Speed improvements of peptide-spectrum matching using Single-Instruction Multiple-Data instructions

Peptide–spectrum matching is one of the most time‐consuming portion of the database search method for assignment of tandem mass spectra to peptides. In this study, we develop a parallel algorithm for peptide–spectrum matching using Single‐Instruction Multiple Data (SIMD) instructions. Unlike other p...

Full description

Saved in:
Bibliographic Details
Published inProteomics (Weinheim) Vol. 11; no. 19; pp. 3779 - 3785
Main Authors Zhang, Jian, McQuillan, Ian, Wu, Fang-Xiang
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.10.2011
WILEY‐VCH Verlag
Wiley-VCH
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1615-9853
1615-9861
1615-9861
DOI10.1002/pmic.201100182

Cover

Abstract Peptide–spectrum matching is one of the most time‐consuming portion of the database search method for assignment of tandem mass spectra to peptides. In this study, we develop a parallel algorithm for peptide–spectrum matching using Single‐Instruction Multiple Data (SIMD) instructions. Unlike other parallel algorithms in peptide–spectrum matching, our algorithm parallelizes the computation of matches between a single spectrum and a given peptide sequence from the database. It also significantly reduces the number of comparison operations. Extra improvements are obtained by using SIMD instructions to avoid conditional branches and unnecessary memory access within the algorithm. The implementation of the developed algorithm is based on the Streaming SIMD Extensions technology that is embedded in most Intel microprocessors. Similar technology also exists in other modern microprocessors. A simulation shows that the developed algorithm achieves an 18‐fold speedup over the previous version of Real‐Time Peptide–Spectrum Matching algorithm [F. X. Wu et al., Rapid Commun. Mass Sepctrom. 2006, 20, 1199–1208]. Therefore, the developed algorithm can be employed to develop real‐time control methods for MS/MS.
AbstractList Peptide–spectrum matching is one of the most time‐consuming portion of the database search method for assignment of tandem mass spectra to peptides. In this study, we develop a parallel algorithm for peptide–spectrum matching using Single‐Instruction Multiple Data (SIMD) instructions. Unlike other parallel algorithms in peptide–spectrum matching, our algorithm parallelizes the computation of matches between a single spectrum and a given peptide sequence from the database. It also significantly reduces the number of comparison operations. Extra improvements are obtained by using SIMD instructions to avoid conditional branches and unnecessary memory access within the algorithm. The implementation of the developed algorithm is based on the Streaming SIMD Extensions technology that is embedded in most Intel microprocessors. Similar technology also exists in other modern microprocessors. A simulation shows that the developed algorithm achieves an 18‐fold speedup over the previous version of Real‐Time Peptide–Spectrum Matching algorithm [F. X. Wu et al., Rapid Commun. Mass Sepctrom . 2006, 20 , 1199–1208]. Therefore, the developed algorithm can be employed to develop real‐time control methods for MS/MS.
Peptide-spectrum matching is one of the most time-consuming portion of the database search method for assignment of tandem mass spectra to peptides. In this study, we develop a parallel algorithm for peptide-spectrum matching using Single-Instruction Multiple Data (SIMD) instructions. Unlike other parallel algorithms in peptide-spectrum matching, our algorithm parallelizes the computation of matches between a single spectrum and a given peptide sequence from the database. It also significantly reduces the number of comparison operations. Extra improvements are obtained by using SIMD instructions to avoid conditional branches and unnecessary memory access within the algorithm. The implementation of the developed algorithm is based on the Streaming SIMD Extensions technology that is embedded in most Intel microprocessors. Similar technology also exists in other modern microprocessors. A simulation shows that the developed algorithm achieves an 18-fold speedup over the previous version of Real-Time Peptide-Spectrum Matching algorithm [F. X. Wu et al., Rapid Commun. Mass Sepctrom. 2006, 20, 1199-1208]. Therefore, the developed algorithm can be employed to develop real-time control methods for MS/MS.Peptide-spectrum matching is one of the most time-consuming portion of the database search method for assignment of tandem mass spectra to peptides. In this study, we develop a parallel algorithm for peptide-spectrum matching using Single-Instruction Multiple Data (SIMD) instructions. Unlike other parallel algorithms in peptide-spectrum matching, our algorithm parallelizes the computation of matches between a single spectrum and a given peptide sequence from the database. It also significantly reduces the number of comparison operations. Extra improvements are obtained by using SIMD instructions to avoid conditional branches and unnecessary memory access within the algorithm. The implementation of the developed algorithm is based on the Streaming SIMD Extensions technology that is embedded in most Intel microprocessors. Similar technology also exists in other modern microprocessors. A simulation shows that the developed algorithm achieves an 18-fold speedup over the previous version of Real-Time Peptide-Spectrum Matching algorithm [F. X. Wu et al., Rapid Commun. Mass Sepctrom. 2006, 20, 1199-1208]. Therefore, the developed algorithm can be employed to develop real-time control methods for MS/MS.
Peptide-spectrum matching is one of the most time-consuming portion of the database search method for assignment of tandem mass spectra to peptides. In this study, we develop a parallel algorithm for peptide-spectrum matching using Single-Instruction Multiple Data (SIMD) instructions. Unlike other parallel algorithms in peptide-spectrum matching, our algorithm parallelizes the computation of matches between a single spectrum and a given peptide sequence from the database. It also significantly reduces the number of comparison operations. Extra improvements are obtained by using SIMD instructions to avoid conditional branches and unnecessary memory access within the algorithm. The implementation of the developed algorithm is based on the Streaming SIMD Extensions technology that is embedded in most Intel microprocessors. Similar technology also exists in other modern microprocessors. A simulation shows that the developed algorithm achieves an 18-fold speedup over the previous version of Real-Time Peptide-Spectrum Matching algorithm [F. X. Wu et al., Rapid Commun. Mass Sepctrom. 2006, 20, 1199-1208]. Therefore, the developed algorithm can be employed to develop real-time control methods for MS/MS.
Peptide-spectrum matching is one of the most time-consuming portion of the database search method for assignment of tandem mass spectra to peptides. In this study, we develop a parallel algorithm for peptide-spectrum matching using Single-Instruction Multiple Data (SIMD) instructions. Unlike other parallel algorithms in peptide-spectrum matching, our algorithm parallelizes the computation of matches between a single spectrum and a given peptide sequence from the database. It also significantly reduces the number of comparison operations. Extra improvements are obtained by using SIMD instructions to avoid conditional branches and unnecessary memory access within the algorithm. The implementation of the developed algorithm is based on the Streaming SIMD Extensions technology that is embedded in most Intel microprocessors. Similar technology also exists in other modern microprocessors. A simulation shows that the developed algorithm achieves an 18-fold speedup over the previous version of Real-Time Peptide-Spectrum Matching algorithm [F. X. Wu et al., Rapid Commun. Mass Sepctrom. 2006, 20, 1199-1208]. Therefore, the developed algorithm can be employed to develop real-time control methods for MS/MS. [PUBLICATION ABSTRACT]
Author McQuillan, Ian
Zhang, Jian
Wu, Fang-Xiang
Author_xml – sequence: 1
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
  organization: Department of Computer Science, University of Saskatchewan, Saskatchewan, Canada
– sequence: 2
  givenname: Ian
  surname: McQuillan
  fullname: McQuillan, Ian
  organization: Department of Computer Science, University of Saskatchewan, Saskatchewan, Canada
– sequence: 3
  givenname: Fang-Xiang
  surname: Wu
  fullname: Wu, Fang-Xiang
  email: faw341@mail.usask.ca
  organization: Department of Mechanical Engineering, University of Saskatchewan, Saskatchewan, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24571067$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21809447$$D View this record in MEDLINE/PubMed
BookMark eNqFkctv1DAQxi1URB9w5YgiIQSXLH4ksX0sC7RbtoBUUI-W40zAJXGC7QD973G02y2qBFzGj_l9o5lvDtGeGxwg9JjgBcGYvhx7axYUk_Qggt5DB6QiZS5FRfZ295Lto8MQrhLCheQP0D4lAsui4AfIXIwATWb70Q8_oAcXQza02QhjtA3kYQQT_dRnvY7mq3VfsinM8SKFDvKVCylroh1cdj510Y7p87WOOrO3mfAQ3W91F-DR9jxCn9---bQ8zdcfTlbL43VuCs5oznEDrG5MwXgj6tQeZhqg0LKFWtQ1ENoWQBjGojaNAMG1bApomdaixpRrdoSeb-qmWb5PEKLqbTDQddrBMAUlJGOUSEwS-eKfJElOSS4lrRL69A56NUzepTkUKZPlFeMUJ-rJlprqHho1ettrf61ujE7Asy2gg9Fd67UzNtxyRckJrmau2HDGDyF4aJWxUc82Rq9tlzpT897VvHe123uSLe7Ibir_VSA3gp-2g-v_0Orj-Wr5pzbfaG2I8Gun1f6bShPwUl2-P1GvTi_Xgp6dqXfsNzK90Dk
CitedBy_id crossref_primary_10_1186_1477_5956_12_18
Cites_doi 10.1021/pr015514r
10.1093/bioinformatics/16.8.699
10.1002/rcm.2435
10.1021/pr050058i
ContentType Journal Article
Copyright Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 INIST-CNRS
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 INIST-CNRS
– notice: Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7TK
7TM
8FD
FR3
K9.
M7N
P64
RC3
7X8
DOI 10.1002/pmic.201100182
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Engineering Research Database
MEDLINE
Genetics Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Chemistry
EISSN 1615-9861
EndPage 3785
ExternalDocumentID 3282295041
21809447
24571067
10_1002_pmic_201100182
PMIC201100182
ark_67375_WNG_BHWL82JJ_K
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada (NSERC)
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-1
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
Y6R
ZGI
ZZTAW
~IA
~KM
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7TK
7TM
8FD
FR3
K9.
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c4732-70de3bdc437d8b94403aee4a9feb8bbe12f4e13008bcd8e87a9d4ef3aa8b027a3
IEDL.DBID DR2
ISSN 1615-9853
1615-9861
IngestDate Fri Jul 11 11:40:32 EDT 2025
Fri Jul 11 02:18:54 EDT 2025
Sun Jul 13 05:37:09 EDT 2025
Thu Apr 03 06:51:21 EDT 2025
Mon Jul 21 09:13:46 EDT 2025
Thu Apr 24 22:57:20 EDT 2025
Wed Oct 01 03:27:10 EDT 2025
Wed Jan 22 16:41:05 EST 2025
Sun Sep 21 06:24:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Parallel computing
Single-Instruction Multiple-Data
Peptides
Bioinformatics
MS
Proteomics
Language English
License CC BY 4.0
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4732-70de3bdc437d8b94403aee4a9feb8bbe12f4e13008bcd8e87a9d4ef3aa8b027a3
Notes Colour Online: See the article online to view Figs. 1,3 in colour.
Natural Sciences and Engineering Research Council of Canada (NSERC)
istex:2F07966A5DA7B3436DC86F44EA9C82AD0EB7228D
ArticleID:PMIC201100182
ark:/67375/WNG-BHWL82JJ-K
1
in colour.
3
,
See the article online to view Figs.
Colour Online
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 21809447
PQID 1518263720
PQPubID 1016439
PageCount 7
ParticipantIDs proquest_miscellaneous_893321901
proquest_miscellaneous_1017979926
proquest_journals_1518263720
pubmed_primary_21809447
pascalfrancis_primary_24571067
crossref_citationtrail_10_1002_pmic_201100182
crossref_primary_10_1002_pmic_201100182
wiley_primary_10_1002_pmic_201100182_PMIC201100182
istex_primary_ark_67375_WNG_BHWL82JJ_K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2011
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: October 2011
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Proteomics (Weinheim)
PublicationTitleAlternate Proteomics
PublicationYear 2011
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley-VCH
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley-VCH
– name: Wiley Subscription Services, Inc
References Warren, H. S., Hacker's Delight. Addison-Wesley Publishing, Boston 2003.
Wu, F. X., Gagne, P., Droit, A., Poirier, G. G., RT-PSM, a real-time program for peptide-spectrum matching with statistical significance. Rapid Commun. Mass Sepctrom. 2006, 20, 1199-1208.
Rognes, T., Seeberg, E., Six-fold speed-up of Smith-Waterman sequence database searches using parallel processing on common microprocessors. Bioinformatics 2000, 16, 699-706.
Duncan, D. T., Craig, R., Link, A. J., Parallel Tandem: a program for parallel processing of tandem mass spectra using PVM or MPI and X!Tandem. J. Proteome Res. 2005, 4, 1842-1847.
Zhou, J., Ross, K. A., Implementing database operations using SIMD instructions. ACM SIGMOD 2002, 145-156.
Sadygov, R. G., Eng, J., Durr, E., Saraf, A. et al., Code developments to improve the efficiency of automated MS/MS spectra interpretation. J. Proteome Res. 2002, 1, 211-215.
2002; 1
2009
2005; 4
2006; 20
2000; 16
2003
2002
e_1_2_6_7_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
Warren H. S. (e_1_2_6_8_2) 2003
Zhou J. (e_1_2_6_5_2) 2002
e_1_2_6_2_2
References_xml – reference: Zhou, J., Ross, K. A., Implementing database operations using SIMD instructions. ACM SIGMOD 2002, 145-156.
– reference: Sadygov, R. G., Eng, J., Durr, E., Saraf, A. et al., Code developments to improve the efficiency of automated MS/MS spectra interpretation. J. Proteome Res. 2002, 1, 211-215.
– reference: Wu, F. X., Gagne, P., Droit, A., Poirier, G. G., RT-PSM, a real-time program for peptide-spectrum matching with statistical significance. Rapid Commun. Mass Sepctrom. 2006, 20, 1199-1208.
– reference: Duncan, D. T., Craig, R., Link, A. J., Parallel Tandem: a program for parallel processing of tandem mass spectra using PVM or MPI and X!Tandem. J. Proteome Res. 2005, 4, 1842-1847.
– reference: Warren, H. S., Hacker's Delight. Addison-Wesley Publishing, Boston 2003.
– reference: Rognes, T., Seeberg, E., Six-fold speed-up of Smith-Waterman sequence database searches using parallel processing on common microprocessors. Bioinformatics 2000, 16, 699-706.
– year: 2009
– volume: 20
  start-page: 1199
  year: 2006
  end-page: 1208
  article-title: RT‐PSM, a real‐time program for peptide‐spectrum matching with statistical significance
  publication-title: Rapid Commun. Mass Sepctrom.
– start-page: 145
  year: 2002
  end-page: 156
  article-title: Implementing database operations using SIMD instructions
  publication-title: ACM SIGMOD
– volume: 1
  start-page: 211
  year: 2002
  end-page: 215
  article-title: Code developments to improve the efficiency of automated MS/MS spectra interpretation
  publication-title: J. Proteome Res.
– volume: 16
  start-page: 699
  year: 2000
  end-page: 706
  article-title: Six‐fold speed‐up of Smith‐Waterman sequence database searches using parallel processing on common microprocessors
  publication-title: Bioinformatics
– volume: 4
  start-page: 1842
  year: 2005
  end-page: 1847
  article-title: Parallel Tandem: a program for parallel processing of tandem mass spectra using PVM or MPI and X!Tandem
  publication-title: J. Proteome Res.
– year: 2003
– ident: e_1_2_6_4_2
  doi: 10.1021/pr015514r
– ident: e_1_2_6_6_2
  doi: 10.1093/bioinformatics/16.8.699
– ident: e_1_2_6_2_2
  doi: 10.1002/rcm.2435
– ident: e_1_2_6_7_2
– ident: e_1_2_6_3_2
  doi: 10.1021/pr050058i
– volume-title: Hacker's Delight
  year: 2003
  ident: e_1_2_6_8_2
– start-page: 145
  year: 2002
  ident: e_1_2_6_5_2
  article-title: Implementing database operations using SIMD instructions
  publication-title: ACM SIGMOD
SSID ssj0017897
Score 2.0130608
Snippet Peptide–spectrum matching is one of the most time‐consuming portion of the database search method for assignment of tandem mass spectra to peptides. In this...
Peptide-spectrum matching is one of the most time-consuming portion of the database search method for assignment of tandem mass spectra to peptides. In this...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3779
SubjectTerms Algorithms
Analytical, structural and metabolic biochemistry
Bioinformatics
Biological and medical sciences
Data processing
Databases, Protein
Fundamental and applied biological sciences. Psychology
Mass spectra
Memory
Microprocessors
Miscellaneous
Parallel computing
Peptides
Peptides - chemistry
Proteins
proteomics
Single-Instruction Multiple-Data
Streaming
Tandem Mass Spectrometry - economics
Tandem Mass Spectrometry - methods
Time Factors
Title Speed improvements of peptide-spectrum matching using Single-Instruction Multiple-Data instructions
URI https://api.istex.fr/ark:/67375/WNG-BHWL82JJ-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpmic.201100182
https://www.ncbi.nlm.nih.gov/pubmed/21809447
https://www.proquest.com/docview/1518263720
https://www.proquest.com/docview/1017979926
https://www.proquest.com/docview/893321901
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1615-9853
  databaseCode: DR2
  dateStart: 20010101
  customDbUrl:
  isFulltext: true
  eissn: 1615-9861
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017897
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxEB2h9gAcKKRQFkplJFRO2yZeb-w9lkIJgVaIUrU3y17bKGqzibqJBJz4CUj8Q34JY-9HGkSFBJdImx1rZe94_Dx--wbgmaHcir7RuE1VPPblteOMdVWcOsSyWmSOhdTA4VF_cMKGZ-nZla_4K32INuHmZ0aI136CK13uLkRDp-NRHiQ4fV05H4R7SRrOaT-0-lE9LqrqKrhsxxkuTI1qY5fuLjdfWpVW_QB_9ixJVeJAuarCxZ8g6DKiDUvSwRqopjMVE-V8Zz7TO_nX33Qe_6e3d-FOjVfJXuVg9-CGLTqwvlfgXn38hWyTwCANqfkO3Nxvqsd14PYVocN1GB1PcZUko5DBCAnJkkwcmXpKjbE_v_0IH3xezscEAXRgdxJPyP9EjvHnAg2-v1ko3ZLDmgSJf79UM0VGi3vlfTg5ePVxfxDXRR7inPEE0X3X2ESbnCXcCJ0x9A1lLVOZs1pobXvUMevP3ITOjbCCq8ww6xKlhMYttUoewEoxKexDIDZXfc1yp63hzGijUpu4bmCh5MwxFUHcvGSZ1wrovhDHhay0m6n0oyzbUY7geWs_rbQ_rrXcDj7TmqnLc8-Y46k8PXotXwxO3wk6HMq3EWwtOVXbgLKUezW_CDYbL5N1NCklojKcOb6eUARP29v4Qv3hjirsZF7KEFp5ltF-BOQaG8SmCfUIMIKNyoEXz_c6bozh82lww790WL7HINFePfqXRo_hFm34lL1NWEFHsU8Q4M30VpjEvwCJSUxK
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFH9C22FwGNDByBjDSGicsrWJ0zjHsTG6rq0Q2zRulh07qNqaVksrASc-AhLfkE_Ce06TUsSEBJdKaZ4V2Xn__PzL7wG8NEFsRdto3Kaq2Kf22n7Cm8qPMsxltUgy7koD_UG7c8G7H6IKTUjfwpT8EHXBjSzD-WsycCpI7y9YQyejYeo4OKmxHHrhVTqkI9s8el8zSLViUfZXwcDtJxiaKt7GZrC_PH4pLq3SEn8inKQqcKmyssfFn5LQ5ZzWBaXj-6Cr6ZRYlKu92VTvpV9-Y3r8r_k-gPV5ysoOSh17CHds3oCNgxy366PPbJc5EKmrzjdg7bBqINeAe79wHW7A8GyCgZINXRHD1SQLNs7YhFA1xv74-t1983kzGzHMoR3AkxEm_yM7w59rFPh2siC7Zf05DhL_PlJTxYaLe8UjuDh-c37Y8ed9HvyUxyEm-E1jQ21SHsZG6ISjeihruUoyq4XWthVk3NKxm9CpEVbEKjHcZqFSQuOuWoWPYSUf5_YJMJuqtuZppq2JudFGRTbMmg6IkvKMKw_86i3LdE6CTr04rmVJ3xxIWmVZr7IHr2r5SUn_cavkrlOaWkzdXBFoLo7k5eCtfN257Img25WnHuwsaVU9IOBRTIR-HmxXaibnDqWQmJih8VBLIQ9e1LfxhdL5jsrteFZI513jJAnaHrBbZDA9DQNKAj3YLDV48XyicuMcnx84PfzLhOU79BP11da_DHoOa53zfk_2TganT-FuUMErW9uwgkpjn2G-N9U7zqJ_Ah0GUGY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5Cm8TlgUvHWGAMI6HxlK1N3MR5HBul67ZqYkzbm2XH9lRtTaOllYAnfgIS_5BfwrFz6YqYkOClUppjRbaPjz-ffPkOwBsVxJpFSuIxVcS-La_tJ7Qt_K5BLCtZYqhLDRwNo_4pHZx3z298xV_qQzQJN7syXLy2CzxXZnsuGpqPR6mT4LR15TAIL9MIj1gWFn1sBKQ6MSvLq-C-7Se4M9Wyje1ge7H9wra0bEf4s6VJigJHypQlLv6EQRchrduTeo9A1L0pqSiXW7Op3Eq__ib0-D_dfQwPK8BKdkoPewJ3dNaClZ0MD-vjL2STOAqpy8234N5uXT6uBQ9uKB2uwOgkx22SjFwKw2UkCzIxJLecGqV_fvvhvvi8no0JImhH7ySWkX9BTvDnCg2-78-lbslRxYLEv_fEVJDR_F7xFE577z_t9v2qyoOf0jhEeN9WOpQqpWGsmEwoOofQmorEaMmk1J3AUG1fujGZKqZZLBJFtQmFYBInXISrsJRNMr0GRKcikjQ1UquYKqlEV4em7WgoKTVUeODXk8zTSgLdVuK44qV4c8DtKPNmlD1429jnpfjHrZabzmcaM3F9aSlzcZefDT_wd_2zQxYMBvzAg40Fp2oaBLQbWzk_D9ZrL-NVOCk4wjJcOragkAevm9s4ofbtjsj0ZFZwF1vjJAkiD8gtNghOw8BCQA-elQ48f74VcqMUnx84N_xLh_kxRonm6vm_NHoFd4_3evxwf3jwAu4HNbeysw5L6DP6JYK9qdxw6_kX89hPFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Speed+improvements+of+peptide-spectrum+matching+using+Single-Instruction+Multiple-Data+instructions&rft.jtitle=Proteomics+%28Weinheim%29&rft.au=JIAN+ZHANG&rft.au=MCQUILLAN%2C+Ian&rft.au=WU%2C+Fang-Xiang&rft.date=2011-10-01&rft.pub=Wiley-VCH&rft.issn=1615-9853&rft.volume=11&rft.issue=19&rft.spage=3779&rft.epage=3785&rft_id=info:doi/10.1002%2Fpmic.201100182&rft.externalDBID=n%2Fa&rft.externalDocID=24571067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-9853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-9853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-9853&client=summon