A general Bayesian algorithm for the autonomous alignment of beamlines
Autonomous methods to align beamlines can decrease the amount of time spent on diagnostics, and also uncover better global optima leading to better beam quality. The alignment of these beamlines is a high-dimensional expensive-to-sample optimization problem involving the simultaneous treatment of ma...
Saved in:
| Published in | Journal of synchrotron radiation Vol. 31; no. 6; pp. 1446 - 1456 |
|---|---|
| Main Authors | , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
John Wiley & Sons, Inc
01.11.2024
International Union of Crystallography |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1600-5775 0909-0495 1600-5775 |
| DOI | 10.1107/S1600577524008993 |
Cover
| Abstract | Autonomous methods to align beamlines can decrease the amount of time spent on diagnostics, and also uncover better global optima leading to better beam quality. The alignment of these beamlines is a high-dimensional expensive-to-sample optimization problem involving the simultaneous treatment of many optical elements with correlated and nonlinear dynamics. Bayesian optimization is a strategy of efficient global optimization that has proved successful in similar regimes in a wide variety of beamline alignment applications, though it has typically been implemented for particular beamlines and optimization tasks. In this paper, we present a basic formulation of Bayesian inference and Gaussian process models as they relate to multi-objective Bayesian optimization, as well as the practical challenges presented by beamline alignment. We show that the same general implementation of Bayesian optimization with special consideration for beamline alignment can quickly learn the dynamics of particular beamlines in an online fashion through hyperparameter fitting with no prior information. We present the implementation of a concise software framework for beamline alignment and test it on four different optimization problems for experiments on X-ray beamlines at the National Synchrotron Light Source II and the Advanced Light Source, and an electron beam at the Accelerator Test Facility, along with benchmarking on a simulated digital twin. We discuss new applications of the framework, and the potential for a unified approach to beamline alignment at synchrotron facilities. |
|---|---|
| AbstractList | Autonomous methods to align beamlines can decrease the amount of time spent on diagnostics, and also uncover better global optima leading to better beam quality. The alignment of these beamlines is a high‐dimensional expensive‐to‐sample optimization problem involving the simultaneous treatment of many optical elements with correlated and nonlinear dynamics. Bayesian optimization is a strategy of efficient global optimization that has proved successful in similar regimes in a wide variety of beamline alignment applications, though it has typically been implemented for particular beamlines and optimization tasks. In this paper, we present a basic formulation of Bayesian inference and Gaussian process models as they relate to multi‐objective Bayesian optimization, as well as the practical challenges presented by beamline alignment. We show that the same general implementation of Bayesian optimization with special consideration for beamline alignment can quickly learn the dynamics of particular beamlines in an online fashion through hyperparameter fitting with no prior information. We present the implementation of a concise software framework for beamline alignment and test it on four different optimization problems for experiments on X‐ray beamlines at the National Synchrotron Light Source II and the Advanced Light Source, and an electron beam at the Accelerator Test Facility, along with benchmarking on a simulated digital twin. We discuss new applications of the framework, and the potential for a unified approach to beamline alignment at synchrotron facilities. Autonomous methods to align beamlines can decrease the amount of time spent on diagnostics, and also uncover better global optima leading to better beam quality. The alignment of these beamlines is a high-dimensional expensive-to-sample optimization problem involving the simultaneous treatment of many optical elements with correlated and nonlinear dynamics. Bayesian optimization is a strategy of efficient global optimization that has proved successful in similar regimes in a wide variety of beamline alignment applications, though it has typically been implemented for particular beamlines and optimization tasks. In this paper, we present a basic formulation of Bayesian inference and Gaussian process models as they relate to multi-objective Bayesian optimization, as well as the practical challenges presented by beamline alignment. We show that the same general implementation of Bayesian optimization with special consideration for beamline alignment can quickly learn the dynamics of particular beamlines in an online fashion through hyperparameter fitting with no prior information. We present the implementation of a concise software framework for beamline alignment and test it on four different optimization problems for experiments on X-ray beamlines at the National Synchrotron Light Source II and the Advanced Light Source, and an electron beam at the Accelerator Test Facility, along with benchmarking on a simulated digital twin. We discuss new applications of the framework, and the potential for a unified approach to beamline alignment at synchrotron facilities.Autonomous methods to align beamlines can decrease the amount of time spent on diagnostics, and also uncover better global optima leading to better beam quality. The alignment of these beamlines is a high-dimensional expensive-to-sample optimization problem involving the simultaneous treatment of many optical elements with correlated and nonlinear dynamics. Bayesian optimization is a strategy of efficient global optimization that has proved successful in similar regimes in a wide variety of beamline alignment applications, though it has typically been implemented for particular beamlines and optimization tasks. In this paper, we present a basic formulation of Bayesian inference and Gaussian process models as they relate to multi-objective Bayesian optimization, as well as the practical challenges presented by beamline alignment. We show that the same general implementation of Bayesian optimization with special consideration for beamline alignment can quickly learn the dynamics of particular beamlines in an online fashion through hyperparameter fitting with no prior information. We present the implementation of a concise software framework for beamline alignment and test it on four different optimization problems for experiments on X-ray beamlines at the National Synchrotron Light Source II and the Advanced Light Source, and an electron beam at the Accelerator Test Facility, along with benchmarking on a simulated digital twin. We discuss new applications of the framework, and the potential for a unified approach to beamline alignment at synchrotron facilities. Automated alignment methods have the potential to accelerate greatly the efficiency of experiments done at synchrotron facilities and are an important step towards fully autonomous beamlines. Presented here is a general implementation of Bayesian optimization that performs well on many beamlines across different facilities. Autonomous methods to align beamlines can decrease the amount of time spent on diagnostics, and also uncover better global optima leading to better beam quality. The alignment of these beamlines is a high-dimensional expensive-to-sample optimization problem involving the simultaneous treatment of many optical elements with correlated and nonlinear dynamics. Bayesian optimization is a strategy of efficient global optimization that has proved successful in similar regimes in a wide variety of beamline alignment applications, though it has typically been implemented for particular beamlines and optimization tasks. In this paper, we present a basic formulation of Bayesian inference and Gaussian process models as they relate to multi-objective Bayesian optimization, as well as the practical challenges presented by beamline alignment. We show that the same general implementation of Bayesian optimization with special consideration for beamline alignment can quickly learn the dynamics of particular beamlines in an online fashion through hyperparameter fitting with no prior information. We present the implementation of a concise software framework for beamline alignment and test it on four different optimization problems for experiments on X-ray beamlines at the National Synchrotron Light Source II and the Advanced Light Source, and an electron beam at the Accelerator Test Facility, along with benchmarking on a simulated digital twin. We discuss new applications of the framework, and the potential for a unified approach to beamline alignment at synchrotron facilities. |
| Author | Giles, Abigail C. Li, William H. Leshchev, Denis Fedurin, Mikhail Du, Yonghua Islegen-Wojdyla, Antoine Stavitski, Eli Moeller, Paul Morris, Thomas W. Nash, Boaz Romasky, Brianna Walter, Andrew L. Rakitin, Max |
| Author_xml | – sequence: 1 givenname: Thomas W. orcidid: 0000-0002-5564-997X surname: Morris fullname: Morris, Thomas W. – sequence: 2 givenname: Max orcidid: 0000-0003-3685-852X surname: Rakitin fullname: Rakitin, Max – sequence: 3 givenname: Yonghua surname: Du fullname: Du, Yonghua – sequence: 4 givenname: Mikhail surname: Fedurin fullname: Fedurin, Mikhail – sequence: 5 givenname: Abigail C. surname: Giles fullname: Giles, Abigail C. – sequence: 6 givenname: Denis orcidid: 0000-0002-8049-3671 surname: Leshchev fullname: Leshchev, Denis – sequence: 7 givenname: William H. surname: Li fullname: Li, William H. – sequence: 8 givenname: Brianna orcidid: 0000-0003-0790-2763 surname: Romasky fullname: Romasky, Brianna – sequence: 9 givenname: Eli surname: Stavitski fullname: Stavitski, Eli – sequence: 10 givenname: Andrew L. surname: Walter fullname: Walter, Andrew L. – sequence: 11 givenname: Paul surname: Moeller fullname: Moeller, Paul – sequence: 12 givenname: Boaz surname: Nash fullname: Nash, Boaz – sequence: 13 givenname: Antoine surname: Islegen-Wojdyla fullname: Islegen-Wojdyla, Antoine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39466695$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/2475250$$D View this record in Osti.gov |
| BookMark | eNplUstu1TAQjVARfcAHsEERbNhcGD8Tr1CpKFSqxAJYW47t5PoqsS-2U3T_HoeUqo-Nx5o5c2bmzJxWRz54W1WvEXxACJqPPxAHYE3DMAVohSDPqpPFtVl8R_f-x9VpSjsAxBtMXlTHRFDOuWAn1eV5PVhvoxrrz-pgk1O-VuMQosvbqe5DrPPW1mrOwYcpzKkE3eAn63Md-rqzahqdt-ll9bxXY7Kvbu1Z9evyy8-Lb5vr71-vLs6vN5o2JG8YAOGkhR5axhjCXW-IMARzY0TLKW1w0yqLEbTcQCeAKWZMhwQjGjXCanJWXa28Jqid3Ec3qXiQQTn5zxHiIFXMTo9WCtVxCoIQIortjOgp0yCUBSK6RreFC69cs9-rwx81jneECOQisEyPBS5Jn9ak_dxN1ugiRNHuQScPI95t5RBuCh-jmDNRGN6uDCFlJ5N22eqtDt5bnSWmpRaDAnp_WyaG37NNWU4uaTuOytuyBUkQRkxAeQv03SPoLszRly0sKIZFi-gy7Jv7fd81_P8SCgCtAB1DStH2T8R4cm3kL3Z-wSc |
| Cites_doi | 10.1201/9781003359593-8 10.1103/PhysRevLett.124.124801 10.1107/S0909049511026306 10.1088/1742-6596/425/16/162001 10.1107/S1600577516018117 10.1109/16.7427 10.1364/OE.505289 10.1016/0168-9002(90)91216-X 10.1088/1748-0221/15/05/P05009 10.1088/1742-6596/2380/1/012100 10.1107/S1600577522010050 10.1080/08940886.2019.1608121 10.1088/0741-3335/56/8/084017 10.1103/PhysRevAccelBeams.22.082801 10.1080/08940886.2019.1559608 10.1107/S1600577522004039 10.1107/S1600577515001861 10.1088/1742-6596/2380/1/012103 10.1088/1367-2630/ac7db4 10.1107/S160057752200460X 10.1107/S1600577524009342 10.1107/S1600577519012761 10.1080/08940886.2018.1409562 10.1109/TCYB.2022.3191022 |
| ContentType | Journal Article |
| Copyright | open access. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. T. W. Morris et al. 2024 2024 |
| Copyright_xml | – notice: open access. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: T. W. Morris et al. 2024 2024 |
| CorporateAuthor | Brookhaven National Laboratory (BNL), Upton, NY (United States) |
| CorporateAuthor_xml | – name: Brookhaven National Laboratory (BNL), Upton, NY (United States) |
| DBID | AAYXX CITATION NPM 7U5 8FD JQ2 K9. L7M 7X8 OTOTI 5PM ADTOC UNPAY DOA |
| DOI | 10.1107/S1600577524008993 |
| DatabaseName | CrossRef PubMed Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology Physics |
| DocumentTitleAlternate | Autonomous alignment of beamlines |
| EISSN | 1600-5775 |
| EndPage | 1456 |
| ExternalDocumentID | oai_doaj_org_article_9ab64093339640bd9f45c09ae039b7c8 10.1107/s1600577524008993 PMC11542659 2475250 39466695 10_1107_S1600577524008993 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: US Department of Energy, Office of Science grantid: DE-AC02-05CH11231 – fundername: US Department of Energy, Office of Science grantid: DE-SC0002059 – fundername: US Department of Energy, Office of Science grantid: DE-SC0012704 – fundername: ; grantid: DE-SC0012704 – fundername: ; grantid: DE-AC02-05CH11231 – fundername: ; grantid: DE-SC0002059 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1OC 24P 2WC 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAFWJ AAMMB AAONW AAYCA AAYXX AAZKR ABCQN ABCUV ABDBF ABPVW ABUWG ACAHQ ACCMX ACGFO ACGFS ACPOU ACUHS ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIMD AENEX AFBPY AFEBI AFGKR AFKRA AFPKN AFZJQ AGXDD AIDQK AIDYY AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ATUGU AUFTA AZBYB AZVAB BAFTC BENPR BGLVJ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ESX F00 F01 F04 F5P FYUFA G-S G.N GODZA GROUPED_DOAJ H.T H.X HCIFZ HH5 HMCUK HZI HZ~ I-F IX1 J0M K48 K7- LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M1P MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 OIG P2P P2W P2X P4D PHGZM PHGZT PJZUB PPXIY PQGLB PSQYO PUEGO Q.N Q11 QB0 R.K RCJ ROL RPM RX1 SUPJJ TUS UB1 UKHRP V8K W8V W99 WBFHL WBKPD WIH WIK WIN WOHZO WQJ WYISQ XG1 ZZTAW ~IA ~WT NPM 7U5 8FD JQ2 K9. L7M 7X8 1OB 33P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE OTOTI WRC 5PM .Y3 1Y6 29L 31~ 8WZ A6W AANHP ABEML ACBWZ ACRPL ACSCC ACYXJ ADIYS ADNMO ADTOC AGQPQ AHEFC AIQQE ASPBG AVWKF AZFZN BDRZF BFHJK CAG COF EJD FEDTE HF~ HVGLF IHE LW6 PALCI RIWAO RJQFR UNPAY |
| ID | FETCH-LOGICAL-c473t-50036380f0855512bfd39d326dd986447278ae21086d0b905a5ddb1953c179ec3 |
| IEDL.DBID | DOA |
| ISSN | 1600-5775 0909-0495 |
| IngestDate | Fri Oct 03 12:35:21 EDT 2025 Sun Oct 26 03:35:10 EDT 2025 Tue Sep 30 17:07:06 EDT 2025 Mon Jan 13 02:27:15 EST 2025 Thu Sep 04 20:05:19 EDT 2025 Tue Oct 07 06:29:29 EDT 2025 Mon Jul 21 06:05:53 EDT 2025 Wed Oct 01 02:24:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | automated alignment digital twins Bayesian optimization machine learning synchrotron radiation |
| Language | English |
| License | open access. This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c473t-50036380f0855512bfd39d326dd986447278ae21086d0b905a5ddb1953c179ec3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF) SC0012704; SC0020593; AC02-05CH11231 BNL-226430-2024-JAAM USDOE Laboratory Directed Research and Development (LDRD) Program |
| ORCID | 0000-0002-8049-3671 0000-0003-0790-2763 0000-0002-5564-997X 0000-0003-3685-852X 000000033685852X 0000000280493671 000000025564997X 0000000307902763 |
| OpenAccessLink | https://doaj.org/article/9ab64093339640bd9f45c09ae039b7c8 |
| PMID | 39466695 |
| PQID | 3125298148 |
| PQPubID | 1086380 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9ab64093339640bd9f45c09ae039b7c8 unpaywall_primary_10_1107_s1600577524008993 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11542659 osti_scitechconnect_2475250 proquest_miscellaneous_3121590121 proquest_journals_3125298148 pubmed_primary_39466695 crossref_primary_10_1107_S1600577524008993 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Malden |
| PublicationTitle | Journal of synchrotron radiation |
| PublicationTitleAlternate | J Synchrotron Radiat |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc International Union of Crystallography |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: International Union of Crystallography |
| References | gy5067_bb8 gy5067_bb11 Ji (gy5067_bb15) 2019; 22 gy5067_bb12 gy5067_bb34 gy5067_bb4 Pogorelsky (gy5067_bb28) 2014; 56 gy5067_bb16 Hvarfner (gy5067_bb14) 2022; 35 gy5067_bb19 Nash (gy5067_bb25) 2022; 2380 Zhang (gy5067_bb39) 2023; 30 Duris (gy5067_bb10) 2020; 124 Liu (gy5067_bb18) 2024; 54 Milios (gy5067_bb21) 2018; 31 Rakitin (gy5067_bb30) 2022; 2380 Northrup (gy5067_bb27) 2019; 26 Morris (gy5067_bb23) 2022; 12222 Allan (gy5067_bb1) 2019; 32(3) Sanchez del Rio (gy5067_bb33) 2011; 18 White (gy5067_bb36) 2019; 32(1) Balandat (gy5067_bb2) 2020; 33 McDonald (gy5067_bb20) 1988; 35 Nash (gy5067_bb26) 2023; 12697 Dolier (gy5067_bb9) 2022; 24 gy5067_bb24 Rakitin (gy5067_bb29) 2023; 12697 Rakitin (gy5067_bb31) 2020; 11493 Hernández-Lobato (gy5067_bb13) 2014; 27 Wang (gy5067_bb35) 2017; 70 Leshchev (gy5067_bb17) 2022; 29 Morris (gy5067_bb22) 2023; 12697 Breckling (gy5067_bb5) 2022; 29 Xi (gy5067_bb37) 2015; 22 Rebuffi (gy5067_bb32) 2023; 31 Batchelor (gy5067_bb3) 1990; 296 Xi (gy5067_bb38) 2017; 24 Chenevier (gy5067_bb6) 2018; 31(1) Chubar (gy5067_bb7) 2013; 425 |
| References_xml | – volume: 33 start-page: 21524 year: 2020 ident: gy5067_bb2 publication-title: Adv. Neural Inf. Process. Syst. – ident: gy5067_bb19 doi: 10.1201/9781003359593-8 – volume: 124 start-page: 124801 year: 2020 ident: gy5067_bb10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.124801 – volume: 18 start-page: 708 year: 2011 ident: gy5067_bb33 publication-title: J. Synchrotron Rad. doi: 10.1107/S0909049511026306 – volume: 425 start-page: 162001 year: 2013 ident: gy5067_bb7 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/425/16/162001 – volume: 35 start-page: 11494 year: 2022 ident: gy5067_bb14 publication-title: Adv. Neural Inf. Process. Syst. – volume: 12697 start-page: 126970D year: 2023 ident: gy5067_bb29 publication-title: Proc. SPIE – volume: 24 start-page: 367 year: 2017 ident: gy5067_bb38 publication-title: J. Synchrotron Rad. doi: 10.1107/S1600577516018117 – volume: 35 start-page: 2052 year: 1988 ident: gy5067_bb20 publication-title: IEEE Trans. Electron Devices doi: 10.1109/16.7427 – volume: 31 start-page: 39514 year: 2023 ident: gy5067_bb32 publication-title: Opt. Express doi: 10.1364/OE.505289 – volume: 296 start-page: 239 year: 1990 ident: gy5067_bb3 publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/0168-9002(90)91216-X – ident: gy5067_bb12 – ident: gy5067_bb8 doi: 10.1088/1748-0221/15/05/P05009 – volume: 12222 start-page: 122220M year: 2022 ident: gy5067_bb23 publication-title: Proc. SPIE – volume: 12697 start-page: 126970B year: 2023 ident: gy5067_bb22 publication-title: Proc. SPIE – volume: 2380 start-page: 012100 year: 2022 ident: gy5067_bb30 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/2380/1/012100 – volume: 31 start-page: 6008 year: 2018 ident: gy5067_bb21 publication-title: Adv. Neural Inf. Process. Syst. – volume: 30 start-page: 51 year: 2023 ident: gy5067_bb39 publication-title: J. Synchrotron Rad. doi: 10.1107/S1600577522010050 – volume: 32(3) start-page: 19 year: 2019 ident: gy5067_bb1 publication-title: Synchrotron Rad. News doi: 10.1080/08940886.2019.1608121 – volume: 56 start-page: 084017 year: 2014 ident: gy5067_bb28 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/56/8/084017 – volume: 11493 start-page: 1149311 year: 2020 ident: gy5067_bb31 publication-title: Proc. SPIE – volume: 22 start-page: 082801 year: 2019 ident: gy5067_bb15 publication-title: Phys. Rev. Accel. Beams doi: 10.1103/PhysRevAccelBeams.22.082801 – volume: 32(1) start-page: 32 year: 2019 ident: gy5067_bb36 publication-title: Synchrotron Rad. News doi: 10.1080/08940886.2019.1559608 – ident: gy5067_bb24 – ident: gy5067_bb4 – volume: 29 start-page: 947 year: 2022 ident: gy5067_bb5 publication-title: J. Synchrotron Rad. doi: 10.1107/S1600577522004039 – volume: 27 start-page: 918 year: 2014 ident: gy5067_bb13 publication-title: Adv. Neural Inf. Process. Syst. – volume: 22 start-page: 661 year: 2015 ident: gy5067_bb37 publication-title: J. Synchrotron Rad. doi: 10.1107/S1600577515001861 – volume: 2380 start-page: 012103 year: 2022 ident: gy5067_bb25 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/2380/1/012103 – ident: gy5067_bb34 – volume: 24 start-page: 073025 year: 2022 ident: gy5067_bb9 publication-title: New J. Phys. doi: 10.1088/1367-2630/ac7db4 – ident: gy5067_bb11 – volume: 29 start-page: 1095 year: 2022 ident: gy5067_bb17 publication-title: J. Synchrotron Rad. doi: 10.1107/S160057752200460X – volume: 12697 start-page: 1269703 year: 2023 ident: gy5067_bb26 publication-title: Proc. SPIE – ident: gy5067_bb16 doi: 10.1107/S1600577524009342 – volume: 70 start-page: 3627 year: 2017 ident: gy5067_bb35 publication-title: Proc. Mach. Learn. Res. – volume: 26 start-page: 2064 year: 2019 ident: gy5067_bb27 publication-title: J. Synchrotron Rad. doi: 10.1107/S1600577519012761 – volume: 31(1) start-page: 32 year: 2018 ident: gy5067_bb6 publication-title: Synchrotron Rad. News doi: 10.1080/08940886.2018.1409562 – volume: 54 start-page: 962 year: 2024 ident: gy5067_bb18 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2022.3191022 |
| SSID | ssj0016723 |
| Score | 2.4335332 |
| Snippet | Autonomous methods to align beamlines can decrease the amount of time spent on diagnostics, and also uncover better global optima leading to better beam... Automated alignment methods have the potential to accelerate greatly the efficiency of experiments done at synchrotron facilities and are an important step... |
| SourceID | doaj unpaywall pubmedcentral osti proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 1446 |
| SubjectTerms | Algorithms Alignment automated alignment Bayesian analysis Bayesian optimization Digital twins Electron beams Gaussian beams (optics) Gaussian process Global optimization Light sources machine learning Nonlinear dynamics Optical components Optimization OTHER INSTRUMENTATION Research Papers Statistical inference synchrotron radiation Test facilities |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_0ih8vftSqsVVW8ElJyWXztY9X8ShCi6AH9Sns5_XwmpQmQc6_3plNevR6fdCnhd0hZHdnmN_uzPwW4IPj1o1dnIRRLvIQEXgUopfjYaIFepfM5NbXrZ2cZsez5OtZejaQRVMtzM34_diXuGVUL5mnlOuIZwN-H3ayFGH3CHZmp98mPz2Xnr_g9y-skHhI8kME885vbPggT9WPTY0mdRfM3M6WfNRVl3L1Wy6XN1zR9GmfxNV4BkPKQPl12LXqUP-5xe_4T7N8Bk8GQMomvQY9h3u22oUH_ROVq114eDIE37HTZ4vq5gVMJ2ze01WzI7myVIfJ5HJeXy3a8wuGMJghrGSya6liou4aHFzMfdoBqx1TVl4QuG32YDb98uPzcTg8yBDqJOdtmBJ7DS8iR8ltiBSUM1wYBIDGEMt7gliokDamx5tMpESUytQYRYE6jXZvNX8Jo6qu7GtgiZJjZyLjODfoR6XMnNWp4Xh-i2WWuQA-Xm9RednzbpT-vBLl5ffbqxXAEW3iWpAos30HrnE5WGAppMoSur_hAltlhEtSHQlpIy5UrosA9kkFSkQeRJ-rKc9It2Wc5BT5DeDgWjPKwcqbkiM6jEWBJ8oA3q-H0T4p6CIriwtMMmOq743HAbzqFWn9n5zI_TORBlBsqNjGRDZHqsW55wAnFqUYDSGAT2tt3FqoLbV681_S-_A4RgjXV14ewKi96uxbhGCtejcY31_PGSDS priority: 102 providerName: Unpaywall |
| Title | A general Bayesian algorithm for the autonomous alignment of beamlines |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39466695 https://www.proquest.com/docview/3125298148 https://www.proquest.com/docview/3121590121 https://www.osti.gov/biblio/2475250 https://pubmed.ncbi.nlm.nih.gov/PMC11542659 https://doi.org/10.1107/s1600577524008993 https://doaj.org/article/9ab64093339640bd9f45c09ae039b7c8 |
| UnpaywallVersion | publishedVersion |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1600-5775 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016723 issn: 1600-5775 databaseCode: HH5 dateStart: 20040101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1600-5775 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016723 issn: 1600-5775 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1600-5775 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016723 issn: 1600-5775 databaseCode: ABDBF dateStart: 20020901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1600-5775 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016723 issn: 1600-5775 databaseCode: RPM dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1600-5775 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016723 issn: 1600-5775 databaseCode: 7X7 dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1600-5775 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016723 issn: 1600-5775 databaseCode: BENPR dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1600-5775 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1600-5775 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016723 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1600-5775 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016723 issn: 1600-5775 databaseCode: 24P dateStart: 20220101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-2jm19GVv35bULGuxpw9S2bMt6TEZDGTSUbYHsycj6SAOpXWqHkv--d7YTmmWwlz0JS3qQ73Tc77i7nwA-O25d6KLYD4QUPiLwwEcvx_1YS_QuqRG27Vu7mKTn0_j7LJk9eOqLasI6euBOcKdSFWlMYTeXOBZGujjRgVQ24LIQum3zDTK5CaYON6X1Ee9zmBjfnP4MU-q6FAlVTGKEwXe8UEvWj0OFRvU3oLlfL_l8Vd6o9Z1aLh84o_FLeNGjSDbsTv8KHtnyCJ5270quj-DZRZ8xx8m2xFPXr2E8ZPOOY5qN1NpS8yRTy3l1u2iurhliV4ZYkKlVQ20O1arGxcW8rRVglWOFVdeESOs3MB2f_fp27vevKPg6FrzxE6Kc4VngqCIN3XvhDJcGUZsxRM0eI4DJlI3oxSUTFDJIVGJMQdk1jcZqNX8LB2VV2vfA4kKFzgTGcW7Q-SmVOqsTwzHoilSaOg--bKSa33RkGXkbZAQi31OBByOS-3Yj8Vy3E6j9vNd-_i_te3BMWssRLhDnrabiIN3kUSwoXevByUaZeW-adc4R0kUywzDQg0_bZTQqypSo0qKAaU9ITblR6MG7Tvfbc3Ji5E9l4kG2cyt2fmR3pVxctcTdRH0UpYn04Ov2Au0Jqv5TUB_-h6CO4TBCONZ1UZ7AQXO7sh8RTjXFAB6LmRjAk9HZ5PLHoLUj_JpOLoe_7wERGRqS |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_0ih8vftSqsVVW8ElJyWXztY9X8ShCi6AH9Sns5_XwmpQmQc6_3plNevR6fdCnhd0hZHdnmN_uzPwW4IPj1o1dnIRRLvIQEXgUopfjYaIFepfM5NbXrZ2cZsez5OtZejaQRVMtzM34_diXuGVUL5mnlOuIZwN-H3ayFGH3CHZmp98mPz2Xnr_g9y-skHhI8kME885vbPggT9WPTY0mdRfM3M6WfNRVl3L1Wy6XN1zR9GmfxNV4BkPKQPl12LXqUP-5xe_4T7N8Bk8GQMomvQY9h3u22oUH_ROVq114eDIE37HTZ4vq5gVMJ2ze01WzI7myVIfJ5HJeXy3a8wuGMJghrGSya6liou4aHFzMfdoBqx1TVl4QuG32YDb98uPzcTg8yBDqJOdtmBJ7DS8iR8ltiBSUM1wYBIDGEMt7gliokDamx5tMpESUytQYRYE6jXZvNX8Jo6qu7GtgiZJjZyLjODfoR6XMnNWp4Xh-i2WWuQA-Xm9RednzbpT-vBLl5ffbqxXAEW3iWpAos30HrnE5WGAppMoSur_hAltlhEtSHQlpIy5UrosA9kkFSkQeRJ-rKc9It2Wc5BT5DeDgWjPKwcqbkiM6jEWBJ8oA3q-H0T4p6CIriwtMMmOq743HAbzqFWn9n5zI_TORBlBsqNjGRDZHqsW55wAnFqUYDSGAT2tt3FqoLbV681_S-_A4RgjXV14ewKi96uxbhGCtejcY31_PGSDS |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+Bayesian+algorithm+for+the+autonomous+alignment+of+beamlines&rft.jtitle=Journal+of+synchrotron+radiation&rft.au=Morris%2C+Thomas+W.&rft.au=Rakitin%2C+Max&rft.au=Du%2C+Yonghua&rft.au=Fedurin%2C+Mikhail&rft.date=2024-11-01&rft.pub=International+Union+of+Crystallography&rft.issn=1600-5775&rft.volume=31&rft.issue=6&rft_id=info:doi/10.1107%2Fs1600577524008993&rft.externalDocID=2475250 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1600-5775&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1600-5775&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1600-5775&client=summon |