A graph-based genetic algorithm and generative model/Monte Carlo tree search for the exploration of chemical space

This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log  P values with a constraint for synthetic accessibility and shows that the GA is as good as or better than the ML approaches for this particular property. The mol...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 10; no. 12; pp. 3567 - 3572
Main Author Jensen, Jan H.
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 28.03.2019
Subjects
Online AccessGet full text
ISSN2041-6520
2041-6539
2041-6539
DOI10.1039/C8SC05372C

Cover

Abstract This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log  P values with a constraint for synthetic accessibility and shows that the GA is as good as or better than the ML approaches for this particular property. The molecules found by the GB-GA bear little resemblance to the molecules used to construct the initial mating pool, indicating that the GB-GA approach can traverse a relatively large distance in chemical space using relatively few (50) generations. The paper also introduces a new non-ML graph-based generative model (GB-GM) that can be parameterized using very small data sets and combined with a Monte Carlo tree search (MCTS) algorithm. The results are comparable to previously published results ( Sci. Technol. Adv. Mater. , 2017, 18 , 972–976) using a recurrent neural network (RNN) generative model, and the GB-GM-based method is several orders of magnitude faster. The MCTS results seem more dependent on the composition of the training set than the GA approach for this particular property. Our results suggest that the performance of new ML-based generative models should be compared to that of more traditional, and often simpler, approaches such a GA.
AbstractList This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log P values with a constraint for synthetic accessibility and shows that the GA is as good as or better than the ML approaches for this particular property. This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log P values with a constraint for synthetic accessibility and shows that the GA is as good as or better than the ML approaches for this particular property. The molecules found by the GB-GA bear little resemblance to the molecules used to construct the initial mating pool, indicating that the GB-GA approach can traverse a relatively large distance in chemical space using relatively few (50) generations. The paper also introduces a new non-ML graph-based generative model (GB-GM) that can be parameterized using very small data sets and combined with a Monte Carlo tree search (MCTS) algorithm. The results are comparable to previously published results (Sci. Technol. Adv. Mater., 2017, 18, 972–976) using a recurrent neural network (RNN) generative model, and the GB-GM-based method is several orders of magnitude faster. The MCTS results seem more dependent on the composition of the training set than the GA approach for this particular property. Our results suggest that the performance of new ML-based generative models should be compared to that of more traditional, and often simpler, approaches such a GA.
This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log  P values with a constraint for synthetic accessibility and shows that the GA is as good as or better than the ML approaches for this particular property. The molecules found by the GB-GA bear little resemblance to the molecules used to construct the initial mating pool, indicating that the GB-GA approach can traverse a relatively large distance in chemical space using relatively few (50) generations. The paper also introduces a new non-ML graph-based generative model (GB-GM) that can be parameterized using very small data sets and combined with a Monte Carlo tree search (MCTS) algorithm. The results are comparable to previously published results ( Sci. Technol. Adv. Mater. , 2017, 18 , 972–976) using a recurrent neural network (RNN) generative model, and the GB-GM-based method is several orders of magnitude faster. The MCTS results seem more dependent on the composition of the training set than the GA approach for this particular property. Our results suggest that the performance of new ML-based generative models should be compared to that of more traditional, and often simpler, approaches such a GA.
This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log  values with a constraint for synthetic accessibility and shows that the GA is as good as or better than the ML approaches for this particular property. The molecules found by the GB-GA bear little resemblance to the molecules used to construct the initial mating pool, indicating that the GB-GA approach can traverse a relatively large distance in chemical space using relatively few (50) generations. The paper also introduces a new non-ML graph-based generative model (GB-GM) that can be parameterized using very small data sets and combined with a Monte Carlo tree search (MCTS) algorithm. The results are comparable to previously published results ( , 2017, , 972-976) using a recurrent neural network (RNN) generative model, and the GB-GM-based method is several orders of magnitude faster. The MCTS results seem more dependent on the composition of the training set than the GA approach for this particular property. Our results suggest that the performance of new ML-based generative models should be compared to that of more traditional, and often simpler, approaches such a GA.
This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log P values with a constraint for synthetic accessibility and shows that the GA is as good as or better than the ML approaches for this particular property. The molecules found by the GB-GA bear little resemblance to the molecules used to construct the initial mating pool, indicating that the GB-GA approach can traverse a relatively large distance in chemical space using relatively few (50) generations. The paper also introduces a new non-ML graph-based generative model (GB-GM) that can be parameterized using very small data sets and combined with a Monte Carlo tree search (MCTS) algorithm. The results are comparable to previously published results (Sci. Technol. Adv. Mater., 2017, 18, 972–976) using a recurrent neural network (RNN) generative model, and the GB-GM-based method is several orders of magnitude faster. The MCTS results seem more dependent on the composition of the training set than the GA approach for this particular property. Our results suggest that the performance of new ML-based generative models should be compared to that of more traditional, and often simpler, approaches such a GA.
This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log P values with a constraint for synthetic accessibility and shows that the GA is as good as or better than the ML approaches for this particular property. The molecules found by the GB-GA bear little resemblance to the molecules used to construct the initial mating pool, indicating that the GB-GA approach can traverse a relatively large distance in chemical space using relatively few (50) generations. The paper also introduces a new non-ML graph-based generative model (GB-GM) that can be parameterized using very small data sets and combined with a Monte Carlo tree search (MCTS) algorithm. The results are comparable to previously published results (Sci. Technol. Adv. Mater., 2017, 18, 972-976) using a recurrent neural network (RNN) generative model, and the GB-GM-based method is several orders of magnitude faster. The MCTS results seem more dependent on the composition of the training set than the GA approach for this particular property. Our results suggest that the performance of new ML-based generative models should be compared to that of more traditional, and often simpler, approaches such a GA.This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log P values with a constraint for synthetic accessibility and shows that the GA is as good as or better than the ML approaches for this particular property. The molecules found by the GB-GA bear little resemblance to the molecules used to construct the initial mating pool, indicating that the GB-GA approach can traverse a relatively large distance in chemical space using relatively few (50) generations. The paper also introduces a new non-ML graph-based generative model (GB-GM) that can be parameterized using very small data sets and combined with a Monte Carlo tree search (MCTS) algorithm. The results are comparable to previously published results (Sci. Technol. Adv. Mater., 2017, 18, 972-976) using a recurrent neural network (RNN) generative model, and the GB-GM-based method is several orders of magnitude faster. The MCTS results seem more dependent on the composition of the training set than the GA approach for this particular property. Our results suggest that the performance of new ML-based generative models should be compared to that of more traditional, and often simpler, approaches such a GA.
Author Jensen, Jan H.
AuthorAffiliation a Department of Chemistry , University of Copenhagen , Copenhagen , Denmark . Email: jhjensen@chem.ku.dk ; http://www.twitter.com/janhjensen
AuthorAffiliation_xml – name: a Department of Chemistry , University of Copenhagen , Copenhagen , Denmark . Email: jhjensen@chem.ku.dk ; http://www.twitter.com/janhjensen
Author_xml – sequence: 1
  givenname: Jan H.
  orcidid: 0000-0002-1465-1010
  surname: Jensen
  fullname: Jensen, Jan H.
  organization: Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30996948$$D View this record in MEDLINE/PubMed
BookMark eNpdkl1v1iAcxRsz4-bcjR_AkHhjZup4a4GbJUszX5IZL9RrQum_T1koVGin-_Z2e-az-XADgd85ORx4WRyEGKAoXhP8gWCmzhr5vcEVE7R5VhxRzElZV0wd7NYUHxYnOV_jdTBGKipeFIcMK1UrLo-KdIE2yUxD2ZoMHdpAgNlZZPwmJjcPIzJhu5vM7G4AjbEDf_Y1hhlQY5KPaE4AKINJdkB9TGgeAMGfycc7RQwo9sgOMDprPMqTsfCqeN4bn-HkYT4ufn68_NF8Lq--ffrSXFyVlgs6l2BE31rJ-7pt-1aK1lpe0VbiqqYcCK-5tLQDKkzdCUUxkdArU_U9kM5iwthx8X7ru4TJ3P423uspudGkW02wvitPW5ntfXl2pc-39LS0I3QWwpzMoyIap_8_CW7Qm3ija84kqchq8O7BIMVfC-RZjy5b8N4EiEvWlBLCqKJCrOjbPfQ6LimsZWhKFOeKCyVX6s3TRLso_x5vBfAWsCnmnKDX1s33pa8Bnd_d8vGLrJLTPcl-JU_gv2dxu74
CitedBy_id crossref_primary_10_1021_acs_jcim_4c01792
crossref_primary_10_1038_s41587_024_02526_3
crossref_primary_10_1021_acs_jcim_3c01220
crossref_primary_10_1021_acs_jctc_3c00822
crossref_primary_10_1002_ail2_17
crossref_primary_10_1038_s42256_020_00268_w
crossref_primary_10_1016_j_compchemeng_2020_107005
crossref_primary_10_3390_ijms22169099
crossref_primary_10_1021_acs_jpcc_3c00267
crossref_primary_10_1021_acs_jcim_3c01745
crossref_primary_10_1016_j_bspc_2024_107388
crossref_primary_10_1186_s13321_024_00883_4
crossref_primary_10_1021_acs_jmedchem_1c00927
crossref_primary_10_1088_2632_2153_ac7ddc
crossref_primary_10_1021_acs_jcim_4c01308
crossref_primary_10_1186_s13321_024_00861_w
crossref_primary_10_1016_j_neucom_2024_129111
crossref_primary_10_1021_acsenergylett_4c02086
crossref_primary_10_1039_D2DD00003B
crossref_primary_10_1016_j_trechm_2020_12_006
crossref_primary_10_1007_s12257_020_0049_y
crossref_primary_10_1186_s13321_022_00667_8
crossref_primary_10_1038_s43588_024_00616_5
crossref_primary_10_1088_2632_2153_ad9709
crossref_primary_10_1088_2632_2153_ac09d6
crossref_primary_10_1002_bkcs_12468
crossref_primary_10_1093_bioinformatics_btae446
crossref_primary_10_1039_D4DD00099D
crossref_primary_10_1080_17460441_2021_1909567
crossref_primary_10_1186_s13321_025_00984_8
crossref_primary_10_1186_s13321_020_00458_z
crossref_primary_10_1016_j_isci_2021_103422
crossref_primary_10_1016_j_patter_2023_100678
crossref_primary_10_1002_cmtd_202400024
crossref_primary_10_1039_D5SC01476J
crossref_primary_10_3390_applbiosci4010002
crossref_primary_10_1039_D4DD00105B
crossref_primary_10_1016_j_compchemeng_2024_108989
crossref_primary_10_1038_s41524_022_00765_z
crossref_primary_10_1038_s41467_024_49388_6
crossref_primary_10_1039_D3DD00076A
crossref_primary_10_1109_TEVC_2022_3144045
crossref_primary_10_1039_D3DD00012E
crossref_primary_10_7717_peerj_pchem_11
crossref_primary_10_1021_acs_jcim_3c00195
crossref_primary_10_1021_acs_jcim_3c00870
crossref_primary_10_1080_14686996_2022_2075240
crossref_primary_10_1021_acs_jcim_3c00355
crossref_primary_10_1093_bioinformatics_btae730
crossref_primary_10_1016_j_drudis_2024_104133
crossref_primary_10_3390_molecules26226761
crossref_primary_10_1021_acs_jcim_3c01964
crossref_primary_10_1007_s11390_021_0970_3
crossref_primary_10_1016_j_neucom_2024_128838
crossref_primary_10_1093_bib_bbab544
crossref_primary_10_1088_2632_2153_aba947
crossref_primary_10_1021_acs_jctc_2c01290
crossref_primary_10_21468_SciPostChem_2_1_002
crossref_primary_10_1038_s43588_023_00532_0
crossref_primary_10_1002_anie_201909987
crossref_primary_10_1021_acs_jpca_2c04221
crossref_primary_10_1038_s42256_024_00821_x
crossref_primary_10_1021_jacsau_4c00066
crossref_primary_10_1002_qub2_30
crossref_primary_10_1039_D0SC00982B
crossref_primary_10_1038_s41524_023_01066_9
crossref_primary_10_1155_2022_3049887
crossref_primary_10_1038_s42256_024_00843_5
crossref_primary_10_1021_jacs_4c11686
crossref_primary_10_1021_acs_jcim_1c01334
crossref_primary_10_1038_s42004_020_0255_8
crossref_primary_10_1080_17460441_2022_2019704
crossref_primary_10_1038_s42256_023_00759_6
crossref_primary_10_1186_s13321_020_00463_2
crossref_primary_10_1016_j_addr_2022_114194
crossref_primary_10_7717_peerj_pchem_30
crossref_primary_10_1016_j_ailsci_2023_100064
crossref_primary_10_1145_3648609
crossref_primary_10_1002_ange_202310580
crossref_primary_10_1002_cnl2_124
crossref_primary_10_7717_peerj_pchem_34
crossref_primary_10_1021_acs_jpca_2c02112
crossref_primary_10_1039_D4SC02934H
crossref_primary_10_1002_ange_201909987
crossref_primary_10_1007_s40843_024_2851_9
crossref_primary_10_1039_D4FD00153B
crossref_primary_10_1039_D4SC02227K
crossref_primary_10_1039_D4DD00113C
crossref_primary_10_1021_jacs_2c13467
crossref_primary_10_1039_D4DD00339J
crossref_primary_10_1093_bfgp_elae011
crossref_primary_10_1021_acs_jcim_0c00174
crossref_primary_10_1186_s12859_024_05822_6
crossref_primary_10_1016_j_sbi_2021_10_001
crossref_primary_10_1039_D2DD00092J
crossref_primary_10_1016_j_ejmech_2024_117162
crossref_primary_10_1016_j_ddtec_2020_09_003
crossref_primary_10_1039_D1CC07035E
crossref_primary_10_1021_acs_jcim_4c00031
crossref_primary_10_1186_s13321_022_00601_y
crossref_primary_10_1021_acs_jcim_0c01015
crossref_primary_10_1093_bioinformatics_btae364
crossref_primary_10_1021_acs_jcim_0c01496
crossref_primary_10_1038_s41524_023_01099_0
crossref_primary_10_1002_cmtd_202100107
crossref_primary_10_1002_aenm_202102698
crossref_primary_10_1016_j_drudis_2021_05_019
crossref_primary_10_1016_j_trechm_2020_11_004
crossref_primary_10_3389_fchem_2019_00809
crossref_primary_10_1039_D2DD00129B
crossref_primary_10_7717_peerj_pchem_18
crossref_primary_10_1360_SSC_2022_0135
crossref_primary_10_1039_D1SC00231G
crossref_primary_10_1007_s40747_024_01721_8
crossref_primary_10_1080_17460441_2021_1925247
crossref_primary_10_1093_bib_bbac285
crossref_primary_10_1021_acs_jcim_4c00519
crossref_primary_10_1021_acs_jcim_4c00759
crossref_primary_10_1021_acs_chemmater_4c02929
crossref_primary_10_1039_D0SC03544K
crossref_primary_10_1021_acs_jctc_4c00810
crossref_primary_10_1146_annurev_chembioeng_101220_102232
crossref_primary_10_1155_2021_6672773
crossref_primary_10_1016_j_drudis_2022_103439
crossref_primary_10_2751_jcac_23_1
crossref_primary_10_1002_ange_202415056
crossref_primary_10_1021_acs_jcim_4c02038
crossref_primary_10_1039_D2SC00821A
crossref_primary_10_34133_research_0075
crossref_primary_10_1186_s13321_022_00646_z
crossref_primary_10_1002_anie_202310580
crossref_primary_10_1039_D3SC03781A
crossref_primary_10_1038_s42256_022_00506_3
crossref_primary_10_1016_j_sbi_2023_102559
crossref_primary_10_1039_C9ME00039A
crossref_primary_10_1186_s13321_021_00550_y
crossref_primary_10_18034_mjmbr_v8i2_583
crossref_primary_10_1038_s42254_020_0230_4
crossref_primary_10_1002_anie_202415056
crossref_primary_10_1109_ACCESS_2021_3098417
Cites_doi 10.1186/1758-2946-1-8
10.1126/science.aat2663
10.1021/acscentsci.7b00572
10.1021/acscentsci.7b00512
10.1080/14686996.2017.1401424
10.1021/acscentsci.8b00213
10.1021/ja401184g
10.1021/ci034290p
10.1021/jp202765c
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
This journal is © The Royal Society of Chemistry 2019 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
– notice: This journal is © The Royal Society of Chemistry 2019 2019
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ADTOC
UNPAY
DOI 10.1039/C8SC05372C
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 3572
ExternalDocumentID 10.1039/c8sc05372c
PMC6438151
30996948
10_1039_C8SC05372C
Genre Journal Article
GroupedDBID 0-7
0R~
53G
705
7~J
AAFWJ
AAIWI
AAJAE
AARTK
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
ACGFS
ACIWK
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFPKN
AGRSR
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
AOIJS
APEMP
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CITATION
D0L
EE0
EF-
F5P
GROUPED_DOAJ
H13
HYE
HZ~
H~N
O-G
O9-
OK1
PGMZT
R7C
R7D
RAOCF
RCNCU
RNS
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
AGEGJ
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
AAEMU
AAFBY
AAWGC
ABASK
ACRPL
ADNMO
ADTOC
AETIL
AFRZK
AFVBQ
AGQPQ
AHGXI
AKMSF
ALSGL
ANBJS
ANLMG
ASPBG
AVWKF
CAG
COF
ECGLT
FEDTE
HVGLF
J3G
J3H
J3I
L-8
ROL
RPMJG
UNPAY
ID FETCH-LOGICAL-c472t-ea7fbc84f6bbfb87bcc452b805624e14648c2de27a6d792018ef9a5ffe1dc0133
IEDL.DBID UNPAY
ISSN 2041-6520
2041-6539
IngestDate Wed Oct 29 12:03:34 EDT 2025
Tue Sep 30 16:52:13 EDT 2025
Fri Sep 05 13:59:00 EDT 2025
Sun Jul 13 05:30:03 EDT 2025
Mon Jul 21 06:02:21 EDT 2025
Thu Apr 24 23:11:23 EDT 2025
Wed Oct 01 04:26:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0)
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-ea7fbc84f6bbfb87bcc452b805624e14648c2de27a6d792018ef9a5ffe1dc0133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1465-1010
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pubs.rsc.org/en/content/articlepdf/2019/sc/c8sc05372c
PMID 30996948
PQID 2194494798
PQPubID 2047492
PageCount 6
ParticipantIDs unpaywall_primary_10_1039_c8sc05372c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6438151
proquest_miscellaneous_2211329277
proquest_journals_2194494798
pubmed_primary_30996948
crossref_citationtrail_10_1039_C8SC05372C
crossref_primary_10_1039_C8SC05372C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-28
PublicationDateYYYYMMDD 2019-03-28
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-28
  day: 28
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Brown (C8SC05372C-(cit16)/*[position()=1]) 2018
Sanchez-Lengeling (C8SC05372C-(cit7)/*[position()=1]) 2018; 361
(C8SC05372C-(cit14)/*[position()=1]) 2018-10-23
You (C8SC05372C-(cit6)/*[position()=1]) 2018
Neil (C8SC05372C-(cit8)/*[position()=1]) 2018
Yang (C8SC05372C-(cit2)/*[position()=1]) 2017; 18
Kusner (C8SC05372C-(cit3)/*[position()=1]) 2017
Brown (C8SC05372C-(cit9)/*[position()=1]) 2004; 44
Ertl (C8SC05372C-(cit15)/*[position()=1]) 2009; 1
Sumita (C8SC05372C-(cit5)/*[position()=1]) 2018; 4
Kanal (C8SC05372C-(cit12)/*[position()=1]) 2017
Yoshikawa (C8SC05372C-(cit13)/*[position()=1]) 2018
O'Boyle (C8SC05372C-(cit10)/*[position()=1]) 2011; 115
Virshup (C8SC05372C-(cit11)/*[position()=1]) 2013; 135
Segler (C8SC05372C-(cit1)/*[position()=1]) 2017; 4
Gómez-Bombarelli (C8SC05372C-(cit4)/*[position()=1]) 2018; 4
References_xml – volume-title: Proceedings of 34th International Conference on Machine Learning
  year: 2017
  ident: C8SC05372C-(cit3)/*[position()=1]
– year: 2018
  ident: C8SC05372C-(cit6)/*[position()=1]
– volume: 1
  start-page: 8
  year: 2009
  ident: C8SC05372C-(cit15)/*[position()=1]
  publication-title: J. Cheminf.
  doi: 10.1186/1758-2946-1-8
– volume: 361
  start-page: 360
  year: 2018
  ident: C8SC05372C-(cit7)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aat2663
– volume-title: Exploring Deep Recurrent Models with Reinforcement Learning for Molecule Design
  year: 2018
  ident: C8SC05372C-(cit8)/*[position()=1]
– volume: 4
  start-page: 268
  year: 2018
  ident: C8SC05372C-(cit4)/*[position()=1]
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00572
– year: 2018
  ident: C8SC05372C-(cit16)/*[position()=1]
– volume-title: Python Implementations of Monte Carlo Tree Search
  year: 2018-10-23
  ident: C8SC05372C-(cit14)/*[position()=1]
– year: 2018
  ident: C8SC05372C-(cit13)/*[position()=1]
– volume: 4
  start-page: 120
  year: 2017
  ident: C8SC05372C-(cit1)/*[position()=1]
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00512
– volume: 18
  start-page: 972
  year: 2017
  ident: C8SC05372C-(cit2)/*[position()=1]
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1080/14686996.2017.1401424
– volume: 4
  start-page: 1126
  year: 2018
  ident: C8SC05372C-(cit5)/*[position()=1]
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.8b00213
– volume: 135
  start-page: 7296
  year: 2013
  ident: C8SC05372C-(cit11)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja401184g
– volume: 44
  start-page: 1079
  year: 2004
  ident: C8SC05372C-(cit9)/*[position()=1]
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci034290p
– volume: 115
  start-page: 16200
  year: 2011
  ident: C8SC05372C-(cit10)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp202765c
– year: 2017
  ident: C8SC05372C-(cit12)/*[position()=1]
SSID ssj0000331527
Score 2.6753244
Snippet This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log  P values with a...
This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log  values with a...
This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimization of log P values with a...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3567
SubjectTerms Chemistry
Computer simulation
Genetic algorithms
Machine learning
Monte Carlo simulation
Optimization
Organic chemistry
Recurrent neural networks
Title A graph-based genetic algorithm and generative model/Monte Carlo tree search for the exploration of chemical space
URI https://www.ncbi.nlm.nih.gov/pubmed/30996948
https://www.proquest.com/docview/2194494798
https://www.proquest.com/docview/2211329277
https://pubmed.ncbi.nlm.nih.gov/PMC6438151
https://pubs.rsc.org/en/content/articlepdf/2019/sc/c8sc05372c
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-6539
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331527
  issn: 2041-6520
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2041-6539
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331527
  issn: 2041-6520
  databaseCode: RPM
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAUL
  databaseName: Royal Society of Chemistry (OA Content)
  issn: 2041-6520
  databaseCode: AKBGW
  dateStart: 20150101
  customDbUrl: https://pubs.rsc.org
  isFulltext: true
  eissn: 2041-6539
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331527
  providerName: Royal Society of Chemistry
– providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Free Journals plus Gold OA Content 2021
  customDbUrl:
  eissn: 2041-6539
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331527
  issn: 2041-6520
  databaseCode: RVUXY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://pubs.rsc.org/
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgeyiX8oaFUhnRC4fsbhwnto-riKpCokKClcop8pNWhGSVZFXBr2fsZEOX5YC4RfFY9jhjz-d4_A1CpwpcLri9OIqNzSJqKIkU1YsoNYIb6dlbbAiQvcjOV_T9ZXo5xOb4uzDQiXbWtD1FsIXtu-doqrr5MI5r42C7Hot5q-eat9qzkRB9Fx1kKUDxCTpYXXxcfvEJ5RY0jrI00DIOz4nY0pMm4lblXYe0hzL3gyUPN9Va_riRZXnLE53d79OtBh1CAMq32aZTM_3zD3rH_1byAToaMCpe9nIP0R1bPUKH-TY13GPULHEguo68DzQYbNBfhcSy_Fo3193Vdyyr_m1PK45Dup35B98-zmVT1tifheN-lmGAzRhgKLYhHDBYCq4d1gOVAYY1T9snaHX27nN-Hg3JGyJNGekiK5lTmlOXKeUUZ0prmhLFPeCiFtZnyjUxljCZGSZAXW6dkKlzNjYacGnyFE2qurLPETaaMaapUAtNqeWW-6sLKpHOcWYBEU3R2-0XLPTAbO4TbJRFOGFPRJHzT3kYxXyK3oyy657P469Sx1tDKIY53RawtlMqKBN8il6PxTDy_ohFVrbegAzspxMiCGNT9Ky3m7GZBMB4JijUZjsWNQp4pu_dkur6KjB-Z56ILQVFT0fb2-v9b0t58W9iL9E9b2U-oI7wYzTpmo19BQirUyfhz8TJMJt-AZfAKJI
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgeyiX8qYLBRnRC4fsbhInto-riKpCokKClcop8pNWDckqyQrBr2fseEOX5YC4RclYfuSz57M8_gahUwkuF9xeHMXa5BHRJIkkUYso05xp4dRbjA-QvcjPV-T9ZXYZYnPcXRhoRDdru0Ei2MD23Wk01f08jONaW9iux3zeqblinXJqJIm6iw7yDKj4BB2sLj4uv7iEcgsSR3nmZRnDc8q38qQpv1V41yHtscz9YMnDTb0WP76Lqrrlic7uD-lWfR98AMrNbNPLmfr5h7zjf3fyAToKHBUvB7uH6I6pH6HDYpsa7jFql9gLXUfOB2oMGHRXIbGovjbtdX_1DYt6eDvIimOfbmf-wdWPC9FWDXZn4XiYZRhoMwYaio0PB_RIwY3FKkgZYFjzlHmCVmfvPhfnUUjeEClCkz4yglqpGLG5lFYyKpUiWSKZI1zEwPpMmEq0SajINeXQXWYsF5m1JtYKeGn6FE3qpjbHCGtFKVWEy4UixDDD3NUFmQprGTXAiKbo7fYPlioom7sEG1XpT9hTXhbsU-FHsZiiN6PtetDz-KvVyRYIZZjTXQlrOyGcUM6m6PX4GUbeHbGI2jQbsIH9dJrwhNIpejbgZqwmBTKecwKl6Q6iRgOn9L37pb6-8orfuRNiy6CjpyP29lr_GynP_83sBbrnUOYC6hJ2giZ9uzEvgWH18lWYR78AqhAnnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+graph-based+genetic+algorithm+and+generative+model%2FMonte+Carlo+tree+search+for+the+exploration+of+chemical+space&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Jensen%2C+Jan+H&rft.date=2019-03-28&rft.issn=2041-6520&rft.volume=10&rft.issue=12&rft.spage=3567&rft_id=info:doi/10.1039%2Fc8sc05372c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon