An urban energy balance-guided machine learning approach for synthetic nocturnal surface Urban Heat Island prediction: A heatwave event in Naples
Southern European functional urban areas (FUAs) are increasingly subject to heatwave (HW) events, calling for anticipated climate adaptation measures. In the urban context, such adaptation strategies require a thorough understanding of the built-up response to the incoming solar radiation, i.e., the...
Saved in:
| Published in | The Science of the total environment Vol. 805; p. 150130 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
20.01.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0048-9697 1879-1026 1879-1026 |
| DOI | 10.1016/j.scitotenv.2021.150130 |
Cover
| Abstract | Southern European functional urban areas (FUAs) are increasingly subject to heatwave (HW) events, calling for anticipated climate adaptation measures. In the urban context, such adaptation strategies require a thorough understanding of the built-up response to the incoming solar radiation, i.e., the urban energy balance cycle and its implications for the Urban Heat Island (UHI) effect. Despite readily available, diurnal Land Surface Temperature (LST) data does not provide a meaningful picture of the UHI, in these midlatitudes FUAs. On the contrary, the mid-morning satellite overpass is characterized by the absence of a significant surface UHI (SUHI) signal, corresponding to the period of the day when the urban-rural air temperature difference is typically negative. Conversely, nocturnal high-resolution LST data is rarely available. In this study, an energy balance-based machine learning approach is explored, considering the Local Climate Zones (LCZ), to describe the daily cycle of the heat flux components and predict the nocturnal SUHI, during an HW event. While the urban and rural spatial outlines are not visible in the diurnal thermal image, they become apparent in the latent and storage heat flux maps – built-up infrastructures uptake heat during the day which is released back into the atmosphere, during the night, whereas vegetation land surfaces loose diurnal heat through evapotranspiration. For the LST prediction model, a random forest (RF) approach is implemented. RF results show that the model accurately predicts the LST, ensuring mean square errors inferior to 0.1 K. Both the latent and storage heat flux components, together with LCZ classification, are the most important explanatory variables for the nocturnal LST prediction, supporting the adoption of the energy balance approach. In future research, other locations and time-series data shall be trained and tested, providing an efficient local urban climate monitoring tool, where in-situ air temperature observations are not available.
[Display omitted]
•Satellite thermal imagery offers insights into the urban climate performance.•Those insights are constrained by long repeat cycles and diurnal overpass time.•Land use/land cover (LULC) classes have different nocturnal thermal performances.•Heat Fluxes (HF) disclose these nocturnal land surface temperature (LST) contrasts.•Through machine learning, LULC and HF, synthetic nocturnal LST is predicted. |
|---|---|
| AbstractList | Southern European functional urban areas (FUAs) are increasingly subject to heatwave (HW) events, calling for anticipated climate adaptation measures. In the urban context, such adaptation strategies require a thorough understanding of the built-up response to the incoming solar radiation, i.e., the urban energy balance cycle and its implications for the Urban Heat Island (UHI) effect. Despite readily available, diurnal Land Surface Temperature (LST) data does not provide a meaningful picture of the UHI, in these midlatitudes FUAs. On the contrary, the mid-morning satellite overpass is characterized by the absence of a significant surface UHI (SUHI) signal, corresponding to the period of the day when the urban-rural air temperature difference is typically negative. Conversely, nocturnal high-resolution LST data is rarely available. In this study, an energy balance-based machine learning approach is explored, considering the Local Climate Zones (LCZ), to describe the daily cycle of the heat flux components and predict the nocturnal SUHI, during an HW event. While the urban and rural spatial outlines are not visible in the diurnal thermal image, they become apparent in the latent and storage heat flux maps – built-up infrastructures uptake heat during the day which is released back into the atmosphere, during the night, whereas vegetation land surfaces loose diurnal heat through evapotranspiration. For the LST prediction model, a random forest (RF) approach is implemented. RF results show that the model accurately predicts the LST, ensuring mean square errors inferior to 0.1 K. Both the latent and storage heat flux components, together with LCZ classification, are the most important explanatory variables for the nocturnal LST prediction, supporting the adoption of the energy balance approach. In future research, other locations and time-series data shall be trained and tested, providing an efficient local urban climate monitoring tool, where in-situ air temperature observations are not available. Southern European functional urban areas (FUAs) are increasingly subject to heatwave (HW) events, calling for anticipated climate adaptation measures. In the urban context, such adaptation strategies require a thorough understanding of the built-up response to the incoming solar radiation, i.e., the urban energy balance cycle and its implications for the Urban Heat Island (UHI) effect. Despite readily available, diurnal Land Surface Temperature (LST) data does not provide a meaningful picture of the UHI, in these midlatitudes FUAs. On the contrary, the mid-morning satellite overpass is characterized by the absence of a significant surface UHI (SUHI) signal, corresponding to the period of the day when the urban-rural air temperature difference is typically negative. Conversely, nocturnal high-resolution LST data is rarely available. In this study, an energy balance-based machine learning approach is explored, considering the Local Climate Zones (LCZ), to describe the daily cycle of the heat flux components and predict the nocturnal SUHI, during an HW event. While the urban and rural spatial outlines are not visible in the diurnal thermal image, they become apparent in the latent and storage heat flux maps – built-up infrastructures uptake heat during the day which is released back into the atmosphere, during the night, whereas vegetation land surfaces loose diurnal heat through evapotranspiration. For the LST prediction model, a random forest (RF) approach is implemented. RF results show that the model accurately predicts the LST, ensuring mean square errors inferior to 0.1 K. Both the latent and storage heat flux components, together with LCZ classification, are the most important explanatory variables for the nocturnal LST prediction, supporting the adoption of the energy balance approach. In future research, other locations and time-series data shall be trained and tested, providing an efficient local urban climate monitoring tool, where in-situ air temperature observations are not available. [Display omitted] •Satellite thermal imagery offers insights into the urban climate performance.•Those insights are constrained by long repeat cycles and diurnal overpass time.•Land use/land cover (LULC) classes have different nocturnal thermal performances.•Heat Fluxes (HF) disclose these nocturnal land surface temperature (LST) contrasts.•Through machine learning, LULC and HF, synthetic nocturnal LST is predicted. Southern European functional urban areas (FUAs) are increasingly subject to heatwave (HW) events, calling for anticipated climate adaptation measures. In the urban context, such adaptation strategies require a thorough understanding of the built-up response to the incoming solar radiation, i.e., the urban energy balance cycle and its implications for the Urban Heat Island (UHI) effect. Despite readily available, diurnal Land Surface Temperature (LST) data does not provide a meaningful picture of the UHI, in these midlatitudes FUAs. On the contrary, the mid-morning satellite overpass is characterized by the absence of a significant surface UHI (SUHI) signal, corresponding to the period of the day when the urban-rural air temperature difference is typically negative. Conversely, nocturnal high-resolution LST data is rarely available. In this study, an energy balance-based machine learning approach is explored, considering the Local Climate Zones (LCZ), to describe the daily cycle of the heat flux components and predict the nocturnal SUHI, during an HW event. While the urban and rural spatial outlines are not visible in the diurnal thermal image, they become apparent in the latent and storage heat flux maps - built-up infrastructures uptake heat during the day which is released back into the atmosphere, during the night, whereas vegetation land surfaces loose diurnal heat through evapotranspiration. For the LST prediction model, a random forest (RF) approach is implemented. RF results show that the model accurately predicts the LST, ensuring mean square errors inferior to 0.1 K. Both the latent and storage heat flux components, together with LCZ classification, are the most important explanatory variables for the nocturnal LST prediction, supporting the adoption of the energy balance approach. In future research, other locations and time-series data shall be trained and tested, providing an efficient local urban climate monitoring tool, where in-situ air temperature observations are not available.Southern European functional urban areas (FUAs) are increasingly subject to heatwave (HW) events, calling for anticipated climate adaptation measures. In the urban context, such adaptation strategies require a thorough understanding of the built-up response to the incoming solar radiation, i.e., the urban energy balance cycle and its implications for the Urban Heat Island (UHI) effect. Despite readily available, diurnal Land Surface Temperature (LST) data does not provide a meaningful picture of the UHI, in these midlatitudes FUAs. On the contrary, the mid-morning satellite overpass is characterized by the absence of a significant surface UHI (SUHI) signal, corresponding to the period of the day when the urban-rural air temperature difference is typically negative. Conversely, nocturnal high-resolution LST data is rarely available. In this study, an energy balance-based machine learning approach is explored, considering the Local Climate Zones (LCZ), to describe the daily cycle of the heat flux components and predict the nocturnal SUHI, during an HW event. While the urban and rural spatial outlines are not visible in the diurnal thermal image, they become apparent in the latent and storage heat flux maps - built-up infrastructures uptake heat during the day which is released back into the atmosphere, during the night, whereas vegetation land surfaces loose diurnal heat through evapotranspiration. For the LST prediction model, a random forest (RF) approach is implemented. RF results show that the model accurately predicts the LST, ensuring mean square errors inferior to 0.1 K. Both the latent and storage heat flux components, together with LCZ classification, are the most important explanatory variables for the nocturnal LST prediction, supporting the adoption of the energy balance approach. In future research, other locations and time-series data shall be trained and tested, providing an efficient local urban climate monitoring tool, where in-situ air temperature observations are not available. |
| ArticleNumber | 150130 |
| Author | Niza, Samuel Oliveira, Ana Soares, Amílcar Lopes, António |
| Author_xml | – sequence: 1 givenname: Ana surname: Oliveira fullname: Oliveira, Ana email: anappmoliveira@tecnico.ulisboa.pt organization: IN+ Center for Innovation, Technology and Policy Research, Instituto Superior Técnico, Universidade de Lisboa, Portugal – sequence: 2 givenname: António surname: Lopes fullname: Lopes, António email: antonio.lopes@campus.ul.pt organization: Centro de Estudos Geográficos, IGOT - Instituto de Geografia e Ordenamento do Território, Universidade de Lisboa, Portugal – sequence: 3 givenname: Samuel surname: Niza fullname: Niza, Samuel email: samuel.niza@tecnico.ulisboa.pt organization: IN+ Center for Innovation, Technology and Policy Research, Instituto Superior Técnico, Universidade de Lisboa, Portugal – sequence: 4 givenname: Amílcar surname: Soares fullname: Soares, Amílcar email: asoares@tecnico.ulisboa.pt organization: CERENA, Instituto Superior Técnico, Universidade de Lisboa, Portugal |
| BookMark | eNqNkU-PEyEYh4lZE7urn0GOXqbyb4bBxEOzUXeTjV7cM6Hw0tJMmRGYmn6M_cYy1njwsnIhgd_vCbzPNbqKYwSE3lKypoR27w_rbEMZC8TTmhFG17QllJMXaEV7qRpKWHeFVoSIvlGdkq_Qdc4HUpfs6Qo9bSKe09ZEDBHS7oy3ZjDRQrObgwOHj8buQwQ8gEkxxB0205TGeoj9mHA-x7KHEiyOoy1zimbAeU7eWMCPv6l3YAq-z5Xp8JTABVvCGD_gDd7Xm5_mBBhOEAsOEX810wD5NXrpzZDhzZ_9Bj1-_vT99q55-Pbl_nbz0FgheWlazl0nTCscU50RRhHl-q3ZMsU9IS3xjFHfe9V6IcD63rSKO8-JFYw6kITfoHcXbv3Pjxly0ceQLQz1qTDOWbOOd10ve8mej7ZSSMGpWqjyErVpzDmB11MKR5POmhK9-NIH_deXXnzpi6_a_PhPs8bMMq2STBj-o7-59KEO7RQgLTmoKl1IYIt2Y3iW8QuYxrud |
| CitedBy_id | crossref_primary_10_1029_2023EF004127 crossref_primary_10_1016_j_scs_2023_104756 crossref_primary_10_1016_j_scs_2024_105507 crossref_primary_10_3390_su15108111 crossref_primary_10_1002_2475_8876_12303 crossref_primary_10_1016_j_glt_2022_10_004 crossref_primary_10_1016_j_uclim_2023_101470 crossref_primary_10_3390_rs15040884 crossref_primary_10_1016_j_uclim_2023_101570 crossref_primary_10_3390_su16114764 crossref_primary_10_3103_S0027134924702254 crossref_primary_10_1016_j_buildenv_2023_110434 crossref_primary_10_1016_j_buildenv_2024_112017 crossref_primary_10_2139_ssrn_4075474 crossref_primary_10_3390_rs16183374 crossref_primary_10_1016_j_jhydrol_2024_132002 crossref_primary_10_3389_fpubh_2022_1001344 crossref_primary_10_1080_15481603_2023_2209970 crossref_primary_10_1109_JSTARS_2024_3424542 crossref_primary_10_1016_j_scs_2024_105204 crossref_primary_10_1016_j_rse_2022_112972 crossref_primary_10_1016_j_ufug_2024_128629 crossref_primary_10_1016_j_heliyon_2023_e14067 crossref_primary_10_2139_ssrn_4201063 crossref_primary_10_3390_su151310633 crossref_primary_10_1016_j_envres_2024_119795 crossref_primary_10_1016_j_uclim_2024_102039 crossref_primary_10_3390_s23157013 crossref_primary_10_1016_j_enbuild_2025_115624 crossref_primary_10_1016_j_scs_2022_103959 crossref_primary_10_1080_15325008_2023_2293948 crossref_primary_10_3390_rs13214256 crossref_primary_10_1016_j_kjs_2024_100242 crossref_primary_10_1007_s12273_024_1112_y |
| Cites_doi | 10.1155/2017/2048098 10.1007/s00484-020-02063-z 10.5194/hess-11-1633-2007 10.3390/s20185336 10.1016/j.buildenv.2012.01.020 10.1016/j.rse.2020.111863 10.1016/j.rse.2021.112612 10.3390/rs13081580 10.1109/TGRS.2019.2895351 10.3390/rs13112211 10.1016/j.uclim.2017.05.010 10.1016/j.uclim.2020.100631 10.1029/2002JC001418 10.1109/JSTARS.2018.2807815 10.1016/j.uclim.2018.07.002 10.1016/j.uclim.2013.10.001 10.3390/rs9070684 10.3390/rs13091671 10.1016/j.mex.2020.101150 10.3390/rs8050410 10.1016/j.scs.2020.102508 10.1080/19479830903561035 10.1016/j.envsoft.2011.11.014 10.3389/feart.2018.00118 10.1175/1520-0450(2004)043<0312:MTSEBO>2.0.CO;2 10.1016/j.rse.2020.112256 10.1002/joc.3678 10.1016/j.rse.2020.111931 10.1175/BAMS-D-11-00019.1 10.3390/cli6030055 10.1109/TGRS.2009.2027697 10.1002/joc.4940 10.3390/rs11192304 10.1175/1520-0450(1999)038<0922:HSIUAL>2.0.CO;2 10.5194/gh-58-99-2003 10.1016/j.atmosres.2015.05.014 10.1016/j.dib.2020.105802 10.1007/s41324-020-00333-x 10.3390/rs3071535 10.1016/j.rse.2021.112566 10.1016/j.uclim.2019.01.005 10.3390/s141224425 10.1016/j.uclim.2017.05.004 10.1016/j.rse.2021.112437 10.1109/TGRS.2007.904834 10.1016/j.rse.2006.04.018 10.1023/A:1010933404324 10.1016/j.isprsjprs.2020.01.014 10.1038/s41598-018-29873-x 10.1016/j.uclim.2014.06.004 10.1007/s00704-006-0279-8 10.1016/j.isprsjprs.2020.07.014 10.1016/j.scitotenv.2015.02.062 10.1007/s10652-009-9150-7 10.1007/s00704-019-02953-2 10.1016/j.isprsjprs.2016.01.011 10.3390/rs13142828 10.3390/atmos12030292 10.1016/j.inffus.2020.07.004 10.3390/rs10081262 10.1016/j.uclim.2013.10.002 10.1007/s10546-006-9091-3 10.1109/JSTARS.2020.3046755 10.1177/030913338801200401 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION 7X8 7S9 L.6 |
| DOI | 10.1016/j.scitotenv.2021.150130 |
| DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Biology Environmental Sciences |
| EISSN | 1879-1026 |
| ExternalDocumentID | 10_1016_j_scitotenv_2021_150130 S0048969721052050 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW WUQ XPP ZXP ZY4 ~HD 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c473t-533d64a54d296a4a909d8bab293f0050f221f8f95f44ecf8a593df30c421de703 |
| IEDL.DBID | .~1 |
| ISSN | 0048-9697 1879-1026 |
| IngestDate | Sun Sep 28 12:39:57 EDT 2025 Sun Sep 28 02:19:20 EDT 2025 Thu Oct 02 04:23:53 EDT 2025 Thu Apr 24 23:00:42 EDT 2025 Fri Feb 23 02:43:32 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Urban Heat Island Local climate zones Heatwave Urban climate adaptation Multisensor data fusion Random forest Land surface temperature Satellite thermal imagery |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c473t-533d64a54d296a4a909d8bab293f0050f221f8f95f44ecf8a593df30c421de703 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://hdl.handle.net/10451/49488 |
| PQID | 2574743190 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2636687872 proquest_miscellaneous_2574743190 crossref_primary_10_1016_j_scitotenv_2021_150130 crossref_citationtrail_10_1016_j_scitotenv_2021_150130 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2021_150130 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-20 |
| PublicationDateYYYYMMDD | 2022-01-20 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationTitle | The Science of the total environment |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | A. Oliveira A. Lopes A. Soares , n.d. (in press) Excess heat factor climatology, trends and ranking functional urban areas exposure in Europe. Glob. Environ. Chang.. Zhao, Zhang, Tan, Li, Ren (bb0555) 2020; 20 Wang, Chow, Wang (bb0475) 2019; 41 Salcedo-Sanz, Ghamisi, Piles, Werner, Cuadra, Moreno-Martínez, Izquierdo-Verdiguier, Muñoz-Marí, Mosavi, Camps-Valls (bb0400) 2020; 63 Mills (bb0265) 2014 (bb0460) 2016 Wicki, Parlow, Feigenwinter (bb0495) 2018 Perkins (bb0370) 2015 Shi, Katzschner, Ng (bb0415) 2018 Kotthaus, Grimmond (bb0210) 2014 Xiao, Zhao, Ma, He (bb0505) 2021; 13 Napoly, Grassmann, Meier, Fenner (bb0290) 2018 Ghamisi, Rasti, Yokoya, Gloaguen, Wang, Höfle, Bruzzone, Bovolo, Chi, Anders, Atkinson, Benediktsson (bb0145) 2018 Chrysoulakis, Grimmond, Feigenwinter, Lindberg, Gastellu-Etchegorry, Marconcini, Mitraka, Stagakis, Crawford, Olofson, Landier, Morrison, Parlow (bb0090) 2018 Oke (bb0310) 1988 Xu, Cheng, Zhang (bb0515) 2021; 13 Baklanov, Grimmond, Carlson, Terblanche, Tang, Bouchet, Lee, Langendijk, Kolli, Hovsepyan (bb0015) 2018 Ramos, Cladera (bb0385) 2016 Oliveira, Lopes, Niza (bb0325) 2020; 31 Liu, Zhang (bb0235) 2011 Wang, Schmitz, Lu, Karssenberg (bb0480) 2020; 161 (bb0440) 2009 Barsi, Schott, Palluconi, Hook (bb0025) 2005 Jia, Ma, Liang, Wang (bb0185) 2021; 263 Parlow (bb0350) 2003 Zhang (bb0525) 2010 (bb0110) 2016 Zhao, Duan (bb0545) 2020; 247 Ezimand, Chahardoli, Azadbakht, Matkan (bb0125) 2021; 64 Shen, Shen, Cheng, Zhang (bb0410) 2021; 14 Peng, Li, Luo, Li (bb0365) 2019; 57 Feigenwinter, Vogt, Parlow, Lindberg, Marconcini, del Frate, Chrysoulakis (bb0130) 2018 Long, Yan, Bai, Zhang, Li, Lei, Yang, Tian, Zeng, Meng, Shi (bb0240) 2020; 246 Muller, Chapman, Grimmond, Young, Cai (bb0270) 2013 Meier, Fenner, Grassmann, Jänicke, Otto, Scherer (bb0260) 2015 Freitas, Rozoff, Cotton, Silva Dias (bb0135) 2007 Carrer, Moparthy, Lellouch, Ceamanos, Pinault, Freitas, Trigo (bb0050) 2018; 10 Lemonsu, Grimmond, Masson (bb0225) 2004 (bb0455) 2020 Rigo, Parlow, Oesch (bb0395) 2006 Göttsche, Olesen, Trigo, Bork-Unkelbach, Martin (bb0150) 2016; 8 Kourtidis, Georgoulias, Rapsomanikis, Amiridis, Keramitsoglou, Hooyberghs, Maiheu, Melas (bb0220) 2015 Nadeau, Brutsaert, Parlange, Bou-Zeid, Barrenetxea, Couach, Boldi, Selker, Vetterli (bb0275) 2009 Hong, Zhan, Göttsche, Lai, Liu, Hu, Fu, Huang, Li, Li, Wu (bb0165) 2021; 264 Anderson, Leung, Mehdipoor, Jänicke, Miloševic, Oliveira, Manavvi, Kabano, Dzyuban, Aguilar, Agan, Kunda, Garcia-Chapeton, de França Carvalho Fonsêca, Nascimento, Zurita-Milla (bb0010) 2021 Kotthaus, Grimmond (bb0215) 2014 Zhang, Zhou, Liang, Wang (bb0540) 2021; 260 Carrer, Ceamanos, Moparthy, Vincent, Freitas, Trigo (bb0055) 2019; 11 Oke (bb0300) 1982 Wang, Luo, Li, Yang, Liu, Luo, Li (bb0485) 2021; 13 Prata (bb0375) 1996; 122 Cheval, Dumitrescu, Amihaesei (bb0080) 2020; 20 Parlow, Vogt, Feigenwinter (bb0355) 2014 (bb0115) 2018 (bb0450) 2014 (bb0380) 2011 Grimmond, Oke (bb0155) 1999; 38 Oke, Mills, Christen, Voogt (bb0315) 2017 (bb0120) 2018 Oke, Mills, Christen, Voogt (bb0320) 2017 Jung, Park (bb0200) 2014; 14 Barsi, Barker, Schott (bb0020) 2004 Hofierka, Súri (bb0160) 2002 Xu, Cheng (bb0510) 2021; 254 Zhang, Zhou, Liang, Chai, Wang, Liu (bb0535) 2020; 167 Xu, Cheng, Zhang (bb0520) 2021; 13 Chrysoulakis, Heldens, Gastellu-Etchegorry, Grimmond, Feigenwinter, Lindberg, Frate, Klostermann, Mitraka, Esch, Albitar, Gabey, Parlow, Olofson (bb0085) 2016 Wicki, Parlow (bb0490) 2017 Cai, Ren, Xu, Lau, Wang (bb0045) 2018 Belgiu, Drăgu (bb0035) 2016; 114 Sharma, Khandelwal, Kaul (bb0405) 2020; 29 Tan, Che, Wang, Liang, Zhang, Ren (bb0435) 2021; 13 Chen, Zhan, Quan, Zhou, Zhu, Sun (bb0075) 2014; 52 (bb0105) 2016 Peel, Finlayson, McMahon (bb0360) 2007 Anderson, Gough, Mohsin (bb0005) 2018 Neteler, Bowman, Landa, Metz (bb0295) 2012; 31 Freitas, Trigo, Bioucas-Dias, Göttsche (bb0140) 2010; 48 Oliveira, Lopes, Niza (bb0335) 2020; 33 Oke (bb0305) 1987 Shumilo, Kussul, Shelestov, Korsunska, Yailymov (bb0420) 2019 (bb0465) 2019 Breiman (bb0040) 2001; 45 Kesavan, Muthian, Sudalaimuthu, Sundarsingh, Krishnan (bb0205) 2021 (bb0500) 2010 Rigo, Parlow (bb0390) 2007 Jin, Han (bb0190) 2017; 2017 Zhang, Bounoua, Imhoff, Wolfe, Thome (bb0530) 2014; 40 Major, Omojola, Dettinger, Hanson, Sanchez-Rodriguez (bb0255) 2011 Chapman, Bell, Bell (bb0065) 2017 Nairn, Fawcett (bb0280) 2013 Carrer, Moparthy, Vincent, Ceamanos, Freitas, Trigo (bb0060) 2019; 11 Nairn, Fawcett, Ray (bb0285) 2009 Liaw, Wiener (bb0230) 2018; 2 Lott (bb0250) 2004 Wang, Bou-Zeid, Smith (bb0470) 2010 Bechtel, Demuzere, Mills, Zhan, Sismanidis, Small, Voogt (bb0030) 2019; 28 Congedo (bb0095) 2019 Oliveira, Lopes, Correia, Niza, Soares (bb0345) 2021; 12 Sobrino, Jiménez-Muñoz, Sòria, Romaguera, Guanter, Moreno, Plaza, Martínez (bb0425) 2008 Stewart, Oke (bb0430) 2012 Lopes (bb0245) 2003 Josey, Pascal, Taylor, Yelland (bb0195) 2003; 108 Emmanuel, Krüger (bb0100) 2012 Huryna, Cohen, Karnieli, Panov, Kustas, Agam (bb0175) 2019; 11 Chavez (bb0070) 1996; 62 Oliveira, Lopes, Niza (bb0330) 2020; 7 Howard (bb0170) 1833; Vol.1 Ünal, Sonuç, Incecik, Topcu, Diren-Üstün, Temizöz (bb0445) 2020; 139 (bb0180) 2018 Jin (10.1016/j.scitotenv.2021.150130_bb0190) 2017; 2017 Zhao (10.1016/j.scitotenv.2021.150130_bb0555) 2020; 20 Chavez (10.1016/j.scitotenv.2021.150130_bb0070) 1996; 62 Ünal (10.1016/j.scitotenv.2021.150130_bb0445) 2020; 139 Zhao (10.1016/j.scitotenv.2021.150130_bb0545) 2020; 247 Carrer (10.1016/j.scitotenv.2021.150130_bb0060) 2019; 11 Cheval (10.1016/j.scitotenv.2021.150130_bb0080) 2020; 20 Tan (10.1016/j.scitotenv.2021.150130_bb0435) 2021; 13 Wicki (10.1016/j.scitotenv.2021.150130_bb0495) 2018 Sobrino (10.1016/j.scitotenv.2021.150130_bb0425) 2008 Kotthaus (10.1016/j.scitotenv.2021.150130_bb0210) 2014 Chapman (10.1016/j.scitotenv.2021.150130_bb0065) 2017 Wang (10.1016/j.scitotenv.2021.150130_bb0485) 2021; 13 Zhang (10.1016/j.scitotenv.2021.150130_bb0530) 2014; 40 Anderson (10.1016/j.scitotenv.2021.150130_bb0005) 2018 Ezimand (10.1016/j.scitotenv.2021.150130_bb0125) 2021; 64 Göttsche (10.1016/j.scitotenv.2021.150130_bb0150) 2016; 8 Salcedo-Sanz (10.1016/j.scitotenv.2021.150130_bb0400) 2020; 63 Wicki (10.1016/j.scitotenv.2021.150130_bb0490) 2017 Sharma (10.1016/j.scitotenv.2021.150130_bb0405) 2020; 29 Anderson (10.1016/j.scitotenv.2021.150130_bb0010) 2021 Nairn (10.1016/j.scitotenv.2021.150130_bb0285) 2009 Perkins (10.1016/j.scitotenv.2021.150130_bb0370) 2015 Meier (10.1016/j.scitotenv.2021.150130_bb0260) 2015 Shi (10.1016/j.scitotenv.2021.150130_bb0415) 2018 Emmanuel (10.1016/j.scitotenv.2021.150130_bb0100) 2012 Major (10.1016/j.scitotenv.2021.150130_bb0255) 2011 Oliveira (10.1016/j.scitotenv.2021.150130_bb0345) 2021; 12 Wang (10.1016/j.scitotenv.2021.150130_bb0480) 2020; 161 Ramos (10.1016/j.scitotenv.2021.150130_bb0385) 2016 Zhang (10.1016/j.scitotenv.2021.150130_bb0540) 2021; 260 Kotthaus (10.1016/j.scitotenv.2021.150130_bb0215) 2014 Oke (10.1016/j.scitotenv.2021.150130_bb0305) 1987 Xu (10.1016/j.scitotenv.2021.150130_bb0510) 2021; 254 Xu (10.1016/j.scitotenv.2021.150130_bb0520) 2021; 13 Oke (10.1016/j.scitotenv.2021.150130_bb0310) 1988 Zhang (10.1016/j.scitotenv.2021.150130_bb0525) 2010 Oke (10.1016/j.scitotenv.2021.150130_bb0300) 1982 Nairn (10.1016/j.scitotenv.2021.150130_bb0280) 2013 Hofierka (10.1016/j.scitotenv.2021.150130_bb0160) 2002 (10.1016/j.scitotenv.2021.150130_bb0465) 2019 Lopes (10.1016/j.scitotenv.2021.150130_bb0245) 2003 Bechtel (10.1016/j.scitotenv.2021.150130_bb0030) 2019; 28 Stewart (10.1016/j.scitotenv.2021.150130_bb0430) 2012 Baklanov (10.1016/j.scitotenv.2021.150130_bb0015) 2018 (10.1016/j.scitotenv.2021.150130_bb0500) 2010 Lott (10.1016/j.scitotenv.2021.150130_bb0250) 2004 Barsi (10.1016/j.scitotenv.2021.150130_bb0025) 2005 Breiman (10.1016/j.scitotenv.2021.150130_bb0040) 2001; 45 Peel (10.1016/j.scitotenv.2021.150130_bb0360) 2007 (10.1016/j.scitotenv.2021.150130_bb0180) 2018 Muller (10.1016/j.scitotenv.2021.150130_bb0270) 2013 Liu (10.1016/j.scitotenv.2021.150130_bb0235) 2011 Zhang (10.1016/j.scitotenv.2021.150130_bb0535) 2020; 167 (10.1016/j.scitotenv.2021.150130_bb0440) 2009 (10.1016/j.scitotenv.2021.150130_bb0455) 2020 Kesavan (10.1016/j.scitotenv.2021.150130_bb0205) 2021 Mills (10.1016/j.scitotenv.2021.150130_bb0265) 2014 Oke (10.1016/j.scitotenv.2021.150130_bb0320) 2017 Nadeau (10.1016/j.scitotenv.2021.150130_bb0275) 2009 Chrysoulakis (10.1016/j.scitotenv.2021.150130_bb0090) 2018 Oke (10.1016/j.scitotenv.2021.150130_bb0315) 2017 Xu (10.1016/j.scitotenv.2021.150130_bb0515) 2021; 13 Congedo (10.1016/j.scitotenv.2021.150130_bb0095) 2019 Grimmond (10.1016/j.scitotenv.2021.150130_bb0155) 1999; 38 Peng (10.1016/j.scitotenv.2021.150130_bb0365) 2019; 57 Barsi (10.1016/j.scitotenv.2021.150130_bb0020) 2004 (10.1016/j.scitotenv.2021.150130_bb0460) 2016 Freitas (10.1016/j.scitotenv.2021.150130_bb0135) 2007 Long (10.1016/j.scitotenv.2021.150130_bb0240) 2020; 246 Wang (10.1016/j.scitotenv.2021.150130_bb0475) 2019; 41 Chen (10.1016/j.scitotenv.2021.150130_bb0075) 2014; 52 Rigo (10.1016/j.scitotenv.2021.150130_bb0395) 2006 Wang (10.1016/j.scitotenv.2021.150130_bb0470) 2010 Freitas (10.1016/j.scitotenv.2021.150130_bb0140) 2010; 48 Kourtidis (10.1016/j.scitotenv.2021.150130_bb0220) 2015 Lemonsu (10.1016/j.scitotenv.2021.150130_bb0225) 2004 Howard (10.1016/j.scitotenv.2021.150130_bb0170) 1833; Vol.1 Ghamisi (10.1016/j.scitotenv.2021.150130_bb0145) 2018 Carrer (10.1016/j.scitotenv.2021.150130_bb0055) 2019; 11 Neteler (10.1016/j.scitotenv.2021.150130_bb0295) 2012; 31 Shumilo (10.1016/j.scitotenv.2021.150130_bb0420) 2019 Prata (10.1016/j.scitotenv.2021.150130_bb0375) 1996; 122 Cai (10.1016/j.scitotenv.2021.150130_bb0045) 2018 Chrysoulakis (10.1016/j.scitotenv.2021.150130_bb0085) 2016 Belgiu (10.1016/j.scitotenv.2021.150130_bb0035) 2016; 114 Hong (10.1016/j.scitotenv.2021.150130_bb0165) 2021; 264 Feigenwinter (10.1016/j.scitotenv.2021.150130_bb0130) 2018 Jung (10.1016/j.scitotenv.2021.150130_bb0200) 2014; 14 Huryna (10.1016/j.scitotenv.2021.150130_bb0175) 2019; 11 Josey (10.1016/j.scitotenv.2021.150130_bb0195) 2003; 108 Oliveira (10.1016/j.scitotenv.2021.150130_bb0325) 2020; 31 Parlow (10.1016/j.scitotenv.2021.150130_bb0355) 2014 Oliveira (10.1016/j.scitotenv.2021.150130_bb0330) 2020; 7 Liaw (10.1016/j.scitotenv.2021.150130_bb0230) 2018; 2 Parlow (10.1016/j.scitotenv.2021.150130_bb0350) 2003 10.1016/j.scitotenv.2021.150130_bb0340 (10.1016/j.scitotenv.2021.150130_bb0450) 2014 Napoly (10.1016/j.scitotenv.2021.150130_bb0290) 2018 Carrer (10.1016/j.scitotenv.2021.150130_bb0050) 2018; 10 (10.1016/j.scitotenv.2021.150130_bb0380) 2011 Oliveira (10.1016/j.scitotenv.2021.150130_bb0335) 2020; 33 Xiao (10.1016/j.scitotenv.2021.150130_bb0505) 2021; 13 Jia (10.1016/j.scitotenv.2021.150130_bb0185) 2021; 263 Rigo (10.1016/j.scitotenv.2021.150130_bb0390) 2007 Shen (10.1016/j.scitotenv.2021.150130_bb0410) 2021; 14 |
| References_xml | – volume: 247 year: 2020 ident: bb0545 article-title: Reconstruction of daytime land surface temperatures under cloud-covered conditions using integrated MODIS/Terra land products and MSG geostationary satellite data publication-title: Remote Sens. Environ. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb0040 article-title: Random forests publication-title: Mach. Learn. – year: 2007 ident: bb0135 article-title: Interactions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of São Paulo, Brazil publication-title: Bound.-Layer Meteorol. – volume: 108 year: 2003 ident: bb0195 article-title: A new formula for determining the atmospheric longwave flux at the ocean surface at mid-high latitudes publication-title: J. Geophys. Res. Oceans – volume: 20 start-page: 5336 year: 2020 ident: bb0080 article-title: Exploratory analysis of urban climate using a gap-filled Landsat 8 land surface temperature data set publication-title: Sensors – year: 2011 ident: bb0235 article-title: Urban heat island analysis using the landsat TM data and ASTER data: a case study in Hong Kong publication-title: Remote Sens. – volume: 31 year: 2020 ident: bb0325 article-title: Local climate zones datasets from five Southern European cities: Copernicus based classification maps of Athens, Barcelona, Lisbon, Marseille and Naples publication-title: Data Brief – year: 2003 ident: bb0245 article-title: Changes in Lisbon's urban climate as a consequence of urban growth publication-title: Wind, Surface UHI and Energy Budget – year: 1982 ident: bb0300 article-title: The energetic basis of the urban heat island publication-title: Q. J. R. Meteorol. Soc. – volume: 2017 year: 2017 ident: bb0190 article-title: Multisensor fusion of landsat images for high-resolution thermal infrared images using sparse representations publication-title: Math. Probl. Eng. – year: 2004 ident: bb0020 article-title: An Atmospheric Correction Parameter Calculator for a Single Thermal Band Earth-sensing Instrument – year: 2011 ident: bb0255 article-title: Climate Change and Cities: First Assessment Report of the Urban Climate Change Research Network. Climate Change and Cities: First Assessment Report of the Urban Climate Change Research Network – volume: 62 start-page: 1025 year: 1996 end-page: 1036 ident: bb0070 article-title: Image-based atmospheric corrections - revisited and improved publication-title: Photogramm. Eng. Remote. Sens. – year: 2018 ident: bb0115 article-title: Imperviousness density [WWW document] – year: 2018 ident: bb0045 article-title: Investigating the relationship between local climate zone and land surface temperature using an improved WUDAPT methodology – a case study of Yangtze River Delta, China publication-title: Urban Clim. – year: 2016 ident: bb0085 article-title: A novel approach for anthropogenic heat flux estimation from space publication-title: International Geoscience and Remote Sensing Symposium (IGARSS) – year: 2017 ident: bb0320 article-title: Urban Climates – volume: 13 start-page: 2211 year: 2021 ident: bb0520 article-title: A random forest-based data fusion method for obtaining all-weather land surface temperature with high spatial resolution publication-title: Remote Sens. – year: 2016 ident: bb0110 article-title: Corine land cover 2012 [WWW document] – volume: 7 year: 2020 ident: bb0330 article-title: Local climate zones classification method from copernicus land monitoring service datasets: an ArcGIS-based toolbox publication-title: MethodsX – reference: A. Oliveira A. Lopes A. Soares , n.d. (in press) Excess heat factor climatology, trends and ranking functional urban areas exposure in Europe. Glob. Environ. Chang.. – year: 2014 ident: bb0355 article-title: The urban heat island of Basel - seen from different perspectives publication-title: Erde – volume: 2 start-page: 18 year: 2018 end-page: 22 ident: bb0230 article-title: Classification and regression by randomForest publication-title: R News – volume: 31 year: 2012 ident: bb0295 article-title: GRASS GIS: a multi-purpose open source GIS publication-title: Environ. Model. Softw. – year: 2008 ident: bb0425 article-title: Land surface emissivity retrieval from different VNIR and TIR sensors publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2017 ident: bb0065 article-title: Can the crowdsourcing data paradigm take atmospheric science to a new level? A case study of the urban heat island of London quantified using netatmo weather stations publication-title: Int. J. Climatol. – volume: 38 year: 1999 ident: bb0155 article-title: Heat storage in urban areas: local-scale observations and evaluation of a simple model publication-title: J. Appl. Meteorol. – year: 2014 ident: bb0215 article-title: Energy exchange in a dense urban environment - part I: temporal variability of long-term observations in Central London publication-title: Urban Clim. – year: 2007 ident: bb0390 article-title: Modelling the ground heat flux of an urban area using remote sensing data publication-title: Theor. Appl. Climatol. – volume: 246 year: 2020 ident: bb0240 article-title: Generation of MODIS-like land surface temperatures under all-weather conditions based on a data fusion approach publication-title: Remote Sens. Environ. – volume: 13 start-page: 1671 year: 2021 ident: bb0435 article-title: Reconstruction of the daily MODIS land surface temperature product using the two-step improved similar pixels method publication-title: Remote Sens. – year: 2018 ident: bb0130 article-title: Spatial distribution of sensible and latent heat flux in the City of Basel (Switzerland) publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – year: 2002 ident: bb0160 article-title: The solar radiation model for Open Source GIS: implementation and applications publication-title: Open Source GIS - GRASS Users Conference – volume: 20 year: 2020 ident: bb0555 article-title: A data fusion modeling framework for retrieval of land surface temperature from landsat-8 and modis data publication-title: Sensors (Switzerland) – year: 2009 ident: bb0285 article-title: Defining and predicting excessive heat events, a national system publication-title: Proceedings of the CAWCR Modelling … – year: 2011 ident: bb0380 article-title: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing – volume: 264 year: 2021 ident: bb0165 article-title: A simple yet robust framework to estimate accurate daily mean land surface temperature from thermal observations of tandem polar orbiters publication-title: Remote Sens. Environ. – start-page: 197 year: 2017 end-page: 237 ident: bb0315 article-title: Urban heat island publication-title: Urban Climates – year: 2014 ident: bb0450 article-title: World Urbanization Prospects: 2014 Revision, New York, United – year: 2013 ident: bb0270 article-title: Sensors and the city: a review of urban meteorological networks publication-title: Int. J. Climatol. – year: 2018 ident: bb0120 article-title: Tree cover density [WWW document] – year: 2019 ident: bb0465 article-title: EarthExplorer - Home. U.S. Geological Survey – volume: 29 start-page: 31 year: 2020 end-page: 42 ident: bb0405 article-title: Principal component based fusion of land surface temperature (LST) and panchromatic (PAN) images publication-title: Spat. Inf. Res. – year: 2018 ident: bb0290 article-title: Development and application of a statistically-based quality control for crowdsourced air temperature data publication-title: Front. Earth Sci. – volume: 63 start-page: 256 year: 2020 end-page: 272 ident: bb0400 article-title: Machine learning information fusion in earth observation: a comprehensive review of methods, applications and data sources publication-title: Inf. Fusion – volume: Vol.1 year: 1833 ident: bb0170 article-title: The Climate of London: Deduced from Meteorological Observations, Made at Different Places in the Neighbourhood of the Metropolis – year: 2018 ident: bb0415 article-title: Modelling the fine-scale spatiotemporal pattern of urban heat island effect using land use regression approach in a megacity publication-title: Sci. Total Environ. – year: 2012 ident: bb0430 article-title: Local climate zones for urban temperature studies publication-title: Bull. Am. Meteorol. Soc. – year: 2016 ident: bb0460 article-title: Landsat 8 (L8) Data Users Handbook (LSDS-1574 version 2.0) – year: 2019 ident: bb0095 article-title: Semi-Automatic Classification Plugin Documentation Release 6.2.0.1. Release – year: 2013 ident: bb0280 article-title: Defining heatwaves: heatwave defined as a heat-impact event servicing all community and business sectors in Australia publication-title: CAWCR Technical Report – year: 2018 ident: bb0015 article-title: From urban meteorology, climate and environment research to integrated city services publication-title: Urban Clim. – volume: 13 start-page: 2828 year: 2021 ident: bb0505 article-title: Gap-free LST generation for MODIS/Terra LST product using a random forest-based reconstruction method publication-title: Remote Sens. – year: 2014 ident: bb0265 article-title: Urban climatology: history, status and prospects publication-title: Urban Clim. – year: 2009 ident: bb0275 article-title: Estimation of urban sensible heat flux using a dense wireless network of observations publication-title: Environ. Fluid Mech. – volume: 14 start-page: 2136 year: 2021 end-page: 2147 ident: bb0410 article-title: Generating comparable and fine-scale time series of summer land surface temperature for thermal environment monitoring publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 167 start-page: 321 year: 2020 end-page: 344 ident: bb0535 article-title: Estimation of 1-km all-weather remotely sensed land surface temperature based on reconstructed spatial-seamless satellite passive microwave brightness temperature and thermal infrared data publication-title: ISPRS J. Photogramm. Remote Sens. – year: 2021 ident: bb0010 article-title: Technological opportunities for sensing of the health effects of weather and climate change: a state-of-the-art-review publication-title: Int. J. Biometeorol. – year: 2019 ident: bb0420 article-title: Sentinel-3 urban heat island monitoring and analysis for Kyiv based on vector data publication-title: Conference Proceedings of 2019 10th International Conference on Dependable Systems, Services and Technologies, DESSERT 2019 – year: 2016 ident: bb0385 article-title: Identifying urban heat island: the Barcelona case publication-title: 11th Congress Virtual City and Territory – year: 2018 ident: bb0090 article-title: Urban energy exchanges monitoring from space publication-title: Sci. Rep. – volume: 13 start-page: 2211 year: 2021 ident: bb0515 article-title: A random forest-based data fusion method for obtaining all-weather land surface temperature with high spatial resolution publication-title: Remote Sens. – volume: 40 year: 2014 ident: bb0530 article-title: Comparison of MODIS land surface temperature and air temperature over the continental USA meteorological stations publication-title: Can. J. Remote. Sens. – volume: 11 year: 2019 ident: bb0060 article-title: Satellite retrieval of downwelling shortwave surface flux and diffuse fraction under all sky conditions in the framework of the LSA SAF program (part 2: evaluation) publication-title: Remote Sens. – volume: 114 start-page: 24 year: 2016 end-page: 31 ident: bb0035 article-title: Random forest in remote sensing: a review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. – year: 2007 ident: bb0360 article-title: Updated world map of the Köppen-Geiger climate classification publication-title: Hydrol. Earth Syst. Sci. – year: 2010 ident: bb0470 article-title: Application of a sensor network to study the energy budget in urban canopies publication-title: Proceedings of 15th Symposium on Meteorological Observation and Instrumentation, Atlanta – volume: 28 year: 2019 ident: bb0030 article-title: SUHI analysis using local climate zones—a comparison of 50 cities publication-title: Urban Clim. – year: 2012 ident: bb0100 article-title: Urban heat island and its impact on climate change resilience in a shrinking city: the case of Glasgow, UK publication-title: Build. Environ. – year: 2018 ident: bb0005 article-title: Characterization of the urban heat island at Toronto: revisiting the choice of rural sites using a measure of day-to-day variation publication-title: Urban Clim. – volume: 12 start-page: 292 year: 2021 ident: bb0345 article-title: Heatwaves and summer urban heat islands: a daily cycle approach to unveil the urban thermal signal changes in Lisbon, Portugal publication-title: Atmosphere – year: 2018 ident: bb0145 article-title: Multisource and Multitemporal Data Fusion in Remote Sensing – volume: 33 year: 2020 ident: bb0335 article-title: Local climate zones in five southern european cities: an improved GIS-based classification method based on copernicus data publication-title: Urban Clim. – volume: 11 year: 2019 ident: bb0055 article-title: Satellite retrieval of downwelling shortwave surface flux and diffuse fraction under all sky conditions in the framework of the LSA SAF program (part 1: methodology) publication-title: Remote Sens. – year: 2004 ident: bb0250 article-title: The quality control of the integrated surface hourly database, American Meteorological Society Paper 71929, 14th Conference on Applied Climatology, Seattle, WA – volume: 10 year: 2018 ident: bb0050 article-title: Land surface albedo derived on a ten daily basis from Meteosat Second Generation Observations: the NRT and climate data record collections from the EUMETSAT LSA SAF publication-title: Remote Sens. – year: 2009 ident: bb0440 article-title: ASTER Global DEM Validation – volume: 254 year: 2021 ident: bb0510 article-title: A new land surface temperature fusion strategy based on cumulative distribution function matching and multiresolution Kalman filtering publication-title: Remote Sens. Environ. – volume: 139 year: 2020 ident: bb0445 article-title: Investigating urban heat island intensity in Istanbul publication-title: Theor. Appl. Climatol. – year: 2005 ident: bb0025 article-title: Validation of a web-based atmospheric correction tool for single thermal band instruments publication-title: Earth Observing Systems X – year: 2014 ident: bb0210 article-title: Energy exchange in a dense urban environment - part II: impact of spatial heterogeneity of the surface publication-title: Urban Clim. – volume: 122 year: 1996 ident: bb0375 article-title: A new long-wave formula for estimating downward clear-sky radiation at the surface publication-title: Q. J. R. Meteorol. Soc. – volume: 8 year: 2016 ident: bb0150 article-title: Long term validation of land surface temperature retrieved from MSG/SEVIRI with continuous in-situ measurements in Africa publication-title: Remote Sens. – volume: 13 start-page: 1580 year: 2021 ident: bb0485 article-title: Downscaling land surface temperature based on non-linear geographically weighted regressive model over urban areas publication-title: Remote Sens. – year: 2018 ident: bb0495 article-title: Evaluation and modeling of urban heat island intensity in Basel, Switzerland publication-title: Climate – volume: 41 start-page: 2986 year: 2019 end-page: 3009 ident: bb0475 publication-title: A Global Regression Method for Thermal Sharpening of Urban Land Surface Temperatures From MODIS and Landsat – volume: 161 start-page: 76 year: 2020 end-page: 89 ident: bb0480 article-title: Thermal unmixing based downscaling for fine resolution diurnal land surface temperature analysis publication-title: ISPRS J. Photogramm. Remote Sens. – year: 2010 ident: bb0500 article-title: Cities and Climate Change an Urgent Agenda – volume: 48 year: 2010 ident: bb0140 article-title: Quantifying the uncertainty of land surface temperature retrievals from SEVIRI/Meteosat publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 52 year: 2014 ident: bb0075 article-title: Disaggregation of remotely sensed land surface temperature: a generalized paradigm publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2016 ident: bb0105 article-title: Urban atlas 2012 [WWW document] – volume: 11 year: 2019 ident: bb0175 article-title: Evaluation of TsHARP utility for thermal sharpening of Sentinel-3 satellite images using Sentinel-2 visual imagery publication-title: Remote Sens. – volume: 14 year: 2014 ident: bb0200 article-title: Multi-sensor fusion of landsat 8 thermal infrared (TIR) and panchromatic (PAN) images publication-title: Sensors (Switzerland) – year: 2004 ident: bb0225 article-title: Modeling the surface energy balance of the Core of an old Mediterranean City: Marseille publication-title: J. Appl. Meteorol. – year: 2003 ident: bb0350 article-title: The urban heat budget derived from satellite data publication-title: Geogr. Helv. – year: 1987 ident: bb0305 article-title: Boundary Layer Climates – volume: 263 year: 2021 ident: bb0185 article-title: Cloudy-sky land surface temperature from VIIRS and MODIS satellite data using a surface energy balance-based method publication-title: Remote Sens. Environ. – year: 2006 ident: bb0395 article-title: Validation of satellite observed thermal emission with in-situ measurements over an urban surface publication-title: Remote Sens. Environ. – year: 2015 ident: bb0370 article-title: A review on the scientific understanding of heatwaves-their measurement, driving mechanisms, and changes at the global scale publication-title: Atmos. Res. – year: 2017 ident: bb0490 article-title: Multiple regression analysis for unmixing of surface temperature data in an urban environment publication-title: Remote Sens. – volume: 260 year: 2021 ident: bb0540 article-title: A practical reanalysis data and thermal infrared remote sensing data merging (RTM) method for reconstruction of a 1-km all-weather land surface temperature publication-title: Remote Sens. Environ. – year: 2015 ident: bb0220 article-title: A study of the hourly variability of the urban heat island effect in the greater Athens area during summer publication-title: Sci. Total Environ. – volume: 64 year: 2021 ident: bb0125 article-title: Spatiotemporal analysis of land surface temperature using multi-temporal and multi-sensor image fusion techniques publication-title: Sustain. Cities Soc. – year: 2020 ident: bb0455 article-title: USGS EROS Archive - Landsat Archives - Landsat 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) [WWW Document] – year: 2010 ident: bb0525 article-title: Multi-source remote sensing data fusion: status and trends publication-title: Int. J. Image Data Fusion – year: 2018 ident: bb0180 article-title: Italian census publication-title: Permanent Census of Population and Housing – volume: 57 start-page: 5012 year: 2019 end-page: 5027 ident: bb0365 article-title: A geographically and temporally weighted regression model for spatial downscaling of MODIS land surface temperatures over urban heterogeneous regions publication-title: IEEE Trans. Geosci. Remote Sens. – year: 1988 ident: bb0310 article-title: The urban energy balance publication-title: Prog. Phys. Geogr. – year: 2015 ident: bb0260 article-title: Challenges and benefits from crowdsourced atmospheric data for urban climate research using Berlin, Germany, as testbed publication-title: ICUC9 - 9th International Conference on Urban Climate Jointly With 12th Symposium on the Urban Environment Challenges – start-page: 1 year: 2021 end-page: 14 ident: bb0205 article-title: ARIMA modeling for forecasting land surface temperature and determination of urban heat island using remote sensing techniques for Chennai city, India publication-title: Arab. J. Geosci. – volume: 2017 year: 2017 ident: 10.1016/j.scitotenv.2021.150130_bb0190 article-title: Multisensor fusion of landsat images for high-resolution thermal infrared images using sparse representations publication-title: Math. Probl. Eng. doi: 10.1155/2017/2048098 – year: 2015 ident: 10.1016/j.scitotenv.2021.150130_bb0260 article-title: Challenges and benefits from crowdsourced atmospheric data for urban climate research using Berlin, Germany, as testbed – year: 2017 ident: 10.1016/j.scitotenv.2021.150130_bb0320 – year: 2021 ident: 10.1016/j.scitotenv.2021.150130_bb0010 article-title: Technological opportunities for sensing of the health effects of weather and climate change: a state-of-the-art-review publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-020-02063-z – year: 2007 ident: 10.1016/j.scitotenv.2021.150130_bb0360 article-title: Updated world map of the Köppen-Geiger climate classification publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-11-1633-2007 – volume: 20 start-page: 5336 year: 2020 ident: 10.1016/j.scitotenv.2021.150130_bb0080 article-title: Exploratory analysis of urban climate using a gap-filled Landsat 8 land surface temperature data set publication-title: Sensors doi: 10.3390/s20185336 – year: 2012 ident: 10.1016/j.scitotenv.2021.150130_bb0100 article-title: Urban heat island and its impact on climate change resilience in a shrinking city: the case of Glasgow, UK publication-title: Build. Environ. doi: 10.1016/j.buildenv.2012.01.020 – year: 1987 ident: 10.1016/j.scitotenv.2021.150130_bb0305 – volume: 122 year: 1996 ident: 10.1016/j.scitotenv.2021.150130_bb0375 article-title: A new long-wave formula for estimating downward clear-sky radiation at the surface publication-title: Q. J. R. Meteorol. Soc. – year: 2010 ident: 10.1016/j.scitotenv.2021.150130_bb0470 article-title: Application of a sensor network to study the energy budget in urban canopies – volume: 246 year: 2020 ident: 10.1016/j.scitotenv.2021.150130_bb0240 article-title: Generation of MODIS-like land surface temperatures under all-weather conditions based on a data fusion approach publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111863 – volume: 52 year: 2014 ident: 10.1016/j.scitotenv.2021.150130_bb0075 article-title: Disaggregation of remotely sensed land surface temperature: a generalized paradigm publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 264 year: 2021 ident: 10.1016/j.scitotenv.2021.150130_bb0165 article-title: A simple yet robust framework to estimate accurate daily mean land surface temperature from thermal observations of tandem polar orbiters publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112612 – volume: 13 start-page: 1580 year: 2021 ident: 10.1016/j.scitotenv.2021.150130_bb0485 article-title: Downscaling land surface temperature based on non-linear geographically weighted regressive model over urban areas publication-title: Remote Sens. doi: 10.3390/rs13081580 – volume: 57 start-page: 5012 year: 2019 ident: 10.1016/j.scitotenv.2021.150130_bb0365 article-title: A geographically and temporally weighted regression model for spatial downscaling of MODIS land surface temperatures over urban heterogeneous regions publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2895351 – year: 2014 ident: 10.1016/j.scitotenv.2021.150130_bb0450 – year: 2009 ident: 10.1016/j.scitotenv.2021.150130_bb0440 – volume: 13 start-page: 2211 year: 2021 ident: 10.1016/j.scitotenv.2021.150130_bb0520 article-title: A random forest-based data fusion method for obtaining all-weather land surface temperature with high spatial resolution publication-title: Remote Sens. doi: 10.3390/rs13112211 – year: 2011 ident: 10.1016/j.scitotenv.2021.150130_bb0255 – volume: 20 year: 2020 ident: 10.1016/j.scitotenv.2021.150130_bb0555 article-title: A data fusion modeling framework for retrieval of land surface temperature from landsat-8 and modis data publication-title: Sensors (Switzerland) – year: 2018 ident: 10.1016/j.scitotenv.2021.150130_bb0180 article-title: Italian census – year: 2018 ident: 10.1016/j.scitotenv.2021.150130_bb0045 article-title: Investigating the relationship between local climate zone and land surface temperature using an improved WUDAPT methodology – a case study of Yangtze River Delta, China publication-title: Urban Clim. doi: 10.1016/j.uclim.2017.05.010 – volume: 2 start-page: 18 issue: 3 year: 2018 ident: 10.1016/j.scitotenv.2021.150130_bb0230 article-title: Classification and regression by randomForest publication-title: R News – volume: 33 year: 2020 ident: 10.1016/j.scitotenv.2021.150130_bb0335 article-title: Local climate zones in five southern european cities: an improved GIS-based classification method based on copernicus data publication-title: Urban Clim. doi: 10.1016/j.uclim.2020.100631 – volume: 108 year: 2003 ident: 10.1016/j.scitotenv.2021.150130_bb0195 article-title: A new formula for determining the atmospheric longwave flux at the ocean surface at mid-high latitudes publication-title: J. Geophys. Res. Oceans doi: 10.1029/2002JC001418 – year: 2018 ident: 10.1016/j.scitotenv.2021.150130_bb0145 – year: 2018 ident: 10.1016/j.scitotenv.2021.150130_bb0130 article-title: Spatial distribution of sensible and latent heat flux in the City of Basel (Switzerland) publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2807815 – year: 2018 ident: 10.1016/j.scitotenv.2021.150130_bb0005 article-title: Characterization of the urban heat island at Toronto: revisiting the choice of rural sites using a measure of day-to-day variation publication-title: Urban Clim. doi: 10.1016/j.uclim.2018.07.002 – year: 2014 ident: 10.1016/j.scitotenv.2021.150130_bb0210 article-title: Energy exchange in a dense urban environment - part II: impact of spatial heterogeneity of the surface publication-title: Urban Clim. doi: 10.1016/j.uclim.2013.10.001 – year: 2004 ident: 10.1016/j.scitotenv.2021.150130_bb0250 – year: 2017 ident: 10.1016/j.scitotenv.2021.150130_bb0490 article-title: Multiple regression analysis for unmixing of surface temperature data in an urban environment publication-title: Remote Sens. doi: 10.3390/rs9070684 – year: 2016 ident: 10.1016/j.scitotenv.2021.150130_bb0385 article-title: Identifying urban heat island: the Barcelona case – volume: Vol.1 year: 1833 ident: 10.1016/j.scitotenv.2021.150130_bb0170 – volume: 13 start-page: 1671 year: 2021 ident: 10.1016/j.scitotenv.2021.150130_bb0435 article-title: Reconstruction of the daily MODIS land surface temperature product using the two-step improved similar pixels method publication-title: Remote Sens. doi: 10.3390/rs13091671 – year: 2002 ident: 10.1016/j.scitotenv.2021.150130_bb0160 article-title: The solar radiation model for Open Source GIS: implementation and applications – year: 2014 ident: 10.1016/j.scitotenv.2021.150130_bb0355 article-title: The urban heat island of Basel - seen from different perspectives publication-title: Erde – volume: 7 year: 2020 ident: 10.1016/j.scitotenv.2021.150130_bb0330 article-title: Local climate zones classification method from copernicus land monitoring service datasets: an ArcGIS-based toolbox publication-title: MethodsX doi: 10.1016/j.mex.2020.101150 – year: 2018 ident: 10.1016/j.scitotenv.2021.150130_bb0415 article-title: Modelling the fine-scale spatiotemporal pattern of urban heat island effect using land use regression approach in a megacity publication-title: Sci. Total Environ. – volume: 8 year: 2016 ident: 10.1016/j.scitotenv.2021.150130_bb0150 article-title: Long term validation of land surface temperature retrieved from MSG/SEVIRI with continuous in-situ measurements in Africa publication-title: Remote Sens. doi: 10.3390/rs8050410 – volume: 64 year: 2021 ident: 10.1016/j.scitotenv.2021.150130_bb0125 article-title: Spatiotemporal analysis of land surface temperature using multi-temporal and multi-sensor image fusion techniques publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2020.102508 – year: 2010 ident: 10.1016/j.scitotenv.2021.150130_bb0525 article-title: Multi-source remote sensing data fusion: status and trends publication-title: Int. J. Image Data Fusion doi: 10.1080/19479830903561035 – volume: 31 year: 2012 ident: 10.1016/j.scitotenv.2021.150130_bb0295 article-title: GRASS GIS: a multi-purpose open source GIS publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2011.11.014 – year: 2018 ident: 10.1016/j.scitotenv.2021.150130_bb0290 article-title: Development and application of a statistically-based quality control for crowdsourced air temperature data publication-title: Front. Earth Sci. doi: 10.3389/feart.2018.00118 – volume: 41 start-page: 2986 year: 2019 ident: 10.1016/j.scitotenv.2021.150130_bb0475 – year: 2003 ident: 10.1016/j.scitotenv.2021.150130_bb0245 article-title: Changes in Lisbon's urban climate as a consequence of urban growth – year: 2004 ident: 10.1016/j.scitotenv.2021.150130_bb0225 article-title: Modeling the surface energy balance of the Core of an old Mediterranean City: Marseille publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(2004)043<0312:MTSEBO>2.0.CO;2 – volume: 254 year: 2021 ident: 10.1016/j.scitotenv.2021.150130_bb0510 article-title: A new land surface temperature fusion strategy based on cumulative distribution function matching and multiresolution Kalman filtering publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112256 – year: 2010 ident: 10.1016/j.scitotenv.2021.150130_bb0500 – year: 2013 ident: 10.1016/j.scitotenv.2021.150130_bb0270 article-title: Sensors and the city: a review of urban meteorological networks publication-title: Int. J. Climatol. doi: 10.1002/joc.3678 – volume: 247 year: 2020 ident: 10.1016/j.scitotenv.2021.150130_bb0545 article-title: Reconstruction of daytime land surface temperatures under cloud-covered conditions using integrated MODIS/Terra land products and MSG geostationary satellite data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111931 – year: 2012 ident: 10.1016/j.scitotenv.2021.150130_bb0430 article-title: Local climate zones for urban temperature studies publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-11-00019.1 – year: 2018 ident: 10.1016/j.scitotenv.2021.150130_bb0495 article-title: Evaluation and modeling of urban heat island intensity in Basel, Switzerland publication-title: Climate doi: 10.3390/cli6030055 – volume: 48 year: 2010 ident: 10.1016/j.scitotenv.2021.150130_bb0140 article-title: Quantifying the uncertainty of land surface temperature retrievals from SEVIRI/Meteosat publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2027697 – year: 2017 ident: 10.1016/j.scitotenv.2021.150130_bb0065 article-title: Can the crowdsourcing data paradigm take atmospheric science to a new level? A case study of the urban heat island of London quantified using netatmo weather stations publication-title: Int. J. Climatol. doi: 10.1002/joc.4940 – volume: 11 year: 2019 ident: 10.1016/j.scitotenv.2021.150130_bb0175 article-title: Evaluation of TsHARP utility for thermal sharpening of Sentinel-3 satellite images using Sentinel-2 visual imagery publication-title: Remote Sens. doi: 10.3390/rs11192304 – year: 2005 ident: 10.1016/j.scitotenv.2021.150130_bb0025 article-title: Validation of a web-based atmospheric correction tool for single thermal band instruments – year: 2004 ident: 10.1016/j.scitotenv.2021.150130_bb0020 – volume: 38 year: 1999 ident: 10.1016/j.scitotenv.2021.150130_bb0155 article-title: Heat storage in urban areas: local-scale observations and evaluation of a simple model publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(1999)038<0922:HSIUAL>2.0.CO;2 – year: 2003 ident: 10.1016/j.scitotenv.2021.150130_bb0350 article-title: The urban heat budget derived from satellite data publication-title: Geogr. Helv. doi: 10.5194/gh-58-99-2003 – year: 2019 ident: 10.1016/j.scitotenv.2021.150130_bb0465 – year: 2015 ident: 10.1016/j.scitotenv.2021.150130_bb0370 article-title: A review on the scientific understanding of heatwaves-their measurement, driving mechanisms, and changes at the global scale publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2015.05.014 – volume: 31 year: 2020 ident: 10.1016/j.scitotenv.2021.150130_bb0325 article-title: Local climate zones datasets from five Southern European cities: Copernicus based classification maps of Athens, Barcelona, Lisbon, Marseille and Naples publication-title: Data Brief doi: 10.1016/j.dib.2020.105802 – volume: 29 start-page: 31 issue: 1 year: 2020 ident: 10.1016/j.scitotenv.2021.150130_bb0405 article-title: Principal component based fusion of land surface temperature (LST) and panchromatic (PAN) images publication-title: Spat. Inf. Res. doi: 10.1007/s41324-020-00333-x – year: 2016 ident: 10.1016/j.scitotenv.2021.150130_bb0085 article-title: A novel approach for anthropogenic heat flux estimation from space – year: 2011 ident: 10.1016/j.scitotenv.2021.150130_bb0235 article-title: Urban heat island analysis using the landsat TM data and ASTER data: a case study in Hong Kong publication-title: Remote Sens. doi: 10.3390/rs3071535 – volume: 263 year: 2021 ident: 10.1016/j.scitotenv.2021.150130_bb0185 article-title: Cloudy-sky land surface temperature from VIIRS and MODIS satellite data using a surface energy balance-based method publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112566 – year: 2019 ident: 10.1016/j.scitotenv.2021.150130_bb0420 article-title: Sentinel-3 urban heat island monitoring and analysis for Kyiv based on vector data – volume: 28 year: 2019 ident: 10.1016/j.scitotenv.2021.150130_bb0030 article-title: SUHI analysis using local climate zones—a comparison of 50 cities publication-title: Urban Clim. doi: 10.1016/j.uclim.2019.01.005 – volume: 14 year: 2014 ident: 10.1016/j.scitotenv.2021.150130_bb0200 article-title: Multi-sensor fusion of landsat 8 thermal infrared (TIR) and panchromatic (PAN) images publication-title: Sensors (Switzerland) doi: 10.3390/s141224425 – year: 2019 ident: 10.1016/j.scitotenv.2021.150130_bb0095 – year: 1982 ident: 10.1016/j.scitotenv.2021.150130_bb0300 article-title: The energetic basis of the urban heat island publication-title: Q. J. R. Meteorol. Soc. – volume: 11 year: 2019 ident: 10.1016/j.scitotenv.2021.150130_bb0060 article-title: Satellite retrieval of downwelling shortwave surface flux and diffuse fraction under all sky conditions in the framework of the LSA SAF program (part 2: evaluation) publication-title: Remote Sens. – year: 2018 ident: 10.1016/j.scitotenv.2021.150130_bb0015 article-title: From urban meteorology, climate and environment research to integrated city services publication-title: Urban Clim. doi: 10.1016/j.uclim.2017.05.004 – volume: 260 year: 2021 ident: 10.1016/j.scitotenv.2021.150130_bb0540 article-title: A practical reanalysis data and thermal infrared remote sensing data merging (RTM) method for reconstruction of a 1-km all-weather land surface temperature publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112437 – volume: 11 year: 2019 ident: 10.1016/j.scitotenv.2021.150130_bb0055 article-title: Satellite retrieval of downwelling shortwave surface flux and diffuse fraction under all sky conditions in the framework of the LSA SAF program (part 1: methodology) publication-title: Remote Sens. – volume: 62 start-page: 1025 issue: 9 year: 1996 ident: 10.1016/j.scitotenv.2021.150130_bb0070 article-title: Image-based atmospheric corrections - revisited and improved publication-title: Photogramm. Eng. Remote. Sens. – year: 2008 ident: 10.1016/j.scitotenv.2021.150130_bb0425 article-title: Land surface emissivity retrieval from different VNIR and TIR sensors publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2007.904834 – year: 2006 ident: 10.1016/j.scitotenv.2021.150130_bb0395 article-title: Validation of satellite observed thermal emission with in-situ measurements over an urban surface publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.04.018 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.scitotenv.2021.150130_bb0040 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 161 start-page: 76 year: 2020 ident: 10.1016/j.scitotenv.2021.150130_bb0480 article-title: Thermal unmixing based downscaling for fine resolution diurnal land surface temperature analysis publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.01.014 – volume: 13 start-page: 2211 year: 2021 ident: 10.1016/j.scitotenv.2021.150130_bb0515 article-title: A random forest-based data fusion method for obtaining all-weather land surface temperature with high spatial resolution publication-title: Remote Sens. doi: 10.3390/rs13112211 – year: 2018 ident: 10.1016/j.scitotenv.2021.150130_bb0090 article-title: Urban energy exchanges monitoring from space publication-title: Sci. Rep. doi: 10.1038/s41598-018-29873-x – year: 2014 ident: 10.1016/j.scitotenv.2021.150130_bb0265 article-title: Urban climatology: history, status and prospects publication-title: Urban Clim. doi: 10.1016/j.uclim.2014.06.004 – year: 2009 ident: 10.1016/j.scitotenv.2021.150130_bb0285 article-title: Defining and predicting excessive heat events, a national system – start-page: 197 year: 2017 ident: 10.1016/j.scitotenv.2021.150130_bb0315 article-title: Urban heat island – year: 2007 ident: 10.1016/j.scitotenv.2021.150130_bb0390 article-title: Modelling the ground heat flux of an urban area using remote sensing data publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-006-0279-8 – year: 2011 ident: 10.1016/j.scitotenv.2021.150130_bb0380 – volume: 167 start-page: 321 year: 2020 ident: 10.1016/j.scitotenv.2021.150130_bb0535 article-title: Estimation of 1-km all-weather remotely sensed land surface temperature based on reconstructed spatial-seamless satellite passive microwave brightness temperature and thermal infrared data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.07.014 – year: 2015 ident: 10.1016/j.scitotenv.2021.150130_bb0220 article-title: A study of the hourly variability of the urban heat island effect in the greater Athens area during summer publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.02.062 – year: 2009 ident: 10.1016/j.scitotenv.2021.150130_bb0275 article-title: Estimation of urban sensible heat flux using a dense wireless network of observations publication-title: Environ. Fluid Mech. doi: 10.1007/s10652-009-9150-7 – volume: 139 year: 2020 ident: 10.1016/j.scitotenv.2021.150130_bb0445 article-title: Investigating urban heat island intensity in Istanbul publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-019-02953-2 – volume: 114 start-page: 24 year: 2016 ident: 10.1016/j.scitotenv.2021.150130_bb0035 article-title: Random forest in remote sensing: a review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.011 – volume: 40 year: 2014 ident: 10.1016/j.scitotenv.2021.150130_bb0530 article-title: Comparison of MODIS land surface temperature and air temperature over the continental USA meteorological stations publication-title: Can. J. Remote. Sens. – start-page: 1 issue: 11 year: 2021 ident: 10.1016/j.scitotenv.2021.150130_bb0205 article-title: ARIMA modeling for forecasting land surface temperature and determination of urban heat island using remote sensing techniques for Chennai city, India publication-title: Arab. J. Geosci. – year: 2013 ident: 10.1016/j.scitotenv.2021.150130_bb0280 article-title: Defining heatwaves: heatwave defined as a heat-impact event servicing all community and business sectors in Australia – volume: 13 start-page: 2828 year: 2021 ident: 10.1016/j.scitotenv.2021.150130_bb0505 article-title: Gap-free LST generation for MODIS/Terra LST product using a random forest-based reconstruction method publication-title: Remote Sens. doi: 10.3390/rs13142828 – year: 2016 ident: 10.1016/j.scitotenv.2021.150130_bb0460 – volume: 12 start-page: 292 year: 2021 ident: 10.1016/j.scitotenv.2021.150130_bb0345 article-title: Heatwaves and summer urban heat islands: a daily cycle approach to unveil the urban thermal signal changes in Lisbon, Portugal publication-title: Atmosphere doi: 10.3390/atmos12030292 – volume: 63 start-page: 256 year: 2020 ident: 10.1016/j.scitotenv.2021.150130_bb0400 article-title: Machine learning information fusion in earth observation: a comprehensive review of methods, applications and data sources publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.07.004 – year: 2020 ident: 10.1016/j.scitotenv.2021.150130_bb0455 – volume: 10 year: 2018 ident: 10.1016/j.scitotenv.2021.150130_bb0050 article-title: Land surface albedo derived on a ten daily basis from Meteosat Second Generation Observations: the NRT and climate data record collections from the EUMETSAT LSA SAF publication-title: Remote Sens. doi: 10.3390/rs10081262 – year: 2014 ident: 10.1016/j.scitotenv.2021.150130_bb0215 article-title: Energy exchange in a dense urban environment - part I: temporal variability of long-term observations in Central London publication-title: Urban Clim. doi: 10.1016/j.uclim.2013.10.002 – ident: 10.1016/j.scitotenv.2021.150130_bb0340 – year: 2007 ident: 10.1016/j.scitotenv.2021.150130_bb0135 article-title: Interactions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of São Paulo, Brazil publication-title: Bound.-Layer Meteorol. doi: 10.1007/s10546-006-9091-3 – volume: 14 start-page: 2136 year: 2021 ident: 10.1016/j.scitotenv.2021.150130_bb0410 article-title: Generating comparable and fine-scale time series of summer land surface temperature for thermal environment monitoring publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.3046755 – year: 1988 ident: 10.1016/j.scitotenv.2021.150130_bb0310 article-title: The urban energy balance publication-title: Prog. Phys. Geogr. doi: 10.1177/030913338801200401 |
| SSID | ssj0000781 |
| Score | 2.5577855 |
| Snippet | Southern European functional urban areas (FUAs) are increasingly subject to heatwave (HW) events, calling for anticipated climate adaptation measures. In the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 150130 |
| SubjectTerms | air temperature energy balance environment evapotranspiration heat island heat transfer Heatwave Land surface temperature latitude Local climate zones Multisensor data fusion prediction Random forest Satellite thermal imagery satellites shortwave radiation surface temperature time series analysis Urban climate adaptation Urban Heat Island vegetation |
| Title | An urban energy balance-guided machine learning approach for synthetic nocturnal surface Urban Heat Island prediction: A heatwave event in Naples |
| URI | https://dx.doi.org/10.1016/j.scitotenv.2021.150130 https://www.proquest.com/docview/2574743190 https://www.proquest.com/docview/2636687872 |
| Volume | 805 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: ACRLP dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: AIKHN dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: AKRWK dateStart: 19930115 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBUhoVAoJd02NG0SptCrk7Uty3ZuS0jYdukeSpfmJiRZCltS7bK2U3Lpf-g_7oxsJ6SU5tCTwUiy8GjePHu-GHsv0tgJbXVUGO4ingsXaR1XUV5oZPMOQTPUKfg0F9MF_3iZXW6xsyEXhsIqe-zvMD2gdX_npH-bJ-vlknJ8eVEKqj5DsRzhu53znLoYHP-8D_OgYjadlxkVG0c_iPHCdZsVctMb_FBM4mMkRzGFQ__dQv2B1cEAXeyy5z1zhEm3uRdsy_oRe9L1krwdsb3z-5Q1HNbrbD1iz7o_c9AlHL1kvyYe2o1WHmzI-wNN0Y3GRlftsrIVfA_hlRb6fhJXMJQdB-S3UN96pIy4BfAr8j7Qlup245SxsAir4nMaoJPmK1hvyA9Esj-FCRDu_1A3FkLVKFh6mKv1ta1fscXF-ZezadQ3ZogMz9MmQopYCa4yXiWlUFyV47IqtNJIHRwVlHFJErvClZnj3BpXqKxMK5S74UlcWcSYPbbtV96-ZlA6kyoeW0e9AV2WKxwnXEbuWoNWNdtnYhCGNH3VcmqecS2H8LRv8k6KkqQoOynus_HdxHVXuOPxKaeDtOWDMyjRvDw--d1wPiRqKLldlLertpYIipx4WvmvMSIVokDwTN78zybesqcJpWeMY0S_A7bdbFp7iKSp0UdBK47YzuTDbDqn6-zz19lvVnQblg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqVggkVMFCRaGFQeKadpM4TtLbqmq1QLunrtSb5We1qHhXm6SoF_4D_5iZPFoVIXrgGo0dK-P5_DnzYuyTSGMvtNNRYbiPeC58pHVso7zQyOY9gmZbp-B8JqZz_uUyu9xgx0MuDIVV9tjfYXqL1v2Tw_5rHq4WC8rx5UUpqPoMxXLQvX2LZ0lON7CDn_dxHlTNpnMzo2Wj-IMgL5y4XiI5vcGbYhIfIDuKKR7670fUH2DdnkCnL9h2Tx1h0q3uJdtwYcSedM0kb0ds5-Q-Zw3FeqOtRux592sOuoyjV-zXJECz1iqAaxP_QFN4o3HRVbOwzsL3Nr7SQd9Q4gqGuuOABBeq24CcEZcAYUnuB1pS1ay9Mg7m7az4nhpoqwULqzU5gkj5RzABAv4f6sZBWzYKFgFmanXtqtdsfnpycTyN-s4MkeF5WkfIEa3gKuM2KYXiqhyXttBKI3fwVFHGJ0nsC19mnnNnfKGyMrWoeMOT2DoEmR22GZbBvWFQepMqHjtPzQF9liuUEz4jf63BYzXbZWJQhjR92XLqnnEth_i0b_JOi5K0KDst7rLx3cBVV7nj8SFHg7blg00o8Xx5fPDHYX9INFHyu6jglk0lERU5EbXyXzIiFaJA9Eze_s8iPrCn04vzM3n2efb1HXuWUK7GOEYo3GOb9bpx-8igav2-tZDf1wsbiA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+urban+energy+balance-guided+machine+learning+approach+for+synthetic+nocturnal+surface+Urban+Heat+Island+prediction%3A+A+heatwave+event+in+Naples&rft.jtitle=The+Science+of+the+total+environment&rft.au=Oliveira%2C+Ana&rft.au=Lopes%2C+Ant%C3%B3nio&rft.au=Niza%2C+Samuel&rft.au=Soares%2C+Am%C3%ADlcar&rft.date=2022-01-20&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=805&rft_id=info:doi/10.1016%2Fj.scitotenv.2021.150130&rft.externalDocID=S0048969721052050 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |