A general Bayesian algorithm for the autonomous alignment of beamlines

Autonomous methods to align beamlines can decrease the amount of time spent on diagnostics, and also uncover better global optima leading to better beam quality. The alignment of these beamlines is a high-dimensional expensive-to-sample optimization problem involving the simultaneous treatment of ma...

Full description

Saved in:
Bibliographic Details
Published inJournal of synchrotron radiation Vol. 31; no. 6; pp. 1446 - 1456
Main Authors Morris, Thomas W., Rakitin, Max, Du, Yonghua, Fedurin, Mikhail, Giles, Abigail C., Leshchev, Denis, Li, William H., Romasky, Brianna, Stavitski, Eli, Walter, Andrew L., Moeller, Paul, Nash, Boaz, Islegen-Wojdyla, Antoine
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.11.2024
International Union of Crystallography
Subjects
Online AccessGet full text
ISSN1600-5775
0909-0495
1600-5775
DOI10.1107/S1600577524008993

Cover

Abstract Autonomous methods to align beamlines can decrease the amount of time spent on diagnostics, and also uncover better global optima leading to better beam quality. The alignment of these beamlines is a high-dimensional expensive-to-sample optimization problem involving the simultaneous treatment of many optical elements with correlated and nonlinear dynamics. Bayesian optimization is a strategy of efficient global optimization that has proved successful in similar regimes in a wide variety of beamline alignment applications, though it has typically been implemented for particular beamlines and optimization tasks. In this paper, we present a basic formulation of Bayesian inference and Gaussian process models as they relate to multi-objective Bayesian optimization, as well as the practical challenges presented by beamline alignment. We show that the same general implementation of Bayesian optimization with special consideration for beamline alignment can quickly learn the dynamics of particular beamlines in an online fashion through hyperparameter fitting with no prior information. We present the implementation of a concise software framework for beamline alignment and test it on four different optimization problems for experiments on X-ray beamlines at the National Synchrotron Light Source II and the Advanced Light Source, and an electron beam at the Accelerator Test Facility, along with benchmarking on a simulated digital twin. We discuss new applications of the framework, and the potential for a unified approach to beamline alignment at synchrotron facilities.
AbstractList Autonomous methods to align beamlines can decrease the amount of time spent on diagnostics, and also uncover better global optima leading to better beam quality. The alignment of these beamlines is a high‐dimensional expensive‐to‐sample optimization problem involving the simultaneous treatment of many optical elements with correlated and nonlinear dynamics. Bayesian optimization is a strategy of efficient global optimization that has proved successful in similar regimes in a wide variety of beamline alignment applications, though it has typically been implemented for particular beamlines and optimization tasks. In this paper, we present a basic formulation of Bayesian inference and Gaussian process models as they relate to multi‐objective Bayesian optimization, as well as the practical challenges presented by beamline alignment. We show that the same general implementation of Bayesian optimization with special consideration for beamline alignment can quickly learn the dynamics of particular beamlines in an online fashion through hyperparameter fitting with no prior information. We present the implementation of a concise software framework for beamline alignment and test it on four different optimization problems for experiments on X‐ray beamlines at the National Synchrotron Light Source II and the Advanced Light Source, and an electron beam at the Accelerator Test Facility, along with benchmarking on a simulated digital twin. We discuss new applications of the framework, and the potential for a unified approach to beamline alignment at synchrotron facilities.
Autonomous methods to align beamlines can decrease the amount of time spent on diagnostics, and also uncover better global optima leading to better beam quality. The alignment of these beamlines is a high-dimensional expensive-to-sample optimization problem involving the simultaneous treatment of many optical elements with correlated and nonlinear dynamics. Bayesian optimization is a strategy of efficient global optimization that has proved successful in similar regimes in a wide variety of beamline alignment applications, though it has typically been implemented for particular beamlines and optimization tasks. In this paper, we present a basic formulation of Bayesian inference and Gaussian process models as they relate to multi-objective Bayesian optimization, as well as the practical challenges presented by beamline alignment. We show that the same general implementation of Bayesian optimization with special consideration for beamline alignment can quickly learn the dynamics of particular beamlines in an online fashion through hyperparameter fitting with no prior information. We present the implementation of a concise software framework for beamline alignment and test it on four different optimization problems for experiments on X-ray beamlines at the National Synchrotron Light Source II and the Advanced Light Source, and an electron beam at the Accelerator Test Facility, along with benchmarking on a simulated digital twin. We discuss new applications of the framework, and the potential for a unified approach to beamline alignment at synchrotron facilities.Autonomous methods to align beamlines can decrease the amount of time spent on diagnostics, and also uncover better global optima leading to better beam quality. The alignment of these beamlines is a high-dimensional expensive-to-sample optimization problem involving the simultaneous treatment of many optical elements with correlated and nonlinear dynamics. Bayesian optimization is a strategy of efficient global optimization that has proved successful in similar regimes in a wide variety of beamline alignment applications, though it has typically been implemented for particular beamlines and optimization tasks. In this paper, we present a basic formulation of Bayesian inference and Gaussian process models as they relate to multi-objective Bayesian optimization, as well as the practical challenges presented by beamline alignment. We show that the same general implementation of Bayesian optimization with special consideration for beamline alignment can quickly learn the dynamics of particular beamlines in an online fashion through hyperparameter fitting with no prior information. We present the implementation of a concise software framework for beamline alignment and test it on four different optimization problems for experiments on X-ray beamlines at the National Synchrotron Light Source II and the Advanced Light Source, and an electron beam at the Accelerator Test Facility, along with benchmarking on a simulated digital twin. We discuss new applications of the framework, and the potential for a unified approach to beamline alignment at synchrotron facilities.
Automated alignment methods have the potential to accelerate greatly the efficiency of experiments done at synchrotron facilities and are an important step towards fully autonomous beamlines. Presented here is a general implementation of Bayesian optimization that performs well on many beamlines across different facilities. Autonomous methods to align beamlines can decrease the amount of time spent on diagnostics, and also uncover better global optima leading to better beam quality. The alignment of these beamlines is a high-dimensional expensive-to-sample optimization problem involving the simultaneous treatment of many optical elements with correlated and nonlinear dynamics. Bayesian optimization is a strategy of efficient global optimization that has proved successful in similar regimes in a wide variety of beamline alignment applications, though it has typically been implemented for particular beamlines and optimization tasks. In this paper, we present a basic formulation of Bayesian inference and Gaussian process models as they relate to multi-objective Bayesian optimization, as well as the practical challenges presented by beamline alignment. We show that the same general implementation of Bayesian optimization with special consideration for beamline alignment can quickly learn the dynamics of particular beamlines in an online fashion through hyperparameter fitting with no prior information. We present the implementation of a concise software framework for beamline alignment and test it on four different optimization problems for experiments on X-ray beamlines at the National Synchrotron Light Source II and the Advanced Light Source, and an electron beam at the Accelerator Test Facility, along with benchmarking on a simulated digital twin. We discuss new applications of the framework, and the potential for a unified approach to beamline alignment at synchrotron facilities.
Author Giles, Abigail C.
Li, William H.
Leshchev, Denis
Fedurin, Mikhail
Du, Yonghua
Islegen-Wojdyla, Antoine
Stavitski, Eli
Moeller, Paul
Morris, Thomas W.
Nash, Boaz
Romasky, Brianna
Walter, Andrew L.
Rakitin, Max
Author_xml – sequence: 1
  givenname: Thomas W.
  orcidid: 0000-0002-5564-997X
  surname: Morris
  fullname: Morris, Thomas W.
– sequence: 2
  givenname: Max
  orcidid: 0000-0003-3685-852X
  surname: Rakitin
  fullname: Rakitin, Max
– sequence: 3
  givenname: Yonghua
  surname: Du
  fullname: Du, Yonghua
– sequence: 4
  givenname: Mikhail
  surname: Fedurin
  fullname: Fedurin, Mikhail
– sequence: 5
  givenname: Abigail C.
  surname: Giles
  fullname: Giles, Abigail C.
– sequence: 6
  givenname: Denis
  orcidid: 0000-0002-8049-3671
  surname: Leshchev
  fullname: Leshchev, Denis
– sequence: 7
  givenname: William H.
  surname: Li
  fullname: Li, William H.
– sequence: 8
  givenname: Brianna
  orcidid: 0000-0003-0790-2763
  surname: Romasky
  fullname: Romasky, Brianna
– sequence: 9
  givenname: Eli
  surname: Stavitski
  fullname: Stavitski, Eli
– sequence: 10
  givenname: Andrew L.
  surname: Walter
  fullname: Walter, Andrew L.
– sequence: 11
  givenname: Paul
  surname: Moeller
  fullname: Moeller, Paul
– sequence: 12
  givenname: Boaz
  surname: Nash
  fullname: Nash, Boaz
– sequence: 13
  givenname: Antoine
  surname: Islegen-Wojdyla
  fullname: Islegen-Wojdyla, Antoine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39466695$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/2475250$$D View this record in Osti.gov
BookMark eNplUstu1TAQjVARfcAHsEERbNhcGD8Tr1CpKFSqxAJYW47t5PoqsS-2U3T_HoeUqo-Nx5o5c2bmzJxWRz54W1WvEXxACJqPPxAHYE3DMAVohSDPqpPFtVl8R_f-x9VpSjsAxBtMXlTHRFDOuWAn1eV5PVhvoxrrz-pgk1O-VuMQosvbqe5DrPPW1mrOwYcpzKkE3eAn63Md-rqzahqdt-ll9bxXY7Kvbu1Z9evyy8-Lb5vr71-vLs6vN5o2JG8YAOGkhR5axhjCXW-IMARzY0TLKW1w0yqLEbTcQCeAKWZMhwQjGjXCanJWXa28Jqid3Ec3qXiQQTn5zxHiIFXMTo9WCtVxCoIQIortjOgp0yCUBSK6RreFC69cs9-rwx81jneECOQisEyPBS5Jn9ak_dxN1ugiRNHuQScPI95t5RBuCh-jmDNRGN6uDCFlJ5N22eqtDt5bnSWmpRaDAnp_WyaG37NNWU4uaTuOytuyBUkQRkxAeQv03SPoLszRly0sKIZFi-gy7Jv7fd81_P8SCgCtAB1DStH2T8R4cm3kL3Z-wSc
Cites_doi 10.1201/9781003359593-8
10.1103/PhysRevLett.124.124801
10.1107/S0909049511026306
10.1088/1742-6596/425/16/162001
10.1107/S1600577516018117
10.1109/16.7427
10.1364/OE.505289
10.1016/0168-9002(90)91216-X
10.1088/1748-0221/15/05/P05009
10.1088/1742-6596/2380/1/012100
10.1107/S1600577522010050
10.1080/08940886.2019.1608121
10.1088/0741-3335/56/8/084017
10.1103/PhysRevAccelBeams.22.082801
10.1080/08940886.2019.1559608
10.1107/S1600577522004039
10.1107/S1600577515001861
10.1088/1742-6596/2380/1/012103
10.1088/1367-2630/ac7db4
10.1107/S160057752200460X
10.1107/S1600577524009342
10.1107/S1600577519012761
10.1080/08940886.2018.1409562
10.1109/TCYB.2022.3191022
ContentType Journal Article
Copyright open access.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
T. W. Morris et al. 2024 2024
Copyright_xml – notice: open access.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: T. W. Morris et al. 2024 2024
CorporateAuthor Brookhaven National Laboratory (BNL), Upton, NY (United States)
CorporateAuthor_xml – name: Brookhaven National Laboratory (BNL), Upton, NY (United States)
DBID AAYXX
CITATION
NPM
7U5
8FD
JQ2
K9.
L7M
7X8
OTOTI
5PM
ADTOC
UNPAY
DOA
DOI 10.1107/S1600577524008993
DatabaseName CrossRef
PubMed
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic

PubMed

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
DocumentTitleAlternate Autonomous alignment of beamlines
EISSN 1600-5775
EndPage 1456
ExternalDocumentID oai_doaj_org_article_9ab64093339640bd9f45c09ae039b7c8
10.1107/s1600577524008993
PMC11542659
2475250
39466695
10_1107_S1600577524008993
Genre Journal Article
GrantInformation_xml – fundername: US Department of Energy, Office of Science
  grantid: DE-AC02-05CH11231
– fundername: US Department of Energy, Office of Science
  grantid: DE-SC0002059
– fundername: US Department of Energy, Office of Science
  grantid: DE-SC0012704
– fundername: ;
  grantid: DE-SC0012704
– fundername: ;
  grantid: DE-AC02-05CH11231
– fundername: ;
  grantid: DE-SC0002059
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1OC
24P
2WC
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAMMB
AAONW
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABPVW
ABUWG
ACAHQ
ACCMX
ACGFO
ACGFS
ACPOU
ACUHS
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIMD
AENEX
AFBPY
AFEBI
AFGKR
AFKRA
AFPKN
AFZJQ
AGXDD
AIDQK
AIDYY
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BENPR
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ESX
F00
F01
F04
F5P
FYUFA
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HH5
HMCUK
HZI
HZ~
I-F
IX1
J0M
K48
K7-
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M1P
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
OIG
P2P
P2W
P2X
P4D
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PSQYO
PUEGO
Q.N
Q11
QB0
R.K
RCJ
ROL
RPM
RX1
SUPJJ
TUS
UB1
UKHRP
V8K
W8V
W99
WBFHL
WBKPD
WIH
WIK
WIN
WOHZO
WQJ
WYISQ
XG1
ZZTAW
~IA
~WT
NPM
7U5
8FD
JQ2
K9.
L7M
7X8
1OB
33P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
OTOTI
WRC
5PM
.Y3
1Y6
29L
31~
8WZ
A6W
AANHP
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADIYS
ADNMO
ADTOC
AGQPQ
AHEFC
AIQQE
ASPBG
AVWKF
AZFZN
BDRZF
BFHJK
CAG
COF
EJD
FEDTE
HF~
HVGLF
IHE
LW6
PALCI
RIWAO
RJQFR
UNPAY
ID FETCH-LOGICAL-c473t-50036380f0855512bfd39d326dd986447278ae21086d0b905a5ddb1953c179ec3
IEDL.DBID DOA
ISSN 1600-5775
0909-0495
IngestDate Fri Oct 03 12:35:21 EDT 2025
Sun Oct 26 03:35:10 EDT 2025
Tue Sep 30 17:07:06 EDT 2025
Mon Jan 13 02:27:15 EST 2025
Thu Sep 04 20:05:19 EDT 2025
Tue Oct 07 06:29:29 EDT 2025
Mon Jul 21 06:05:53 EDT 2025
Wed Oct 01 02:24:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords automated alignment
digital twins
Bayesian optimization
machine learning
synchrotron radiation
Language English
License open access.
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c473t-50036380f0855512bfd39d326dd986447278ae21086d0b905a5ddb1953c179ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF)
SC0012704; SC0020593; AC02-05CH11231
BNL-226430-2024-JAAM
USDOE Laboratory Directed Research and Development (LDRD) Program
ORCID 0000-0002-8049-3671
0000-0003-0790-2763
0000-0002-5564-997X
0000-0003-3685-852X
000000033685852X
0000000280493671
000000025564997X
0000000307902763
OpenAccessLink https://doaj.org/article/9ab64093339640bd9f45c09ae039b7c8
PMID 39466695
PQID 3125298148
PQPubID 1086380
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_9ab64093339640bd9f45c09ae039b7c8
unpaywall_primary_10_1107_s1600577524008993
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11542659
osti_scitechconnect_2475250
proquest_miscellaneous_3121590121
proquest_journals_3125298148
pubmed_primary_39466695
crossref_primary_10_1107_S1600577524008993
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Malden
PublicationTitle Journal of synchrotron radiation
PublicationTitleAlternate J Synchrotron Radiat
PublicationYear 2024
Publisher John Wiley & Sons, Inc
International Union of Crystallography
Publisher_xml – name: John Wiley & Sons, Inc
– name: International Union of Crystallography
References gy5067_bb8
gy5067_bb11
Ji (gy5067_bb15) 2019; 22
gy5067_bb12
gy5067_bb34
gy5067_bb4
Pogorelsky (gy5067_bb28) 2014; 56
gy5067_bb16
Hvarfner (gy5067_bb14) 2022; 35
gy5067_bb19
Nash (gy5067_bb25) 2022; 2380
Zhang (gy5067_bb39) 2023; 30
Duris (gy5067_bb10) 2020; 124
Liu (gy5067_bb18) 2024; 54
Milios (gy5067_bb21) 2018; 31
Rakitin (gy5067_bb30) 2022; 2380
Northrup (gy5067_bb27) 2019; 26
Morris (gy5067_bb23) 2022; 12222
Allan (gy5067_bb1) 2019; 32(3)
Sanchez del Rio (gy5067_bb33) 2011; 18
White (gy5067_bb36) 2019; 32(1)
Balandat (gy5067_bb2) 2020; 33
McDonald (gy5067_bb20) 1988; 35
Nash (gy5067_bb26) 2023; 12697
Dolier (gy5067_bb9) 2022; 24
gy5067_bb24
Rakitin (gy5067_bb29) 2023; 12697
Rakitin (gy5067_bb31) 2020; 11493
Hernández-Lobato (gy5067_bb13) 2014; 27
Wang (gy5067_bb35) 2017; 70
Leshchev (gy5067_bb17) 2022; 29
Morris (gy5067_bb22) 2023; 12697
Breckling (gy5067_bb5) 2022; 29
Xi (gy5067_bb37) 2015; 22
Rebuffi (gy5067_bb32) 2023; 31
Batchelor (gy5067_bb3) 1990; 296
Xi (gy5067_bb38) 2017; 24
Chenevier (gy5067_bb6) 2018; 31(1)
Chubar (gy5067_bb7) 2013; 425
References_xml – volume: 33
  start-page: 21524
  year: 2020
  ident: gy5067_bb2
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: gy5067_bb19
  doi: 10.1201/9781003359593-8
– volume: 124
  start-page: 124801
  year: 2020
  ident: gy5067_bb10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.124801
– volume: 18
  start-page: 708
  year: 2011
  ident: gy5067_bb33
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S0909049511026306
– volume: 425
  start-page: 162001
  year: 2013
  ident: gy5067_bb7
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/425/16/162001
– volume: 35
  start-page: 11494
  year: 2022
  ident: gy5067_bb14
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 12697
  start-page: 126970D
  year: 2023
  ident: gy5067_bb29
  publication-title: Proc. SPIE
– volume: 24
  start-page: 367
  year: 2017
  ident: gy5067_bb38
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S1600577516018117
– volume: 35
  start-page: 2052
  year: 1988
  ident: gy5067_bb20
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/16.7427
– volume: 31
  start-page: 39514
  year: 2023
  ident: gy5067_bb32
  publication-title: Opt. Express
  doi: 10.1364/OE.505289
– volume: 296
  start-page: 239
  year: 1990
  ident: gy5067_bb3
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/0168-9002(90)91216-X
– ident: gy5067_bb12
– ident: gy5067_bb8
  doi: 10.1088/1748-0221/15/05/P05009
– volume: 12222
  start-page: 122220M
  year: 2022
  ident: gy5067_bb23
  publication-title: Proc. SPIE
– volume: 12697
  start-page: 126970B
  year: 2023
  ident: gy5067_bb22
  publication-title: Proc. SPIE
– volume: 2380
  start-page: 012100
  year: 2022
  ident: gy5067_bb30
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/2380/1/012100
– volume: 31
  start-page: 6008
  year: 2018
  ident: gy5067_bb21
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 30
  start-page: 51
  year: 2023
  ident: gy5067_bb39
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S1600577522010050
– volume: 32(3)
  start-page: 19
  year: 2019
  ident: gy5067_bb1
  publication-title: Synchrotron Rad. News
  doi: 10.1080/08940886.2019.1608121
– volume: 56
  start-page: 084017
  year: 2014
  ident: gy5067_bb28
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/56/8/084017
– volume: 11493
  start-page: 1149311
  year: 2020
  ident: gy5067_bb31
  publication-title: Proc. SPIE
– volume: 22
  start-page: 082801
  year: 2019
  ident: gy5067_bb15
  publication-title: Phys. Rev. Accel. Beams
  doi: 10.1103/PhysRevAccelBeams.22.082801
– volume: 32(1)
  start-page: 32
  year: 2019
  ident: gy5067_bb36
  publication-title: Synchrotron Rad. News
  doi: 10.1080/08940886.2019.1559608
– ident: gy5067_bb24
– ident: gy5067_bb4
– volume: 29
  start-page: 947
  year: 2022
  ident: gy5067_bb5
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S1600577522004039
– volume: 27
  start-page: 918
  year: 2014
  ident: gy5067_bb13
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 22
  start-page: 661
  year: 2015
  ident: gy5067_bb37
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S1600577515001861
– volume: 2380
  start-page: 012103
  year: 2022
  ident: gy5067_bb25
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/2380/1/012103
– ident: gy5067_bb34
– volume: 24
  start-page: 073025
  year: 2022
  ident: gy5067_bb9
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ac7db4
– ident: gy5067_bb11
– volume: 29
  start-page: 1095
  year: 2022
  ident: gy5067_bb17
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S160057752200460X
– volume: 12697
  start-page: 1269703
  year: 2023
  ident: gy5067_bb26
  publication-title: Proc. SPIE
– ident: gy5067_bb16
  doi: 10.1107/S1600577524009342
– volume: 70
  start-page: 3627
  year: 2017
  ident: gy5067_bb35
  publication-title: Proc. Mach. Learn. Res.
– volume: 26
  start-page: 2064
  year: 2019
  ident: gy5067_bb27
  publication-title: J. Synchrotron Rad.
  doi: 10.1107/S1600577519012761
– volume: 31(1)
  start-page: 32
  year: 2018
  ident: gy5067_bb6
  publication-title: Synchrotron Rad. News
  doi: 10.1080/08940886.2018.1409562
– volume: 54
  start-page: 962
  year: 2024
  ident: gy5067_bb18
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2022.3191022
SSID ssj0016723
Score 2.4335332
Snippet Autonomous methods to align beamlines can decrease the amount of time spent on diagnostics, and also uncover better global optima leading to better beam...
Automated alignment methods have the potential to accelerate greatly the efficiency of experiments done at synchrotron facilities and are an important step...
SourceID doaj
unpaywall
pubmedcentral
osti
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1446
SubjectTerms Algorithms
Alignment
automated alignment
Bayesian analysis
Bayesian optimization
Digital twins
Electron beams
Gaussian beams (optics)
Gaussian process
Global optimization
Light sources
machine learning
Nonlinear dynamics
Optical components
Optimization
OTHER INSTRUMENTATION
Research Papers
Statistical inference
synchrotron radiation
Test facilities
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_0ih8vftSqsVVW8ElJyWXztY9X8ShCi6AH9Sns5_XwmpQmQc6_3plNevR6fdCnhd0hZHdnmN_uzPwW4IPj1o1dnIRRLvIQEXgUopfjYaIFepfM5NbXrZ2cZsez5OtZejaQRVMtzM34_diXuGVUL5mnlOuIZwN-H3ayFGH3CHZmp98mPz2Xnr_g9y-skHhI8kME885vbPggT9WPTY0mdRfM3M6WfNRVl3L1Wy6XN1zR9GmfxNV4BkPKQPl12LXqUP-5xe_4T7N8Bk8GQMomvQY9h3u22oUH_ROVq114eDIE37HTZ4vq5gVMJ2ze01WzI7myVIfJ5HJeXy3a8wuGMJghrGSya6liou4aHFzMfdoBqx1TVl4QuG32YDb98uPzcTg8yBDqJOdtmBJ7DS8iR8ltiBSUM1wYBIDGEMt7gliokDamx5tMpESUytQYRYE6jXZvNX8Jo6qu7GtgiZJjZyLjODfoR6XMnNWp4Xh-i2WWuQA-Xm9RednzbpT-vBLl5ffbqxXAEW3iWpAos30HrnE5WGAppMoSur_hAltlhEtSHQlpIy5UrosA9kkFSkQeRJ-rKc9It2Wc5BT5DeDgWjPKwcqbkiM6jEWBJ8oA3q-H0T4p6CIriwtMMmOq743HAbzqFWn9n5zI_TORBlBsqNjGRDZHqsW55wAnFqUYDSGAT2tt3FqoLbV681_S-_A4RgjXV14ewKi96uxbhGCtejcY31_PGSDS
  priority: 102
  providerName: Unpaywall
Title A general Bayesian algorithm for the autonomous alignment of beamlines
URI https://www.ncbi.nlm.nih.gov/pubmed/39466695
https://www.proquest.com/docview/3125298148
https://www.proquest.com/docview/3121590121
https://www.osti.gov/biblio/2475250
https://pubmed.ncbi.nlm.nih.gov/PMC11542659
https://doi.org/10.1107/s1600577524008993
https://doaj.org/article/9ab64093339640bd9f45c09ae039b7c8
UnpaywallVersion publishedVersion
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1600-5775
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016723
  issn: 1600-5775
  databaseCode: HH5
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1600-5775
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016723
  issn: 1600-5775
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1600-5775
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016723
  issn: 1600-5775
  databaseCode: ABDBF
  dateStart: 20020901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1600-5775
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016723
  issn: 1600-5775
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1600-5775
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016723
  issn: 1600-5775
  databaseCode: 7X7
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1600-5775
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016723
  issn: 1600-5775
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1600-5775
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1600-5775
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016723
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1600-5775
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016723
  issn: 1600-5775
  databaseCode: 24P
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-2jm19GVv35bULGuxpw9S2bMt6TEZDGTSUbYHsycj6SAOpXWqHkv--d7YTmmWwlz0JS3qQ73Tc77i7nwA-O25d6KLYD4QUPiLwwEcvx_1YS_QuqRG27Vu7mKTn0_j7LJk9eOqLasI6euBOcKdSFWlMYTeXOBZGujjRgVQ24LIQum3zDTK5CaYON6X1Ee9zmBjfnP4MU-q6FAlVTGKEwXe8UEvWj0OFRvU3oLlfL_l8Vd6o9Z1aLh84o_FLeNGjSDbsTv8KHtnyCJ5270quj-DZRZ8xx8m2xFPXr2E8ZPOOY5qN1NpS8yRTy3l1u2iurhliV4ZYkKlVQ20O1arGxcW8rRVglWOFVdeESOs3MB2f_fp27vevKPg6FrzxE6Kc4VngqCIN3XvhDJcGUZsxRM0eI4DJlI3oxSUTFDJIVGJMQdk1jcZqNX8LB2VV2vfA4kKFzgTGcW7Q-SmVOqsTwzHoilSaOg--bKSa33RkGXkbZAQi31OBByOS-3Yj8Vy3E6j9vNd-_i_te3BMWssRLhDnrabiIN3kUSwoXevByUaZeW-adc4R0kUywzDQg0_bZTQqypSo0qKAaU9ITblR6MG7Tvfbc3Ji5E9l4kG2cyt2fmR3pVxctcTdRH0UpYn04Ov2Au0Jqv5TUB_-h6CO4TBCONZ1UZ7AQXO7sh8RTjXFAB6LmRjAk9HZ5PLHoLUj_JpOLoe_7wERGRqS
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_0ih8vftSqsVVW8ElJyWXztY9X8ShCi6AH9Sns5_XwmpQmQc6_3plNevR6fdCnhd0hZHdnmN_uzPwW4IPj1o1dnIRRLvIQEXgUopfjYaIFepfM5NbXrZ2cZsez5OtZejaQRVMtzM34_diXuGVUL5mnlOuIZwN-H3ayFGH3CHZmp98mPz2Xnr_g9y-skHhI8kME885vbPggT9WPTY0mdRfM3M6WfNRVl3L1Wy6XN1zR9GmfxNV4BkPKQPl12LXqUP-5xe_4T7N8Bk8GQMomvQY9h3u22oUH_ROVq114eDIE37HTZ4vq5gVMJ2ze01WzI7myVIfJ5HJeXy3a8wuGMJghrGSya6liou4aHFzMfdoBqx1TVl4QuG32YDb98uPzcTg8yBDqJOdtmBJ7DS8iR8ltiBSUM1wYBIDGEMt7gliokDamx5tMpESUytQYRYE6jXZvNX8Jo6qu7GtgiZJjZyLjODfoR6XMnNWp4Xh-i2WWuQA-Xm9RednzbpT-vBLl5ffbqxXAEW3iWpAos30HrnE5WGAppMoSur_hAltlhEtSHQlpIy5UrosA9kkFSkQeRJ-rKc9It2Wc5BT5DeDgWjPKwcqbkiM6jEWBJ8oA3q-H0T4p6CIriwtMMmOq743HAbzqFWn9n5zI_TORBlBsqNjGRDZHqsW55wAnFqUYDSGAT2tt3FqoLbV681_S-_A4RgjXV14ewKi96uxbhGCtejcY31_PGSDS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+Bayesian+algorithm+for+the+autonomous+alignment+of+beamlines&rft.jtitle=Journal+of+synchrotron+radiation&rft.au=Morris%2C+Thomas+W.&rft.au=Rakitin%2C+Max&rft.au=Du%2C+Yonghua&rft.au=Fedurin%2C+Mikhail&rft.date=2024-11-01&rft.pub=International+Union+of+Crystallography&rft.issn=1600-5775&rft.volume=31&rft.issue=6&rft_id=info:doi/10.1107%2Fs1600577524008993&rft.externalDocID=2475250
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1600-5775&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1600-5775&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1600-5775&client=summon