0enk_cm7adJLOCSWCtIkBTCs2ZBa6qXTMS6KLPO0sKkJzlhijHXUBBE8c04WuSUh1ZIUhdSWMG002Uc79WXtnyEsrAxUCJ17zqiOrXlmvHOM6UB1RFkjRIcPp2zPbw4yG5XKBhrUfhAVDKLqB3GExmuzq47g4yYDuRkVqmlPVkIng6LIDbb7bQit30RZmgNF2ggdDDGl-kVkqXJCRETnnIsRerN-HKc_3Ono2l-ulqAimhJGKI99H65j8f88eX4LT16j3enJfKZmx4uPL9BeDmAHDqbyA7TTfFv5lxGqNeZVOxd_A0khLSM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSNAL74qFAkbimm0Sv-JjBaxaaFcVUIlb5GcVkaarJlsovx5PEi9dJFSknuNxNM7Y_mLPfB9Cb21aSJppnljFXRIQeJpI6VSiRc5ZWP5sxqAa-XDO947px28sZhO2Y1ol_EP7gSiiX6thci-sjxlxOwGlAL82lJlkfAr3YAUht9EdDrdiUMWRzv8sxqKXngSTBGxiEc-_ulnbntbIS2PC4hoUvbdsFuryh6rrK7vS7AHS0Z8hGeX7dNnpqfn1F9XjjRx-iO6PmBXvDkH2CN1yzWO0CTB1YHl-gtxMtR3eBX7yn1XAwA7vx0JCHHwLprqC-v6qvsQHkHuOv7jTCmjHT0HRy-DP7mRIyG0wqLPVLb6oFD4EfZbQ-Cgg_LDFPkXHsw9f3-0lo4BDYqggXVIAv5rxqaFOWhWiosgyRwuTam-1IVobS7UX3jFrZZEb4lMlSVFIZQhTWpEttNGcNe4ZwsJIT4VQueOMqtCaZ9pZy5jyVAWMNUE0frfSjOzmILJRl1kkQR0HsYRBLMdBnKDpymwx0HtcZyCvBkXZ9ecqfhBBKck1tlt9BK3eRFmaA0HaBG3HkCrHJaQtc0JEwOaciwl6s3ocJj_c6KjGnS1b0BANMU8oD33vrELx_zx5fgNPXqO7R-9n5cH-_NMLtJkD0oFTqXwbbXTnS_cy4LROv-pn4m9gICvH
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1db9MwFLVG98Be-J4oDGQkXtMm8UeSxwpRDcSmCahUnizbcbaILpvadGP8Gv4K_4x7Eye0vAzeeHacnFgn9ol977mEvM7DNOORkUGupQtAgYdBljkdmCSWAqa_PBKYjXx0LA9n_P1czHfIjy4XpihPV2d62W4kdbFhYz-uqgnf9nWgxlO9qtUEnbe_laDunHrXpcgp0HtqsjQlZq6Xixv1AaOq1Sd3XqKh9jnWqrLqozttQ00rhXXHFit1VWp1hJVH4OIT0K6weIwZl3GWhnfIrhSg9gdkd3Z8MvnSWobHQcSbemwwbyQB_ODNuyQhtO-GdmzG-DE5wuO6lLGt5W_LHLULiNySunfX1aW-udaLxcaqN71Pfnbj1Qa7fB2tazOy3_-wkvyfB_QBueclN520qB6SHVc9InuosluT6sfEISa6gYn2mChgohuYaIOJbmOivzHRFhMFTNRjoh7TEzKbvv385jDw9ScCyxNWBynaw9kitNxluQZSp1HkeGpDU-TGMmNszk2RFE7keZbGlhWhzliaZtoyoY1m-2RQXVTuKaGJzQqeJDp2UnANV8vIuDwXQhdcg0QcEt7RQllvzo41QhYq6jxcPZsUskl5Ng3JqO922bqT3NYh2-ScqpttoaKt4aLYLX33G4L2T-IijNHfbUgOOsYqT6yVihlL4NdCymRIXvXNMHfhgZSu3MV6hSVQQyaAEHDvcc_0v3uTZ__c4znZi1GT4f5ZfEAG9XLtXoCirM1L_1H_AvgAfOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Approximate+Inference+for+Arbitrarily+Large+Semiparametric+Regression+Models+via+Message+Passing&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Wand%2C+M.+P.&rft.date=2017-01-02&rft.pub=Taylor+%26+Francis&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=112&rft.issue=517&rft.spage=137&rft.epage=168&rft_id=info:doi/10.1080%2F01621459.2016.1197833&rft.externalDocID=1197833
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon