Assessing the behaviour of RC beams subject to significant gravity loads under cyclic loads

•Assessment of the effect of gravity load on the cyclic response of beams’ critical zones.•A procedure for cyclic tests that include gravity load effects is proposed.•Failure occurs when beam is unable to resist gravity load or a maximum admissible value of the drift is attained.•Gravity load leads...

Full description

Saved in:
Bibliographic Details
Published inEngineering structures Vol. 59; pp. 512 - 521
Main Authors Gião, Rita, Lúcio, Válter, Chastre, Carlos
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.02.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0141-0296
1873-7323
DOI10.1016/j.engstruct.2013.11.012

Cover

Abstract •Assessment of the effect of gravity load on the cyclic response of beams’ critical zones.•A procedure for cyclic tests that include gravity load effects is proposed.•Failure occurs when beam is unable to resist gravity load or a maximum admissible value of the drift is attained.•Gravity load leads to unidirectional plastic hinges and higher negative deformations.•The behaviour of tested beams was simulated using nonlinear analysis software. Gravity loads can affect a reinforced concrete structure’s response to seismic actions, however, traditional procedures for testing the beam behaviour do not take this effect into consideration. An experimental campaign was carried out in order to assess the influence of the gravity load on RC beam connection to the column subjected to cyclic loading. The experiments included the imposition of a conventional quasi-static test protocol based on the imposition of a reverse cyclic displacement history and of an alternative cyclic test procedure starting from the gravity load effects. The test results are presented, compared and analysed in this paper. The imposition of a cyclic test procedure that included the gravity loads effects on the RC beam ends reproduces the demands on the beams’ critical zones more realistically than the traditional procedure. The consideration of the vertical load effects in the test procedure led to an accumulation of negative (hogging) deformation. This phenomenon is sustained with the behaviour of a portal frame system under cyclic loads subject to a significant level of the vertical load, leading to the formation of unidirectional plastic hinges. In addition, the hysteretic behaviour of the RC beam ends tested was simulated numerically using the nonlinear structural analysis software – OpenSees. The beam–column model simulates the global element behaviour very well, as there is a reasonable approximation to the hysteretic loops obtained experimentally.
AbstractList Gravity loads can affect a reinforced concrete structure's response to seismic actions, however, traditional procedures for testing the beam behaviour do not take this effect into consideration.
Gravity loads can affect a reinforced concrete structure's response to seismic actions, however, traditional procedures for testing the beam behaviour do not take this effect into consideration. An experimental campaign was carried out in order to assess the influence of the gravity load on RC beam connection to the column subjected to cyclic loading. The experiments included the imposition of a conventional quasi-static test protocol based on the imposition of a reverse cyclic displacement history and of an alternative cyclic test procedure starting from the gravity load effects. The test results are presented, compared and analysed in this paper. The imposition of a cyclic test procedure that included the gravity loads effects on the RC beam ends reproduces the demands on the beams' critical zones more realistically than the traditional procedure. The consideration of the vertical load effects in the test procedure led to an accumulation of negative (hogging) deformation. This phenomenon is sustained with the behaviour of a portal frame system under cyclic loads subject to a significant level of the vertical load, leading to the formation of unidirectional plastic hinges. In addition, the hysteretic behaviour of the RC beam ends tested was simulated numerically using the nonlinear structural analysis software - OpenSees. The beam-column model simulates the global element behaviour very well, as there is a reasonable approximation to the hysteretic loops obtained experimentally.
•Assessment of the effect of gravity load on the cyclic response of beams’ critical zones.•A procedure for cyclic tests that include gravity load effects is proposed.•Failure occurs when beam is unable to resist gravity load or a maximum admissible value of the drift is attained.•Gravity load leads to unidirectional plastic hinges and higher negative deformations.•The behaviour of tested beams was simulated using nonlinear analysis software. Gravity loads can affect a reinforced concrete structure’s response to seismic actions, however, traditional procedures for testing the beam behaviour do not take this effect into consideration. An experimental campaign was carried out in order to assess the influence of the gravity load on RC beam connection to the column subjected to cyclic loading. The experiments included the imposition of a conventional quasi-static test protocol based on the imposition of a reverse cyclic displacement history and of an alternative cyclic test procedure starting from the gravity load effects. The test results are presented, compared and analysed in this paper. The imposition of a cyclic test procedure that included the gravity loads effects on the RC beam ends reproduces the demands on the beams’ critical zones more realistically than the traditional procedure. The consideration of the vertical load effects in the test procedure led to an accumulation of negative (hogging) deformation. This phenomenon is sustained with the behaviour of a portal frame system under cyclic loads subject to a significant level of the vertical load, leading to the formation of unidirectional plastic hinges. In addition, the hysteretic behaviour of the RC beam ends tested was simulated numerically using the nonlinear structural analysis software – OpenSees. The beam–column model simulates the global element behaviour very well, as there is a reasonable approximation to the hysteretic loops obtained experimentally.
Author Lúcio, Válter
Chastre, Carlos
Gião, Rita
Author_xml – sequence: 1
  givenname: Rita
  surname: Gião
  fullname: Gião, Rita
  email: anareis@dec.isel.ipl.pt
  organization: Civil Engineering Department, Lisbon Superior Engineering Institute, Polytechnic Institute of Lisbon, ISEL/IPL, 1959-007 Lisbon, Portugal
– sequence: 2
  givenname: Válter
  surname: Lúcio
  fullname: Lúcio, Válter
  email: vlucio@fct.unl.pt
  organization: Civil Engineering Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, FCT/UNL, 2829-516 Caparica, Portugal
– sequence: 3
  givenname: Carlos
  orcidid: 0000-0002-7708-6995
  surname: Chastre
  fullname: Chastre, Carlos
  email: chastre@fct.unl.pt
  organization: Civil Engineering Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, FCT/UNL, 2829-516 Caparica, Portugal
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28180790$$DView record in Pascal Francis
BookMark eNqNkU1rGzEURUVJoU7a31BtCt3MVE_SSONFF8b0CwKF0q66ELLmjSMzllI9TcD_vhMcsuimXj3u49y7OdfsKuWEjL0F0YIA8-HQYtpTLXOorRSgWoBWgHzBVtBb1Vgl1RVbCdDQCLk2r9g10UEIIfterNjvDRESxbTn9Q75Du_8Q8xz4XnkP7ZL9kfiNO8OGCqvmVPcpzjG4FPl-7Kw9cSn7Aficxqw8HAKUwzn12v2cvQT4Zune8N-ff70c_u1uf3-5dt2c9sEbWVtMCil0Ghj5ZIH3Y9oBy01dL0EtGtvpLU66MEYrzutjBXC7qTs7LjrfafUDXt_3r0v-c-MVN0xUsBp8gnzTA6M7QVYIy9Auw5AdNqsL0AVCGHWxi7ouyfUU_DTWHwKkdx9iUdfTk720Au7Fgtnz1womajg-IyAcI8y3cE9y3SPMh2AW2QuzY__NEOsvsacavFxuqC_Ofdx8fAQsTgKEVPAIZbFrBty_O_GX1f2wTw
CODEN ENSTDF
CitedBy_id crossref_primary_10_1016_j_engstruct_2016_06_037
crossref_primary_10_1016_j_istruc_2023_05_030
crossref_primary_10_1177_1369433220933463
crossref_primary_10_1061__ASCE_ST_1943_541X_0002688
crossref_primary_10_1016_j_engstruct_2021_112326
crossref_primary_10_1016_j_jobe_2021_103691
crossref_primary_10_1016_j_soildyn_2022_107588
crossref_primary_10_1080_13632469_2022_2145586
crossref_primary_10_18400_tekderg_814089
crossref_primary_10_1177_1369433217737114
crossref_primary_10_1002_suco_201800255
crossref_primary_10_1680_macr_14_00239
crossref_primary_10_1680_jmacr_21_00093
crossref_primary_10_1080_13632469_2020_1835751
crossref_primary_10_1002_suco_202000296
crossref_primary_10_1016_j_engstruct_2018_12_045
crossref_primary_10_1002_tal_1489
crossref_primary_10_3390_buildings13010095
crossref_primary_10_1007_s10518_020_00921_0
crossref_primary_10_18400_tekderg_341401
Cites_doi 10.1061/(ASCE)0733-9445(1988)114:8(1804)
10.1002/eqe.337
10.1061/(ASCE)0733-9445(2001)127:11(1257)
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SM
7SR
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.engstruct.2013.11.012
DatabaseName CrossRef
Pascal-Francis
Earthquake Engineering Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Earthquake Engineering Abstracts
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Engineering Research Database
METADEX
DatabaseTitleList Earthquake Engineering Abstracts
Earthquake Engineering Abstracts

Earthquake Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-7323
EndPage 521
ExternalDocumentID 28180790
10_1016_j_engstruct_2013_11_012
S014102961300566X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
TN5
UAO
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
7SM
7SR
8BQ
8FD
FR3
JG9
KR7
AGCQF
ID FETCH-LOGICAL-c472t-ec333e64672472d48fe7d42415821e79a62774c4d66a454367007b2257fb8a533
IEDL.DBID .~1
ISSN 0141-0296
IngestDate Mon Sep 29 06:06:46 EDT 2025
Fri Sep 05 00:39:04 EDT 2025
Sun Sep 28 11:22:17 EDT 2025
Wed Apr 02 07:37:54 EDT 2025
Thu Apr 24 22:52:08 EDT 2025
Wed Oct 01 03:41:25 EDT 2025
Fri Feb 23 02:27:36 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Testing procedure
Ductility
Beams’ critical zones
Cyclic test
Nonlinear analysis
Seismic response
Reinforced concrete
Dynamic response
Earthquake effect
Stress strain relation
Experimental study
Beam(mechanics)
Failure analysis
Beams' critical zones
Concrete construction
Numerical simulation
Beam column structure
Behavior
Gravity
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-ec333e64672472d48fe7d42415821e79a62774c4d66a454367007b2257fb8a533
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ORCID 0000-0002-7708-6995
OpenAccessLink http://hdl.handle.net/10400.21/4769
PQID 1531006967
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1678017623
proquest_miscellaneous_1551105469
proquest_miscellaneous_1531006967
pascalfrancis_primary_28180790
crossref_primary_10_1016_j_engstruct_2013_11_012
crossref_citationtrail_10_1016_j_engstruct_2013_11_012
elsevier_sciencedirect_doi_10_1016_j_engstruct_2013_11_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-02-01
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Engineering structures
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References CEB Bulletin D’Information No. 220. Behaviour and analysis of reinforced concrete structures under alternate actions inducing inelastic response, vol. 2. Frame Members; 1994.
Sucuoǧlu, Erberik (b0070) 2004; 33
ACI Committee 318. Building code requirements for reinforced concrete and commentary (ACI 318-08/ACI 318R-08). Detroit: American Concrete Institute; 2008.
Menegotto M, Pinto PE. Method of analysis for cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. In: Symp. resistance and ultimate deformability of structures acted on by well defined repeated loads, 4th ed. IABSE reports 13; 1973.
Calvi GM, Magenes G, Pampanin S. Experimental test on a three storey RC frame designed for gravity only. In: 12th European conference of earthquake engineering, vol. 72; 2002.
El-Attar, White, Gergely (b0020) 1997; 94
Mazzoni S, Mckenna F, Scott MH, Fenves GL. Opensees: open system for earthquake engineering simulation; 2006.
Dhakal, Fenwick (b0130) 2008; 105
Bracci, Reinhorn, Mander (b0015) 1995; 92
fib Bulletin No. 24. Seismic assessment and retrofit of reinforced concrete buildings; 2003.
Nmai, Darwin (b0065) 1986; 83
Scribner CF, Wight JK. Delaying shear strength decay in reinforced concrete flexural members under large load reversals. Report no. UMEE 78R2, University of Michigan; 1978.
CEN EN 1998-1. Eurocode 8 – design of structures for earthquake resistance. Part 1: general rules, seismic actions and rules for buildings; 2004.
Gião AR, Lúcio V, Chastre C. Seismic strengthening of RC beam–column connections. In: 15th World conference of earthquake engineering. Lisboa; 2012.
Gião R, Lúcio V, Chastre C, Proença J. New methodology for reinforced concrete beam–column cyclic test. In: International fib symposium 2009: concrete – 21st century superhero; 2009.
LabView 6.1: user manual. National Instruments.
Chang GA. Seismic energy based fatigue damage analysis of bridge columns. Dissertation submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy, Faculty of the Graduate School of the State University of New York; 1993.
NZS 1170.5. New Zealand standard: structural design actions. Part 5: earthquake actions, New Zealand; 2004.
Mander, Priestley, Park (b0105) 1988; 114
ATC Report No. 24. Guidelines for seismic testing of components of steel structures. ATC; 1992.
Brown, e Jirsa (b0050) 1971; 68
Coleman, Spacone (b0120) 2001; 127
Walker AF, Dhakal RP. Assessment of material strain limits for defining plastic regions in concrete structures. In: Conference NZSEE2008; 2008.
.
ECCS. Recommended testing procedure for assessing the behaviour of structural steel elements under cyclic loads. European Convention for Constructional Steelwork; 1985.
Proença J, Calado L, Castiglioni C, Tristão G. Cyclic testing of steel storage racks. Beam-to-upright subassemblages. An innovative cyclic testing procedure. In: First European conference on earthquake engineering and seismology. Geneva; 2006. pp. 1152.
ACI T1.1-01. Acceptance criteria for moment frames based on structural testing. ACI; 2001.
Ma S-YM, Bertero VV, Popov EP. Experimental and analytical studies of the hysteretic behavior of reinforced concrete rectangular and T-beams. Earthquake engineering research center report no. EERC-76-2. Berkeley: University of California; 1976.
Dhakal (10.1016/j.engstruct.2013.11.012_b0130) 2008; 105
Coleman (10.1016/j.engstruct.2013.11.012_b0120) 2001; 127
10.1016/j.engstruct.2013.11.012_b0045
10.1016/j.engstruct.2013.11.012_b0100
10.1016/j.engstruct.2013.11.012_b0125
10.1016/j.engstruct.2013.11.012_b0025
10.1016/j.engstruct.2013.11.012_b0005
10.1016/j.engstruct.2013.11.012_b0080
10.1016/j.engstruct.2013.11.012_b0060
10.1016/j.engstruct.2013.11.012_b0040
Sucuoǧlu (10.1016/j.engstruct.2013.11.012_b0070) 2004; 33
10.1016/j.engstruct.2013.11.012_b0085
10.1016/j.engstruct.2013.11.012_b0055
10.1016/j.engstruct.2013.11.012_b0110
10.1016/j.engstruct.2013.11.012_b0010
10.1016/j.engstruct.2013.11.012_b0035
Brown (10.1016/j.engstruct.2013.11.012_b0050) 1971; 68
10.1016/j.engstruct.2013.11.012_b0135
Bracci (10.1016/j.engstruct.2013.11.012_b0015) 1995; 92
El-Attar (10.1016/j.engstruct.2013.11.012_b0020) 1997; 94
10.1016/j.engstruct.2013.11.012_b0115
10.1016/j.engstruct.2013.11.012_b0090
Mander (10.1016/j.engstruct.2013.11.012_b0105) 1988; 114
10.1016/j.engstruct.2013.11.012_b0095
10.1016/j.engstruct.2013.11.012_b0075
10.1016/j.engstruct.2013.11.012_b0030
Nmai (10.1016/j.engstruct.2013.11.012_b0065) 1986; 83
References_xml – volume: 83
  start-page: 777
  year: 1986
  end-page: 778
  ident: b0065
  article-title: Lightly reinforced R/C beams under cyclic load
  publication-title: J Am Concr Inst
– reference: ACI T1.1-01. Acceptance criteria for moment frames based on structural testing. ACI; 2001.
– reference: Mazzoni S, Mckenna F, Scott MH, Fenves GL. Opensees: open system for earthquake engineering simulation; 2006. <
– reference: Walker AF, Dhakal RP. Assessment of material strain limits for defining plastic regions in concrete structures. In: Conference NZSEE2008; 2008.
– reference: Calvi GM, Magenes G, Pampanin S. Experimental test on a three storey RC frame designed for gravity only. In: 12th European conference of earthquake engineering, vol. 72; 2002.
– reference: Chang GA. Seismic energy based fatigue damage analysis of bridge columns. Dissertation submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy, Faculty of the Graduate School of the State University of New York; 1993.
– reference: Gião R, Lúcio V, Chastre C, Proença J. New methodology for reinforced concrete beam–column cyclic test. In: International fib symposium 2009: concrete – 21st century superhero; 2009.
– reference: NZS 1170.5. New Zealand standard: structural design actions. Part 5: earthquake actions, New Zealand; 2004.
– volume: 33
  start-page: 49
  year: 2004
  end-page: 67
  ident: b0070
  article-title: Seismic energy dissipation in deteriorating systems through low-cycle fatigue
  publication-title: Earthquake Eng Struct Dynam
– volume: 105
  start-page: 740
  year: 2008
  end-page: 749
  ident: b0130
  article-title: Detailing of plastic hinges in seismic design of concrete structures
  publication-title: ACI Struct J
– reference: Proença J, Calado L, Castiglioni C, Tristão G. Cyclic testing of steel storage racks. Beam-to-upright subassemblages. An innovative cyclic testing procedure. In: First European conference on earthquake engineering and seismology. Geneva; 2006. pp. 1152.
– reference: ECCS. Recommended testing procedure for assessing the behaviour of structural steel elements under cyclic loads. European Convention for Constructional Steelwork; 1985.
– reference: CEB Bulletin D’Information No. 220. Behaviour and analysis of reinforced concrete structures under alternate actions inducing inelastic response, vol. 2. Frame Members; 1994.
– reference: ATC Report No. 24. Guidelines for seismic testing of components of steel structures. ATC; 1992.
– volume: 94
  year: 1997
  ident: b0020
  article-title: Behavior of gravity load designed reinforced concrete buildings subjected to earthquakes
  publication-title: ACI Struct J
– reference: CEN EN 1998-1. Eurocode 8 – design of structures for earthquake resistance. Part 1: general rules, seismic actions and rules for buildings; 2004.
– reference: Scribner CF, Wight JK. Delaying shear strength decay in reinforced concrete flexural members under large load reversals. Report no. UMEE 78R2, University of Michigan; 1978.
– volume: 114
  start-page: 1804
  year: 1988
  end-page: 1826
  ident: b0105
  article-title: Theoretical stress–strain model for confined concrete
  publication-title: J Struct Eng
– volume: 68
  start-page: 380
  year: 1971
  end-page: 390
  ident: b0050
  article-title: Reinforced concrete beams under reversed loading
  publication-title: ACI J Proc
– reference: >.
– volume: 127
  start-page: 1257
  year: 2001
  end-page: 1265
  ident: b0120
  article-title: Localization issues in force-based frame elements
  publication-title: J Struct Eng
– reference: Menegotto M, Pinto PE. Method of analysis for cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. In: Symp. resistance and ultimate deformability of structures acted on by well defined repeated loads, 4th ed. IABSE reports 13; 1973.
– reference: Ma S-YM, Bertero VV, Popov EP. Experimental and analytical studies of the hysteretic behavior of reinforced concrete rectangular and T-beams. Earthquake engineering research center report no. EERC-76-2. Berkeley: University of California; 1976.
– reference: ACI Committee 318. Building code requirements for reinforced concrete and commentary (ACI 318-08/ACI 318R-08). Detroit: American Concrete Institute; 2008.
– reference: LabView 6.1: user manual. National Instruments.
– volume: 92
  year: 1995
  ident: b0015
  article-title: Seismic resistance of reinforced concrete frame structures designed for gravity loads: performance of structural system
  publication-title: ACI Struct J
– reference: Gião AR, Lúcio V, Chastre C. Seismic strengthening of RC beam–column connections. In: 15th World conference of earthquake engineering. Lisboa; 2012.
– reference: fib Bulletin No. 24. Seismic assessment and retrofit of reinforced concrete buildings; 2003.
– ident: 10.1016/j.engstruct.2013.11.012_b0085
– ident: 10.1016/j.engstruct.2013.11.012_b0035
– volume: 68
  start-page: 380
  issue: 5
  year: 1971
  ident: 10.1016/j.engstruct.2013.11.012_b0050
  article-title: Reinforced concrete beams under reversed loading
  publication-title: ACI J Proc
– ident: 10.1016/j.engstruct.2013.11.012_b0060
– ident: 10.1016/j.engstruct.2013.11.012_b0115
– ident: 10.1016/j.engstruct.2013.11.012_b0010
– ident: 10.1016/j.engstruct.2013.11.012_b0125
– volume: 114
  start-page: 1804
  issue: 8
  year: 1988
  ident: 10.1016/j.engstruct.2013.11.012_b0105
  article-title: Theoretical stress–strain model for confined concrete
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
– ident: 10.1016/j.engstruct.2013.11.012_b0095
– ident: 10.1016/j.engstruct.2013.11.012_b0075
– ident: 10.1016/j.engstruct.2013.11.012_b0025
– ident: 10.1016/j.engstruct.2013.11.012_b0080
– volume: 33
  start-page: 49
  year: 2004
  ident: 10.1016/j.engstruct.2013.11.012_b0070
  article-title: Seismic energy dissipation in deteriorating systems through low-cycle fatigue
  publication-title: Earthquake Eng Struct Dynam
  doi: 10.1002/eqe.337
– ident: 10.1016/j.engstruct.2013.11.012_b0040
– volume: 105
  start-page: 740
  issue: 6
  year: 2008
  ident: 10.1016/j.engstruct.2013.11.012_b0130
  article-title: Detailing of plastic hinges in seismic design of concrete structures
  publication-title: ACI Struct J
– ident: 10.1016/j.engstruct.2013.11.012_b0030
– ident: 10.1016/j.engstruct.2013.11.012_b0055
– volume: 83
  start-page: 777
  issue: 5
  year: 1986
  ident: 10.1016/j.engstruct.2013.11.012_b0065
  article-title: Lightly reinforced R/C beams under cyclic load
  publication-title: J Am Concr Inst
– ident: 10.1016/j.engstruct.2013.11.012_b0090
– volume: 92
  issue: 5
  year: 1995
  ident: 10.1016/j.engstruct.2013.11.012_b0015
  article-title: Seismic resistance of reinforced concrete frame structures designed for gravity loads: performance of structural system
  publication-title: ACI Struct J
– ident: 10.1016/j.engstruct.2013.11.012_b0110
– volume: 127
  start-page: 1257
  issue: 11
  year: 2001
  ident: 10.1016/j.engstruct.2013.11.012_b0120
  article-title: Localization issues in force-based frame elements
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(2001)127:11(1257)
– ident: 10.1016/j.engstruct.2013.11.012_b0135
– ident: 10.1016/j.engstruct.2013.11.012_b0005
– ident: 10.1016/j.engstruct.2013.11.012_b0100
– volume: 94
  issue: 2
  year: 1997
  ident: 10.1016/j.engstruct.2013.11.012_b0020
  article-title: Behavior of gravity load designed reinforced concrete buildings subjected to earthquakes
  publication-title: ACI Struct J
– ident: 10.1016/j.engstruct.2013.11.012_b0045
SSID ssj0002880
Score 2.1811244
Snippet •Assessment of the effect of gravity load on the cyclic response of beams’ critical zones.•A procedure for cyclic tests that include gravity load effects is...
Gravity loads can affect a reinforced concrete structure's response to seismic actions, however, traditional procedures for testing the beam behaviour do not...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 512
SubjectTerms Applied sciences
Beams (structural)
Beams’ critical zones
Building failures (cracks, physical changes, etc.)
Building structure
Buildings. Public works
Computer simulation
Construction (buildings and works)
Cyclic loads
Cyclic test
Ductility
Durability. Pathology. Repairing. Maintenance
Exact sciences and technology
Fatigue (materials)
Gravitation
Hysteresis
Imposition
Nonlinear analysis
Reinforced concrete
Reinforced concrete structure
Seismic response
Stresses. Safety
Structural analysis. Stresses
Testing procedure
Title Assessing the behaviour of RC beams subject to significant gravity loads under cyclic loads
URI https://dx.doi.org/10.1016/j.engstruct.2013.11.012
https://www.proquest.com/docview/1531006967
https://www.proquest.com/docview/1551105469
https://www.proquest.com/docview/1678017623
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2025
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: AKRWK
  dateStart: 19781001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EL4qIT6yPsoLXtMl2u5t4k6JURQ9qoeBh2Ww2UqlJadqDF3-7M3lUi9gevHXDLG1muzPfJt98Q8h5O_AND7hwuOcZByG1o2UgHRZbIY0rjZRYjXz_ILo9fttv91dIp6qFQVplGfuLmJ5H6_JKs_RmczQYNJ9yiiILEABDFhd9rGDnAml9jc9vmgfz8-5paOyg9RzHyyavhUwrcrxaDZTz9NhfGWpzpDPwW1w0vPgVu_OEdL1NtkokSS-LH7tDVmyySzZ-6AvukZfilS58poDzaFmSPx3TNKaPHRjr94xm0xCfxdBJSpHMgdQh8DbFvkSA0Okw1VFGsdRsTM2HGQ5McWmf9K6vnjtdp-ym4Bgu2cSxptVqWQGBkcE44n5sZcQxgfvMszLQggEUNDwSQvM2R2E3V4aw3WUc-hpQ4QFZTdLEHhIKhhEcwrXxtc9DFNTR1mIvs5gzzYJ2jYjKg8qUUuPY8WKoKk7Zm5q5XqHr4SCiwPU14s4mjgq1jeVTLqolUnN_HAU5Yfnk-tyizr4UNbJcGbg1clatsoJ9hy9TdGLTaaYgU3go8yzkIhuAs4CJRbDABtACREVAoUf_uZNjsg4jXvDJT8gqGNhTgEuTsJ7vhzpZu7y56z58AcpGFR8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED6x8rAhhGAwUWDMk_aaNXFdO-ENVaCylj6wIlXag-U4zlRUkoq0D_x77pqkoppWHniLk7OSnOO7z_HddwA_OlFoRSSkJ4LAegSpPaMi5fHUSWV9ZZWibOTboezdi1_jzngLunUuDIVVVra_tOlLa12daVXabM0mk9bvZYgijwgAoxeX4w-wLTpokxuwfXnT7w1XBpmHywJqJO9Rh7UwL5f9LZlaKcyr_ZMYPQP-Pye1OzMFqi4ta178Y76XPul6H_YqMMkuy-c9gC2XfYadVxSDh_Cn3NXFY4ZQj1VZ-Ysnlqfsrott81iwYhHT7xg2zxnFc1D0ECqcUWkiBOlsmpukYJRt9sTss51ObHnqCO6vr0bdnlcVVPCsUHzuOdtut51E28ixnYgwdSoR5MNDHjgVGckRDVqRSGlQlcTt5qsYZ7xK49AgMPwCjSzP3DEwFExwHW5saEIRE6eOcY7KmaWCGx51miBrDWpbsY1T0YuprsPKHvRK9ZpUj2sRjapvgr_qOCsJN97uclEPkV77djS6hbc7n68N6uqmRJPlq8hvwvd6lDVOPdpPMZnLF4VGZxEQ07NUm2QQ0SIsltEGGQQMaBgRiJ68502-wcfe6HagBzfD_il8wiuiDC8_gwYKu6-InubxeTU7XgAkZRfK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+behaviour+of+RC+beams+subject+to+significant+gravity+loads+under+cyclic+loads&rft.jtitle=Engineering+structures&rft.au=Giao%2C+Rita&rft.au=Lucio%2C+Valter&rft.au=Chastre%2C+Carlos&rft.date=2014-02-01&rft.issn=0141-0296&rft.volume=59&rft.spage=512&rft.epage=521&rft_id=info:doi/10.1016%2Fj.engstruct.2013.11.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon