Intracerebral study of gamma rhythm reactivity in the sensorimotor cortex
The generators and functional correlates of gamma oscillations within the sensorimotor cortex remain unclear. With the goal of locating the oscillations' sources precisely and then studying the relationship between oscillatory reactivity and ongoing movement, we recorded stereoelectroencephalog...
Saved in:
Published in | The European journal of neuroscience Vol. 21; no. 5; pp. 1223 - 1235 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Science Ltd
01.03.2005
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0953-816X 1460-9568 |
DOI | 10.1111/j.1460-9568.2005.03966.x |
Cover
Abstract | The generators and functional correlates of gamma oscillations within the sensorimotor cortex remain unclear. With the goal of locating the oscillations' sources precisely and then studying the relationship between oscillatory reactivity and ongoing movement, we recorded stereoelectroencephalograms with intracerebral electrodes in eight epileptic subjects awaiting surgical treatment. The sensorimotor cortex was free of lesions and was exhaustively explored with the electrodes. Subjects were asked to perform various self‐paced movements contralateral to the exploration zone, brief and sustained, distal movements and a pointing movement. We used the event‐related desynchronization method to quantify the reactivity of the 40–60‐Hz band before, during and after the performance of movement. A very focused, event‐related synchronization of gamma rhythms was found in all subjects. It was predominantly observed in the primary sensorimotor area and its distribution was consistent with the functional map established using electrical stimulations. Two different temporal patterns were observed, the event‐related synchronization of gamma rhythms was related either to movement onset or to movement offset but was never recorded before movement. This observation suggests that gamma oscillations are more probably related to movement execution than to motor planning. The different patterns argue in favour of multiple functional roles; it has been shown that gamma oscillations may support the efferent drive to the muscles and here we show that they are also likely to be related to somatosensory integration. We therefore suggest that gamma oscillations in the 40–60‐Hz band may support afferent sensory feedback to the sensorimotor cortex during the performance of movement. |
---|---|
AbstractList | The generators and functional correlates of gamma oscillations within the sensorimotor cortex remain unclear. With the goal of locating the oscillations' sources precisely and then studying the relationship between oscillatory reactivity and ongoing movement, we recorded stereoelectroencephalograms with intracerebral electrodes in eight epileptic subjects awaiting surgical treatment. The sensorimotor cortex was free of lesions and was exhaustively explored with the electrodes. Subjects were asked to perform various self-paced movements contralateral to the exploration zone, brief and sustained, distal movements and a pointing movement. We used the event-related desynchronization method to quantify the reactivity of the 40-60-Hz band before, during and after the performance of movement. A very focused, event-related synchronization of gamma rhythms was found in all subjects. It was predominantly observed in the primary sensorimotor area and its distribution was consistent with the functional map established using electrical stimulations. Two different temporal patterns were observed, the event-related synchronization of gamma rhythms was related either to movement onset or to movement offset but was never recorded before movement. This observation suggests that gamma oscillations are more probably related to movement execution than to motor planning. The different patterns argue in favour of multiple functional roles; it has been shown that gamma oscillations may support the efferent drive to the muscles and here we show that they are also likely to be related to somatosensory integration. We therefore suggest that gamma oscillations in the 40-60-Hz band may support afferent sensory feedback to the sensorimotor cortex during the performance of movement. The generators and functional correlates of gamma oscillations within the sensorimotor cortex remain unclear. With the goal of locating the oscillations' sources precisely and then studying the relationship between oscillatory reactivity and ongoing movement, we recorded stereoelectroencephalograms with intracerebral electrodes in eight epileptic subjects awaiting surgical treatment. The sensorimotor cortex was free of lesions and was exhaustively explored with the electrodes. Subjects were asked to perform various self-paced movements contralateral to the exploration zone, brief and sustained, distal movements and a pointing movement. We used the event-related desynchronization method to quantify the reactivity of the 40-60-Hz band before, during and after the performance of movement. A very focused, event-related synchronization of gamma rhythms was found in all subjects. It was predominantly observed in the primary sensorimotor area and its distribution was consistent with the functional map established using electrical stimulations. Two different temporal patterns were observed, the event-related synchronization of gamma rhythms was related either to movement onset or to movement offset but was never recorded before movement. This observation suggests that gamma oscillations are more probably related to movement execution than to motor planning. The different patterns argue in favour of multiple functional roles; it has been shown that gamma oscillations may support the efferent drive to the muscles and here we show that they are also likely to be related to somatosensory integration. We therefore suggest that gamma oscillations in the 40-60-Hz band may support afferent sensory feedback to the sensorimotor cortex during the performance of movement.The generators and functional correlates of gamma oscillations within the sensorimotor cortex remain unclear. With the goal of locating the oscillations' sources precisely and then studying the relationship between oscillatory reactivity and ongoing movement, we recorded stereoelectroencephalograms with intracerebral electrodes in eight epileptic subjects awaiting surgical treatment. The sensorimotor cortex was free of lesions and was exhaustively explored with the electrodes. Subjects were asked to perform various self-paced movements contralateral to the exploration zone, brief and sustained, distal movements and a pointing movement. We used the event-related desynchronization method to quantify the reactivity of the 40-60-Hz band before, during and after the performance of movement. A very focused, event-related synchronization of gamma rhythms was found in all subjects. It was predominantly observed in the primary sensorimotor area and its distribution was consistent with the functional map established using electrical stimulations. Two different temporal patterns were observed, the event-related synchronization of gamma rhythms was related either to movement onset or to movement offset but was never recorded before movement. This observation suggests that gamma oscillations are more probably related to movement execution than to motor planning. The different patterns argue in favour of multiple functional roles; it has been shown that gamma oscillations may support the efferent drive to the muscles and here we show that they are also likely to be related to somatosensory integration. We therefore suggest that gamma oscillations in the 40-60-Hz band may support afferent sensory feedback to the sensorimotor cortex during the performance of movement. |
Author | Kahane, Philippe Mauguière, François Bourriez, Jean-Louis Szurhaj, William Chauvel, Patrick Derambure, Philippe |
Author_xml | – sequence: 1 givenname: William surname: Szurhaj fullname: Szurhaj, William organization: EA 2683, Service de Neurophysiologie Clinique, Hôpital Salengro, CHRU, F-59037 Lille Cedex, France – sequence: 2 givenname: Jean-Louis surname: Bourriez fullname: Bourriez, Jean-Louis organization: EA 2683, Service de Neurophysiologie Clinique, Hôpital Salengro, CHRU, F-59037 Lille Cedex, France – sequence: 3 givenname: Philippe surname: Kahane fullname: Kahane, Philippe organization: Neurophysiopathologie de l'Epilepsie, Clinique Neurologique, CHU Grenoble, France – sequence: 4 givenname: Patrick surname: Chauvel fullname: Chauvel, Patrick organization: Service de Neurophysiologie Clinique, Hôpital de la Timone, Marseille, France – sequence: 5 givenname: François surname: Mauguière fullname: Mauguière, François organization: Service de Neurologie Fonctionnelle et d'Epileptologie, Hôpital Neurologique, Lyon, France – sequence: 6 givenname: Philippe surname: Derambure fullname: Derambure, Philippe organization: EA 2683, Service de Neurophysiologie Clinique, Hôpital Salengro, CHRU, F-59037 Lille Cedex, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15813932$$D View this record in MEDLINE/PubMed https://inserm.hal.science/inserm-00388452$$DView record in HAL |
BookMark | eNqNkU1v1DAQhi1URLeFv4By4kTCOP7MAaSqKu2iVQEJCjfLSbyslyQutrds_j0OKYvEhfpiS_O849E8J-hocINBKMNQ4HRebQtMOeQV47IoAVgBpOK82D9Ci0PhCC2gYiSXmH89RichbAFAcsqeoGPMJCYVKRdouRyi143xpva6y0LctWPm1tk33fc685sxbvrMG91Ee2fjmNkhixuTBTME523vovNZ43w0-6fo8Vp3wTy7v0_R57cXn86v8tX7y-X52SpvqCA8J4wJUXLARAKlwEml17VpaAs1rwjFUovKcNbWTSvoGgwQYQQY3tZ1nSqEnKKXc9-N7tRtmkH7UTlt1dXZStkhGN8rACIlZeUdTviLGb_17sfOhKh6GxrTdXowbhcUFwKXJcj_glgQynkJCXx-D-7q3rSHGf4sNQFyBhrvQvBm_RcBNflTWzVpUpMmNflTv_2pfYq--Sfa2KijdZMl2z2kweu5wU_bmfHBH6uLd9fTK-XzOW9DcnrIa_89bYoIpr5cX6ob8uGjoDdYSfILb9PCKA |
CitedBy_id | crossref_primary_10_1007_s40473_018_0151_z crossref_primary_10_1002_ana_23530 crossref_primary_10_1007_s00221_006_0407_9 crossref_primary_10_1016_j_neuron_2008_03_030 crossref_primary_10_1590_S0004_282X2011000300007 crossref_primary_10_1159_000366081 crossref_primary_10_1186_s12984_025_01571_6 crossref_primary_10_1016_j_clinph_2009_10_036 crossref_primary_10_1007_s12311_023_01637_y crossref_primary_10_1016_j_gaitpost_2019_02_017 crossref_primary_10_1162_jocn_a_02017 crossref_primary_10_1002_hbm_20457 crossref_primary_10_1016_j_neuroimage_2008_02_032 crossref_primary_10_1007_s40430_019_1585_2 crossref_primary_10_1007_s10548_010_0151_0 crossref_primary_10_1186_1471_2202_8_75 crossref_primary_10_3390_s20061545 crossref_primary_10_1016_j_clinph_2006_06_719 crossref_primary_10_1016_j_clinph_2007_07_025 crossref_primary_10_1016_j_neulet_2010_07_073 crossref_primary_10_3389_fnhum_2021_640609 crossref_primary_10_1007_s00221_011_2775_z crossref_primary_10_1007_s10548_014_0373_7 crossref_primary_10_1152_jn_00607_2010 crossref_primary_10_1016_j_neuroimage_2017_02_043 crossref_primary_10_1002_brb3_944 crossref_primary_10_1002_hbm_20963 crossref_primary_10_1016_j_jpsychires_2017_08_021 crossref_primary_10_1016_j_neuroimage_2013_06_055 crossref_primary_10_1016_j_neuroimage_2008_03_063 crossref_primary_10_1371_journal_pbio_0050133 crossref_primary_10_1016_j_neuroimage_2009_01_017 crossref_primary_10_3389_fnhum_2021_787157 crossref_primary_10_1016_j_clinph_2012_07_009 crossref_primary_10_1002_hbm_20750 crossref_primary_10_1111_j_1460_9568_2006_04876_x crossref_primary_10_1016_j_biopsycho_2012_06_004 crossref_primary_10_1016_j_clinph_2013_02_114 crossref_primary_10_1038_s41598_021_03414_5 crossref_primary_10_1016_j_clineuro_2017_10_008 crossref_primary_10_1016_j_clinph_2012_08_048 crossref_primary_10_1002_hbm_20352 crossref_primary_10_1007_s00702_017_1719_6 crossref_primary_10_1016_j_neulet_2009_11_062 crossref_primary_10_3389_fnsys_2021_655980 crossref_primary_10_1371_journal_pone_0001094 crossref_primary_10_1016_j_braindev_2009_09_021 crossref_primary_10_1016_j_neuroimage_2007_05_029 crossref_primary_10_3389_fnins_2020_00100 crossref_primary_10_1007_s12311_023_01578_6 crossref_primary_10_1371_journal_pone_0050095 crossref_primary_10_1002_hbm_20624 |
Cites_doi | 10.1097/00001756-199212000-00006 10.1016/0304-3940(93)90886-P 10.1093/brain/121.12.2301 10.1073/pnas.97.4.1867 10.2466/pr0.1966.19.3f.1333 10.1016/0013-4694(90)90082-U 10.1016/S1388-2457(03)00067-1 10.1016/0304-3940(96)12796-8 10.1111/j.1528-1157.1997.tb01234.x 10.1093/brain/123.6.1203 10.1016/j.clinph.2004.02.012 10.1159/000394343 10.1016/S1388-2457(99)00141-8 10.1097/00001756-199705060-00045 10.1007/BF00337047 10.1016/S1388-2457(02)00333-4 10.1097/00001756-200112040-00051 10.1146/annurev.ph.55.030193.002025 10.1016/S0301-0082(99)00029-5 10.1016/S1388-2457(00)00455-7 10.1016/0306-4522(87)92965-4 10.1016/S1388-2457(99)00229-1 10.1016/S1388-2457(98)00064-9 10.1016/S0006-8993(03)03171-8 10.1016/0013-4694(65)90088-X 10.1152/jn.1998.79.1.159 10.1073/pnas.90.10.4470 10.1212/WNL.46.2.360 10.1016/S0167-8760(96)00051-7 10.1006/nimg.1995.1031 10.1093/brain/121.12.2271 10.1016/0013-4694(77)90235-8 10.1113/jphysiol.1942.sp003955 10.1016/0013-4694(95)00258-8 10.1152/physrev.1988.68.3.649 10.1016/S0304-3940(99)00734-X 10.1097/00001756-200302100-00024 10.1111/j.1749-6632.1969.tb14007.x 10.1073/pnas.89.12.5670 10.1038/382805a0 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 1XC |
DOI | 10.1111/j.1460-9568.2005.03966.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1460-9568 |
EndPage | 1235 |
ExternalDocumentID | oai_HAL_inserm_00388452v1 15813932 10_1111_j_1460_9568_2005_03966_x EJN3966 ark_67375_WNG_V3PQ74V1_8 |
Genre | article Journal Article Comparative Study |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIACR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RIG WRC WUP AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 1XC |
ID | FETCH-LOGICAL-c4736-355772601380440639afbec4d0b693418a79e65dbcd74f0e037e70e6dbbb79e33 |
IEDL.DBID | DR2 |
ISSN | 0953-816X |
IngestDate | Wed Sep 03 07:07:25 EDT 2025 Fri Jul 11 12:11:44 EDT 2025 Fri Jul 11 10:53:51 EDT 2025 Wed Feb 19 01:41:03 EST 2025 Wed Oct 01 04:38:44 EDT 2025 Thu Apr 24 23:15:58 EDT 2025 Wed Jan 22 17:07:53 EST 2025 Sun Sep 21 06:19:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4736-355772601380440639afbec4d0b693418a79e65dbcd74f0e037e70e6dbbb79e33 |
Notes | ArticleID:EJN3966 istex:9A1FD73A0CF3F25556A8F63499A535C42CF45240 ark:/67375/WNG-V3PQ74V1-8 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0003-4112-3691 |
PMID | 15813932 |
PQID | 17346620 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | hal_primary_oai_HAL_inserm_00388452v1 proquest_miscellaneous_67712208 proquest_miscellaneous_17346620 pubmed_primary_15813932 crossref_primary_10_1111_j_1460_9568_2005_03966_x crossref_citationtrail_10_1111_j_1460_9568_2005_03966_x wiley_primary_10_1111_j_1460_9568_2005_03966_x_EJN3966 istex_primary_ark_67375_WNG_V3PQ74V1_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-03 March 2005 2005-03-00 2005-Mar 20050301 |
PublicationDateYYYYMMDD | 2005-03-01 |
PublicationDate_xml | – month: 03 year: 2005 text: 2005-03 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: France |
PublicationTitle | The European journal of neuroscience |
PublicationTitleAlternate | Eur J Neurosci |
PublicationYear | 2005 |
Publisher | Blackwell Science Ltd Wiley |
Publisher_xml | – name: Blackwell Science Ltd – name: Wiley |
References | Pfurtscheller, G. & Lopes da Silva, F.H. (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol., 110, 1842-1857. Cassim, F., Monaca, C., Szurhaj, W., Bourriez, J.L., Defebvre, L., Derambure, P. & Guieu, J.D. (2001) Does post-movement beta synchronization reflect an idling motor cortex? Neuroreport, 12, 3859-3863. Schurmann, M., Basar-Eroglu, C. & Basar, E. (1997) Gamma responses in the EEG: elementary signals with multiple functional correlates. Neuroreport, 8, 1793-1796. Adrian, E.D. (1942) Olfactory reactions in the brain of the hedgehog. J. Physiol. (Lond.), 100, 459-473. Crone, N.E., Miglioretti, D.L., Gordon, B., Sieracki, J.M., Wilson, M.T., Uematsu, S. & Lesser, R. (1998a) Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain, 121, 2271-2299. Pfurtscheller, G., Graimann, B., Huggins, J.E., Levine, S.P. & Schuh, L.A. (2003) Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clin. Neurophysiol., 114, 1226-1236. Sheer, D.E., Grandstaff, N.W. & Benignus, V.A. (1966) Behavior and 40-c-sec. electrical activity in the brain. Psychol. Rep., 19, 1333-1334. Kopell, N., Ermentrout, G.B., Whittington, M.A. & Traub, R.D. (2000) Gamma rhythms and beta rhythms have different synchronization properties. Proc. Natl Acad. Sci. U.S.A., 97, 1867-1872. Szurhaj, W., Derambure, P., Labyt, E., Cassim, F., Bourriez, J.L., Isnard, J., Guieu, J.D. & Mauguiere, F. (2003) Basic mechanisms of central rhythms reactivity to preparation and execution of a voluntary movement: a stereoelectroencephalographic study. Clin. Neurophysiol., 114, 107-119. Pfurtscheller, G., Neuper, C. & Kalcher, J. (1993) 40-HZ oscillations during motor behavior in man. Neurosci. Lett., 164, 179-182. Pfurtscheller, G. & Aranibar, A. (1977) Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroenceph. Clin. Neurophysiol., 42, 817-826. Crone, N.E., Miglioretti, D.L., Gordon, B. & Lesser, R. (1998b) Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain, 121, 2301-2315. Nunez, P.L. & Katznelson, R.D. (1981) Electric Fields of the Brain. Oxford University Press, New York. Bouyer, J.J., Montarom, M.F., Vahnee, J.M., Albert, M.P. & Rougeul, A. (1987) Anatomical localization of cortical beta rhythms in cat. Neuroscience, 22, 863-869. Aoki, F., Fetz, E.E., Shupe, L., Lettich, E. & Ojemann, G.A. (1999) Increased gamma-range activity in human sensorimotor cortex during performance of visuomotor tasks. Clin. Neurophysiol., 110 (3), 524-537. Nathan, S.S., Lesser, R.P., Gordon, B. & Thakor, N.V. (1993) Electrical stimulation of the human cerebral cortex. Theoretical approach. Adv. Neurol., 63, 61-85. Tecchio, F., Babiloni, C., Zappasodi, F., Vecchio, F., Pizzella, V., Romani, G.L. & Rossini, P.M. (2003) Gamma synchronization in human primary somatosensory cortex as revealed by somatosensory evoked neuromagnetic fields. Brain Res., 986, 63-70. Geyer, S., Ledberg, A., Schleicher, A., Kinomura, S., Schormann, T., Burgel, U., Klingberg, T., Larsson, J., Zilles, K. & Roland, P.E. (1996) Two different areas within the primary motor of man. Nature, 382, 805-807. Talairach, J. & Bancaud, J. (1973) Stereotaxic approach to epilepsy. Methodology of anatomo-functional stereotaxic investigations. Prog. Neurol. Surg., 5, 297-354. Pfurtscheller, G., Stancak, A. & Neuper, C. (1996) Post-movement beta synchronisation. A correlate of an idling motor area? Electroenceph. Clin. Neurophysiol., 98, 281-293. Basar-Eroglu, C., Struber, D., Schurmann, M., Stadler, M. & Basar, E. (1996) Gamma-band responses in the brain: a short review of psychophysiological correlates and functional significance. Int. J. Psychophysiol., 24, 101-112. Murthy, V.N. & Fetz, E.E. (1992) Coherent 25- to 35-HZ oscillations in the sensorimotor cortex of awake behaving monkeys. Proc. Natl Acad. Sci. U.S.A., 89, 5670-5674. Salmelin, R., Hamalainen, M., Kajola, M. & Hari, R. (1995) Functional segregation of movement-related rhythmic activity in the human brain. Neuroimage, 2, 237-243. Balzamo, E., Marquis, P., Chauvel, P. & Regis, J. (2004) Short-latency components of evoked potentials to median nerve stimulation recorded by intracerebral electrodes in the human pre- and postcentral areas. Clin. Neurophysiol., 115, 1616-1623. Brown, P. (2000) Cortical drives to human muscle: the Piper and related rhythms. Prog. Neurobiol., 60, 97-108. Singer, W. (1993) Synchronization of cortical activity and its putative role in information processing and learning. Ann. Rev. Physiol., 55, 349-374. Mima, T., Steger, J., Schulman, A.E., Gerloff, C. & Hallett, M. (2000) Electroencephalographic measurement of motor cortex control of muscle activity in humans. Clin. Neurophysiol., 111, 326-337. Ihara, A., Hirata, M., Yanagihara, K., Ninomiya, H., Imai, K., Ishii, R., Osaki, Y., Sakihara, K., Izumi, H., Imaoka, H., Kato, A., Yoshimine, T. & Yorifuji, S. (2003) Neuromagnetic gamma-band activity in the primary and secondary somatosensory areas. Neuroreport, 14, 273-277. Ohara, S., Ikeda, A., Kunieda, T., Yazawa, S., Baba, K., Nagamine, T., Taki, W., Hashimoto, N., Mihara, T. & Shibasaki, H. (2000) Movement-related change of electrocorticographic activity in human supplementary motor area proper. Brain, 123, 1203-1215. Nii, Y., Uematsu, S., Lesser, R.P. & Gordon, B. (1996) Does the central sulcus divide motor and sensory functions? Cortical mapping of human hand areas as revealed by electrical stimulation through subdural grid electrodes. Neurology, 46, 360-367. Donoghue, J.P., Sanes, J.N., Hatsopoulos, N.G. & Gaal, G. (1998) Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. J. Neurophysiol., 79, 159-173. Steriade, M. & Llinas, R. (1988) The functional states of the thalamus and the associated neuronal interplay. Physiol. Rev., 68, 481-508. Talairach, J. & Tournoux, P. (1988) Co-Planar Stereotaxic Atlas of the Human Brain. Thieme, New York. Cassim, F., Szurhaj, W., Sediri, H., Devos, D., Bourriez, J.L., Poirot, I., Derambure, P., Defebvre, L. & Guieu, J.D. (2000) Brief and sustained movements: differences in event-related (de)synchronization (ERD/ERS) patterns. Clin. Neurophysiol., 111, 2032-2039. Pfurtscheller, G. & Neuper, C. (1992) Simultaneous EEG 10 HZ desynchronization and 40 HZ synchronization during finger movements. Neuroreport, 3, 1057-1060. Cooper, R., Winter, A.L., Crow, H.J. & Grey Walter, W. (1965) Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man. Electroenceph. Clin. Neurophysiol., 18, 217-228. Freeman, W.J. (1975) Mass Action in the Nervous System. Academic Press, New York. Van der Tweel, L.H. & Spekreijse, H. (1969) Signal transport and rectification in the human evoked response system. Ann. N.Y. Acad. Sci., 156, 678-695. Derambure, P., Bourriez, J.L., Defebvre, L., Cassim, F., Josien, E., Duhamel, A., Destée, A. & Guieu, J.D. (1997) Abnormal cortical activation during planning of voluntary movement in epileptic patients with focal motor seizures: movement-related desynchronization study of electroencephalographic mu rhythm. Epilepsia, 38, 655-662. Mima, T., Simpkins, N., Oluwatimilehin, T. & Hallett, M. (1999) Force level modulates human cortical oscillatory activities. Neurosci. Lett., 275, 77-80. Sanes, J.N. & Donoghue, J.P. (1993) Oscillations in local field potentials of the primate motor cortex during voluntary movement. Proc. Natl Acad. Sci. U.S.A., 90, 4470-4474. Salenius, S., Salmelin, R., Neuper, C., Pfurtscheller, G. & Hari, R. (1996) Human cortical 40 HZ rhythm is closely related to EMG rhythmicity. Neurosci. Lett., 213, 75-78. Gordon, B., Lesser, R.P., Rance, N.E., Hart, J. Jr, Webber, R., Uematsu, S. & Fisher, R.S. (1990) Parameters for direct cortical electrical stimulation in the human: histopathologic confirmation. Electroencephalogr. Clin. Neurophysiol., 75, 371-377. Basar, E., Gander, A. & Ungan, P. (1976) Important relation between EEG and brain evoked potentials. II. A system analysis of electrical signals from the human brain. Biol. Cybemet., 25, 41-48. 1990; 75 1966; 19 1976; 25 1942; 100 1993; 63 1996; 382 1975 2003; 14 1977; 42 1993; 90 2000; 111 1995; 2 2003; 114 1965; 18 1996; 98 1993; 164 1997; 8 1987; 22 1998b; 121 2004; 115 2003; 986 1993; 55 2000; 97 1999; 110 1998a; 121 1999; 275 2000; 60 1997; 38 1988; 68 1983 1981 2000; 123 1973; 5 1996; 24 2001; 12 1996; 46 1996; 213 1992; 89 1992; 3 1969; 156 1998; 79 1988 e_1_2_19_28_1 e_1_2_19_29_1 e_1_2_19_26_1 Jones E.G. (e_1_2_19_20_1) 1983 e_1_2_19_43_1 e_1_2_19_21_1 e_1_2_19_42_1 e_1_2_19_40_1 e_1_2_19_24_1 e_1_2_19_46_1 e_1_2_19_22_1 Steriade M. (e_1_2_19_41_1) 1988; 68 e_1_2_19_45_1 e_1_2_19_23_1 e_1_2_19_9_1 e_1_2_19_8_1 e_1_2_19_7_1 Freeman W.J. (e_1_2_19_16_1) 1975 e_1_2_19_6_1 e_1_2_19_4_1 e_1_2_19_3_1 e_1_2_19_2_1 Basar E. (e_1_2_19_5_1) 1976; 25 e_1_2_19_39_1 e_1_2_19_15_1 e_1_2_19_18_1 e_1_2_19_37_1 e_1_2_19_17_1 e_1_2_19_38_1 e_1_2_19_19_1 Nathan S.S. (e_1_2_19_25_1) 1993; 63 e_1_2_19_31_1 e_1_2_19_32_1 e_1_2_19_10_1 e_1_2_19_30_1 e_1_2_19_12_1 e_1_2_19_35_1 e_1_2_19_11_1 e_1_2_19_36_1 e_1_2_19_14_1 e_1_2_19_33_1 e_1_2_19_13_1 e_1_2_19_34_1 Talairach J. (e_1_2_19_44_1) 1988 Nunez P.L. (e_1_2_19_27_1) 1981 |
References_xml | – reference: Ohara, S., Ikeda, A., Kunieda, T., Yazawa, S., Baba, K., Nagamine, T., Taki, W., Hashimoto, N., Mihara, T. & Shibasaki, H. (2000) Movement-related change of electrocorticographic activity in human supplementary motor area proper. Brain, 123, 1203-1215. – reference: Talairach, J. & Tournoux, P. (1988) Co-Planar Stereotaxic Atlas of the Human Brain. Thieme, New York. – reference: Steriade, M. & Llinas, R. (1988) The functional states of the thalamus and the associated neuronal interplay. Physiol. Rev., 68, 481-508. – reference: Sanes, J.N. & Donoghue, J.P. (1993) Oscillations in local field potentials of the primate motor cortex during voluntary movement. Proc. Natl Acad. Sci. U.S.A., 90, 4470-4474. – reference: Bouyer, J.J., Montarom, M.F., Vahnee, J.M., Albert, M.P. & Rougeul, A. (1987) Anatomical localization of cortical beta rhythms in cat. Neuroscience, 22, 863-869. – reference: Pfurtscheller, G. & Lopes da Silva, F.H. (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol., 110, 1842-1857. – reference: Schurmann, M., Basar-Eroglu, C. & Basar, E. (1997) Gamma responses in the EEG: elementary signals with multiple functional correlates. Neuroreport, 8, 1793-1796. – reference: Geyer, S., Ledberg, A., Schleicher, A., Kinomura, S., Schormann, T., Burgel, U., Klingberg, T., Larsson, J., Zilles, K. & Roland, P.E. (1996) Two different areas within the primary motor of man. Nature, 382, 805-807. – reference: Gordon, B., Lesser, R.P., Rance, N.E., Hart, J. Jr, Webber, R., Uematsu, S. & Fisher, R.S. (1990) Parameters for direct cortical electrical stimulation in the human: histopathologic confirmation. Electroencephalogr. Clin. Neurophysiol., 75, 371-377. – reference: Pfurtscheller, G. & Neuper, C. (1992) Simultaneous EEG 10 HZ desynchronization and 40 HZ synchronization during finger movements. Neuroreport, 3, 1057-1060. – reference: Salmelin, R., Hamalainen, M., Kajola, M. & Hari, R. (1995) Functional segregation of movement-related rhythmic activity in the human brain. Neuroimage, 2, 237-243. – reference: Tecchio, F., Babiloni, C., Zappasodi, F., Vecchio, F., Pizzella, V., Romani, G.L. & Rossini, P.M. (2003) Gamma synchronization in human primary somatosensory cortex as revealed by somatosensory evoked neuromagnetic fields. Brain Res., 986, 63-70. – reference: Nii, Y., Uematsu, S., Lesser, R.P. & Gordon, B. (1996) Does the central sulcus divide motor and sensory functions? Cortical mapping of human hand areas as revealed by electrical stimulation through subdural grid electrodes. Neurology, 46, 360-367. – reference: Sheer, D.E., Grandstaff, N.W. & Benignus, V.A. (1966) Behavior and 40-c-sec. electrical activity in the brain. Psychol. Rep., 19, 1333-1334. – reference: Cooper, R., Winter, A.L., Crow, H.J. & Grey Walter, W. (1965) Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man. Electroenceph. Clin. Neurophysiol., 18, 217-228. – reference: Nathan, S.S., Lesser, R.P., Gordon, B. & Thakor, N.V. (1993) Electrical stimulation of the human cerebral cortex. Theoretical approach. Adv. Neurol., 63, 61-85. – reference: Singer, W. (1993) Synchronization of cortical activity and its putative role in information processing and learning. Ann. Rev. Physiol., 55, 349-374. – reference: Pfurtscheller, G., Graimann, B., Huggins, J.E., Levine, S.P. & Schuh, L.A. (2003) Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clin. Neurophysiol., 114, 1226-1236. – reference: Derambure, P., Bourriez, J.L., Defebvre, L., Cassim, F., Josien, E., Duhamel, A., Destée, A. & Guieu, J.D. (1997) Abnormal cortical activation during planning of voluntary movement in epileptic patients with focal motor seizures: movement-related desynchronization study of electroencephalographic mu rhythm. Epilepsia, 38, 655-662. – reference: Brown, P. (2000) Cortical drives to human muscle: the Piper and related rhythms. Prog. Neurobiol., 60, 97-108. – reference: Cassim, F., Szurhaj, W., Sediri, H., Devos, D., Bourriez, J.L., Poirot, I., Derambure, P., Defebvre, L. & Guieu, J.D. (2000) Brief and sustained movements: differences in event-related (de)synchronization (ERD/ERS) patterns. Clin. Neurophysiol., 111, 2032-2039. – reference: Adrian, E.D. (1942) Olfactory reactions in the brain of the hedgehog. J. Physiol. (Lond.), 100, 459-473. – reference: Van der Tweel, L.H. & Spekreijse, H. (1969) Signal transport and rectification in the human evoked response system. Ann. N.Y. Acad. Sci., 156, 678-695. – reference: Mima, T., Simpkins, N., Oluwatimilehin, T. & Hallett, M. (1999) Force level modulates human cortical oscillatory activities. Neurosci. Lett., 275, 77-80. – reference: Ihara, A., Hirata, M., Yanagihara, K., Ninomiya, H., Imai, K., Ishii, R., Osaki, Y., Sakihara, K., Izumi, H., Imaoka, H., Kato, A., Yoshimine, T. & Yorifuji, S. (2003) Neuromagnetic gamma-band activity in the primary and secondary somatosensory areas. Neuroreport, 14, 273-277. – reference: Basar, E., Gander, A. & Ungan, P. (1976) Important relation between EEG and brain evoked potentials. II. A system analysis of electrical signals from the human brain. Biol. Cybemet., 25, 41-48. – reference: Donoghue, J.P., Sanes, J.N., Hatsopoulos, N.G. & Gaal, G. (1998) Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. J. Neurophysiol., 79, 159-173. – reference: Pfurtscheller, G. & Aranibar, A. (1977) Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroenceph. Clin. Neurophysiol., 42, 817-826. – reference: Murthy, V.N. & Fetz, E.E. (1992) Coherent 25- to 35-HZ oscillations in the sensorimotor cortex of awake behaving monkeys. Proc. Natl Acad. Sci. U.S.A., 89, 5670-5674. – reference: Salenius, S., Salmelin, R., Neuper, C., Pfurtscheller, G. & Hari, R. (1996) Human cortical 40 HZ rhythm is closely related to EMG rhythmicity. Neurosci. Lett., 213, 75-78. – reference: Crone, N.E., Miglioretti, D.L., Gordon, B., Sieracki, J.M., Wilson, M.T., Uematsu, S. & Lesser, R. (1998a) Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain, 121, 2271-2299. – reference: Freeman, W.J. (1975) Mass Action in the Nervous System. Academic Press, New York. – reference: Crone, N.E., Miglioretti, D.L., Gordon, B. & Lesser, R. (1998b) Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain, 121, 2301-2315. – reference: Pfurtscheller, G., Neuper, C. & Kalcher, J. (1993) 40-HZ oscillations during motor behavior in man. Neurosci. Lett., 164, 179-182. – reference: Aoki, F., Fetz, E.E., Shupe, L., Lettich, E. & Ojemann, G.A. (1999) Increased gamma-range activity in human sensorimotor cortex during performance of visuomotor tasks. Clin. Neurophysiol., 110 (3), 524-537. – reference: Balzamo, E., Marquis, P., Chauvel, P. & Regis, J. (2004) Short-latency components of evoked potentials to median nerve stimulation recorded by intracerebral electrodes in the human pre- and postcentral areas. Clin. Neurophysiol., 115, 1616-1623. – reference: Cassim, F., Monaca, C., Szurhaj, W., Bourriez, J.L., Defebvre, L., Derambure, P. & Guieu, J.D. (2001) Does post-movement beta synchronization reflect an idling motor cortex? Neuroreport, 12, 3859-3863. – reference: Basar-Eroglu, C., Struber, D., Schurmann, M., Stadler, M. & Basar, E. (1996) Gamma-band responses in the brain: a short review of psychophysiological correlates and functional significance. Int. J. Psychophysiol., 24, 101-112. – reference: Mima, T., Steger, J., Schulman, A.E., Gerloff, C. & Hallett, M. (2000) Electroencephalographic measurement of motor cortex control of muscle activity in humans. Clin. Neurophysiol., 111, 326-337. – reference: Nunez, P.L. & Katznelson, R.D. (1981) Electric Fields of the Brain. Oxford University Press, New York. – reference: Szurhaj, W., Derambure, P., Labyt, E., Cassim, F., Bourriez, J.L., Isnard, J., Guieu, J.D. & Mauguiere, F. (2003) Basic mechanisms of central rhythms reactivity to preparation and execution of a voluntary movement: a stereoelectroencephalographic study. Clin. Neurophysiol., 114, 107-119. – reference: Kopell, N., Ermentrout, G.B., Whittington, M.A. & Traub, R.D. (2000) Gamma rhythms and beta rhythms have different synchronization properties. Proc. Natl Acad. Sci. U.S.A., 97, 1867-1872. – reference: Pfurtscheller, G., Stancak, A. & Neuper, C. (1996) Post-movement beta synchronisation. A correlate of an idling motor area? Electroenceph. Clin. Neurophysiol., 98, 281-293. – reference: Talairach, J. & Bancaud, J. (1973) Stereotaxic approach to epilepsy. Methodology of anatomo-functional stereotaxic investigations. Prog. Neurol. Surg., 5, 297-354. – volume: 111 start-page: 2032 year: 2000 end-page: 2039 article-title: Brief and sustained movements: differences in event‐related (de)synchronization (ERD/ERS) patterns publication-title: Clin. Neurophysiol. – volume: 68 start-page: 481 year: 1988 end-page: 508 article-title: The functional states of the thalamus and the associated neuronal interplay publication-title: Physiol. Rev. – volume: 22 start-page: 863 year: 1987 end-page: 869 article-title: Anatomical localization of cortical beta rhythms in cat publication-title: Neuroscience – volume: 111 start-page: 326 year: 2000 end-page: 337 article-title: Electroencephalographic measurement of motor cortex control of muscle activity in humans publication-title: Clin. Neurophysiol. – volume: 986 start-page: 63 year: 2003 end-page: 70 article-title: Gamma synchronization in human primary somatosensory cortex as revealed by somatosensory evoked neuromagnetic fields publication-title: Brain Res. – year: 1981 – volume: 382 start-page: 805 year: 1996 end-page: 807 article-title: Two different areas within the primary motor of man publication-title: Nature – volume: 98 start-page: 281 year: 1996 end-page: 293 article-title: Post‐movement beta synchronisation. A correlate of an idling motor area? publication-title: Electroenceph. Clin. Neurophysiol. – year: 1975 – volume: 97 start-page: 1867 year: 2000 end-page: 1872 article-title: Gamma rhythms and beta rhythms have different synchronization properties publication-title: Proc. Natl Acad. Sci. U.S.A. – volume: 42 start-page: 817 year: 1977 end-page: 826 article-title: Event‐related cortical desynchronization detected by power measurements of scalp EEG publication-title: Electroenceph. Clin. Neurophysiol. – volume: 114 start-page: 1226 year: 2003 end-page: 1236 article-title: Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self‐paced movement publication-title: Clin. Neurophysiol. – volume: 89 start-page: 5670 year: 1992 end-page: 5674 article-title: Coherent 25‐ to 35‐HZ oscillations in the sensorimotor cortex of awake behaving monkeys publication-title: Proc. Natl Acad. Sci. U.S.A. – volume: 164 start-page: 179 year: 1993 end-page: 182 article-title: 40‐HZ oscillations during motor behavior in man publication-title: Neurosci. Lett. – volume: 19 start-page: 1333 year: 1966 end-page: 1334 article-title: Behavior and 40‐c‐sec. electrical activity in the brain publication-title: Psychol. Rep. – volume: 3 start-page: 1057 year: 1992 end-page: 1060 article-title: Simultaneous EEG 10 HZ desynchronization and 40 HZ synchronization during finger movements publication-title: Neuroreport – volume: 18 start-page: 217 year: 1965 end-page: 228 article-title: Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man publication-title: Electroenceph. Clin. Neurophysiol. – volume: 14 start-page: 273 year: 2003 end-page: 277 article-title: Neuromagnetic gamma‐band activity in the primary and secondary somatosensory areas publication-title: Neuroreport – volume: 63 start-page: 61 year: 1993 end-page: 85 article-title: Electrical stimulation of the human cerebral cortex. Theoretical approach publication-title: Adv. Neurol. – volume: 12 start-page: 3859 year: 2001 end-page: 3863 article-title: Does post‐movement beta synchronization reflect an idling motor cortex? publication-title: Neuroreport – volume: 46 start-page: 360 year: 1996 end-page: 367 article-title: Does the central sulcus divide motor and sensory functions? Cortical mapping of human hand areas as revealed by electrical stimulation through subdural grid electrodes publication-title: Neurology – volume: 123 start-page: 1203 year: 2000 end-page: 1215 article-title: Movement‐related change of electrocorticographic activity in human supplementary motor area proper publication-title: Brain – volume: 100 start-page: 459 year: 1942 end-page: 473 article-title: Olfactory reactions in the brain of the hedgehog publication-title: J. Physiol. (Lond.) – volume: 24 start-page: 101 year: 1996 end-page: 112 article-title: Gamma‐band responses in the brain: a short review of psychophysiological correlates and functional significance publication-title: Int. J. Psychophysiol. – volume: 110 start-page: 1842 year: 1999 end-page: 1857 article-title: Event‐related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin. Neurophysiol. – volume: 5 start-page: 297 year: 1973 end-page: 354 article-title: Stereotaxic approach to epilepsy. Methodology of anatomo‐functional stereotaxic investigations publication-title: Prog. Neurol. Surg. – volume: 213 start-page: 75 year: 1996 end-page: 78 article-title: Human cortical 40 HZ rhythm is closely related to EMG rhythmicity publication-title: Neurosci. Lett. – volume: 156 start-page: 678 year: 1969 end-page: 695 article-title: Signal transport and rectification in the human evoked response system publication-title: Ann. N.Y. Acad. Sci. – year: 1988 – volume: 75 start-page: 371 year: 1990 end-page: 377 article-title: Parameters for direct cortical electrical stimulation in the human: histopathologic confirmation publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 25 start-page: 41 year: 1976 end-page: 48 article-title: Important relation between EEG and brain evoked potentials. II. A system analysis of electrical signals from the human brain publication-title: Biol. Cybemet. – volume: 121 start-page: 2301 year: 1998b end-page: 2315 article-title: Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event‐related synchronization in the gamma band publication-title: Brain – volume: 110 start-page: 524 issue: 3 year: 1999 end-page: 537 article-title: Increased gamma‐range activity in human sensorimotor cortex during performance of visuomotor tasks publication-title: Clin. Neurophysiol. – volume: 114 start-page: 107 year: 2003 end-page: 119 article-title: Basic mechanisms of central rhythms reactivity to preparation and execution of a voluntary movement: a stereoelectroencephalographic study publication-title: Clin. Neurophysiol. – volume: 115 start-page: 1616 year: 2004 end-page: 1623 article-title: Short‐latency components of evoked potentials to median nerve stimulation recorded by intracerebral electrodes in the human pre‐ and postcentral areas publication-title: Clin. Neurophysiol. – volume: 8 start-page: 1793 year: 1997 end-page: 1796 article-title: Gamma responses in the EEG: elementary signals with multiple functional correlates publication-title: Neuroreport – start-page: 263 year: 1983 end-page: 285 – volume: 2 start-page: 237 year: 1995 end-page: 243 article-title: Functional segregation of movement‐related rhythmic activity in the human brain publication-title: Neuroimage – volume: 55 start-page: 349 year: 1993 end-page: 374 article-title: Synchronization of cortical activity and its putative role in information processing and learning publication-title: Ann. Rev. Physiol. – volume: 60 start-page: 97 year: 2000 end-page: 108 article-title: Cortical drives to human muscle: the Piper and related rhythms publication-title: Prog. Neurobiol. – volume: 121 start-page: 2271 year: 1998a end-page: 2299 article-title: Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event‐related desynchronization publication-title: Brain – volume: 38 start-page: 655 year: 1997 end-page: 662 article-title: Abnormal cortical activation during planning of voluntary movement in epileptic patients with focal motor seizures: movement‐related desynchronization study of electroencephalographic mu rhythm publication-title: Epilepsia – volume: 79 start-page: 159 year: 1998 end-page: 173 article-title: Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements publication-title: J. Neurophysiol. – volume: 90 start-page: 4470 year: 1993 end-page: 4474 article-title: Oscillations in local field potentials of the primate motor cortex during voluntary movement publication-title: Proc. Natl Acad. Sci. U.S.A. – volume: 275 start-page: 77 year: 1999 end-page: 80 article-title: Force level modulates human cortical oscillatory activities publication-title: Neurosci. Lett. – ident: e_1_2_19_31_1 doi: 10.1097/00001756-199212000-00006 – ident: e_1_2_19_32_1 doi: 10.1016/0304-3940(93)90886-P – ident: e_1_2_19_13_1 doi: 10.1093/brain/121.12.2301 – ident: e_1_2_19_21_1 doi: 10.1073/pnas.97.4.1867 – ident: e_1_2_19_39_1 doi: 10.2466/pr0.1966.19.3f.1333 – ident: e_1_2_19_18_1 doi: 10.1016/0013-4694(90)90082-U – ident: e_1_2_19_34_1 doi: 10.1016/S1388-2457(03)00067-1 – ident: e_1_2_19_35_1 doi: 10.1016/0304-3940(96)12796-8 – ident: e_1_2_19_14_1 doi: 10.1111/j.1528-1157.1997.tb01234.x – ident: e_1_2_19_28_1 doi: 10.1093/brain/123.6.1203 – ident: e_1_2_19_4_1 doi: 10.1016/j.clinph.2004.02.012 – ident: e_1_2_19_43_1 doi: 10.1159/000394343 – ident: e_1_2_19_30_1 doi: 10.1016/S1388-2457(99)00141-8 – ident: e_1_2_19_38_1 doi: 10.1097/00001756-199705060-00045 – volume: 25 start-page: 41 year: 1976 ident: e_1_2_19_5_1 article-title: Important relation between EEG and brain evoked potentials. II. A system analysis of electrical signals from the human brain publication-title: Biol. Cybemet. doi: 10.1007/BF00337047 – start-page: 263 volume-title: Motor Control. Mechanisms in Health and Disease year: 1983 ident: e_1_2_19_20_1 – ident: e_1_2_19_42_1 doi: 10.1016/S1388-2457(02)00333-4 – ident: e_1_2_19_10_1 doi: 10.1097/00001756-200112040-00051 – ident: e_1_2_19_40_1 doi: 10.1146/annurev.ph.55.030193.002025 – ident: e_1_2_19_8_1 doi: 10.1016/S0301-0082(99)00029-5 – ident: e_1_2_19_9_1 doi: 10.1016/S1388-2457(00)00455-7 – ident: e_1_2_19_7_1 doi: 10.1016/0306-4522(87)92965-4 – ident: e_1_2_19_23_1 doi: 10.1016/S1388-2457(99)00229-1 – ident: e_1_2_19_3_1 doi: 10.1016/S1388-2457(98)00064-9 – ident: e_1_2_19_45_1 doi: 10.1016/S0006-8993(03)03171-8 – ident: e_1_2_19_11_1 doi: 10.1016/0013-4694(65)90088-X – volume-title: Electric Fields of the Brain year: 1981 ident: e_1_2_19_27_1 – ident: e_1_2_19_15_1 doi: 10.1152/jn.1998.79.1.159 – ident: e_1_2_19_37_1 doi: 10.1073/pnas.90.10.4470 – ident: e_1_2_19_26_1 doi: 10.1212/WNL.46.2.360 – ident: e_1_2_19_6_1 doi: 10.1016/S0167-8760(96)00051-7 – ident: e_1_2_19_36_1 doi: 10.1006/nimg.1995.1031 – ident: e_1_2_19_12_1 doi: 10.1093/brain/121.12.2271 – volume: 63 start-page: 61 year: 1993 ident: e_1_2_19_25_1 article-title: Electrical stimulation of the human cerebral cortex. Theoretical approach publication-title: Adv. Neurol. – ident: e_1_2_19_29_1 doi: 10.1016/0013-4694(77)90235-8 – ident: e_1_2_19_2_1 doi: 10.1113/jphysiol.1942.sp003955 – ident: e_1_2_19_33_1 doi: 10.1016/0013-4694(95)00258-8 – volume: 68 start-page: 481 year: 1988 ident: e_1_2_19_41_1 article-title: The functional states of the thalamus and the associated neuronal interplay publication-title: Physiol. Rev. doi: 10.1152/physrev.1988.68.3.649 – volume-title: Co‐Planar Stereotaxic Atlas of the Human Brain year: 1988 ident: e_1_2_19_44_1 – ident: e_1_2_19_22_1 doi: 10.1016/S0304-3940(99)00734-X – ident: e_1_2_19_19_1 doi: 10.1097/00001756-200302100-00024 – ident: e_1_2_19_46_1 doi: 10.1111/j.1749-6632.1969.tb14007.x – volume-title: Mass Action in the Nervous System year: 1975 ident: e_1_2_19_16_1 – ident: e_1_2_19_24_1 doi: 10.1073/pnas.89.12.5670 – ident: e_1_2_19_17_1 doi: 10.1038/382805a0 |
SSID | ssj0008645 |
Score | 2.055933 |
Snippet | The generators and functional correlates of gamma oscillations within the sensorimotor cortex remain unclear. With the goal of locating the oscillations'... |
SourceID | hal proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1223 |
SubjectTerms | Adolescent Adult Brain Mapping Electric Stimulation Electric Stimulation - methods Electrodes Electroencephalography Electroencephalography - classification Electromyography Electromyography - methods Epilepsy, Frontal Lobe Epilepsy, Frontal Lobe - physiopathology event-related oscillations Evoked Potentials Evoked Potentials - physiology Female Functional Laterality Functional Laterality - physiology gamma-band response human brain Humans Male Movement Movement - physiology Psychomotor Performance Psychomotor Performance - physiology Somatosensory Cortex Somatosensory Cortex - anatomy & histology Somatosensory Cortex - physiopathology Stereotaxic Techniques stereotaxy |
Title | Intracerebral study of gamma rhythm reactivity in the sensorimotor cortex |
URI | https://api.istex.fr/ark:/67375/WNG-V3PQ74V1-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1460-9568.2005.03966.x https://www.ncbi.nlm.nih.gov/pubmed/15813932 https://www.proquest.com/docview/17346620 https://www.proquest.com/docview/67712208 https://inserm.hal.science/inserm-00388452 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1460-9568 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0008645 issn: 0953-816X databaseCode: ABDBF dateStart: 19980101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0953-816X databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1460-9568 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008645 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgPMALg42PjC8_wN5S2XFip4_VtNFNUAFio2-W4zjr1CVBaYs6_nrunLRTpyFNiLdIsS2dfWf_fHf-HSHvCyQdNzwPC8lliPwkYd_BgjDbd7lRsU0Fvkb-PJLD0_hknIy7_Cd8C9PyQ6wdbmgZfr9GAzfZ7KaRsxCfu3WuEQHQvYd4kovER2y_XTNJpdLXK0Z2tTDlcryZ1HPrQBsn1f0J5kk-wKlf3gZGN7GtP5yOtsl0JVabkzLtLeZZz_6-wfj4f-R-Qh53GJYOWqV7Su65aofsDiq4v5dXdJ_6rFLvrt8hDw9WFeV2yfExepKtazBYfUk9sy2tC3puytLQZnI1n5QUQKxtK1rQi4oCPKUzuGnXDepU3VCLycHLZ-T06PD7wTDsSjmENlZChoBqAMZLDItijWuARaYA7Ylzlsk-HKSpUX0nkzyzuYoL5phQTjEn8yzL4I8Qz8lWVVfuJaGspYy3aSFNjHR1UQwQLjHWMF4AHAmIWi2bth3POZbbuNQb9x2mcQaxCmei_QzqZUD4uufPluvjDn0-gGasmyNZ93DwSV9UsIGUSLyapnES_eIB2fe6s25pminm1KlE_xh91Gfiy1cVn3GdBuTdSrk0LA-Gb0zl6sVMcyViKSP29xZSKR5FDMZ40WrltRhJClBfRAGRXrfuLJ8-PBnh196_dnxFHnm2W5-295pszZuFewM4bp699Rb6B3UINPs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgexgvfGwwwtf8AHtL5SSOnT5WY6MdXQVoG32zHMeh05oEZS3q-Ou5c9JOnYY0Id4ixbZ09p398935d4S8z5F0XAeZn4tA-MhP4nctLAgzXZtpyU0S4Wvkk5Hon_HjcTxuywHhW5iGH2LlcEPLcPs1Gjg6pG9bOfPxvVvrG4kAu3cAUG5iuA6t9OO3Gy6pRLiKxciv5ieBGK-n9dw50tpZ9XCCmZKbOPmLu-DoOrp1x9PREzJdCtZkpVx25rO0Y37f4nz8T5I_JY9bGEt7jd49Iw9suU12eiVc4Ytruk9dYqnz2G-TrYNlUbkdMhigM9nYGuPVU-rIbWmV0x-6KDStJ9ezSUEBx5qmqAW9KCkgVHoFl-2qRrWqamowP3jxnJwdHZ4e9P22moNvuIyED8AGkLzAyCiWuQZkpHNQIJ6xVHThLE207FoRZ6nJJM-ZZZG0klmRpWkKf6LoBdkoq9K-JJQ1rPEmyYXmyFgXckBxsTaaBTkgEo_I5bop01KdY8WNqVq78jCFM4iFOGPlZlAtPBKsev5s6D7u0ecDqMaqOfJ193tDdVHCHlIg92qS8Dj8FXhk3ynPqqWuLzGtTsbq--iTOo--fJX8PFCJR_aW2qVgeTCCo0tbza9UICMuRMj-3kJIGYQhgzF2G7W8ESNOAO1HoUeEU657y6cOj0f49epfO-6Rrf7pyVANB6PPr8kjR37rsvjekI1ZPbdvAdbN0nfOXP8Azfg5Fw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgk4AXPjY-wtf8AHtL5SSOnT5W20o7RjUQG32zHMehU5dkylrU8ddz56SdOg1pQrxFiR3p7Dv7d-fz7wj5kCPpuA4yPxeB8JGfxO9amBBmujbTkpskwtvIX0ZicMIPx_G4zX_CuzANP8Qq4IaW4dZrNPCLLL9p5MzH625taCQC6N4BPLkJ70N0xPa_XVNJJcIVLEZ6NT8JxHg9q-fWP61tVfcnmCi5iWO_uA2NroNbtzv1n5DpUq4mKWXamc_Sjvl9g_Lx_wj-lDxuQSztNVr3jNyz5RbZ7pXgwBdXdJe6tFIXr98iD_eWJeW2yXCIoWRjazytPqeO2pZWOf2pi0LTenI1mxQUUKxpSlrQs5ICPqWX4GpXNSpVVVOD2cGL5-Skf_B9b-C3tRx8w2UkfIA1gOMFnotikWvARToH9eEZS0UXdtJEy64VcZaaTPKcWRZJK5kVWZqm8CWKXpCNsirtK0JZwxlvklxojnx1IQcMF2ujWZADHvGIXE6bMi3ROdbbOFdrDg9TOIJYhjNWbgTVwiPBqudFQ_Zxhz4fQTNWzZGte9A7UmclrCAFMq8mCY_DX4FHdp3urFrqeopJdTJWP0af1Gl0_FXy00AlHtlZKpeC6cHzG13aan6pAhlxIUL29xZCyiAMGfzjZaOV12LECWD9KPSIcLp1Z_nUweEIn17_a8cd8uB4v6-OhqPPb8gjx3zrUvjeko1ZPbfvANPN0vfOWP8A2Mw3xg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intracerebral+study+of+gamma+rhythm+reactivity+in+the+sensorimotor+cortex&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Szurhaj%2C+William&rft.au=Bourriez%2C+Jean%E2%80%90Louis&rft.au=Kahane%2C+Philippe&rft.au=Chauvel%2C+Patrick&rft.date=2005-03-01&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=21&rft.issue=5&rft.spage=1223&rft.epage=1235&rft_id=info:doi/10.1111%2Fj.1460-9568.2005.03966.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1460_9568_2005_03966_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |