A graph-based genetic algorithm and generative model/Monte Carlo tree search for the exploration of chemical space
This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log P values with a constraint for synthetic accessibility and shows that the GA is as good as or better than the ML approaches for this particular property. The mol...
Saved in:
| Published in | Chemical science (Cambridge) Vol. 10; no. 12; pp. 3567 - 3572 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
England
Royal Society of Chemistry
28.03.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2041-6520 2041-6539 2041-6539 |
| DOI | 10.1039/C8SC05372C |
Cover
| Abstract | This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log
P
values with a constraint for synthetic accessibility and shows that the GA is as good as or better than the ML approaches for this particular property. The molecules found by the GB-GA bear little resemblance to the molecules used to construct the initial mating pool, indicating that the GB-GA approach can traverse a relatively large distance in chemical space using relatively few (50) generations. The paper also introduces a new non-ML graph-based generative model (GB-GM) that can be parameterized using very small data sets and combined with a Monte Carlo tree search (MCTS) algorithm. The results are comparable to previously published results (
Sci. Technol. Adv. Mater.
, 2017,
18
, 972–976) using a recurrent neural network (RNN) generative model, and the GB-GM-based method is several orders of magnitude faster. The MCTS results seem more dependent on the composition of the training set than the GA approach for this particular property. Our results suggest that the performance of new ML-based generative models should be compared to that of more traditional, and often simpler, approaches such a GA. |
|---|---|
| AbstractList | This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log P values with a constraint for synthetic accessibility and shows that the GA is as good as or better than the ML approaches for this particular property. This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log P values with a constraint for synthetic accessibility and shows that the GA is as good as or better than the ML approaches for this particular property. The molecules found by the GB-GA bear little resemblance to the molecules used to construct the initial mating pool, indicating that the GB-GA approach can traverse a relatively large distance in chemical space using relatively few (50) generations. The paper also introduces a new non-ML graph-based generative model (GB-GM) that can be parameterized using very small data sets and combined with a Monte Carlo tree search (MCTS) algorithm. The results are comparable to previously published results (Sci. Technol. Adv. Mater., 2017, 18, 972–976) using a recurrent neural network (RNN) generative model, and the GB-GM-based method is several orders of magnitude faster. The MCTS results seem more dependent on the composition of the training set than the GA approach for this particular property. Our results suggest that the performance of new ML-based generative models should be compared to that of more traditional, and often simpler, approaches such a GA. This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log P values with a constraint for synthetic accessibility and shows that the GA is as good as or better than the ML approaches for this particular property. The molecules found by the GB-GA bear little resemblance to the molecules used to construct the initial mating pool, indicating that the GB-GA approach can traverse a relatively large distance in chemical space using relatively few (50) generations. The paper also introduces a new non-ML graph-based generative model (GB-GM) that can be parameterized using very small data sets and combined with a Monte Carlo tree search (MCTS) algorithm. The results are comparable to previously published results ( Sci. Technol. Adv. Mater. , 2017, 18 , 972–976) using a recurrent neural network (RNN) generative model, and the GB-GM-based method is several orders of magnitude faster. The MCTS results seem more dependent on the composition of the training set than the GA approach for this particular property. Our results suggest that the performance of new ML-based generative models should be compared to that of more traditional, and often simpler, approaches such a GA. This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log values with a constraint for synthetic accessibility and shows that the GA is as good as or better than the ML approaches for this particular property. The molecules found by the GB-GA bear little resemblance to the molecules used to construct the initial mating pool, indicating that the GB-GA approach can traverse a relatively large distance in chemical space using relatively few (50) generations. The paper also introduces a new non-ML graph-based generative model (GB-GM) that can be parameterized using very small data sets and combined with a Monte Carlo tree search (MCTS) algorithm. The results are comparable to previously published results ( , 2017, , 972-976) using a recurrent neural network (RNN) generative model, and the GB-GM-based method is several orders of magnitude faster. The MCTS results seem more dependent on the composition of the training set than the GA approach for this particular property. Our results suggest that the performance of new ML-based generative models should be compared to that of more traditional, and often simpler, approaches such a GA. This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log P values with a constraint for synthetic accessibility and shows that the GA is as good as or better than the ML approaches for this particular property. The molecules found by the GB-GA bear little resemblance to the molecules used to construct the initial mating pool, indicating that the GB-GA approach can traverse a relatively large distance in chemical space using relatively few (50) generations. The paper also introduces a new non-ML graph-based generative model (GB-GM) that can be parameterized using very small data sets and combined with a Monte Carlo tree search (MCTS) algorithm. The results are comparable to previously published results (Sci. Technol. Adv. Mater., 2017, 18, 972–976) using a recurrent neural network (RNN) generative model, and the GB-GM-based method is several orders of magnitude faster. The MCTS results seem more dependent on the composition of the training set than the GA approach for this particular property. Our results suggest that the performance of new ML-based generative models should be compared to that of more traditional, and often simpler, approaches such a GA. This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log P values with a constraint for synthetic accessibility and shows that the GA is as good as or better than the ML approaches for this particular property. The molecules found by the GB-GA bear little resemblance to the molecules used to construct the initial mating pool, indicating that the GB-GA approach can traverse a relatively large distance in chemical space using relatively few (50) generations. The paper also introduces a new non-ML graph-based generative model (GB-GM) that can be parameterized using very small data sets and combined with a Monte Carlo tree search (MCTS) algorithm. The results are comparable to previously published results (Sci. Technol. Adv. Mater., 2017, 18, 972-976) using a recurrent neural network (RNN) generative model, and the GB-GM-based method is several orders of magnitude faster. The MCTS results seem more dependent on the composition of the training set than the GA approach for this particular property. Our results suggest that the performance of new ML-based generative models should be compared to that of more traditional, and often simpler, approaches such a GA.This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log P values with a constraint for synthetic accessibility and shows that the GA is as good as or better than the ML approaches for this particular property. The molecules found by the GB-GA bear little resemblance to the molecules used to construct the initial mating pool, indicating that the GB-GA approach can traverse a relatively large distance in chemical space using relatively few (50) generations. The paper also introduces a new non-ML graph-based generative model (GB-GM) that can be parameterized using very small data sets and combined with a Monte Carlo tree search (MCTS) algorithm. The results are comparable to previously published results (Sci. Technol. Adv. Mater., 2017, 18, 972-976) using a recurrent neural network (RNN) generative model, and the GB-GM-based method is several orders of magnitude faster. The MCTS results seem more dependent on the composition of the training set than the GA approach for this particular property. Our results suggest that the performance of new ML-based generative models should be compared to that of more traditional, and often simpler, approaches such a GA. |
| Author | Jensen, Jan H. |
| AuthorAffiliation | a Department of Chemistry , University of Copenhagen , Copenhagen , Denmark . Email: jhjensen@chem.ku.dk ; http://www.twitter.com/janhjensen |
| AuthorAffiliation_xml | – name: a Department of Chemistry , University of Copenhagen , Copenhagen , Denmark . Email: jhjensen@chem.ku.dk ; http://www.twitter.com/janhjensen |
| Author_xml | – sequence: 1 givenname: Jan H. orcidid: 0000-0002-1465-1010 surname: Jensen fullname: Jensen, Jan H. organization: Department of Chemistry, University of Copenhagen, Copenhagen, Denmark |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30996948$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdkl1v1iAcxRsz4-bcjR_AkHhjZup4a4GbJUszX5IZL9RrQum_T1koVGin-_Z2e-az-XADgd85ORx4WRyEGKAoXhP8gWCmzhr5vcEVE7R5VhxRzElZV0wd7NYUHxYnOV_jdTBGKipeFIcMK1UrLo-KdIE2yUxD2ZoMHdpAgNlZZPwmJjcPIzJhu5vM7G4AjbEDf_Y1hhlQY5KPaE4AKINJdkB9TGgeAMGfycc7RQwo9sgOMDprPMqTsfCqeN4bn-HkYT4ufn68_NF8Lq--ffrSXFyVlgs6l2BE31rJ-7pt-1aK1lpe0VbiqqYcCK-5tLQDKkzdCUUxkdArU_U9kM5iwthx8X7ru4TJ3P423uspudGkW02wvitPW5ntfXl2pc-39LS0I3QWwpzMoyIap_8_CW7Qm3ija84kqchq8O7BIMVfC-RZjy5b8N4EiEvWlBLCqKJCrOjbPfQ6LimsZWhKFOeKCyVX6s3TRLso_x5vBfAWsCnmnKDX1s33pa8Bnd_d8vGLrJLTPcl-JU_gv2dxu74 |
| CitedBy_id | crossref_primary_10_1021_acs_jcim_4c01792 crossref_primary_10_1038_s41587_024_02526_3 crossref_primary_10_1021_acs_jcim_3c01220 crossref_primary_10_1021_acs_jctc_3c00822 crossref_primary_10_1002_ail2_17 crossref_primary_10_1038_s42256_020_00268_w crossref_primary_10_1016_j_compchemeng_2020_107005 crossref_primary_10_3390_ijms22169099 crossref_primary_10_1021_acs_jpcc_3c00267 crossref_primary_10_1021_acs_jcim_3c01745 crossref_primary_10_1016_j_bspc_2024_107388 crossref_primary_10_1186_s13321_024_00883_4 crossref_primary_10_1021_acs_jmedchem_1c00927 crossref_primary_10_1088_2632_2153_ac7ddc crossref_primary_10_1021_acs_jcim_4c01308 crossref_primary_10_1186_s13321_024_00861_w crossref_primary_10_1016_j_neucom_2024_129111 crossref_primary_10_1021_acsenergylett_4c02086 crossref_primary_10_1039_D2DD00003B crossref_primary_10_1016_j_trechm_2020_12_006 crossref_primary_10_1007_s12257_020_0049_y crossref_primary_10_1186_s13321_022_00667_8 crossref_primary_10_1038_s43588_024_00616_5 crossref_primary_10_1088_2632_2153_ad9709 crossref_primary_10_1088_2632_2153_ac09d6 crossref_primary_10_1002_bkcs_12468 crossref_primary_10_1093_bioinformatics_btae446 crossref_primary_10_1039_D4DD00099D crossref_primary_10_1080_17460441_2021_1909567 crossref_primary_10_1186_s13321_025_00984_8 crossref_primary_10_1186_s13321_020_00458_z crossref_primary_10_1016_j_isci_2021_103422 crossref_primary_10_1016_j_patter_2023_100678 crossref_primary_10_1002_cmtd_202400024 crossref_primary_10_1039_D5SC01476J crossref_primary_10_3390_applbiosci4010002 crossref_primary_10_1039_D4DD00105B crossref_primary_10_1016_j_compchemeng_2024_108989 crossref_primary_10_1038_s41524_022_00765_z crossref_primary_10_1038_s41467_024_49388_6 crossref_primary_10_1039_D3DD00076A crossref_primary_10_1109_TEVC_2022_3144045 crossref_primary_10_1039_D3DD00012E crossref_primary_10_7717_peerj_pchem_11 crossref_primary_10_1021_acs_jcim_3c00195 crossref_primary_10_1021_acs_jcim_3c00870 crossref_primary_10_1080_14686996_2022_2075240 crossref_primary_10_1021_acs_jcim_3c00355 crossref_primary_10_1093_bioinformatics_btae730 crossref_primary_10_1016_j_drudis_2024_104133 crossref_primary_10_3390_molecules26226761 crossref_primary_10_1021_acs_jcim_3c01964 crossref_primary_10_1007_s11390_021_0970_3 crossref_primary_10_1016_j_neucom_2024_128838 crossref_primary_10_1093_bib_bbab544 crossref_primary_10_1088_2632_2153_aba947 crossref_primary_10_1021_acs_jctc_2c01290 crossref_primary_10_21468_SciPostChem_2_1_002 crossref_primary_10_1038_s43588_023_00532_0 crossref_primary_10_1002_anie_201909987 crossref_primary_10_1021_acs_jpca_2c04221 crossref_primary_10_1038_s42256_024_00821_x crossref_primary_10_1021_jacsau_4c00066 crossref_primary_10_1002_qub2_30 crossref_primary_10_1039_D0SC00982B crossref_primary_10_1038_s41524_023_01066_9 crossref_primary_10_1155_2022_3049887 crossref_primary_10_1038_s42256_024_00843_5 crossref_primary_10_1021_jacs_4c11686 crossref_primary_10_1021_acs_jcim_1c01334 crossref_primary_10_1038_s42004_020_0255_8 crossref_primary_10_1080_17460441_2022_2019704 crossref_primary_10_1038_s42256_023_00759_6 crossref_primary_10_1186_s13321_020_00463_2 crossref_primary_10_1016_j_addr_2022_114194 crossref_primary_10_7717_peerj_pchem_30 crossref_primary_10_1016_j_ailsci_2023_100064 crossref_primary_10_1145_3648609 crossref_primary_10_1002_ange_202310580 crossref_primary_10_1002_cnl2_124 crossref_primary_10_7717_peerj_pchem_34 crossref_primary_10_1021_acs_jpca_2c02112 crossref_primary_10_1039_D4SC02934H crossref_primary_10_1002_ange_201909987 crossref_primary_10_1007_s40843_024_2851_9 crossref_primary_10_1039_D4FD00153B crossref_primary_10_1039_D4SC02227K crossref_primary_10_1039_D4DD00113C crossref_primary_10_1021_jacs_2c13467 crossref_primary_10_1039_D4DD00339J crossref_primary_10_1093_bfgp_elae011 crossref_primary_10_1021_acs_jcim_0c00174 crossref_primary_10_1186_s12859_024_05822_6 crossref_primary_10_1016_j_sbi_2021_10_001 crossref_primary_10_1039_D2DD00092J crossref_primary_10_1016_j_ejmech_2024_117162 crossref_primary_10_1016_j_ddtec_2020_09_003 crossref_primary_10_1039_D1CC07035E crossref_primary_10_1021_acs_jcim_4c00031 crossref_primary_10_1186_s13321_022_00601_y crossref_primary_10_1021_acs_jcim_0c01015 crossref_primary_10_1093_bioinformatics_btae364 crossref_primary_10_1021_acs_jcim_0c01496 crossref_primary_10_1038_s41524_023_01099_0 crossref_primary_10_1002_cmtd_202100107 crossref_primary_10_1002_aenm_202102698 crossref_primary_10_1016_j_drudis_2021_05_019 crossref_primary_10_1016_j_trechm_2020_11_004 crossref_primary_10_3389_fchem_2019_00809 crossref_primary_10_1039_D2DD00129B crossref_primary_10_7717_peerj_pchem_18 crossref_primary_10_1360_SSC_2022_0135 crossref_primary_10_1039_D1SC00231G crossref_primary_10_1007_s40747_024_01721_8 crossref_primary_10_1080_17460441_2021_1925247 crossref_primary_10_1093_bib_bbac285 crossref_primary_10_1021_acs_jcim_4c00519 crossref_primary_10_1021_acs_jcim_4c00759 crossref_primary_10_1021_acs_chemmater_4c02929 crossref_primary_10_1039_D0SC03544K crossref_primary_10_1021_acs_jctc_4c00810 crossref_primary_10_1146_annurev_chembioeng_101220_102232 crossref_primary_10_1155_2021_6672773 crossref_primary_10_1016_j_drudis_2022_103439 crossref_primary_10_2751_jcac_23_1 crossref_primary_10_1002_ange_202415056 crossref_primary_10_1021_acs_jcim_4c02038 crossref_primary_10_1039_D2SC00821A crossref_primary_10_34133_research_0075 crossref_primary_10_1186_s13321_022_00646_z crossref_primary_10_1002_anie_202310580 crossref_primary_10_1039_D3SC03781A crossref_primary_10_1038_s42256_022_00506_3 crossref_primary_10_1016_j_sbi_2023_102559 crossref_primary_10_1039_C9ME00039A crossref_primary_10_1186_s13321_021_00550_y crossref_primary_10_18034_mjmbr_v8i2_583 crossref_primary_10_1038_s42254_020_0230_4 crossref_primary_10_1002_anie_202415056 crossref_primary_10_1109_ACCESS_2021_3098417 |
| Cites_doi | 10.1186/1758-2946-1-8 10.1126/science.aat2663 10.1021/acscentsci.7b00572 10.1021/acscentsci.7b00512 10.1080/14686996.2017.1401424 10.1021/acscentsci.8b00213 10.1021/ja401184g 10.1021/ci034290p 10.1021/jp202765c |
| ContentType | Journal Article |
| Copyright | Copyright Royal Society of Chemistry 2019 This journal is © The Royal Society of Chemistry 2019 2019 |
| Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 – notice: This journal is © The Royal Society of Chemistry 2019 2019 |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM ADTOC UNPAY |
| DOI | 10.1039/C8SC05372C |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2041-6539 |
| EndPage | 3572 |
| ExternalDocumentID | 10.1039/c8sc05372c PMC6438151 30996948 10_1039_C8SC05372C |
| Genre | Journal Article |
| GroupedDBID | 0-7 0R~ 53G 705 7~J AAFWJ AAIWI AAJAE AARTK AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH ACGFS ACIWK ADBBV ADMRA AEFDR AENEX AESAV AFLYV AFPKN AGRSR AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS APEMP AUDPV AZFZN BCNDV BLAPV BSQNT C6K CITATION D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ~ H~N O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH AGEGJ NPM 7SR 8BQ 8FD JG9 7X8 5PM AAEMU AAFBY AAWGC ABASK ACRPL ADNMO ADTOC AETIL AFRZK AFVBQ AGQPQ AHGXI AKMSF ALSGL ANBJS ANLMG ASPBG AVWKF CAG COF ECGLT FEDTE HVGLF J3G J3H J3I L-8 ROL RPMJG UNPAY |
| ID | FETCH-LOGICAL-c472t-ea7fbc84f6bbfb87bcc452b805624e14648c2de27a6d792018ef9a5ffe1dc0133 |
| IEDL.DBID | UNPAY |
| ISSN | 2041-6520 2041-6539 |
| IngestDate | Wed Oct 29 12:03:34 EDT 2025 Tue Sep 30 16:52:13 EDT 2025 Fri Sep 05 13:59:00 EDT 2025 Sun Jul 13 05:30:03 EDT 2025 Mon Jul 21 06:02:21 EDT 2025 Thu Apr 24 23:11:23 EDT 2025 Wed Oct 01 04:26:05 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c472t-ea7fbc84f6bbfb87bcc452b805624e14648c2de27a6d792018ef9a5ffe1dc0133 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1465-1010 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pubs.rsc.org/en/content/articlepdf/2019/sc/c8sc05372c |
| PMID | 30996948 |
| PQID | 2194494798 |
| PQPubID | 2047492 |
| PageCount | 6 |
| ParticipantIDs | unpaywall_primary_10_1039_c8sc05372c pubmedcentral_primary_oai_pubmedcentral_nih_gov_6438151 proquest_miscellaneous_2211329277 proquest_journals_2194494798 pubmed_primary_30996948 crossref_citationtrail_10_1039_C8SC05372C crossref_primary_10_1039_C8SC05372C |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-28 |
| PublicationDateYYYYMMDD | 2019-03-28 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-28 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Cambridge |
| PublicationTitle | Chemical science (Cambridge) |
| PublicationTitleAlternate | Chem Sci |
| PublicationYear | 2019 |
| Publisher | Royal Society of Chemistry |
| Publisher_xml | – name: Royal Society of Chemistry |
| References | Brown (C8SC05372C-(cit16)/*[position()=1]) 2018 Sanchez-Lengeling (C8SC05372C-(cit7)/*[position()=1]) 2018; 361 (C8SC05372C-(cit14)/*[position()=1]) 2018-10-23 You (C8SC05372C-(cit6)/*[position()=1]) 2018 Neil (C8SC05372C-(cit8)/*[position()=1]) 2018 Yang (C8SC05372C-(cit2)/*[position()=1]) 2017; 18 Kusner (C8SC05372C-(cit3)/*[position()=1]) 2017 Brown (C8SC05372C-(cit9)/*[position()=1]) 2004; 44 Ertl (C8SC05372C-(cit15)/*[position()=1]) 2009; 1 Sumita (C8SC05372C-(cit5)/*[position()=1]) 2018; 4 Kanal (C8SC05372C-(cit12)/*[position()=1]) 2017 Yoshikawa (C8SC05372C-(cit13)/*[position()=1]) 2018 O'Boyle (C8SC05372C-(cit10)/*[position()=1]) 2011; 115 Virshup (C8SC05372C-(cit11)/*[position()=1]) 2013; 135 Segler (C8SC05372C-(cit1)/*[position()=1]) 2017; 4 Gómez-Bombarelli (C8SC05372C-(cit4)/*[position()=1]) 2018; 4 |
| References_xml | – volume-title: Proceedings of 34th International Conference on Machine Learning year: 2017 ident: C8SC05372C-(cit3)/*[position()=1] – year: 2018 ident: C8SC05372C-(cit6)/*[position()=1] – volume: 1 start-page: 8 year: 2009 ident: C8SC05372C-(cit15)/*[position()=1] publication-title: J. Cheminf. doi: 10.1186/1758-2946-1-8 – volume: 361 start-page: 360 year: 2018 ident: C8SC05372C-(cit7)/*[position()=1] publication-title: Science doi: 10.1126/science.aat2663 – volume-title: Exploring Deep Recurrent Models with Reinforcement Learning for Molecule Design year: 2018 ident: C8SC05372C-(cit8)/*[position()=1] – volume: 4 start-page: 268 year: 2018 ident: C8SC05372C-(cit4)/*[position()=1] publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00572 – year: 2018 ident: C8SC05372C-(cit16)/*[position()=1] – volume-title: Python Implementations of Monte Carlo Tree Search year: 2018-10-23 ident: C8SC05372C-(cit14)/*[position()=1] – year: 2018 ident: C8SC05372C-(cit13)/*[position()=1] – volume: 4 start-page: 120 year: 2017 ident: C8SC05372C-(cit1)/*[position()=1] publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00512 – volume: 18 start-page: 972 year: 2017 ident: C8SC05372C-(cit2)/*[position()=1] publication-title: Sci. Technol. Adv. Mater. doi: 10.1080/14686996.2017.1401424 – volume: 4 start-page: 1126 year: 2018 ident: C8SC05372C-(cit5)/*[position()=1] publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.8b00213 – volume: 135 start-page: 7296 year: 2013 ident: C8SC05372C-(cit11)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja401184g – volume: 44 start-page: 1079 year: 2004 ident: C8SC05372C-(cit9)/*[position()=1] publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci034290p – volume: 115 start-page: 16200 year: 2011 ident: C8SC05372C-(cit10)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp202765c – year: 2017 ident: C8SC05372C-(cit12)/*[position()=1] |
| SSID | ssj0000331527 |
| Score | 2.6753244 |
| Snippet | This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log
P
values with a... This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log values with a... This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log P values with a... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 3567 |
| SubjectTerms | Chemistry Computer simulation Genetic algorithms Machine learning Monte Carlo simulation Optimization Organic chemistry Recurrent neural networks |
| Title | A graph-based genetic algorithm and generative model/Monte Carlo tree search for the exploration of chemical space |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30996948 https://www.proquest.com/docview/2194494798 https://www.proquest.com/docview/2211329277 https://pubmed.ncbi.nlm.nih.gov/PMC6438151 https://pubs.rsc.org/en/content/articlepdf/2019/sc/c8sc05372c |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: RPM dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAUL databaseName: Royal Society of Chemistry (OA Content) issn: 2041-6520 databaseCode: AKBGW dateStart: 20150101 customDbUrl: https://pubs.rsc.org isFulltext: true eissn: 2041-6539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331527 providerName: Royal Society of Chemistry – providerCode: PRVAUL databaseName: Royal Society of Chemistry Free Journals plus Gold OA Content 2021 customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: RVUXY dateStart: 20150101 isFulltext: true titleUrlDefault: https://pubs.rsc.org/ providerName: Royal Society of Chemistry |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgeyiX8oaFUhnRC4fsbhwnto-riKpCokKClcop8pNWhGSVZFXBr2fsZEOX5YC4RfFY9jhjz-d4_A1CpwpcLri9OIqNzSJqKIkU1YsoNYIb6dlbbAiQvcjOV_T9ZXo5xOb4uzDQiXbWtD1FsIXtu-doqrr5MI5r42C7Hot5q-eat9qzkRB9Fx1kKUDxCTpYXXxcfvEJ5RY0jrI00DIOz4nY0pMm4lblXYe0hzL3gyUPN9Va_riRZXnLE53d79OtBh1CAMq32aZTM_3zD3rH_1byAToaMCpe9nIP0R1bPUKH-TY13GPULHEguo68DzQYbNBfhcSy_Fo3193Vdyyr_m1PK45Dup35B98-zmVT1tifheN-lmGAzRhgKLYhHDBYCq4d1gOVAYY1T9snaHX27nN-Hg3JGyJNGekiK5lTmlOXKeUUZ0prmhLFPeCiFtZnyjUxljCZGSZAXW6dkKlzNjYacGnyFE2qurLPETaaMaapUAtNqeWW-6sLKpHOcWYBEU3R2-0XLPTAbO4TbJRFOGFPRJHzT3kYxXyK3oyy657P469Sx1tDKIY53RawtlMqKBN8il6PxTDy_ohFVrbegAzspxMiCGNT9Ky3m7GZBMB4JijUZjsWNQp4pu_dkur6KjB-Z56ILQVFT0fb2-v9b0t58W9iL9E9b2U-oI7wYzTpmo19BQirUyfhz8TJMJt-AZfAKJI |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgeyiX8qYLBRnRC4fsbhInto-riKpCokKClcop8pNWDckqyQrBr2fseEOX5YC4RclYfuSz57M8_gahUwkuF9xeHMXa5BHRJIkkUYso05xp4dRbjA-QvcjPV-T9ZXYZYnPcXRhoRDdru0Ei2MD23Wk01f08jONaW9iux3zeqblinXJqJIm6iw7yDKj4BB2sLj4uv7iEcgsSR3nmZRnDc8q38qQpv1V41yHtscz9YMnDTb0WP76Lqrrlic7uD-lWfR98AMrNbNPLmfr5h7zjf3fyAToKHBUvB7uH6I6pH6HDYpsa7jFql9gLXUfOB2oMGHRXIbGovjbtdX_1DYt6eDvIimOfbmf-wdWPC9FWDXZn4XiYZRhoMwYaio0PB_RIwY3FKkgZYFjzlHmCVmfvPhfnUUjeEClCkz4yglqpGLG5lFYyKpUiWSKZI1zEwPpMmEq0SajINeXQXWYsF5m1JtYKeGn6FE3qpjbHCGtFKVWEy4UixDDD3NUFmQprGTXAiKbo7fYPlioom7sEG1XpT9hTXhbsU-FHsZiiN6PtetDz-KvVyRYIZZjTXQlrOyGcUM6m6PX4GUbeHbGI2jQbsIH9dJrwhNIpejbgZqwmBTKecwKl6Q6iRgOn9L37pb6-8orfuRNiy6CjpyP29lr_GynP_83sBbrnUOYC6hJ2giZ9uzEvgWH18lWYR78AqhAnnQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+graph-based+genetic+algorithm+and+generative+model%2FMonte+Carlo+tree+search+for+the+exploration+of+chemical+space&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Jensen%2C+Jan+H&rft.date=2019-03-28&rft.issn=2041-6520&rft.volume=10&rft.issue=12&rft.spage=3567&rft_id=info:doi/10.1039%2Fc8sc05372c&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |