Fast Approximate Inference for Arbitrarily Large Semiparametric Regression Models via Message Passing
We show how the notion of message passing can be used to streamline the algebra and computer coding for fast approximate inference in large Bayesian semiparametric regression models. In particular, this approach is amenable to handling arbitrarily large models of particular types once a set of primi...
Saved in:
| Published in | Journal of the American Statistical Association Vol. 112; no. 517; pp. 137 - 168 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Alexandria
Taylor & Francis
02.01.2017
Taylor & Francis Group,LLC Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0162-1459 1537-274X 1537-274X |
| DOI | 10.1080/01621459.2016.1197833 |
Cover
| Abstract | We show how the notion of message passing can be used to streamline the algebra and computer coding for fast approximate inference in large Bayesian semiparametric regression models. In particular, this approach is amenable to handling arbitrarily large models of particular types once a set of primitive operations is established. The approach is founded upon a message passing formulation of mean field variational Bayes that utilizes factor graph representations of statistical models. The underlying principles apply to general Bayesian hierarchical models although we focus on semiparametric regression. The notion of factor graph fragments is introduced and is shown to facilitate compartmentalization of the required algebra and coding. The resultant algorithms have ready-to-implement closed form expressions and allow a broad class of arbitrarily large semiparametric regression models to be handled. Ongoing software projects such as Infer.NET and Stan support variational-type inference for particular model classes. This article is not concerned with software packages per se and focuses on the underlying tenets of scalable variational inference algorithms. Supplementary materials for this article are available online. |
|---|---|
| AbstractList | We show how the notion of message passing can be used to streamline the algebra and computer coding for fast approximate inference in large Bayesian semiparametric regression models. In particular, this approach is amenable to handling arbitrarily large models of particular types once a set of primitive operations is established. The approach is founded upon a message passing formulation of mean field variational Bayes that utilizes factor graph representations of statistical models. The underlying principles apply to general Bayesian hierarchical models although we focus on semiparametric regression. The notion of factor graph fragments is introduced and is shown to facilitate compartmentalization of the required algebra and coding. The resultant algorithms have ready-to-implement closed form expressions and allow a broad class of arbitrarily large semiparametric regression models to be handled. Ongoing software projects such as Infer.NET and Stan support variational-type inference for particular model classes. This article is not concerned with software packages per se and focuses on the underlying tenets of scalable variational inference algorithms. Supplementary materials for this article are available online. We show how the notion ofmessage passing can be used to streamline the algebra and computer coding for fast approximate inference in large Bayesian semiparametric regression models. In particular, this approach is amenable to handling arbitrarily large models of particular types once a set of primitive operations is established. The approach is founded upon a message passing formulation of mean field variational Bayes that utilizes factor graph representations of statistical models. The underlying principles apply to general Bayesian hierarchical models although we focus on semiparametric regression. The notion of factor graph fragments is introduced and is shown to facilitate compartmentalization of the required algebra and coding. The resultant algorithms have ready-to-implement closed form expressions and allow a broad class of arbitrarily large semiparametric regression models to be handled. Ongoing software projects such as lnfer.NET and Stan support variational-type inference for particular model classes. This article is not concerned with software packages per se and focuses on the underlying tenets of scalable variational inference algorithms. |
| Author | Wand, M. P. |
| Author_xml | – sequence: 1 givenname: M. P. orcidid: 0000-0003-2555-896X surname: Wand fullname: Wand, M. P. email: matt.wand@uts.edu.au organization: Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology (QUT) |
| BookMark | eNqNkU9vFCEYh4mpidvqR2hC4sXLrDDMDEy8uGlabbKNxj-JN_IOAxs2DKzAWvfby2Sqhx5ULhDe5we8D-fozAevEbqkZE2JIK8J7WratP26Lqs1pT0XjD1BK9oyXtW8-XaGVjNTzdAzdJ7SnpTBhVghfQMp483hEMNPO0HW-NYbHbVXGpsQ8SYONkeI1p3wFuJO4896sgeIMOkcrcKf9C7qlGzw-C6M2iX8wwK-K1tQ4I9QSn73HD014JJ-8TBfoK8311-u3lfbD-9urzbbSjWc5UrUrGfKENXofgQiekGpboQigxkHxYZBjc1guNHtOPaiVswQ6JkQPSjWwgDsAnXLuUd_gNM9OCcPsbQVT5ISOcuSv2XJWZZ8kFWCr5Zg8fD9qFOWk01KOwdeh2MqMCGsZU03oy8foftwjL60JWvGOOdN1_FCvVkoFUNKURupbIZcNBWb1v3zOe2j9P-2cbnk9imH-CfUtKTmPWlL_e1St7587gT3IbpRZji5EE0Er2yS7O9X_AJTmLp1 |
| CitedBy_id | crossref_primary_10_1016_j_csda_2024_108055 crossref_primary_10_1080_10705511_2022_2053857 crossref_primary_10_1016_j_csda_2024_108094 crossref_primary_10_1214_23_BA1393 crossref_primary_10_1111_anzs_12339 crossref_primary_10_2139_ssrn_3438754 crossref_primary_10_1214_23_STS886 crossref_primary_10_1002_sta4_196 crossref_primary_10_1016_j_ijar_2018_11_002 crossref_primary_10_1002_wics_1461 crossref_primary_10_2139_ssrn_3961872 crossref_primary_10_1007_s11222_023_10317_0 crossref_primary_10_1080_07350015_2019_1677472 crossref_primary_10_1093_biostatistics_kxab021 crossref_primary_10_1080_1351847X_2020_1789684 crossref_primary_10_1007_s42952_019_00033_9 crossref_primary_10_3390_psych4010007 crossref_primary_10_1214_19_STS712 crossref_primary_10_1080_10618600_2020_1869025 crossref_primary_10_1214_22_STS875 crossref_primary_10_2139_ssrn_3246473 crossref_primary_10_1111_anzs_12199 crossref_primary_10_1016_j_ijforecast_2023_05_002 crossref_primary_10_1016_j_csda_2020_107088 crossref_primary_10_1080_01621459_2016_1270044 crossref_primary_10_1080_10618600_2022_2096622 crossref_primary_10_1080_10618600_2019_1629942 crossref_primary_10_1002_sim_9991 crossref_primary_10_3390_e23070807 |
| Cites_doi | 10.1002/bimj.201500007 10.1093/oso/9780198524847.001.0001 10.1214/06-BA117A 10.1002/sim.2193 10.1111/1467-9876.00385 10.1002/9781118445112.stat01205.pub2 10.1198/tast.2010.09058 10.1214/09-EJS525 10.1162/neco.2006.18.8.1790 10.1214/13-BA815 10.1002/sim.6737 10.1198/jasa.2011.tm10301 10.1111/j.1467-842X.2009.00538.x 10.1056/NEJM198910263211703 10.1201/9781420010404 10.1016/j.csda.2006.10.028 10.1201/9781420011579 10.1214/088342304000000026 10.1561/2200000001 10.1198/tast.2011.10169 10.1002/9780470973394 10.1080/01621459.1995.10476599 10.18637/jss.v037.i05 10.1017/CBO9780511755453 10.1198/016214508000000337 10.1080/10618600.2013.810150 10.1111/1467-9876.00154 10.1214/11-EJS652 10.1214/13-STS418 10.1201/b13613 10.1111/anzs.12105 10.1109/18.910572 10.1080/10691898.1993.11910459 10.1023/A:1008932416310 10.1214/14-BA932 10.1007/s11222-012-9314-z 10.1111/j.0006-341X.2001.00539.x 10.1002/sim.1991 10.1080/01621459.1993.10476321 10.1111/j.1467-842X.2008.00507.x 10.1214/06-BA105 10.1109/TKDE.2014.2334326 |
| ContentType | Journal Article |
| Copyright | 2017 American Statistical Association 2017 Copyright © 2017 American Statistical Association 2017 American Statistical Association |
| Copyright_xml | – notice: 2017 American Statistical Association 2017 – notice: Copyright © 2017 American Statistical Association – notice: 2017 American Statistical Association |
| DBID | AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 ADTOC UNPAY |
| DOI | 10.1080/01621459.2016.1197833 |
| DatabaseName | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA International Bibliography of the Social Sciences (IBSS) |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISSN | 1537-274X |
| EndPage | 168 |
| ExternalDocumentID | oai:figshare.com:article/3462980 10_1080_01621459_2016_1197833 45027905 1197833 |
| Genre | Discussion |
| GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 2AX 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVZ AABCJ AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAWIL ABAWQ ABBHK ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABRLO ABTAI ABUFD ABXSQ ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACHJO ACIWK ACMTB ACNCT ACTIO ACTMH ACUBG ADCVX ADGTB ADLSF ADMHG ADODI ADXHL AEISY AENEX AEOZL AEPSL AEUPB AEYOC AFFNX AFRVT AFVYC AFXHP AGDLA AGLNM AGMYJ AHDZW AIHAF AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMVHM AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P FJW GTTXZ H13 HF~ HQ6 HZ~ H~9 H~P IPNFZ IPSME J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K60 K6~ KYCEM LJTGL LU7 M4Z MS~ MW2 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SA0 SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UPT UT5 UU3 WH7 WZA YQT YYM ZGOLN ZUP ~S~ ADYSH AFSUE ALIPV AMPGV AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 .-4 .GJ 07G 1OL 3R3 7X7 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8G5 8R4 8R5 AAFWJ AAIKQ AAKBW ABEFU ABJCF ABUWG ACAGQ ACGEE ACTCW ADBBV ADTOC ADULT AEUMN AFKRA AFQQW AGCQS AGLEN AGROQ AHMOU AI. ALCKM AMATQ AMEWO AMXXU AQUVI AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BPHCQ BPLKW BVXVI C06 CCPQU CRFIH DMQIW DWIFK DWQXO E.L FEDTE FRNLG FVMVE FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HGD HMCUK HVGLF IVXBP K9- KQ8 L6V M0C M0R M0T M1P M2O M2P M7S MVM NHB NUSFT P-O PADUT PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PQGLB PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RNS S0X SJN TAQ TFMCV UB9 UKHRP UNPAY UQL VH1 VOH WHG YXB YYP ZCG ZGI ZXP |
| ID | FETCH-LOGICAL-c473t-82393cf0c4e9da089811e48c0bfdbc3bbcd4bf7fe5dd982c3f0a93889ac35aba3 |
| IEDL.DBID | UNPAY |
| ISSN | 0162-1459 1537-274X |
| IngestDate | Sun Oct 26 03:24:34 EDT 2025 Thu Oct 02 23:59:18 EDT 2025 Mon Oct 06 18:14:50 EDT 2025 Wed Oct 01 03:21:29 EDT 2025 Thu Apr 24 23:02:50 EDT 2025 Thu May 29 09:14:59 EDT 2025 Mon Oct 20 23:48:36 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 517 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c473t-82393cf0c4e9da089811e48c0bfdbc3bbcd4bf7fe5dd982c3f0a93889ac35aba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2555-896X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://figshare.com/articles/journal_contribution/Fast_Approximate_Inference_for_Arbitrarily_Large_Semiparametric_Regression_Models_via_Message_Passing/3462980 |
| PQID | 2337774667 |
| PQPubID | 41715 |
| PageCount | 32 |
| ParticipantIDs | proquest_journals_2337774667 informaworld_taylorfrancis_310_1080_01621459_2016_1197833 crossref_citationtrail_10_1080_01621459_2016_1197833 jstor_primary_45027905 proquest_miscellaneous_2000353463 unpaywall_primary_10_1080_01621459_2016_1197833 crossref_primary_10_1080_01621459_2016_1197833 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-01-02 |
| PublicationDateYYYYMMDD | 2017-01-02 |
| PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | Alexandria |
| PublicationPlace_xml | – name: Alexandria |
| PublicationTitle | Journal of the American Statistical Association |
| PublicationYear | 2017 |
| Publisher | Taylor & Francis Taylor & Francis Group,LLC Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group,LLC – name: Taylor & Francis Ltd |
| References | cit0033 cit0034 cit0031 cit0032 Winn J. (cit0061) 2005; 6 Luts J. (cit0039) 2017 cit0030 Hodges J. S. (cit0023) 2013 cit0037 Bishop C. M. (cit0005) 2006 cit0038 cit0035 cit0036 cit0020 cit0021 cit0062 cit0063 cit0060 Wand M. P. (cit0057) 2014; 15 Knowles D. A. (cit0029) 2011; 24 Gelman A. (cit0016) 2014 Diggle P. (cit0008) 2002 cit0028 cit0026 cit0027 cit0024 cit0025 cit0011 cit0055 cit0012 cit0056 cit0053 cit0010 cit0054 cit0051 cit0050 cit0019 cit0018 Ghosh S. (cit0017) 2015 cit0059 cit0014 cit0058 cit0044 cit0001 Frey B. J. (cit0013) 1998 cit0045 cit0043 cit0040 Minka T. (cit0041) 2005; 2005 Bishop C. M. (cit0004) 2003 Gelman A. (cit0015) 2007 Minka T. (cit0042) 2008; 2008 cit0009 cit0006 cit0007 cit0048 cit0049 cit0046 cit0003 cit0047 |
| References_xml | – ident: cit0032 doi: 10.1002/bimj.201500007 – volume-title: Analysis of Longitudinal Data year: 2002 ident: cit0008 doi: 10.1093/oso/9780198524847.001.0001 – volume-title: Bayesian Data Analysis year: 2014 ident: cit0016 – ident: cit0014 doi: 10.1214/06-BA117A – ident: cit0021 doi: 10.1002/sim.2193 – ident: cit0028 doi: 10.1111/1467-9876.00385 – ident: cit0003 doi: 10.1002/9781118445112.stat01205.pub2 – volume: 2005 year: 2005 ident: cit0041 publication-title: Microsoft Research Technical Report Series – volume-title: Pattern Recognition and Machine Learning year: 2006 ident: cit0005 – ident: cit0044 doi: 10.1198/tast.2010.09058 – ident: cit0031 – ident: cit0049 doi: 10.1214/09-EJS525 – ident: cit0050 – volume-title: Distributed Systems: An Algorithmic Approach (2nd ed.) year: 2015 ident: cit0017 – ident: cit0018 doi: 10.1162/neco.2006.18.8.1790 – volume-title: Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects year: 2013 ident: cit0023 – ident: cit0025 doi: 10.1214/13-BA815 – ident: cit0033 doi: 10.1002/sim.6737 – volume: 24 start-page: 1701 volume-title: Advances in Neural Information Processing Systems year: 2011 ident: cit0029 – ident: cit0011 doi: 10.1198/jasa.2011.tm10301 – ident: cit0056 doi: 10.1111/j.1467-842X.2009.00538.x – ident: cit0046 doi: 10.1056/NEJM198910263211703 – ident: cit0062 doi: 10.1201/9781420010404 – ident: cit0006 doi: 10.1016/j.csda.2006.10.028 – volume: 15 start-page: 1351 year: 2014 ident: cit0057 publication-title: Journal of Machine Learning Research – year: 2017 ident: cit0039 publication-title: Journal of Statistical Software, in press – ident: cit0012 doi: 10.1201/9781420011579 – ident: cit0027 doi: 10.1214/088342304000000026 – volume: 2008 year: 2008 ident: cit0042 publication-title: Microsoft Research Technical Report Series – volume: 6 start-page: 661 year: 2005 ident: cit0061 publication-title: Journal of Machine Learning Research – ident: cit0055 doi: 10.1561/2200000001 – ident: cit0060 doi: 10.1198/tast.2011.10169 – ident: cit0019 doi: 10.1002/9780470973394 – ident: cit0009 doi: 10.1080/01621459.1995.10476599 – ident: cit0040 doi: 10.18637/jss.v037.i05 – ident: cit0048 doi: 10.1017/CBO9780511755453 – ident: cit0045 doi: 10.1198/016214508000000337 – ident: cit0037 doi: 10.1080/10618600.2013.810150 – ident: cit0054 doi: 10.1111/1467-9876.00154 – ident: cit0059 doi: 10.1214/11-EJS652 – ident: cit0051 doi: 10.1214/13-STS418 – ident: cit0035 doi: 10.1201/b13613 – ident: cit0020 doi: 10.1111/anzs.12105 – ident: cit0030 doi: 10.1109/18.910572 – start-page: 793 volume-title: Advances in Neural Information Processing Systems year: 2003 ident: cit0004 – volume-title: Data Analysis using Regression and Multilevel/Hierarchical Models year: 2007 ident: cit0015 – ident: cit0034 doi: 10.1080/10691898.1993.11910459 – ident: cit0026 doi: 10.1023/A:1008932416310 – ident: cit0038 doi: 10.1214/14-BA932 – ident: cit0063 doi: 10.1007/s11222-012-9314-z – ident: cit0043 – ident: cit0007 doi: 10.1111/j.0006-341X.2001.00539.x – year: 1998 ident: cit0013 publication-title: Proceedings of the 35th Allerton Conference on Communication, Control and Computing 1997 – ident: cit0010 doi: 10.1002/sim.1991 – ident: cit0047 – ident: cit0001 doi: 10.1080/01621459.1993.10476321 – ident: cit0053 – ident: cit0058 doi: 10.1111/j.1467-842X.2008.00507.x – ident: cit0024 doi: 10.1214/06-BA105 – ident: cit0036 doi: 10.1109/TKDE.2014.2334326 |
| SSID | ssj0000788 |
| Score | 2.4433002 |
| Snippet | We show how the notion of message passing can be used to streamline the algebra and computer coding for fast approximate inference in large Bayesian... We show how the notion ofmessage passing can be used to streamline the algebra and computer coding for fast approximate inference in large Bayesian... |
| SourceID | unpaywall proquest crossref jstor informaworld |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 137 |
| SubjectTerms | Algebra Algorithms Bayesian analysis Coding computer software computers equations Factor graphs Fragments Generalized additive models Generalized linear mixed models Graph representations Graphical representations Inference Low-rank smoothing splines Mathematical analysis Mean field variational Bayes Message passing Regression analysis Regression models Scalable statistical methodology Software packages Statistical analysis Statistical methods Statistical models Statistics Theory and Methods Variational message passing |
| Title | Fast Approximate Inference for Arbitrarily Large Semiparametric Regression Models via Message Passing |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2016.1197833 https://www.jstor.org/stable/45027905 https://www.proquest.com/docview/2337774667 https://www.proquest.com/docview/2000353463 https://figshare.com/articles/journal_contribution/Fast_Approximate_Inference_for_Arbitrarily_Large_Semiparametric_Regression_Models_via_Message_Passing/3462980 |
| UnpaywallVersion | submittedVersion |
| Volume | 112 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1537-274X dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: AMVHM dateStart: 20121201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: AHDZW dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1db9MwFLW27oG98D1RGJOReE2bxB9JHitENRCrJqBSebJsx9kismxq043xa_gr_DPubZzS8jJ449lxcmKd2Cf2vecS8joP04xHRga5li4ABR4GWeZ0YJJYCpj-8khgNvLJRB5P-fuZmO2QH10uTFGeLc71vN1I6mLDhn5c1Sp829eBGo71olEjdN7-VoK6c-pdlyKnQO-p0dyUmLleVrfqA0ZVq0_uokRD7QusVWXVR3fWhprWCuuOVQt1XWp1gpVH4OJT0K6weAwZl3GWhrtkTwpQ-z2yN52cjr60luFxEPFVPTaYN5IAfvBmXZIQ2ndDOzZj_Jgc4HFdytjW8rdljtoFRG5J3XvL-krf3uiq2lj1xg_Iz2682mCXr4NlYwb2-x9Wkv_zgD4k973kpqMW1SOy4-rHZB9VdmtS_YQ4xEQ3MNE1JgqY6AYmusJEtzHR35hoi4kCJuoxUY_pKZmO335-cxz4-hOB5QlrghTt4WwRWu6yXAOp0yhyPLWhKXJjmTE256ZICifyPEtjy4pQZyxNM22Z0EazA9KrL2v3jNDEZgVPEh07KbiGq2VkXJ4LoQuuQSL2Ce9ooaw3Z8caIZWKOg9XzyaFbFKeTX0yWHe7at1J7uqQbXJONattoaKt4aLYHX0PVgRdP4mLMEZ_tz457BirPLEWKmYsgV8LKZM-ebVuhrkLD6R07S6XCyyBGjIBhIB7D9dM_7s3ef7PPV6Q_Rg1Ge6fxYek18yX7iUoysYckV0WTo78p_0L4_x9tg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHNoL74qFAkbimm0Sv-JjhVhtYXeFoJV6s_ysItK0YrNA-fV48lh2kVCReo7H0Thj-4s9830IvXVpIWlmeOI090lE4GkipdeJETlncflzGYNq5PmCT0_phzN2tlELA2mV8A8dOqKIdq2GyQ2H0UNK3GGEKUCwDXUmGR_DRVhByF10j0WwDyoGJF38WY1Fqz0JJgnYDFU8_-pma3_aYi8dMha3sOjuqr7S1z90VW1sS5MHyA4OddkoX8erxoztr7-4Hm_n8UN0v0et-KgLs0fojq8foz0Aqh3P8xPkJ3rZ4CNgKP9ZRhTs8fFQSoijc9HUlFDhX1bXeAbZ5_iLvyiBePwCNL0s_uzPu5TcGoM-W7XE30uN56DQEht_ihg_brJP0enk_cm7adJLOCSWCtIkBTCs2ZBa6qXTMS6KLPO0sKkJzlhijHXUBBE8c04WuSUh1ZIUhdSWMG002Uc79WXtnyEsrAxUCJ17zqiOrXlmvHOM6UB1RFkjRIcPp2zPbw4yG5XKBhrUfhAVDKLqB3GExmuzq47g4yYDuRkVqmlPVkIng6LIDbb7bQit30RZmgNF2ggdDDGl-kVkqXJCRETnnIsRerN-HKc_3Ono2l-ulqAimhJGKI99H65j8f88eX4LT16j3enJfKZmx4uPL9BeDmAHDqbyA7TTfFv5lxGqNeZVOxd_A0khLSM |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSNAL74qFAkbimm0Sv-JjBaxaaFcVUIlb5GcVkaarJlsovx5PEi9dJFSknuNxNM7Y_mLPfB9Cb21aSJppnljFXRIQeJpI6VSiRc5ZWP5sxqAa-XDO947px28sZhO2Y1ol_EP7gSiiX6thci-sjxlxOwGlAL82lJlkfAr3YAUht9EdDrdiUMWRzv8sxqKXngSTBGxiEc-_ulnbntbIS2PC4hoUvbdsFuryh6rrK7vS7AHS0Z8hGeX7dNnpqfn1F9XjjRx-iO6PmBXvDkH2CN1yzWO0CTB1YHl-gtxMtR3eBX7yn1XAwA7vx0JCHHwLprqC-v6qvsQHkHuOv7jTCmjHT0HRy-DP7mRIyG0wqLPVLb6oFD4EfZbQ-Cgg_LDFPkXHsw9f3-0lo4BDYqggXVIAv5rxqaFOWhWiosgyRwuTam-1IVobS7UX3jFrZZEb4lMlSVFIZQhTWpEttNGcNe4ZwsJIT4VQueOMqtCaZ9pZy5jyVAWMNUE0frfSjOzmILJRl1kkQR0HsYRBLMdBnKDpymwx0HtcZyCvBkXZ9ecqfhBBKck1tlt9BK3eRFmaA0HaBG3HkCrHJaQtc0JEwOaciwl6s3ocJj_c6KjGnS1b0BANMU8oD33vrELx_zx5fgNPXqO7R-9n5cH-_NMLtJkD0oFTqXwbbXTnS_cy4LROv-pn4m9gICvH |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1db9MwFLVG98Be-J4oDGQkXtMm8UeSxwpRDcSmCahUnizbcbaILpvadGP8Gv4K_4x7Eye0vAzeeHacnFgn9ol977mEvM7DNOORkUGupQtAgYdBljkdmCSWAqa_PBKYjXx0LA9n_P1czHfIjy4XpihPV2d62W4kdbFhYz-uqgnf9nWgxlO9qtUEnbe_laDunHrXpcgp0HtqsjQlZq6Xixv1AaOq1Sd3XqKh9jnWqrLqozttQ00rhXXHFit1VWp1hJVH4OIT0K6weIwZl3GWhnfIrhSg9gdkd3Z8MvnSWobHQcSbemwwbyQB_ODNuyQhtO-GdmzG-DE5wuO6lLGt5W_LHLULiNySunfX1aW-udaLxcaqN71Pfnbj1Qa7fB2tazOy3_-wkvyfB_QBueclN520qB6SHVc9InuosluT6sfEISa6gYn2mChgohuYaIOJbmOivzHRFhMFTNRjoh7TEzKbvv385jDw9ScCyxNWBynaw9kitNxluQZSp1HkeGpDU-TGMmNszk2RFE7keZbGlhWhzliaZtoyoY1m-2RQXVTuKaGJzQqeJDp2UnANV8vIuDwXQhdcg0QcEt7RQllvzo41QhYq6jxcPZsUskl5Ng3JqO922bqT3NYh2-ScqpttoaKt4aLYLX33G4L2T-IijNHfbUgOOsYqT6yVihlL4NdCymRIXvXNMHfhgZSu3MV6hSVQQyaAEHDvcc_0v3uTZ__c4znZi1GT4f5ZfEAG9XLtXoCirM1L_1H_AvgAfOQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Approximate+Inference+for+Arbitrarily+Large+Semiparametric+Regression+Models+via+Message+Passing&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Wand%2C+M.+P.&rft.date=2017-01-02&rft.pub=Taylor+%26+Francis&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=112&rft.issue=517&rft.spage=137&rft.epage=168&rft_id=info:doi/10.1080%2F01621459.2016.1197833&rft.externalDocID=1197833 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |