An urban energy balance-guided machine learning approach for synthetic nocturnal surface Urban Heat Island prediction: A heatwave event in Naples

Southern European functional urban areas (FUAs) are increasingly subject to heatwave (HW) events, calling for anticipated climate adaptation measures. In the urban context, such adaptation strategies require a thorough understanding of the built-up response to the incoming solar radiation, i.e., the...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 805; p. 150130
Main Authors Oliveira, Ana, Lopes, António, Niza, Samuel, Soares, Amílcar
Format Journal Article
LanguageEnglish
Published Elsevier B.V 20.01.2022
Subjects
Online AccessGet full text
ISSN0048-9697
1879-1026
1879-1026
DOI10.1016/j.scitotenv.2021.150130

Cover

Abstract Southern European functional urban areas (FUAs) are increasingly subject to heatwave (HW) events, calling for anticipated climate adaptation measures. In the urban context, such adaptation strategies require a thorough understanding of the built-up response to the incoming solar radiation, i.e., the urban energy balance cycle and its implications for the Urban Heat Island (UHI) effect. Despite readily available, diurnal Land Surface Temperature (LST) data does not provide a meaningful picture of the UHI, in these midlatitudes FUAs. On the contrary, the mid-morning satellite overpass is characterized by the absence of a significant surface UHI (SUHI) signal, corresponding to the period of the day when the urban-rural air temperature difference is typically negative. Conversely, nocturnal high-resolution LST data is rarely available. In this study, an energy balance-based machine learning approach is explored, considering the Local Climate Zones (LCZ), to describe the daily cycle of the heat flux components and predict the nocturnal SUHI, during an HW event. While the urban and rural spatial outlines are not visible in the diurnal thermal image, they become apparent in the latent and storage heat flux maps – built-up infrastructures uptake heat during the day which is released back into the atmosphere, during the night, whereas vegetation land surfaces loose diurnal heat through evapotranspiration. For the LST prediction model, a random forest (RF) approach is implemented. RF results show that the model accurately predicts the LST, ensuring mean square errors inferior to 0.1 K. Both the latent and storage heat flux components, together with LCZ classification, are the most important explanatory variables for the nocturnal LST prediction, supporting the adoption of the energy balance approach. In future research, other locations and time-series data shall be trained and tested, providing an efficient local urban climate monitoring tool, where in-situ air temperature observations are not available. [Display omitted] •Satellite thermal imagery offers insights into the urban climate performance.•Those insights are constrained by long repeat cycles and diurnal overpass time.•Land use/land cover (LULC) classes have different nocturnal thermal performances.•Heat Fluxes (HF) disclose these nocturnal land surface temperature (LST) contrasts.•Through machine learning, LULC and HF, synthetic nocturnal LST is predicted.
AbstractList Southern European functional urban areas (FUAs) are increasingly subject to heatwave (HW) events, calling for anticipated climate adaptation measures. In the urban context, such adaptation strategies require a thorough understanding of the built-up response to the incoming solar radiation, i.e., the urban energy balance cycle and its implications for the Urban Heat Island (UHI) effect. Despite readily available, diurnal Land Surface Temperature (LST) data does not provide a meaningful picture of the UHI, in these midlatitudes FUAs. On the contrary, the mid-morning satellite overpass is characterized by the absence of a significant surface UHI (SUHI) signal, corresponding to the period of the day when the urban-rural air temperature difference is typically negative. Conversely, nocturnal high-resolution LST data is rarely available. In this study, an energy balance-based machine learning approach is explored, considering the Local Climate Zones (LCZ), to describe the daily cycle of the heat flux components and predict the nocturnal SUHI, during an HW event. While the urban and rural spatial outlines are not visible in the diurnal thermal image, they become apparent in the latent and storage heat flux maps – built-up infrastructures uptake heat during the day which is released back into the atmosphere, during the night, whereas vegetation land surfaces loose diurnal heat through evapotranspiration. For the LST prediction model, a random forest (RF) approach is implemented. RF results show that the model accurately predicts the LST, ensuring mean square errors inferior to 0.1 K. Both the latent and storage heat flux components, together with LCZ classification, are the most important explanatory variables for the nocturnal LST prediction, supporting the adoption of the energy balance approach. In future research, other locations and time-series data shall be trained and tested, providing an efficient local urban climate monitoring tool, where in-situ air temperature observations are not available.
Southern European functional urban areas (FUAs) are increasingly subject to heatwave (HW) events, calling for anticipated climate adaptation measures. In the urban context, such adaptation strategies require a thorough understanding of the built-up response to the incoming solar radiation, i.e., the urban energy balance cycle and its implications for the Urban Heat Island (UHI) effect. Despite readily available, diurnal Land Surface Temperature (LST) data does not provide a meaningful picture of the UHI, in these midlatitudes FUAs. On the contrary, the mid-morning satellite overpass is characterized by the absence of a significant surface UHI (SUHI) signal, corresponding to the period of the day when the urban-rural air temperature difference is typically negative. Conversely, nocturnal high-resolution LST data is rarely available. In this study, an energy balance-based machine learning approach is explored, considering the Local Climate Zones (LCZ), to describe the daily cycle of the heat flux components and predict the nocturnal SUHI, during an HW event. While the urban and rural spatial outlines are not visible in the diurnal thermal image, they become apparent in the latent and storage heat flux maps – built-up infrastructures uptake heat during the day which is released back into the atmosphere, during the night, whereas vegetation land surfaces loose diurnal heat through evapotranspiration. For the LST prediction model, a random forest (RF) approach is implemented. RF results show that the model accurately predicts the LST, ensuring mean square errors inferior to 0.1 K. Both the latent and storage heat flux components, together with LCZ classification, are the most important explanatory variables for the nocturnal LST prediction, supporting the adoption of the energy balance approach. In future research, other locations and time-series data shall be trained and tested, providing an efficient local urban climate monitoring tool, where in-situ air temperature observations are not available. [Display omitted] •Satellite thermal imagery offers insights into the urban climate performance.•Those insights are constrained by long repeat cycles and diurnal overpass time.•Land use/land cover (LULC) classes have different nocturnal thermal performances.•Heat Fluxes (HF) disclose these nocturnal land surface temperature (LST) contrasts.•Through machine learning, LULC and HF, synthetic nocturnal LST is predicted.
Southern European functional urban areas (FUAs) are increasingly subject to heatwave (HW) events, calling for anticipated climate adaptation measures. In the urban context, such adaptation strategies require a thorough understanding of the built-up response to the incoming solar radiation, i.e., the urban energy balance cycle and its implications for the Urban Heat Island (UHI) effect. Despite readily available, diurnal Land Surface Temperature (LST) data does not provide a meaningful picture of the UHI, in these midlatitudes FUAs. On the contrary, the mid-morning satellite overpass is characterized by the absence of a significant surface UHI (SUHI) signal, corresponding to the period of the day when the urban-rural air temperature difference is typically negative. Conversely, nocturnal high-resolution LST data is rarely available. In this study, an energy balance-based machine learning approach is explored, considering the Local Climate Zones (LCZ), to describe the daily cycle of the heat flux components and predict the nocturnal SUHI, during an HW event. While the urban and rural spatial outlines are not visible in the diurnal thermal image, they become apparent in the latent and storage heat flux maps - built-up infrastructures uptake heat during the day which is released back into the atmosphere, during the night, whereas vegetation land surfaces loose diurnal heat through evapotranspiration. For the LST prediction model, a random forest (RF) approach is implemented. RF results show that the model accurately predicts the LST, ensuring mean square errors inferior to 0.1 K. Both the latent and storage heat flux components, together with LCZ classification, are the most important explanatory variables for the nocturnal LST prediction, supporting the adoption of the energy balance approach. In future research, other locations and time-series data shall be trained and tested, providing an efficient local urban climate monitoring tool, where in-situ air temperature observations are not available.Southern European functional urban areas (FUAs) are increasingly subject to heatwave (HW) events, calling for anticipated climate adaptation measures. In the urban context, such adaptation strategies require a thorough understanding of the built-up response to the incoming solar radiation, i.e., the urban energy balance cycle and its implications for the Urban Heat Island (UHI) effect. Despite readily available, diurnal Land Surface Temperature (LST) data does not provide a meaningful picture of the UHI, in these midlatitudes FUAs. On the contrary, the mid-morning satellite overpass is characterized by the absence of a significant surface UHI (SUHI) signal, corresponding to the period of the day when the urban-rural air temperature difference is typically negative. Conversely, nocturnal high-resolution LST data is rarely available. In this study, an energy balance-based machine learning approach is explored, considering the Local Climate Zones (LCZ), to describe the daily cycle of the heat flux components and predict the nocturnal SUHI, during an HW event. While the urban and rural spatial outlines are not visible in the diurnal thermal image, they become apparent in the latent and storage heat flux maps - built-up infrastructures uptake heat during the day which is released back into the atmosphere, during the night, whereas vegetation land surfaces loose diurnal heat through evapotranspiration. For the LST prediction model, a random forest (RF) approach is implemented. RF results show that the model accurately predicts the LST, ensuring mean square errors inferior to 0.1 K. Both the latent and storage heat flux components, together with LCZ classification, are the most important explanatory variables for the nocturnal LST prediction, supporting the adoption of the energy balance approach. In future research, other locations and time-series data shall be trained and tested, providing an efficient local urban climate monitoring tool, where in-situ air temperature observations are not available.
ArticleNumber 150130
Author Niza, Samuel
Oliveira, Ana
Soares, Amílcar
Lopes, António
Author_xml – sequence: 1
  givenname: Ana
  surname: Oliveira
  fullname: Oliveira, Ana
  email: anappmoliveira@tecnico.ulisboa.pt
  organization: IN+ Center for Innovation, Technology and Policy Research, Instituto Superior Técnico, Universidade de Lisboa, Portugal
– sequence: 2
  givenname: António
  surname: Lopes
  fullname: Lopes, António
  email: antonio.lopes@campus.ul.pt
  organization: Centro de Estudos Geográficos, IGOT - Instituto de Geografia e Ordenamento do Território, Universidade de Lisboa, Portugal
– sequence: 3
  givenname: Samuel
  surname: Niza
  fullname: Niza, Samuel
  email: samuel.niza@tecnico.ulisboa.pt
  organization: IN+ Center for Innovation, Technology and Policy Research, Instituto Superior Técnico, Universidade de Lisboa, Portugal
– sequence: 4
  givenname: Amílcar
  surname: Soares
  fullname: Soares, Amílcar
  email: asoares@tecnico.ulisboa.pt
  organization: CERENA, Instituto Superior Técnico, Universidade de Lisboa, Portugal
BookMark eNqNkU-PEyEYh4lZE7urn0GOXqbyb4bBxEOzUXeTjV7cM6Hw0tJMmRGYmn6M_cYy1njwsnIhgd_vCbzPNbqKYwSE3lKypoR27w_rbEMZC8TTmhFG17QllJMXaEV7qRpKWHeFVoSIvlGdkq_Qdc4HUpfs6Qo9bSKe09ZEDBHS7oy3ZjDRQrObgwOHj8buQwQ8gEkxxB0205TGeoj9mHA-x7KHEiyOoy1zimbAeU7eWMCPv6l3YAq-z5Xp8JTABVvCGD_gDd7Xm5_mBBhOEAsOEX810wD5NXrpzZDhzZ_9Bj1-_vT99q55-Pbl_nbz0FgheWlazl0nTCscU50RRhHl-q3ZMsU9IS3xjFHfe9V6IcD63rSKO8-JFYw6kITfoHcXbv3Pjxly0ceQLQz1qTDOWbOOd10ve8mej7ZSSMGpWqjyErVpzDmB11MKR5POmhK9-NIH_deXXnzpi6_a_PhPs8bMMq2STBj-o7-59KEO7RQgLTmoKl1IYIt2Y3iW8QuYxrud
CitedBy_id crossref_primary_10_1029_2023EF004127
crossref_primary_10_1016_j_scs_2023_104756
crossref_primary_10_1016_j_scs_2024_105507
crossref_primary_10_3390_su15108111
crossref_primary_10_1002_2475_8876_12303
crossref_primary_10_1016_j_glt_2022_10_004
crossref_primary_10_1016_j_uclim_2023_101470
crossref_primary_10_3390_rs15040884
crossref_primary_10_1016_j_uclim_2023_101570
crossref_primary_10_3390_su16114764
crossref_primary_10_3103_S0027134924702254
crossref_primary_10_1016_j_buildenv_2023_110434
crossref_primary_10_1016_j_buildenv_2024_112017
crossref_primary_10_2139_ssrn_4075474
crossref_primary_10_3390_rs16183374
crossref_primary_10_1016_j_jhydrol_2024_132002
crossref_primary_10_3389_fpubh_2022_1001344
crossref_primary_10_1080_15481603_2023_2209970
crossref_primary_10_1109_JSTARS_2024_3424542
crossref_primary_10_1016_j_scs_2024_105204
crossref_primary_10_1016_j_rse_2022_112972
crossref_primary_10_1016_j_ufug_2024_128629
crossref_primary_10_1016_j_heliyon_2023_e14067
crossref_primary_10_2139_ssrn_4201063
crossref_primary_10_3390_su151310633
crossref_primary_10_1016_j_envres_2024_119795
crossref_primary_10_1016_j_uclim_2024_102039
crossref_primary_10_3390_s23157013
crossref_primary_10_1016_j_enbuild_2025_115624
crossref_primary_10_1016_j_scs_2022_103959
crossref_primary_10_1080_15325008_2023_2293948
crossref_primary_10_3390_rs13214256
crossref_primary_10_1016_j_kjs_2024_100242
crossref_primary_10_1007_s12273_024_1112_y
Cites_doi 10.1155/2017/2048098
10.1007/s00484-020-02063-z
10.5194/hess-11-1633-2007
10.3390/s20185336
10.1016/j.buildenv.2012.01.020
10.1016/j.rse.2020.111863
10.1016/j.rse.2021.112612
10.3390/rs13081580
10.1109/TGRS.2019.2895351
10.3390/rs13112211
10.1016/j.uclim.2017.05.010
10.1016/j.uclim.2020.100631
10.1029/2002JC001418
10.1109/JSTARS.2018.2807815
10.1016/j.uclim.2018.07.002
10.1016/j.uclim.2013.10.001
10.3390/rs9070684
10.3390/rs13091671
10.1016/j.mex.2020.101150
10.3390/rs8050410
10.1016/j.scs.2020.102508
10.1080/19479830903561035
10.1016/j.envsoft.2011.11.014
10.3389/feart.2018.00118
10.1175/1520-0450(2004)043<0312:MTSEBO>2.0.CO;2
10.1016/j.rse.2020.112256
10.1002/joc.3678
10.1016/j.rse.2020.111931
10.1175/BAMS-D-11-00019.1
10.3390/cli6030055
10.1109/TGRS.2009.2027697
10.1002/joc.4940
10.3390/rs11192304
10.1175/1520-0450(1999)038<0922:HSIUAL>2.0.CO;2
10.5194/gh-58-99-2003
10.1016/j.atmosres.2015.05.014
10.1016/j.dib.2020.105802
10.1007/s41324-020-00333-x
10.3390/rs3071535
10.1016/j.rse.2021.112566
10.1016/j.uclim.2019.01.005
10.3390/s141224425
10.1016/j.uclim.2017.05.004
10.1016/j.rse.2021.112437
10.1109/TGRS.2007.904834
10.1016/j.rse.2006.04.018
10.1023/A:1010933404324
10.1016/j.isprsjprs.2020.01.014
10.1038/s41598-018-29873-x
10.1016/j.uclim.2014.06.004
10.1007/s00704-006-0279-8
10.1016/j.isprsjprs.2020.07.014
10.1016/j.scitotenv.2015.02.062
10.1007/s10652-009-9150-7
10.1007/s00704-019-02953-2
10.1016/j.isprsjprs.2016.01.011
10.3390/rs13142828
10.3390/atmos12030292
10.1016/j.inffus.2020.07.004
10.3390/rs10081262
10.1016/j.uclim.2013.10.002
10.1007/s10546-006-9091-3
10.1109/JSTARS.2020.3046755
10.1177/030913338801200401
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2021.150130
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 10_1016_j_scitotenv_2021_150130
S0048969721052050
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
WUQ
XPP
ZXP
ZY4
~HD
7X8
7S9
L.6
ID FETCH-LOGICAL-c473t-533d64a54d296a4a909d8bab293f0050f221f8f95f44ecf8a593df30c421de703
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Sun Sep 28 12:39:57 EDT 2025
Sun Sep 28 02:19:20 EDT 2025
Thu Oct 02 04:23:53 EDT 2025
Thu Apr 24 23:00:42 EDT 2025
Fri Feb 23 02:43:32 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Urban Heat Island
Local climate zones
Heatwave
Urban climate adaptation
Multisensor data fusion
Random forest
Land surface temperature
Satellite thermal imagery
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c473t-533d64a54d296a4a909d8bab293f0050f221f8f95f44ecf8a593df30c421de703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/10451/49488
PQID 2574743190
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2636687872
proquest_miscellaneous_2574743190
crossref_primary_10_1016_j_scitotenv_2021_150130
crossref_citationtrail_10_1016_j_scitotenv_2021_150130
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2021_150130
PublicationCentury 2000
PublicationDate 2022-01-20
PublicationDateYYYYMMDD 2022-01-20
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-20
  day: 20
PublicationDecade 2020
PublicationTitle The Science of the total environment
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References A. Oliveira A. Lopes A. Soares , n.d. (in press) Excess heat factor climatology, trends and ranking functional urban areas exposure in Europe. Glob. Environ. Chang..
Zhao, Zhang, Tan, Li, Ren (bb0555) 2020; 20
Wang, Chow, Wang (bb0475) 2019; 41
Salcedo-Sanz, Ghamisi, Piles, Werner, Cuadra, Moreno-Martínez, Izquierdo-Verdiguier, Muñoz-Marí, Mosavi, Camps-Valls (bb0400) 2020; 63
Mills (bb0265) 2014
(bb0460) 2016
Wicki, Parlow, Feigenwinter (bb0495) 2018
Perkins (bb0370) 2015
Shi, Katzschner, Ng (bb0415) 2018
Kotthaus, Grimmond (bb0210) 2014
Xiao, Zhao, Ma, He (bb0505) 2021; 13
Napoly, Grassmann, Meier, Fenner (bb0290) 2018
Ghamisi, Rasti, Yokoya, Gloaguen, Wang, Höfle, Bruzzone, Bovolo, Chi, Anders, Atkinson, Benediktsson (bb0145) 2018
Chrysoulakis, Grimmond, Feigenwinter, Lindberg, Gastellu-Etchegorry, Marconcini, Mitraka, Stagakis, Crawford, Olofson, Landier, Morrison, Parlow (bb0090) 2018
Oke (bb0310) 1988
Xu, Cheng, Zhang (bb0515) 2021; 13
Baklanov, Grimmond, Carlson, Terblanche, Tang, Bouchet, Lee, Langendijk, Kolli, Hovsepyan (bb0015) 2018
Ramos, Cladera (bb0385) 2016
Oliveira, Lopes, Niza (bb0325) 2020; 31
Liu, Zhang (bb0235) 2011
Wang, Schmitz, Lu, Karssenberg (bb0480) 2020; 161
(bb0440) 2009
Barsi, Schott, Palluconi, Hook (bb0025) 2005
Jia, Ma, Liang, Wang (bb0185) 2021; 263
Parlow (bb0350) 2003
Zhang (bb0525) 2010
(bb0110) 2016
Zhao, Duan (bb0545) 2020; 247
Ezimand, Chahardoli, Azadbakht, Matkan (bb0125) 2021; 64
Shen, Shen, Cheng, Zhang (bb0410) 2021; 14
Peng, Li, Luo, Li (bb0365) 2019; 57
Feigenwinter, Vogt, Parlow, Lindberg, Marconcini, del Frate, Chrysoulakis (bb0130) 2018
Long, Yan, Bai, Zhang, Li, Lei, Yang, Tian, Zeng, Meng, Shi (bb0240) 2020; 246
Muller, Chapman, Grimmond, Young, Cai (bb0270) 2013
Meier, Fenner, Grassmann, Jänicke, Otto, Scherer (bb0260) 2015
Freitas, Rozoff, Cotton, Silva Dias (bb0135) 2007
Carrer, Moparthy, Lellouch, Ceamanos, Pinault, Freitas, Trigo (bb0050) 2018; 10
Lemonsu, Grimmond, Masson (bb0225) 2004
(bb0455) 2020
Rigo, Parlow, Oesch (bb0395) 2006
Göttsche, Olesen, Trigo, Bork-Unkelbach, Martin (bb0150) 2016; 8
Kourtidis, Georgoulias, Rapsomanikis, Amiridis, Keramitsoglou, Hooyberghs, Maiheu, Melas (bb0220) 2015
Nadeau, Brutsaert, Parlange, Bou-Zeid, Barrenetxea, Couach, Boldi, Selker, Vetterli (bb0275) 2009
Hong, Zhan, Göttsche, Lai, Liu, Hu, Fu, Huang, Li, Li, Wu (bb0165) 2021; 264
Anderson, Leung, Mehdipoor, Jänicke, Miloševic, Oliveira, Manavvi, Kabano, Dzyuban, Aguilar, Agan, Kunda, Garcia-Chapeton, de França Carvalho Fonsêca, Nascimento, Zurita-Milla (bb0010) 2021
Kotthaus, Grimmond (bb0215) 2014
Zhang, Zhou, Liang, Wang (bb0540) 2021; 260
Carrer, Ceamanos, Moparthy, Vincent, Freitas, Trigo (bb0055) 2019; 11
Oke (bb0300) 1982
Wang, Luo, Li, Yang, Liu, Luo, Li (bb0485) 2021; 13
Prata (bb0375) 1996; 122
Cheval, Dumitrescu, Amihaesei (bb0080) 2020; 20
Parlow, Vogt, Feigenwinter (bb0355) 2014
(bb0115) 2018
(bb0450) 2014
(bb0380) 2011
Grimmond, Oke (bb0155) 1999; 38
Oke, Mills, Christen, Voogt (bb0315) 2017
(bb0120) 2018
Oke, Mills, Christen, Voogt (bb0320) 2017
Jung, Park (bb0200) 2014; 14
Barsi, Barker, Schott (bb0020) 2004
Hofierka, Súri (bb0160) 2002
Xu, Cheng (bb0510) 2021; 254
Zhang, Zhou, Liang, Chai, Wang, Liu (bb0535) 2020; 167
Xu, Cheng, Zhang (bb0520) 2021; 13
Chrysoulakis, Heldens, Gastellu-Etchegorry, Grimmond, Feigenwinter, Lindberg, Frate, Klostermann, Mitraka, Esch, Albitar, Gabey, Parlow, Olofson (bb0085) 2016
Wicki, Parlow (bb0490) 2017
Cai, Ren, Xu, Lau, Wang (bb0045) 2018
Belgiu, Drăgu (bb0035) 2016; 114
Sharma, Khandelwal, Kaul (bb0405) 2020; 29
Tan, Che, Wang, Liang, Zhang, Ren (bb0435) 2021; 13
Chen, Zhan, Quan, Zhou, Zhu, Sun (bb0075) 2014; 52
(bb0105) 2016
Peel, Finlayson, McMahon (bb0360) 2007
Anderson, Gough, Mohsin (bb0005) 2018
Neteler, Bowman, Landa, Metz (bb0295) 2012; 31
Freitas, Trigo, Bioucas-Dias, Göttsche (bb0140) 2010; 48
Oliveira, Lopes, Niza (bb0335) 2020; 33
Oke (bb0305) 1987
Shumilo, Kussul, Shelestov, Korsunska, Yailymov (bb0420) 2019
(bb0465) 2019
Breiman (bb0040) 2001; 45
Kesavan, Muthian, Sudalaimuthu, Sundarsingh, Krishnan (bb0205) 2021
(bb0500) 2010
Rigo, Parlow (bb0390) 2007
Jin, Han (bb0190) 2017; 2017
Zhang, Bounoua, Imhoff, Wolfe, Thome (bb0530) 2014; 40
Major, Omojola, Dettinger, Hanson, Sanchez-Rodriguez (bb0255) 2011
Chapman, Bell, Bell (bb0065) 2017
Nairn, Fawcett (bb0280) 2013
Carrer, Moparthy, Vincent, Ceamanos, Freitas, Trigo (bb0060) 2019; 11
Nairn, Fawcett, Ray (bb0285) 2009
Liaw, Wiener (bb0230) 2018; 2
Lott (bb0250) 2004
Wang, Bou-Zeid, Smith (bb0470) 2010
Bechtel, Demuzere, Mills, Zhan, Sismanidis, Small, Voogt (bb0030) 2019; 28
Congedo (bb0095) 2019
Oliveira, Lopes, Correia, Niza, Soares (bb0345) 2021; 12
Sobrino, Jiménez-Muñoz, Sòria, Romaguera, Guanter, Moreno, Plaza, Martínez (bb0425) 2008
Stewart, Oke (bb0430) 2012
Lopes (bb0245) 2003
Josey, Pascal, Taylor, Yelland (bb0195) 2003; 108
Emmanuel, Krüger (bb0100) 2012
Huryna, Cohen, Karnieli, Panov, Kustas, Agam (bb0175) 2019; 11
Chavez (bb0070) 1996; 62
Oliveira, Lopes, Niza (bb0330) 2020; 7
Howard (bb0170) 1833; Vol.1
Ünal, Sonuç, Incecik, Topcu, Diren-Üstün, Temizöz (bb0445) 2020; 139
(bb0180) 2018
Jin (10.1016/j.scitotenv.2021.150130_bb0190) 2017; 2017
Zhao (10.1016/j.scitotenv.2021.150130_bb0555) 2020; 20
Chavez (10.1016/j.scitotenv.2021.150130_bb0070) 1996; 62
Ünal (10.1016/j.scitotenv.2021.150130_bb0445) 2020; 139
Zhao (10.1016/j.scitotenv.2021.150130_bb0545) 2020; 247
Carrer (10.1016/j.scitotenv.2021.150130_bb0060) 2019; 11
Cheval (10.1016/j.scitotenv.2021.150130_bb0080) 2020; 20
Tan (10.1016/j.scitotenv.2021.150130_bb0435) 2021; 13
Wicki (10.1016/j.scitotenv.2021.150130_bb0495) 2018
Sobrino (10.1016/j.scitotenv.2021.150130_bb0425) 2008
Kotthaus (10.1016/j.scitotenv.2021.150130_bb0210) 2014
Chapman (10.1016/j.scitotenv.2021.150130_bb0065) 2017
Wang (10.1016/j.scitotenv.2021.150130_bb0485) 2021; 13
Zhang (10.1016/j.scitotenv.2021.150130_bb0530) 2014; 40
Anderson (10.1016/j.scitotenv.2021.150130_bb0005) 2018
Ezimand (10.1016/j.scitotenv.2021.150130_bb0125) 2021; 64
Göttsche (10.1016/j.scitotenv.2021.150130_bb0150) 2016; 8
Salcedo-Sanz (10.1016/j.scitotenv.2021.150130_bb0400) 2020; 63
Wicki (10.1016/j.scitotenv.2021.150130_bb0490) 2017
Sharma (10.1016/j.scitotenv.2021.150130_bb0405) 2020; 29
Anderson (10.1016/j.scitotenv.2021.150130_bb0010) 2021
Nairn (10.1016/j.scitotenv.2021.150130_bb0285) 2009
Perkins (10.1016/j.scitotenv.2021.150130_bb0370) 2015
Meier (10.1016/j.scitotenv.2021.150130_bb0260) 2015
Shi (10.1016/j.scitotenv.2021.150130_bb0415) 2018
Emmanuel (10.1016/j.scitotenv.2021.150130_bb0100) 2012
Major (10.1016/j.scitotenv.2021.150130_bb0255) 2011
Oliveira (10.1016/j.scitotenv.2021.150130_bb0345) 2021; 12
Wang (10.1016/j.scitotenv.2021.150130_bb0480) 2020; 161
Ramos (10.1016/j.scitotenv.2021.150130_bb0385) 2016
Zhang (10.1016/j.scitotenv.2021.150130_bb0540) 2021; 260
Kotthaus (10.1016/j.scitotenv.2021.150130_bb0215) 2014
Oke (10.1016/j.scitotenv.2021.150130_bb0305) 1987
Xu (10.1016/j.scitotenv.2021.150130_bb0510) 2021; 254
Xu (10.1016/j.scitotenv.2021.150130_bb0520) 2021; 13
Oke (10.1016/j.scitotenv.2021.150130_bb0310) 1988
Zhang (10.1016/j.scitotenv.2021.150130_bb0525) 2010
Oke (10.1016/j.scitotenv.2021.150130_bb0300) 1982
Nairn (10.1016/j.scitotenv.2021.150130_bb0280) 2013
Hofierka (10.1016/j.scitotenv.2021.150130_bb0160) 2002
(10.1016/j.scitotenv.2021.150130_bb0465) 2019
Lopes (10.1016/j.scitotenv.2021.150130_bb0245) 2003
Bechtel (10.1016/j.scitotenv.2021.150130_bb0030) 2019; 28
Stewart (10.1016/j.scitotenv.2021.150130_bb0430) 2012
Baklanov (10.1016/j.scitotenv.2021.150130_bb0015) 2018
(10.1016/j.scitotenv.2021.150130_bb0500) 2010
Lott (10.1016/j.scitotenv.2021.150130_bb0250) 2004
Barsi (10.1016/j.scitotenv.2021.150130_bb0025) 2005
Breiman (10.1016/j.scitotenv.2021.150130_bb0040) 2001; 45
Peel (10.1016/j.scitotenv.2021.150130_bb0360) 2007
(10.1016/j.scitotenv.2021.150130_bb0180) 2018
Muller (10.1016/j.scitotenv.2021.150130_bb0270) 2013
Liu (10.1016/j.scitotenv.2021.150130_bb0235) 2011
Zhang (10.1016/j.scitotenv.2021.150130_bb0535) 2020; 167
(10.1016/j.scitotenv.2021.150130_bb0440) 2009
(10.1016/j.scitotenv.2021.150130_bb0455) 2020
Kesavan (10.1016/j.scitotenv.2021.150130_bb0205) 2021
Mills (10.1016/j.scitotenv.2021.150130_bb0265) 2014
Oke (10.1016/j.scitotenv.2021.150130_bb0320) 2017
Nadeau (10.1016/j.scitotenv.2021.150130_bb0275) 2009
Chrysoulakis (10.1016/j.scitotenv.2021.150130_bb0090) 2018
Oke (10.1016/j.scitotenv.2021.150130_bb0315) 2017
Xu (10.1016/j.scitotenv.2021.150130_bb0515) 2021; 13
Congedo (10.1016/j.scitotenv.2021.150130_bb0095) 2019
Grimmond (10.1016/j.scitotenv.2021.150130_bb0155) 1999; 38
Peng (10.1016/j.scitotenv.2021.150130_bb0365) 2019; 57
Barsi (10.1016/j.scitotenv.2021.150130_bb0020) 2004
(10.1016/j.scitotenv.2021.150130_bb0460) 2016
Freitas (10.1016/j.scitotenv.2021.150130_bb0135) 2007
Long (10.1016/j.scitotenv.2021.150130_bb0240) 2020; 246
Wang (10.1016/j.scitotenv.2021.150130_bb0475) 2019; 41
Chen (10.1016/j.scitotenv.2021.150130_bb0075) 2014; 52
Rigo (10.1016/j.scitotenv.2021.150130_bb0395) 2006
Wang (10.1016/j.scitotenv.2021.150130_bb0470) 2010
Freitas (10.1016/j.scitotenv.2021.150130_bb0140) 2010; 48
Kourtidis (10.1016/j.scitotenv.2021.150130_bb0220) 2015
Lemonsu (10.1016/j.scitotenv.2021.150130_bb0225) 2004
Howard (10.1016/j.scitotenv.2021.150130_bb0170) 1833; Vol.1
Ghamisi (10.1016/j.scitotenv.2021.150130_bb0145) 2018
Carrer (10.1016/j.scitotenv.2021.150130_bb0055) 2019; 11
Neteler (10.1016/j.scitotenv.2021.150130_bb0295) 2012; 31
Shumilo (10.1016/j.scitotenv.2021.150130_bb0420) 2019
Prata (10.1016/j.scitotenv.2021.150130_bb0375) 1996; 122
Cai (10.1016/j.scitotenv.2021.150130_bb0045) 2018
Chrysoulakis (10.1016/j.scitotenv.2021.150130_bb0085) 2016
Belgiu (10.1016/j.scitotenv.2021.150130_bb0035) 2016; 114
Hong (10.1016/j.scitotenv.2021.150130_bb0165) 2021; 264
Feigenwinter (10.1016/j.scitotenv.2021.150130_bb0130) 2018
Jung (10.1016/j.scitotenv.2021.150130_bb0200) 2014; 14
Huryna (10.1016/j.scitotenv.2021.150130_bb0175) 2019; 11
Josey (10.1016/j.scitotenv.2021.150130_bb0195) 2003; 108
Oliveira (10.1016/j.scitotenv.2021.150130_bb0325) 2020; 31
Parlow (10.1016/j.scitotenv.2021.150130_bb0355) 2014
Oliveira (10.1016/j.scitotenv.2021.150130_bb0330) 2020; 7
Liaw (10.1016/j.scitotenv.2021.150130_bb0230) 2018; 2
Parlow (10.1016/j.scitotenv.2021.150130_bb0350) 2003
10.1016/j.scitotenv.2021.150130_bb0340
(10.1016/j.scitotenv.2021.150130_bb0450) 2014
Napoly (10.1016/j.scitotenv.2021.150130_bb0290) 2018
Carrer (10.1016/j.scitotenv.2021.150130_bb0050) 2018; 10
(10.1016/j.scitotenv.2021.150130_bb0380) 2011
Oliveira (10.1016/j.scitotenv.2021.150130_bb0335) 2020; 33
Xiao (10.1016/j.scitotenv.2021.150130_bb0505) 2021; 13
Jia (10.1016/j.scitotenv.2021.150130_bb0185) 2021; 263
Rigo (10.1016/j.scitotenv.2021.150130_bb0390) 2007
Shen (10.1016/j.scitotenv.2021.150130_bb0410) 2021; 14
References_xml – volume: 247
  year: 2020
  ident: bb0545
  article-title: Reconstruction of daytime land surface temperatures under cloud-covered conditions using integrated MODIS/Terra land products and MSG geostationary satellite data
  publication-title: Remote Sens. Environ.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0040
  article-title: Random forests
  publication-title: Mach. Learn.
– year: 2007
  ident: bb0135
  article-title: Interactions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of São Paulo, Brazil
  publication-title: Bound.-Layer Meteorol.
– volume: 108
  year: 2003
  ident: bb0195
  article-title: A new formula for determining the atmospheric longwave flux at the ocean surface at mid-high latitudes
  publication-title: J. Geophys. Res. Oceans
– volume: 20
  start-page: 5336
  year: 2020
  ident: bb0080
  article-title: Exploratory analysis of urban climate using a gap-filled Landsat 8 land surface temperature data set
  publication-title: Sensors
– year: 2011
  ident: bb0235
  article-title: Urban heat island analysis using the landsat TM data and ASTER data: a case study in Hong Kong
  publication-title: Remote Sens.
– volume: 31
  year: 2020
  ident: bb0325
  article-title: Local climate zones datasets from five Southern European cities: Copernicus based classification maps of Athens, Barcelona, Lisbon, Marseille and Naples
  publication-title: Data Brief
– year: 2003
  ident: bb0245
  article-title: Changes in Lisbon's urban climate as a consequence of urban growth
  publication-title: Wind, Surface UHI and Energy Budget
– year: 1982
  ident: bb0300
  article-title: The energetic basis of the urban heat island
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 2017
  year: 2017
  ident: bb0190
  article-title: Multisensor fusion of landsat images for high-resolution thermal infrared images using sparse representations
  publication-title: Math. Probl. Eng.
– year: 2004
  ident: bb0020
  article-title: An Atmospheric Correction Parameter Calculator for a Single Thermal Band Earth-sensing Instrument
– year: 2011
  ident: bb0255
  article-title: Climate Change and Cities: First Assessment Report of the Urban Climate Change Research Network. Climate Change and Cities: First Assessment Report of the Urban Climate Change Research Network
– volume: 62
  start-page: 1025
  year: 1996
  end-page: 1036
  ident: bb0070
  article-title: Image-based atmospheric corrections - revisited and improved
  publication-title: Photogramm. Eng. Remote. Sens.
– year: 2018
  ident: bb0115
  article-title: Imperviousness density [WWW document]
– year: 2018
  ident: bb0045
  article-title: Investigating the relationship between local climate zone and land surface temperature using an improved WUDAPT methodology – a case study of Yangtze River Delta, China
  publication-title: Urban Clim.
– year: 2016
  ident: bb0085
  article-title: A novel approach for anthropogenic heat flux estimation from space
  publication-title: International Geoscience and Remote Sensing Symposium (IGARSS)
– year: 2017
  ident: bb0320
  article-title: Urban Climates
– volume: 13
  start-page: 2211
  year: 2021
  ident: bb0520
  article-title: A random forest-based data fusion method for obtaining all-weather land surface temperature with high spatial resolution
  publication-title: Remote Sens.
– year: 2016
  ident: bb0110
  article-title: Corine land cover 2012 [WWW document]
– volume: 7
  year: 2020
  ident: bb0330
  article-title: Local climate zones classification method from copernicus land monitoring service datasets: an ArcGIS-based toolbox
  publication-title: MethodsX
– reference: A. Oliveira A. Lopes A. Soares , n.d. (in press) Excess heat factor climatology, trends and ranking functional urban areas exposure in Europe. Glob. Environ. Chang..
– year: 2014
  ident: bb0355
  article-title: The urban heat island of Basel - seen from different perspectives
  publication-title: Erde
– volume: 2
  start-page: 18
  year: 2018
  end-page: 22
  ident: bb0230
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 31
  year: 2012
  ident: bb0295
  article-title: GRASS GIS: a multi-purpose open source GIS
  publication-title: Environ. Model. Softw.
– year: 2008
  ident: bb0425
  article-title: Land surface emissivity retrieval from different VNIR and TIR sensors
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2017
  ident: bb0065
  article-title: Can the crowdsourcing data paradigm take atmospheric science to a new level? A case study of the urban heat island of London quantified using netatmo weather stations
  publication-title: Int. J. Climatol.
– volume: 38
  year: 1999
  ident: bb0155
  article-title: Heat storage in urban areas: local-scale observations and evaluation of a simple model
  publication-title: J. Appl. Meteorol.
– year: 2014
  ident: bb0215
  article-title: Energy exchange in a dense urban environment - part I: temporal variability of long-term observations in Central London
  publication-title: Urban Clim.
– year: 2007
  ident: bb0390
  article-title: Modelling the ground heat flux of an urban area using remote sensing data
  publication-title: Theor. Appl. Climatol.
– volume: 246
  year: 2020
  ident: bb0240
  article-title: Generation of MODIS-like land surface temperatures under all-weather conditions based on a data fusion approach
  publication-title: Remote Sens. Environ.
– volume: 13
  start-page: 1671
  year: 2021
  ident: bb0435
  article-title: Reconstruction of the daily MODIS land surface temperature product using the two-step improved similar pixels method
  publication-title: Remote Sens.
– year: 2018
  ident: bb0130
  article-title: Spatial distribution of sensible and latent heat flux in the City of Basel (Switzerland)
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– year: 2002
  ident: bb0160
  article-title: The solar radiation model for Open Source GIS: implementation and applications
  publication-title: Open Source GIS - GRASS Users Conference
– volume: 20
  year: 2020
  ident: bb0555
  article-title: A data fusion modeling framework for retrieval of land surface temperature from landsat-8 and modis data
  publication-title: Sensors (Switzerland)
– year: 2009
  ident: bb0285
  article-title: Defining and predicting excessive heat events, a national system
  publication-title: Proceedings of the CAWCR Modelling …
– year: 2011
  ident: bb0380
  article-title: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing
– volume: 264
  year: 2021
  ident: bb0165
  article-title: A simple yet robust framework to estimate accurate daily mean land surface temperature from thermal observations of tandem polar orbiters
  publication-title: Remote Sens. Environ.
– start-page: 197
  year: 2017
  end-page: 237
  ident: bb0315
  article-title: Urban heat island
  publication-title: Urban Climates
– year: 2014
  ident: bb0450
  article-title: World Urbanization Prospects: 2014 Revision, New York, United
– year: 2013
  ident: bb0270
  article-title: Sensors and the city: a review of urban meteorological networks
  publication-title: Int. J. Climatol.
– year: 2018
  ident: bb0120
  article-title: Tree cover density [WWW document]
– year: 2019
  ident: bb0465
  article-title: EarthExplorer - Home. U.S. Geological Survey
– volume: 29
  start-page: 31
  year: 2020
  end-page: 42
  ident: bb0405
  article-title: Principal component based fusion of land surface temperature (LST) and panchromatic (PAN) images
  publication-title: Spat. Inf. Res.
– year: 2018
  ident: bb0290
  article-title: Development and application of a statistically-based quality control for crowdsourced air temperature data
  publication-title: Front. Earth Sci.
– volume: 63
  start-page: 256
  year: 2020
  end-page: 272
  ident: bb0400
  article-title: Machine learning information fusion in earth observation: a comprehensive review of methods, applications and data sources
  publication-title: Inf. Fusion
– volume: Vol.1
  year: 1833
  ident: bb0170
  article-title: The Climate of London: Deduced from Meteorological Observations, Made at Different Places in the Neighbourhood of the Metropolis
– year: 2018
  ident: bb0415
  article-title: Modelling the fine-scale spatiotemporal pattern of urban heat island effect using land use regression approach in a megacity
  publication-title: Sci. Total Environ.
– year: 2012
  ident: bb0430
  article-title: Local climate zones for urban temperature studies
  publication-title: Bull. Am. Meteorol. Soc.
– year: 2016
  ident: bb0460
  article-title: Landsat 8 (L8) Data Users Handbook (LSDS-1574 version 2.0)
– year: 2019
  ident: bb0095
  article-title: Semi-Automatic Classification Plugin Documentation Release 6.2.0.1. Release
– year: 2013
  ident: bb0280
  article-title: Defining heatwaves: heatwave defined as a heat-impact event servicing all community and business sectors in Australia
  publication-title: CAWCR Technical Report
– year: 2018
  ident: bb0015
  article-title: From urban meteorology, climate and environment research to integrated city services
  publication-title: Urban Clim.
– volume: 13
  start-page: 2828
  year: 2021
  ident: bb0505
  article-title: Gap-free LST generation for MODIS/Terra LST product using a random forest-based reconstruction method
  publication-title: Remote Sens.
– year: 2014
  ident: bb0265
  article-title: Urban climatology: history, status and prospects
  publication-title: Urban Clim.
– year: 2009
  ident: bb0275
  article-title: Estimation of urban sensible heat flux using a dense wireless network of observations
  publication-title: Environ. Fluid Mech.
– volume: 14
  start-page: 2136
  year: 2021
  end-page: 2147
  ident: bb0410
  article-title: Generating comparable and fine-scale time series of summer land surface temperature for thermal environment monitoring
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 167
  start-page: 321
  year: 2020
  end-page: 344
  ident: bb0535
  article-title: Estimation of 1-km all-weather remotely sensed land surface temperature based on reconstructed spatial-seamless satellite passive microwave brightness temperature and thermal infrared data
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2021
  ident: bb0010
  article-title: Technological opportunities for sensing of the health effects of weather and climate change: a state-of-the-art-review
  publication-title: Int. J. Biometeorol.
– year: 2019
  ident: bb0420
  article-title: Sentinel-3 urban heat island monitoring and analysis for Kyiv based on vector data
  publication-title: Conference Proceedings of 2019 10th International Conference on Dependable Systems, Services and Technologies, DESSERT 2019
– year: 2016
  ident: bb0385
  article-title: Identifying urban heat island: the Barcelona case
  publication-title: 11th Congress Virtual City and Territory
– year: 2018
  ident: bb0090
  article-title: Urban energy exchanges monitoring from space
  publication-title: Sci. Rep.
– volume: 13
  start-page: 2211
  year: 2021
  ident: bb0515
  article-title: A random forest-based data fusion method for obtaining all-weather land surface temperature with high spatial resolution
  publication-title: Remote Sens.
– volume: 40
  year: 2014
  ident: bb0530
  article-title: Comparison of MODIS land surface temperature and air temperature over the continental USA meteorological stations
  publication-title: Can. J. Remote. Sens.
– volume: 11
  year: 2019
  ident: bb0060
  article-title: Satellite retrieval of downwelling shortwave surface flux and diffuse fraction under all sky conditions in the framework of the LSA SAF program (part 2: evaluation)
  publication-title: Remote Sens.
– volume: 114
  start-page: 24
  year: 2016
  end-page: 31
  ident: bb0035
  article-title: Random forest in remote sensing: a review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2007
  ident: bb0360
  article-title: Updated world map of the Köppen-Geiger climate classification
  publication-title: Hydrol. Earth Syst. Sci.
– year: 2010
  ident: bb0470
  article-title: Application of a sensor network to study the energy budget in urban canopies
  publication-title: Proceedings of 15th Symposium on Meteorological Observation and Instrumentation, Atlanta
– volume: 28
  year: 2019
  ident: bb0030
  article-title: SUHI analysis using local climate zones—a comparison of 50 cities
  publication-title: Urban Clim.
– year: 2012
  ident: bb0100
  article-title: Urban heat island and its impact on climate change resilience in a shrinking city: the case of Glasgow, UK
  publication-title: Build. Environ.
– year: 2018
  ident: bb0005
  article-title: Characterization of the urban heat island at Toronto: revisiting the choice of rural sites using a measure of day-to-day variation
  publication-title: Urban Clim.
– volume: 12
  start-page: 292
  year: 2021
  ident: bb0345
  article-title: Heatwaves and summer urban heat islands: a daily cycle approach to unveil the urban thermal signal changes in Lisbon, Portugal
  publication-title: Atmosphere
– year: 2018
  ident: bb0145
  article-title: Multisource and Multitemporal Data Fusion in Remote Sensing
– volume: 33
  year: 2020
  ident: bb0335
  article-title: Local climate zones in five southern european cities: an improved GIS-based classification method based on copernicus data
  publication-title: Urban Clim.
– volume: 11
  year: 2019
  ident: bb0055
  article-title: Satellite retrieval of downwelling shortwave surface flux and diffuse fraction under all sky conditions in the framework of the LSA SAF program (part 1: methodology)
  publication-title: Remote Sens.
– year: 2004
  ident: bb0250
  article-title: The quality control of the integrated surface hourly database, American Meteorological Society Paper 71929, 14th Conference on Applied Climatology, Seattle, WA
– volume: 10
  year: 2018
  ident: bb0050
  article-title: Land surface albedo derived on a ten daily basis from Meteosat Second Generation Observations: the NRT and climate data record collections from the EUMETSAT LSA SAF
  publication-title: Remote Sens.
– year: 2009
  ident: bb0440
  article-title: ASTER Global DEM Validation
– volume: 254
  year: 2021
  ident: bb0510
  article-title: A new land surface temperature fusion strategy based on cumulative distribution function matching and multiresolution Kalman filtering
  publication-title: Remote Sens. Environ.
– volume: 139
  year: 2020
  ident: bb0445
  article-title: Investigating urban heat island intensity in Istanbul
  publication-title: Theor. Appl. Climatol.
– year: 2005
  ident: bb0025
  article-title: Validation of a web-based atmospheric correction tool for single thermal band instruments
  publication-title: Earth Observing Systems X
– year: 2014
  ident: bb0210
  article-title: Energy exchange in a dense urban environment - part II: impact of spatial heterogeneity of the surface
  publication-title: Urban Clim.
– volume: 122
  year: 1996
  ident: bb0375
  article-title: A new long-wave formula for estimating downward clear-sky radiation at the surface
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 8
  year: 2016
  ident: bb0150
  article-title: Long term validation of land surface temperature retrieved from MSG/SEVIRI with continuous in-situ measurements in Africa
  publication-title: Remote Sens.
– volume: 13
  start-page: 1580
  year: 2021
  ident: bb0485
  article-title: Downscaling land surface temperature based on non-linear geographically weighted regressive model over urban areas
  publication-title: Remote Sens.
– year: 2018
  ident: bb0495
  article-title: Evaluation and modeling of urban heat island intensity in Basel, Switzerland
  publication-title: Climate
– volume: 41
  start-page: 2986
  year: 2019
  end-page: 3009
  ident: bb0475
  publication-title: A Global Regression Method for Thermal Sharpening of Urban Land Surface Temperatures From MODIS and Landsat
– volume: 161
  start-page: 76
  year: 2020
  end-page: 89
  ident: bb0480
  article-title: Thermal unmixing based downscaling for fine resolution diurnal land surface temperature analysis
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2010
  ident: bb0500
  article-title: Cities and Climate Change an Urgent Agenda
– volume: 48
  year: 2010
  ident: bb0140
  article-title: Quantifying the uncertainty of land surface temperature retrievals from SEVIRI/Meteosat
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 52
  year: 2014
  ident: bb0075
  article-title: Disaggregation of remotely sensed land surface temperature: a generalized paradigm
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2016
  ident: bb0105
  article-title: Urban atlas 2012 [WWW document]
– volume: 11
  year: 2019
  ident: bb0175
  article-title: Evaluation of TsHARP utility for thermal sharpening of Sentinel-3 satellite images using Sentinel-2 visual imagery
  publication-title: Remote Sens.
– volume: 14
  year: 2014
  ident: bb0200
  article-title: Multi-sensor fusion of landsat 8 thermal infrared (TIR) and panchromatic (PAN) images
  publication-title: Sensors (Switzerland)
– year: 2004
  ident: bb0225
  article-title: Modeling the surface energy balance of the Core of an old Mediterranean City: Marseille
  publication-title: J. Appl. Meteorol.
– year: 2003
  ident: bb0350
  article-title: The urban heat budget derived from satellite data
  publication-title: Geogr. Helv.
– year: 1987
  ident: bb0305
  article-title: Boundary Layer Climates
– volume: 263
  year: 2021
  ident: bb0185
  article-title: Cloudy-sky land surface temperature from VIIRS and MODIS satellite data using a surface energy balance-based method
  publication-title: Remote Sens. Environ.
– year: 2006
  ident: bb0395
  article-title: Validation of satellite observed thermal emission with in-situ measurements over an urban surface
  publication-title: Remote Sens. Environ.
– year: 2015
  ident: bb0370
  article-title: A review on the scientific understanding of heatwaves-their measurement, driving mechanisms, and changes at the global scale
  publication-title: Atmos. Res.
– year: 2017
  ident: bb0490
  article-title: Multiple regression analysis for unmixing of surface temperature data in an urban environment
  publication-title: Remote Sens.
– volume: 260
  year: 2021
  ident: bb0540
  article-title: A practical reanalysis data and thermal infrared remote sensing data merging (RTM) method for reconstruction of a 1-km all-weather land surface temperature
  publication-title: Remote Sens. Environ.
– year: 2015
  ident: bb0220
  article-title: A study of the hourly variability of the urban heat island effect in the greater Athens area during summer
  publication-title: Sci. Total Environ.
– volume: 64
  year: 2021
  ident: bb0125
  article-title: Spatiotemporal analysis of land surface temperature using multi-temporal and multi-sensor image fusion techniques
  publication-title: Sustain. Cities Soc.
– year: 2020
  ident: bb0455
  article-title: USGS EROS Archive - Landsat Archives - Landsat 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) [WWW Document]
– year: 2010
  ident: bb0525
  article-title: Multi-source remote sensing data fusion: status and trends
  publication-title: Int. J. Image Data Fusion
– year: 2018
  ident: bb0180
  article-title: Italian census
  publication-title: Permanent Census of Population and Housing
– volume: 57
  start-page: 5012
  year: 2019
  end-page: 5027
  ident: bb0365
  article-title: A geographically and temporally weighted regression model for spatial downscaling of MODIS land surface temperatures over urban heterogeneous regions
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 1988
  ident: bb0310
  article-title: The urban energy balance
  publication-title: Prog. Phys. Geogr.
– year: 2015
  ident: bb0260
  article-title: Challenges and benefits from crowdsourced atmospheric data for urban climate research using Berlin, Germany, as testbed
  publication-title: ICUC9 - 9th International Conference on Urban Climate Jointly With 12th Symposium on the Urban Environment Challenges
– start-page: 1
  year: 2021
  end-page: 14
  ident: bb0205
  article-title: ARIMA modeling for forecasting land surface temperature and determination of urban heat island using remote sensing techniques for Chennai city, India
  publication-title: Arab. J. Geosci.
– volume: 2017
  year: 2017
  ident: 10.1016/j.scitotenv.2021.150130_bb0190
  article-title: Multisensor fusion of landsat images for high-resolution thermal infrared images using sparse representations
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2017/2048098
– year: 2015
  ident: 10.1016/j.scitotenv.2021.150130_bb0260
  article-title: Challenges and benefits from crowdsourced atmospheric data for urban climate research using Berlin, Germany, as testbed
– year: 2017
  ident: 10.1016/j.scitotenv.2021.150130_bb0320
– year: 2021
  ident: 10.1016/j.scitotenv.2021.150130_bb0010
  article-title: Technological opportunities for sensing of the health effects of weather and climate change: a state-of-the-art-review
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s00484-020-02063-z
– year: 2007
  ident: 10.1016/j.scitotenv.2021.150130_bb0360
  article-title: Updated world map of the Köppen-Geiger climate classification
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-11-1633-2007
– volume: 20
  start-page: 5336
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150130_bb0080
  article-title: Exploratory analysis of urban climate using a gap-filled Landsat 8 land surface temperature data set
  publication-title: Sensors
  doi: 10.3390/s20185336
– year: 2012
  ident: 10.1016/j.scitotenv.2021.150130_bb0100
  article-title: Urban heat island and its impact on climate change resilience in a shrinking city: the case of Glasgow, UK
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2012.01.020
– year: 1987
  ident: 10.1016/j.scitotenv.2021.150130_bb0305
– volume: 122
  year: 1996
  ident: 10.1016/j.scitotenv.2021.150130_bb0375
  article-title: A new long-wave formula for estimating downward clear-sky radiation at the surface
  publication-title: Q. J. R. Meteorol. Soc.
– year: 2010
  ident: 10.1016/j.scitotenv.2021.150130_bb0470
  article-title: Application of a sensor network to study the energy budget in urban canopies
– volume: 246
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150130_bb0240
  article-title: Generation of MODIS-like land surface temperatures under all-weather conditions based on a data fusion approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111863
– volume: 52
  year: 2014
  ident: 10.1016/j.scitotenv.2021.150130_bb0075
  article-title: Disaggregation of remotely sensed land surface temperature: a generalized paradigm
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 264
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150130_bb0165
  article-title: A simple yet robust framework to estimate accurate daily mean land surface temperature from thermal observations of tandem polar orbiters
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112612
– volume: 13
  start-page: 1580
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150130_bb0485
  article-title: Downscaling land surface temperature based on non-linear geographically weighted regressive model over urban areas
  publication-title: Remote Sens.
  doi: 10.3390/rs13081580
– volume: 57
  start-page: 5012
  year: 2019
  ident: 10.1016/j.scitotenv.2021.150130_bb0365
  article-title: A geographically and temporally weighted regression model for spatial downscaling of MODIS land surface temperatures over urban heterogeneous regions
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2895351
– year: 2014
  ident: 10.1016/j.scitotenv.2021.150130_bb0450
– year: 2009
  ident: 10.1016/j.scitotenv.2021.150130_bb0440
– volume: 13
  start-page: 2211
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150130_bb0520
  article-title: A random forest-based data fusion method for obtaining all-weather land surface temperature with high spatial resolution
  publication-title: Remote Sens.
  doi: 10.3390/rs13112211
– year: 2011
  ident: 10.1016/j.scitotenv.2021.150130_bb0255
– volume: 20
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150130_bb0555
  article-title: A data fusion modeling framework for retrieval of land surface temperature from landsat-8 and modis data
  publication-title: Sensors (Switzerland)
– year: 2018
  ident: 10.1016/j.scitotenv.2021.150130_bb0180
  article-title: Italian census
– year: 2018
  ident: 10.1016/j.scitotenv.2021.150130_bb0045
  article-title: Investigating the relationship between local climate zone and land surface temperature using an improved WUDAPT methodology – a case study of Yangtze River Delta, China
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2017.05.010
– volume: 2
  start-page: 18
  issue: 3
  year: 2018
  ident: 10.1016/j.scitotenv.2021.150130_bb0230
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 33
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150130_bb0335
  article-title: Local climate zones in five southern european cities: an improved GIS-based classification method based on copernicus data
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2020.100631
– volume: 108
  year: 2003
  ident: 10.1016/j.scitotenv.2021.150130_bb0195
  article-title: A new formula for determining the atmospheric longwave flux at the ocean surface at mid-high latitudes
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/2002JC001418
– year: 2018
  ident: 10.1016/j.scitotenv.2021.150130_bb0145
– year: 2018
  ident: 10.1016/j.scitotenv.2021.150130_bb0130
  article-title: Spatial distribution of sensible and latent heat flux in the City of Basel (Switzerland)
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2807815
– year: 2018
  ident: 10.1016/j.scitotenv.2021.150130_bb0005
  article-title: Characterization of the urban heat island at Toronto: revisiting the choice of rural sites using a measure of day-to-day variation
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2018.07.002
– year: 2014
  ident: 10.1016/j.scitotenv.2021.150130_bb0210
  article-title: Energy exchange in a dense urban environment - part II: impact of spatial heterogeneity of the surface
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2013.10.001
– year: 2004
  ident: 10.1016/j.scitotenv.2021.150130_bb0250
– year: 2017
  ident: 10.1016/j.scitotenv.2021.150130_bb0490
  article-title: Multiple regression analysis for unmixing of surface temperature data in an urban environment
  publication-title: Remote Sens.
  doi: 10.3390/rs9070684
– year: 2016
  ident: 10.1016/j.scitotenv.2021.150130_bb0385
  article-title: Identifying urban heat island: the Barcelona case
– volume: Vol.1
  year: 1833
  ident: 10.1016/j.scitotenv.2021.150130_bb0170
– volume: 13
  start-page: 1671
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150130_bb0435
  article-title: Reconstruction of the daily MODIS land surface temperature product using the two-step improved similar pixels method
  publication-title: Remote Sens.
  doi: 10.3390/rs13091671
– year: 2002
  ident: 10.1016/j.scitotenv.2021.150130_bb0160
  article-title: The solar radiation model for Open Source GIS: implementation and applications
– year: 2014
  ident: 10.1016/j.scitotenv.2021.150130_bb0355
  article-title: The urban heat island of Basel - seen from different perspectives
  publication-title: Erde
– volume: 7
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150130_bb0330
  article-title: Local climate zones classification method from copernicus land monitoring service datasets: an ArcGIS-based toolbox
  publication-title: MethodsX
  doi: 10.1016/j.mex.2020.101150
– year: 2018
  ident: 10.1016/j.scitotenv.2021.150130_bb0415
  article-title: Modelling the fine-scale spatiotemporal pattern of urban heat island effect using land use regression approach in a megacity
  publication-title: Sci. Total Environ.
– volume: 8
  year: 2016
  ident: 10.1016/j.scitotenv.2021.150130_bb0150
  article-title: Long term validation of land surface temperature retrieved from MSG/SEVIRI with continuous in-situ measurements in Africa
  publication-title: Remote Sens.
  doi: 10.3390/rs8050410
– volume: 64
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150130_bb0125
  article-title: Spatiotemporal analysis of land surface temperature using multi-temporal and multi-sensor image fusion techniques
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102508
– year: 2010
  ident: 10.1016/j.scitotenv.2021.150130_bb0525
  article-title: Multi-source remote sensing data fusion: status and trends
  publication-title: Int. J. Image Data Fusion
  doi: 10.1080/19479830903561035
– volume: 31
  year: 2012
  ident: 10.1016/j.scitotenv.2021.150130_bb0295
  article-title: GRASS GIS: a multi-purpose open source GIS
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2011.11.014
– year: 2018
  ident: 10.1016/j.scitotenv.2021.150130_bb0290
  article-title: Development and application of a statistically-based quality control for crowdsourced air temperature data
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2018.00118
– volume: 41
  start-page: 2986
  year: 2019
  ident: 10.1016/j.scitotenv.2021.150130_bb0475
– year: 2003
  ident: 10.1016/j.scitotenv.2021.150130_bb0245
  article-title: Changes in Lisbon's urban climate as a consequence of urban growth
– year: 2004
  ident: 10.1016/j.scitotenv.2021.150130_bb0225
  article-title: Modeling the surface energy balance of the Core of an old Mediterranean City: Marseille
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(2004)043<0312:MTSEBO>2.0.CO;2
– volume: 254
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150130_bb0510
  article-title: A new land surface temperature fusion strategy based on cumulative distribution function matching and multiresolution Kalman filtering
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112256
– year: 2010
  ident: 10.1016/j.scitotenv.2021.150130_bb0500
– year: 2013
  ident: 10.1016/j.scitotenv.2021.150130_bb0270
  article-title: Sensors and the city: a review of urban meteorological networks
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.3678
– volume: 247
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150130_bb0545
  article-title: Reconstruction of daytime land surface temperatures under cloud-covered conditions using integrated MODIS/Terra land products and MSG geostationary satellite data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111931
– year: 2012
  ident: 10.1016/j.scitotenv.2021.150130_bb0430
  article-title: Local climate zones for urban temperature studies
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-11-00019.1
– year: 2018
  ident: 10.1016/j.scitotenv.2021.150130_bb0495
  article-title: Evaluation and modeling of urban heat island intensity in Basel, Switzerland
  publication-title: Climate
  doi: 10.3390/cli6030055
– volume: 48
  year: 2010
  ident: 10.1016/j.scitotenv.2021.150130_bb0140
  article-title: Quantifying the uncertainty of land surface temperature retrievals from SEVIRI/Meteosat
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2027697
– year: 2017
  ident: 10.1016/j.scitotenv.2021.150130_bb0065
  article-title: Can the crowdsourcing data paradigm take atmospheric science to a new level? A case study of the urban heat island of London quantified using netatmo weather stations
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.4940
– volume: 11
  year: 2019
  ident: 10.1016/j.scitotenv.2021.150130_bb0175
  article-title: Evaluation of TsHARP utility for thermal sharpening of Sentinel-3 satellite images using Sentinel-2 visual imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs11192304
– year: 2005
  ident: 10.1016/j.scitotenv.2021.150130_bb0025
  article-title: Validation of a web-based atmospheric correction tool for single thermal band instruments
– year: 2004
  ident: 10.1016/j.scitotenv.2021.150130_bb0020
– volume: 38
  year: 1999
  ident: 10.1016/j.scitotenv.2021.150130_bb0155
  article-title: Heat storage in urban areas: local-scale observations and evaluation of a simple model
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1999)038<0922:HSIUAL>2.0.CO;2
– year: 2003
  ident: 10.1016/j.scitotenv.2021.150130_bb0350
  article-title: The urban heat budget derived from satellite data
  publication-title: Geogr. Helv.
  doi: 10.5194/gh-58-99-2003
– year: 2019
  ident: 10.1016/j.scitotenv.2021.150130_bb0465
– year: 2015
  ident: 10.1016/j.scitotenv.2021.150130_bb0370
  article-title: A review on the scientific understanding of heatwaves-their measurement, driving mechanisms, and changes at the global scale
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2015.05.014
– volume: 31
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150130_bb0325
  article-title: Local climate zones datasets from five Southern European cities: Copernicus based classification maps of Athens, Barcelona, Lisbon, Marseille and Naples
  publication-title: Data Brief
  doi: 10.1016/j.dib.2020.105802
– volume: 29
  start-page: 31
  issue: 1
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150130_bb0405
  article-title: Principal component based fusion of land surface temperature (LST) and panchromatic (PAN) images
  publication-title: Spat. Inf. Res.
  doi: 10.1007/s41324-020-00333-x
– year: 2016
  ident: 10.1016/j.scitotenv.2021.150130_bb0085
  article-title: A novel approach for anthropogenic heat flux estimation from space
– year: 2011
  ident: 10.1016/j.scitotenv.2021.150130_bb0235
  article-title: Urban heat island analysis using the landsat TM data and ASTER data: a case study in Hong Kong
  publication-title: Remote Sens.
  doi: 10.3390/rs3071535
– volume: 263
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150130_bb0185
  article-title: Cloudy-sky land surface temperature from VIIRS and MODIS satellite data using a surface energy balance-based method
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112566
– year: 2019
  ident: 10.1016/j.scitotenv.2021.150130_bb0420
  article-title: Sentinel-3 urban heat island monitoring and analysis for Kyiv based on vector data
– volume: 28
  year: 2019
  ident: 10.1016/j.scitotenv.2021.150130_bb0030
  article-title: SUHI analysis using local climate zones—a comparison of 50 cities
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2019.01.005
– volume: 14
  year: 2014
  ident: 10.1016/j.scitotenv.2021.150130_bb0200
  article-title: Multi-sensor fusion of landsat 8 thermal infrared (TIR) and panchromatic (PAN) images
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s141224425
– year: 2019
  ident: 10.1016/j.scitotenv.2021.150130_bb0095
– year: 1982
  ident: 10.1016/j.scitotenv.2021.150130_bb0300
  article-title: The energetic basis of the urban heat island
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 11
  year: 2019
  ident: 10.1016/j.scitotenv.2021.150130_bb0060
  article-title: Satellite retrieval of downwelling shortwave surface flux and diffuse fraction under all sky conditions in the framework of the LSA SAF program (part 2: evaluation)
  publication-title: Remote Sens.
– year: 2018
  ident: 10.1016/j.scitotenv.2021.150130_bb0015
  article-title: From urban meteorology, climate and environment research to integrated city services
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2017.05.004
– volume: 260
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150130_bb0540
  article-title: A practical reanalysis data and thermal infrared remote sensing data merging (RTM) method for reconstruction of a 1-km all-weather land surface temperature
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112437
– volume: 11
  year: 2019
  ident: 10.1016/j.scitotenv.2021.150130_bb0055
  article-title: Satellite retrieval of downwelling shortwave surface flux and diffuse fraction under all sky conditions in the framework of the LSA SAF program (part 1: methodology)
  publication-title: Remote Sens.
– volume: 62
  start-page: 1025
  issue: 9
  year: 1996
  ident: 10.1016/j.scitotenv.2021.150130_bb0070
  article-title: Image-based atmospheric corrections - revisited and improved
  publication-title: Photogramm. Eng. Remote. Sens.
– year: 2008
  ident: 10.1016/j.scitotenv.2021.150130_bb0425
  article-title: Land surface emissivity retrieval from different VNIR and TIR sensors
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.904834
– year: 2006
  ident: 10.1016/j.scitotenv.2021.150130_bb0395
  article-title: Validation of satellite observed thermal emission with in-situ measurements over an urban surface
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.04.018
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.scitotenv.2021.150130_bb0040
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 161
  start-page: 76
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150130_bb0480
  article-title: Thermal unmixing based downscaling for fine resolution diurnal land surface temperature analysis
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.01.014
– volume: 13
  start-page: 2211
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150130_bb0515
  article-title: A random forest-based data fusion method for obtaining all-weather land surface temperature with high spatial resolution
  publication-title: Remote Sens.
  doi: 10.3390/rs13112211
– year: 2018
  ident: 10.1016/j.scitotenv.2021.150130_bb0090
  article-title: Urban energy exchanges monitoring from space
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-29873-x
– year: 2014
  ident: 10.1016/j.scitotenv.2021.150130_bb0265
  article-title: Urban climatology: history, status and prospects
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2014.06.004
– year: 2009
  ident: 10.1016/j.scitotenv.2021.150130_bb0285
  article-title: Defining and predicting excessive heat events, a national system
– start-page: 197
  year: 2017
  ident: 10.1016/j.scitotenv.2021.150130_bb0315
  article-title: Urban heat island
– year: 2007
  ident: 10.1016/j.scitotenv.2021.150130_bb0390
  article-title: Modelling the ground heat flux of an urban area using remote sensing data
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-006-0279-8
– year: 2011
  ident: 10.1016/j.scitotenv.2021.150130_bb0380
– volume: 167
  start-page: 321
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150130_bb0535
  article-title: Estimation of 1-km all-weather remotely sensed land surface temperature based on reconstructed spatial-seamless satellite passive microwave brightness temperature and thermal infrared data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.07.014
– year: 2015
  ident: 10.1016/j.scitotenv.2021.150130_bb0220
  article-title: A study of the hourly variability of the urban heat island effect in the greater Athens area during summer
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.02.062
– year: 2009
  ident: 10.1016/j.scitotenv.2021.150130_bb0275
  article-title: Estimation of urban sensible heat flux using a dense wireless network of observations
  publication-title: Environ. Fluid Mech.
  doi: 10.1007/s10652-009-9150-7
– volume: 139
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150130_bb0445
  article-title: Investigating urban heat island intensity in Istanbul
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-019-02953-2
– volume: 114
  start-page: 24
  year: 2016
  ident: 10.1016/j.scitotenv.2021.150130_bb0035
  article-title: Random forest in remote sensing: a review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume: 40
  year: 2014
  ident: 10.1016/j.scitotenv.2021.150130_bb0530
  article-title: Comparison of MODIS land surface temperature and air temperature over the continental USA meteorological stations
  publication-title: Can. J. Remote. Sens.
– start-page: 1
  issue: 11
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150130_bb0205
  article-title: ARIMA modeling for forecasting land surface temperature and determination of urban heat island using remote sensing techniques for Chennai city, India
  publication-title: Arab. J. Geosci.
– year: 2013
  ident: 10.1016/j.scitotenv.2021.150130_bb0280
  article-title: Defining heatwaves: heatwave defined as a heat-impact event servicing all community and business sectors in Australia
– volume: 13
  start-page: 2828
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150130_bb0505
  article-title: Gap-free LST generation for MODIS/Terra LST product using a random forest-based reconstruction method
  publication-title: Remote Sens.
  doi: 10.3390/rs13142828
– year: 2016
  ident: 10.1016/j.scitotenv.2021.150130_bb0460
– volume: 12
  start-page: 292
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150130_bb0345
  article-title: Heatwaves and summer urban heat islands: a daily cycle approach to unveil the urban thermal signal changes in Lisbon, Portugal
  publication-title: Atmosphere
  doi: 10.3390/atmos12030292
– volume: 63
  start-page: 256
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150130_bb0400
  article-title: Machine learning information fusion in earth observation: a comprehensive review of methods, applications and data sources
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.07.004
– year: 2020
  ident: 10.1016/j.scitotenv.2021.150130_bb0455
– volume: 10
  year: 2018
  ident: 10.1016/j.scitotenv.2021.150130_bb0050
  article-title: Land surface albedo derived on a ten daily basis from Meteosat Second Generation Observations: the NRT and climate data record collections from the EUMETSAT LSA SAF
  publication-title: Remote Sens.
  doi: 10.3390/rs10081262
– year: 2014
  ident: 10.1016/j.scitotenv.2021.150130_bb0215
  article-title: Energy exchange in a dense urban environment - part I: temporal variability of long-term observations in Central London
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2013.10.002
– ident: 10.1016/j.scitotenv.2021.150130_bb0340
– year: 2007
  ident: 10.1016/j.scitotenv.2021.150130_bb0135
  article-title: Interactions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of São Paulo, Brazil
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/s10546-006-9091-3
– volume: 14
  start-page: 2136
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150130_bb0410
  article-title: Generating comparable and fine-scale time series of summer land surface temperature for thermal environment monitoring
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.3046755
– year: 1988
  ident: 10.1016/j.scitotenv.2021.150130_bb0310
  article-title: The urban energy balance
  publication-title: Prog. Phys. Geogr.
  doi: 10.1177/030913338801200401
SSID ssj0000781
Score 2.5577855
Snippet Southern European functional urban areas (FUAs) are increasingly subject to heatwave (HW) events, calling for anticipated climate adaptation measures. In the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 150130
SubjectTerms air temperature
energy balance
environment
evapotranspiration
heat island
heat transfer
Heatwave
Land surface temperature
latitude
Local climate zones
Multisensor data fusion
prediction
Random forest
Satellite thermal imagery
satellites
shortwave radiation
surface temperature
time series analysis
Urban climate adaptation
Urban Heat Island
vegetation
Title An urban energy balance-guided machine learning approach for synthetic nocturnal surface Urban Heat Island prediction: A heatwave event in Naples
URI https://dx.doi.org/10.1016/j.scitotenv.2021.150130
https://www.proquest.com/docview/2574743190
https://www.proquest.com/docview/2636687872
Volume 805
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: ACRLP
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AIKHN
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AKRWK
  dateStart: 19930115
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBUhoVAoJd02NG0SptCrk7Uty3ZuS0jYdukeSpfmJiRZCltS7bK2U3Lpf-g_7oxsJ6SU5tCTwUiy8GjePHu-GHsv0tgJbXVUGO4ingsXaR1XUV5oZPMOQTPUKfg0F9MF_3iZXW6xsyEXhsIqe-zvMD2gdX_npH-bJ-vlknJ8eVEKqj5DsRzhu53znLoYHP-8D_OgYjadlxkVG0c_iPHCdZsVctMb_FBM4mMkRzGFQ__dQv2B1cEAXeyy5z1zhEm3uRdsy_oRe9L1krwdsb3z-5Q1HNbrbD1iz7o_c9AlHL1kvyYe2o1WHmzI-wNN0Y3GRlftsrIVfA_hlRb6fhJXMJQdB-S3UN96pIy4BfAr8j7Qlup245SxsAir4nMaoJPmK1hvyA9Esj-FCRDu_1A3FkLVKFh6mKv1ta1fscXF-ZezadQ3ZogMz9MmQopYCa4yXiWlUFyV47IqtNJIHRwVlHFJErvClZnj3BpXqKxMK5S74UlcWcSYPbbtV96-ZlA6kyoeW0e9AV2WKxwnXEbuWoNWNdtnYhCGNH3VcmqecS2H8LRv8k6KkqQoOynus_HdxHVXuOPxKaeDtOWDMyjRvDw--d1wPiRqKLldlLertpYIipx4WvmvMSIVokDwTN78zybesqcJpWeMY0S_A7bdbFp7iKSp0UdBK47YzuTDbDqn6-zz19lvVnQblg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqVggkVMFCRaGFQeKadpM4TtLbqmq1QLunrtSb5We1qHhXm6SoF_4D_5iZPFoVIXrgGo0dK-P5_DnzYuyTSGMvtNNRYbiPeC58pHVso7zQyOY9gmZbp-B8JqZz_uUyu9xgx0MuDIVV9tjfYXqL1v2Tw_5rHq4WC8rx5UUpqPoMxXLQvX2LZ0lON7CDn_dxHlTNpnMzo2Wj-IMgL5y4XiI5vcGbYhIfIDuKKR7670fUH2DdnkCnL9h2Tx1h0q3uJdtwYcSedM0kb0ds5-Q-Zw3FeqOtRux592sOuoyjV-zXJECz1iqAaxP_QFN4o3HRVbOwzsL3Nr7SQd9Q4gqGuuOABBeq24CcEZcAYUnuB1pS1ay9Mg7m7az4nhpoqwULqzU5gkj5RzABAv4f6sZBWzYKFgFmanXtqtdsfnpycTyN-s4MkeF5WkfIEa3gKuM2KYXiqhyXttBKI3fwVFHGJ0nsC19mnnNnfKGyMrWoeMOT2DoEmR22GZbBvWFQepMqHjtPzQF9liuUEz4jf63BYzXbZWJQhjR92XLqnnEth_i0b_JOi5K0KDst7rLx3cBVV7nj8SFHg7blg00o8Xx5fPDHYX9INFHyu6jglk0lERU5EbXyXzIiFaJA9Eze_s8iPrCn04vzM3n2efb1HXuWUK7GOEYo3GOb9bpx-8igav2-tZDf1wsbiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+urban+energy+balance-guided+machine+learning+approach+for+synthetic+nocturnal+surface+Urban+Heat+Island+prediction%3A+A+heatwave+event+in+Naples&rft.jtitle=The+Science+of+the+total+environment&rft.au=Oliveira%2C+Ana&rft.au=Lopes%2C+Ant%C3%B3nio&rft.au=Niza%2C+Samuel&rft.au=Soares%2C+Am%C3%ADlcar&rft.date=2022-01-20&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=805&rft_id=info:doi/10.1016%2Fj.scitotenv.2021.150130&rft.externalDocID=S0048969721052050
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon