Dynamics of Gene Expression in Single Root Cells of Arabidopsis thaliana
Single cell RNA sequencing can yield high-resolution cell-type–specific expression signatures that reveal new cell types and the developmental trajectories of cell lineages. Here, we apply this approach to Arabidopsis (Arabidopsis thaliana) root cells to capture gene expression in 3,121 root cells....
Saved in:
Published in | The Plant cell Vol. 31; no. 5; pp. 993 - 1011 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
American Society of Plant Biologists (ASPB)
01.05.2019
American Society of Plant Biologists |
Subjects | |
Online Access | Get full text |
ISSN | 1040-4651 1532-298X 1532-298X |
DOI | 10.1105/tpc.18.00785 |
Cover
Abstract | Single cell RNA sequencing can yield high-resolution cell-type–specific expression signatures that reveal new cell types and the developmental trajectories of cell lineages. Here, we apply this approach to Arabidopsis (Arabidopsis thaliana) root cells to capture gene expression in 3,121 root cells. We analyze these data with Monocle 3, which orders single cell transcriptomes in an unsupervised manner and uses machine learning to reconstruct single cell developmental trajectories along pseudotime. We identify hundreds of genes with cell-type–specific expression, with pseudotime analysis of several cell lineages revealing both known and novel genes that are expressed along a developmental trajectory. We identify transcription factor motifs that are enriched in early and late cells, together with the corresponding candidate transcription factors that likely drive the observed expression patterns. We assess and interpret changes in total RNA expression along developmental trajectories and show that trajectory branch points mark developmental decisions. Finally, by applying heat stress to whole seedlings, we address the longstanding question of possible heterogeneity among cell types in the response to an abiotic stress. Although the response of canonical heat-shock genes dominates expression across cell types, subtle but significant differences in other genes can be detected among cell types. Taken together, our results demonstrate that single cell transcriptomics holds promise for studying plant development and plant physiology with unprecedented resolution. |
---|---|
AbstractList | Single cell RNA sequencing can yield high-resolution cell-type-specific expression signatures that reveal new cell types and the developmental trajectories of cell lineages. Here, we apply this approach to Arabidopsis (
) root cells to capture gene expression in 3,121 root cells. We analyze these data with Monocle 3, which orders single cell transcriptomes in an unsupervised manner and uses machine learning to reconstruct single cell developmental trajectories along pseudotime. We identify hundreds of genes with cell-type-specific expression, with pseudotime analysis of several cell lineages revealing both known and novel genes that are expressed along a developmental trajectory. We identify transcription factor motifs that are enriched in early and late cells, together with the corresponding candidate transcription factors that likely drive the observed expression patterns. We assess and interpret changes in total RNA expression along developmental trajectories and show that trajectory branch points mark developmental decisions. Finally, by applying heat stress to whole seedlings, we address the longstanding question of possible heterogeneity among cell types in the response to an abiotic stress. Although the response of canonical heat-shock genes dominates expression across cell types, subtle but significant differences in other genes can be detected among cell types. Taken together, our results demonstrate that single cell transcriptomics holds promise for studying plant development and plant physiology with unprecedented resolution. Single cell RNA sequencing can yield high-resolution cell-type-specific expression signatures that reveal new cell types and the developmental trajectories of cell lineages. Here, we apply this approach to Arabidopsis (Arabidopsis thaliana) root cells to capture gene expression in 3,121 root cells. We analyze these data with Monocle 3, which orders single cell transcriptomes in an unsupervised manner and uses machine learning to reconstruct single cell developmental trajectories along pseudotime. We identify hundreds of genes with cell-type-specific expression, with pseudotime analysis of several cell lineages revealing both known and novel genes that are expressed along a developmental trajectory. We identify transcription factor motifs that are enriched in early and late cells, together with the corresponding candidate transcription factors that likely drive the observed expression patterns. We assess and interpret changes in total RNA expression along developmental trajectories and show that trajectory branch points mark developmental decisions. Finally, by applying heat stress to whole seedlings, we address the longstanding question of possible heterogeneity among cell types in the response to an abiotic stress. Although the response of canonical heat-shock genes dominates expression across cell types, subtle but significant differences in other genes can be detected among cell types. Taken together, our results demonstrate that single cell transcriptomics holds promise for studying plant development and plant physiology with unprecedented resolution.Single cell RNA sequencing can yield high-resolution cell-type-specific expression signatures that reveal new cell types and the developmental trajectories of cell lineages. Here, we apply this approach to Arabidopsis (Arabidopsis thaliana) root cells to capture gene expression in 3,121 root cells. We analyze these data with Monocle 3, which orders single cell transcriptomes in an unsupervised manner and uses machine learning to reconstruct single cell developmental trajectories along pseudotime. We identify hundreds of genes with cell-type-specific expression, with pseudotime analysis of several cell lineages revealing both known and novel genes that are expressed along a developmental trajectory. We identify transcription factor motifs that are enriched in early and late cells, together with the corresponding candidate transcription factors that likely drive the observed expression patterns. We assess and interpret changes in total RNA expression along developmental trajectories and show that trajectory branch points mark developmental decisions. Finally, by applying heat stress to whole seedlings, we address the longstanding question of possible heterogeneity among cell types in the response to an abiotic stress. Although the response of canonical heat-shock genes dominates expression across cell types, subtle but significant differences in other genes can be detected among cell types. Taken together, our results demonstrate that single cell transcriptomics holds promise for studying plant development and plant physiology with unprecedented resolution. Single cell RNA sequencing can yield high-resolution cell-type–specific expression signatures that reveal new cell types and the developmental trajectories of cell lineages. Here, we apply this approach to Arabidopsis (Arabidopsis thaliana) root cells to capture gene expression in 3,121 root cells. We analyze these data with Monocle 3, which orders single cell transcriptomes in an unsupervised manner and uses machine learning to reconstruct single cell developmental trajectories along pseudotime. We identify hundreds of genes with cell-type–specific expression, with pseudotime analysis of several cell lineages revealing both known and novel genes that are expressed along a developmental trajectory. We identify transcription factor motifs that are enriched in early and late cells, together with the corresponding candidate transcription factors that likely drive the observed expression patterns. We assess and interpret changes in total RNA expression along developmental trajectories and show that trajectory branch points mark developmental decisions. Finally, by applying heat stress to whole seedlings, we address the longstanding question of possible heterogeneity among cell types in the response to an abiotic stress. Although the response of canonical heat-shock genes dominates expression across cell types, subtle but significant differences in other genes can be detected among cell types. Taken together, our results demonstrate that single cell transcriptomics holds promise for studying plant development and plant physiology with unprecedented resolution. Single cell transcriptomic profiling can map developmental trajectories and assess cell-type–specific changes during heat shock at single cell resolution. Single cell RNA sequencing can yield high-resolution cell-type–specific expression signatures that reveal new cell types and the developmental trajectories of cell lineages. Here, we apply this approach to Arabidopsis ( Arabidopsis thaliana ) root cells to capture gene expression in 3,121 root cells. We analyze these data with Monocle 3, which orders single cell transcriptomes in an unsupervised manner and uses machine learning to reconstruct single cell developmental trajectories along pseudotime. We identify hundreds of genes with cell-type–specific expression, with pseudotime analysis of several cell lineages revealing both known and novel genes that are expressed along a developmental trajectory. We identify transcription factor motifs that are enriched in early and late cells, together with the corresponding candidate transcription factors that likely drive the observed expression patterns. We assess and interpret changes in total RNA expression along developmental trajectories and show that trajectory branch points mark developmental decisions. Finally, by applying heat stress to whole seedlings, we address the longstanding question of possible heterogeneity among cell types in the response to an abiotic stress. Although the response of canonical heat-shock genes dominates expression across cell types, subtle but significant differences in other genes can be detected among cell types. Taken together, our results demonstrate that single cell transcriptomics holds promise for studying plant development and plant physiology with unprecedented resolution. |
Author | Cuperus, Josh T. Alexandre, Cristina M. Queitsch, Christine Dorrity, Michael W. Bubb, Kerry L. Saunders, Lauren Jean-Baptiste, Ken McFaline-Figueroa, José L. Fields, Stanley Trapnell, Cole |
AuthorAffiliation | b Department of Medicine, University of Washington, Seattle, Washington 98195 a Department of Genome Sciences, University of Washington, Seattle, Washington 98195 |
AuthorAffiliation_xml | – name: a Department of Genome Sciences, University of Washington, Seattle, Washington 98195 – name: b Department of Medicine, University of Washington, Seattle, Washington 98195 |
Author_xml | – sequence: 1 givenname: Ken surname: Jean-Baptiste fullname: Jean-Baptiste, Ken – sequence: 2 givenname: José L. surname: McFaline-Figueroa fullname: McFaline-Figueroa, José L. – sequence: 3 givenname: Cristina M. surname: Alexandre fullname: Alexandre, Cristina M. – sequence: 4 givenname: Michael W. surname: Dorrity fullname: Dorrity, Michael W. – sequence: 5 givenname: Lauren surname: Saunders fullname: Saunders, Lauren – sequence: 6 givenname: Kerry L. surname: Bubb fullname: Bubb, Kerry L. – sequence: 7 givenname: Cole surname: Trapnell fullname: Trapnell, Cole – sequence: 8 givenname: Stanley surname: Fields fullname: Fields, Stanley – sequence: 9 givenname: Christine surname: Queitsch fullname: Queitsch, Christine – sequence: 10 givenname: Josh T. surname: Cuperus fullname: Cuperus, Josh T. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30923229$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1rFTEUxYNU7Ifu3Cqz7MJ5vTeZfMxGKM_aFgoFP8BdyMtk2pR5yZjkif3vjX31UQVXCeR3z7k555DshRgcIa8RFojAT8psF6gWAFLxZ-QAOaMt7dW3vXqHDtpOcNwnhznfAQBK7F-QfQY9ZZT2B-Tiw30wa29zE8fm3AXXnP2ck8vZx9D40Hz24WZyzacYS7N00_TAnSaz8kOcs89NuTWTN8G8JM9HM2X36vE8Il8_nn1ZXrRX1-eXy9Or1naSltZQIxxI2lkwA5Wo0FlkkiOiMlxJ1TkGrB8FV6thZVAOYycNoMF-tF0P7Ii83-rOm9XaDdaFksyk5-TXJt3raLz--yX4W30Tf2jFUQDQKnD8KJDi943LRa99tvVrJri4yZrSGqWQKFhF3z712pn8ia8C77aATTHn5MYdgqB_t6NrOxqVfmin4vQf3PpiSo26buqn_w292Q7d5RLTzoAKwTuBlP0C9V6cJg |
CitedBy_id | crossref_primary_10_1016_j_xplc_2023_100717 crossref_primary_10_1126_science_aba5531 crossref_primary_10_3390_ijms22031399 crossref_primary_10_1111_tpj_15314 crossref_primary_10_3389_fpls_2024_1446561 crossref_primary_10_1016_j_devcel_2023_05_014 crossref_primary_10_1093_plphys_kiab537 crossref_primary_10_1016_j_molp_2020_06_010 crossref_primary_10_1242_dev_200179 crossref_primary_10_1016_j_coisb_2020_07_010 crossref_primary_10_1038_s41477_024_01771_3 crossref_primary_10_3390_ijms23094497 crossref_primary_10_1093_nar_gkac276 crossref_primary_10_1146_annurev_arplant_081720_010120 crossref_primary_10_1016_j_tplants_2024_03_010 crossref_primary_10_1093_pcp_pcz228 crossref_primary_10_1093_plcell_koab099 crossref_primary_10_34133_bdr_0029 crossref_primary_10_1093_plcell_koae003 crossref_primary_10_1093_jxb_erae107 crossref_primary_10_1016_j_pbi_2021_102094 crossref_primary_10_1007_s42994_021_00040_7 crossref_primary_10_1093_bib_bbaa273 crossref_primary_10_1042_ETLS20200274 crossref_primary_10_1016_j_cpb_2023_100289 crossref_primary_10_1007_s10725_023_00979_1 crossref_primary_10_1016_j_devcel_2021_02_021 crossref_primary_10_1093_gpbjnl_qzae026 crossref_primary_10_3390_ijms23052845 crossref_primary_10_1111_pbi_14097 crossref_primary_10_1093_plphys_kiab403 crossref_primary_10_1016_j_molp_2021_05_028 crossref_primary_10_1016_j_tplants_2021_09_003 crossref_primary_10_1093_jxb_erab303 crossref_primary_10_1186_s13059_023_03032_6 crossref_primary_10_3390_plants9030377 crossref_primary_10_1016_j_molp_2022_10_019 crossref_primary_10_1016_j_plantsci_2022_111535 crossref_primary_10_3390_cells9091943 crossref_primary_10_1039_D0AN02163F crossref_primary_10_1002_leg3_16 crossref_primary_10_1016_j_molp_2022_10_016 crossref_primary_10_1093_plphys_kiae346 crossref_primary_10_1016_j_cropd_2024_100057 crossref_primary_10_1093_pcp_pcac078 crossref_primary_10_1016_j_csbj_2023_06_016 crossref_primary_10_1146_annurev_genet_022123_110824 crossref_primary_10_1038_s41467_024_55755_0 crossref_primary_10_1038_s41588_023_01546_0 crossref_primary_10_1111_nph_18086 crossref_primary_10_1016_j_jplph_2021_153569 crossref_primary_10_3389_fgene_2020_596150 crossref_primary_10_1093_plphys_kiab508 crossref_primary_10_1111_tpj_16070 crossref_primary_10_1093_plcell_koae038 crossref_primary_10_1186_s12915_022_01473_2 crossref_primary_10_3389_fpls_2022_863849 crossref_primary_10_1016_j_tig_2024_07_001 crossref_primary_10_3389_fpls_2022_988594 crossref_primary_10_1016_j_cj_2022_02_004 crossref_primary_10_1016_j_stress_2024_100356 crossref_primary_10_1038_s41477_023_01544_4 crossref_primary_10_1007_s00299_024_03168_0 crossref_primary_10_1016_j_jgg_2025_01_012 crossref_primary_10_1016_j_pbi_2021_102059 crossref_primary_10_1093_plphys_kiab336 crossref_primary_10_1007_s12210_020_00893_y crossref_primary_10_1093_plphys_kiae605 crossref_primary_10_3390_plants13091276 crossref_primary_10_1016_j_cell_2021_04_024 crossref_primary_10_1093_plcell_koae045 crossref_primary_10_1016_j_jgg_2021_06_001 crossref_primary_10_1016_j_plantsci_2022_111486 crossref_primary_10_1111_jipb_13163 crossref_primary_10_1016_j_cell_2023_10_013 crossref_primary_10_1093_plphys_kiab325 crossref_primary_10_1016_j_xplc_2024_100979 crossref_primary_10_1016_j_xplc_2024_100978 crossref_primary_10_1002_advs_202415083 crossref_primary_10_1016_j_pbi_2021_102041 crossref_primary_10_3389_fpls_2024_1437118 crossref_primary_10_3389_fpls_2021_696811 crossref_primary_10_3390_ijms241612643 crossref_primary_10_3389_fpls_2022_958808 crossref_primary_10_3389_fpls_2022_891861 crossref_primary_10_1093_jxb_erad091 crossref_primary_10_1016_j_ceb_2022_102102 crossref_primary_10_3389_fgene_2021_652974 crossref_primary_10_1093_jxb_erab228 crossref_primary_10_1016_j_tplants_2020_04_016 crossref_primary_10_1134_S1021443723602835 crossref_primary_10_1016_j_tplants_2024_06_008 crossref_primary_10_1038_s41467_024_55485_3 crossref_primary_10_1111_pbi_13656 crossref_primary_10_1021_acsagscitech_4c00273 crossref_primary_10_1111_pbi_13893 crossref_primary_10_1186_s12870_024_05916_6 crossref_primary_10_17660_ActaHortic_2021_1310_7 crossref_primary_10_1016_j_tplants_2023_10_002 crossref_primary_10_1016_j_molp_2023_02_005 crossref_primary_10_3390_ijms252111360 crossref_primary_10_1111_nph_20406 crossref_primary_10_7554_eLife_95891_3 crossref_primary_10_1016_j_cpb_2025_100467 crossref_primary_10_1186_s13062_024_00501_1 crossref_primary_10_1016_j_indcrop_2024_118338 crossref_primary_10_1016_j_xplc_2024_100984 crossref_primary_10_1126_science_aay4970 crossref_primary_10_1016_j_xinn_2022_100342 crossref_primary_10_1007_s10265_020_01198_9 crossref_primary_10_1093_jxb_erab248 crossref_primary_10_3390_plants12132466 crossref_primary_10_1093_plcell_koaa038 crossref_primary_10_3390_membranes12090874 crossref_primary_10_1016_j_tplants_2021_03_001 crossref_primary_10_1016_j_jplph_2021_153511 crossref_primary_10_7554_eLife_95891 crossref_primary_10_1016_j_devcel_2023_03_004 crossref_primary_10_1016_j_isci_2020_101890 crossref_primary_10_1016_j_pbi_2020_08_004 crossref_primary_10_3389_fpls_2022_1053669 crossref_primary_10_1016_j_heliyon_2024_e33079 crossref_primary_10_1016_j_tibs_2023_06_001 crossref_primary_10_3390_cimb43030119 crossref_primary_10_1111_jipb_13495 crossref_primary_10_1093_jxb_erab110 crossref_primary_10_1016_j_aca_2024_342217 crossref_primary_10_1093_plcell_koab255 crossref_primary_10_1016_j_devcel_2022_01_008 crossref_primary_10_1093_plphys_kiae199 crossref_primary_10_1016_j_tplants_2021_07_004 crossref_primary_10_1007_s00344_024_11238_6 crossref_primary_10_3390_f15030512 crossref_primary_10_1007_s42994_025_00196_6 crossref_primary_10_1016_j_ncrops_2024_100025 crossref_primary_10_1007_s12298_025_01558_6 crossref_primary_10_1016_j_celrep_2025_115240 crossref_primary_10_1016_j_tplants_2023_07_010 crossref_primary_10_1093_nar_gkaa264 crossref_primary_10_1016_j_pbi_2024_102662 crossref_primary_10_1093_plphys_kiab489 crossref_primary_10_1016_j_molp_2020_12_014 crossref_primary_10_1101_gr_279091_124 crossref_primary_10_1093_plcell_koab101 crossref_primary_10_1038_s42003_021_02477_4 crossref_primary_10_1016_j_molp_2019_04_004 crossref_primary_10_1016_j_pbi_2020_04_002 crossref_primary_10_1038_s41467_021_22352_4 crossref_primary_10_1111_tpj_14603 crossref_primary_10_1111_pce_14012 crossref_primary_10_1016_j_tplants_2019_10_008 crossref_primary_10_1002_advs_202308384 crossref_primary_10_1111_jipb_13159 crossref_primary_10_48130_FR_2023_0027 crossref_primary_10_1093_plphys_kiab478 crossref_primary_10_1016_j_pbi_2021_102113 crossref_primary_10_1038_s41477_024_01738_4 crossref_primary_10_1016_j_tibtech_2022_09_007 crossref_primary_10_1016_j_xplc_2022_100508 crossref_primary_10_1186_s43897_023_00067_y crossref_primary_10_1016_j_indcrop_2025_120752 crossref_primary_10_3390_plants10071274 crossref_primary_10_3389_fpls_2022_1007866 crossref_primary_10_1016_j_cj_2021_06_012 crossref_primary_10_1111_pce_14266 crossref_primary_10_1186_s13059_023_02886_0 crossref_primary_10_1146_annurev_genet_071719_020453 crossref_primary_10_1093_plphys_kiab584 crossref_primary_10_1186_s12870_024_05574_8 crossref_primary_10_1111_nph_18008 crossref_primary_10_1111_nph_16627 crossref_primary_10_1093_plphys_kiab228 crossref_primary_10_1016_j_xplc_2024_100941 crossref_primary_10_1038_s41467_020_15351_4 crossref_primary_10_1002_cyto_a_24196 crossref_primary_10_1042_ETLS20210286 crossref_primary_10_1038_s41477_025_01908_y crossref_primary_10_1016_j_molp_2021_05_002 crossref_primary_10_1093_aobpla_plad032 crossref_primary_10_1111_pce_14906 crossref_primary_10_3389_fpls_2023_1185377 crossref_primary_10_1093_bib_bbac144 crossref_primary_10_1093_plcell_koab281 crossref_primary_10_1186_s12915_021_01071_8 crossref_primary_10_1016_j_pbi_2019_04_002 crossref_primary_10_1111_pce_15321 crossref_primary_10_1111_tpj_14940 crossref_primary_10_1016_j_jmb_2019_06_028 crossref_primary_10_3390_cells13181561 crossref_primary_10_1038_s41467_023_37607_5 crossref_primary_10_1080_07388551_2023_2165900 crossref_primary_10_1016_j_tplants_2021_08_016 crossref_primary_10_1016_j_xplc_2023_100631 crossref_primary_10_1186_s12870_024_05958_w crossref_primary_10_1016_j_pbi_2019_10_008 crossref_primary_10_1111_pbi_13918 crossref_primary_10_1002_cppb_20120 crossref_primary_10_1093_bioinformatics_btaf057 crossref_primary_10_1093_nar_gkaa979 crossref_primary_10_1111_nph_19153 crossref_primary_10_1093_nar_gkab949 crossref_primary_10_1093_hr_uhac182 crossref_primary_10_1002_cpz1_498 crossref_primary_10_1007_s00253_022_11963_6 crossref_primary_10_1242_dev_199589 crossref_primary_10_1002_dvg_23596 crossref_primary_10_1016_j_xplc_2023_100740 crossref_primary_10_1016_j_molp_2022_10_021 crossref_primary_10_1016_j_pbi_2023_102444 crossref_primary_10_1016_j_chom_2020_11_014 crossref_primary_10_3390_agronomy14112530 crossref_primary_10_1093_jxb_erad244 crossref_primary_10_1016_j_pbi_2024_102526 crossref_primary_10_1016_j_chom_2024_02_014 crossref_primary_10_1186_s42397_024_00181_2 crossref_primary_10_1186_s13059_022_02834_4 crossref_primary_10_1111_tpj_15458 crossref_primary_10_1111_nph_18053 crossref_primary_10_1186_s13007_023_01109_8 crossref_primary_10_1038_s42003_021_02676_z crossref_primary_10_1093_plphys_kiae425 crossref_primary_10_1111_ppl_14188 crossref_primary_10_1111_nph_16437 crossref_primary_10_1016_j_molp_2020_10_012 crossref_primary_10_1093_jxb_erad235 crossref_primary_10_1111_nph_17992 crossref_primary_10_1016_j_xplc_2022_100306 crossref_primary_10_1093_nar_gkad307 crossref_primary_10_1186_s13059_021_02288_0 crossref_primary_10_1016_j_xplc_2022_100308 crossref_primary_10_1111_tpj_15101 crossref_primary_10_3389_fpls_2021_661361 crossref_primary_10_3389_fpls_2022_924660 crossref_primary_10_1111_tpj_15589 crossref_primary_10_1038_s41477_024_01838_1 crossref_primary_10_1093_plcell_koaa060 crossref_primary_10_1016_j_pld_2024_03_008 crossref_primary_10_1186_s13007_019_0498_5 crossref_primary_10_1016_j_molp_2021_01_001 crossref_primary_10_3389_fpls_2020_603302 crossref_primary_10_1016_j_pbi_2019_09_003 crossref_primary_10_1186_s13059_022_02845_1 crossref_primary_10_1111_pce_14585 crossref_primary_10_3389_fpls_2021_774994 crossref_primary_10_1002_advs_202304017 crossref_primary_10_1016_j_xplc_2022_100302 |
ContentType | Journal Article |
Copyright | 2019 ASPB 2019 All rights reserved. 2019 American Society of Plant Biologists. All rights reserved. 2019 |
Copyright_xml | – notice: 2019 ASPB – notice: 2019 All rights reserved. – notice: 2019 American Society of Plant Biologists. All rights reserved. 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1105/tpc.18.00785 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Botany |
EISSN | 1532-298X |
EndPage | 1011 |
ExternalDocumentID | PMC8516002 30923229 10_1105_tpc_18_00785 26654612 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: U54 DK107979 – fundername: NHLBI NIH HHS grantid: T32 HL007828 – fundername: NIDDK NIH HHS grantid: RC2 DK114777 – fundername: NICHD NIH HHS grantid: DP2 HD088158 – fundername: NHLBI NIH HHS grantid: R01 HL118342 – fundername: NLM NIH HHS grantid: T32 LM012419 – fundername: NIGMS NIH HHS grantid: R35 GM139532 – fundername: University of Washington National Institutes of Health grantid: T32LM012419 – fundername: ; grantid: MCB-1516701; RESEARCH-PGR 1748843 – fundername: Paul G. Allen Frontiers Group – fundername: ; grantid: U54DK107979; DP2HD088158; RC2DK114777; R01HL118342 |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2AX 2FS 2WC 2~F 4.4 5VS 5WD 85S 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAXTN ABBHK ABDFA ABEJV ABGNP ABJNI ABMNT ABPLY ABPPZ ABPTD ABTLG ABVGC ABXVV ABXZS ACBTR ACGFO ACGOD ACIPB ACIWK ACNCT ACPRK ACUFI ADBBV ADGKP ADIPN ADIYS ADQBN ADVEK ADYHW AEEJZ AENEX AEUPB AFAZZ AFFZL AFGWE AFRAH AGORE AHMBA AICQM AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX ATGXG BAWUL BCRHZ BEYMZ BTFSW CBGCD CS3 DATOO DIK DU5 E3Z EBS ECGQY EJD F5P F8P F9R FLUFQ FOEOM GX1 H13 H~9 IPSME JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KOP KQ8 KSI KSN MV1 N9A NOMLY OBOKY OJZSN OK1 OWPYF P2P Q2X RHI ROX RPB RWL RXW SA0 TAE TN5 TR2 U5U W8F WH7 WOQ XSW YBU YR2 YSK ZCA ZCN ~KM 53G 7X2 7X7 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW AAWDT AAYJJ AAYXX ABIME ABPIB ABUWG ABXSQ ABZEO ACFRR ACHIC ACUTJ ACVCV ACZBC ADULT ADXHL AEUYN AFFNX AFKRA AFYAG AGCDD AGMDO AGUYK AHGBF AHXOZ AJBYB AJDVS ANFBD APJGH AQDSO AQVQM AS~ ATCPS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C1A CCPQU CITATION D1J DWQXO FYUFA GNUQQ GTFYD HCIFZ HGD HMCUK HTVGU LK8 M0K M1P M2P M2Q M7P MVM NEJ NU- P0- PHGZM PHGZT PQQKQ PROAC PSQYO S0X TCN UBC UKHRP UKR WHG XOL Y6R ZCG CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7X8 5PM |
ID | FETCH-LOGICAL-c472t-a2a6e0724c0ad27181ec13751118a58784e3039f658bdba17df47a01a19fc4903 |
ISSN | 1040-4651 1532-298X |
IngestDate | Thu Aug 21 18:34:55 EDT 2025 Sun Sep 28 04:50:59 EDT 2025 Wed Jul 23 01:45:52 EDT 2025 Thu Apr 24 23:11:02 EDT 2025 Tue Jul 01 03:49:49 EDT 2025 Thu May 29 08:50:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | 2019 All rights reserved. The Author(s) 2019. Published by Oxford University Press on behalf of American Society of Plant Biologists. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c472t-a2a6e0724c0ad27181ec13751118a58784e3039f658bdba17df47a01a19fc4903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 www.plantcell.org/cgi/doi/10.1105/tpc.18.00785 The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Josh T. Cuperus (cuperusj@uw.edu). |
ORCID | 0000-0001-5768-5993 0000-0002-8105-4347 0000-0003-4387-1511 0000-0003-0047-0312 0000-0003-4377-4252 0000-0002-1117-2591 0000-0001-5504-5925 0000-0002-8019-7733 0000-0002-0905-4705 0000-0002-7691-6504 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8516002 |
PMID | 30923229 |
PQID | 2200767163 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8516002 proquest_miscellaneous_2200767163 pubmed_primary_30923229 crossref_primary_10_1105_tpc_18_00785 crossref_citationtrail_10_1105_tpc_18_00785 jstor_primary_26654612 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | The Plant cell |
PublicationTitleAlternate | Plant Cell |
PublicationYear | 2019 |
Publisher | American Society of Plant Biologists (ASPB) American Society of Plant Biologists |
Publisher_xml | – name: American Society of Plant Biologists (ASPB) – name: American Society of Plant Biologists |
References | 30979794 - Plant Cell. 2019 May;31(5):933-934. doi: 10.1105/tpc.19.00247. |
References_xml | – reference: 30979794 - Plant Cell. 2019 May;31(5):933-934. doi: 10.1105/tpc.19.00247. |
SSID | ssj0001719 |
Score | 2.6679327 |
Snippet | Single cell RNA sequencing can yield high-resolution cell-type–specific expression signatures that reveal new cell types and the developmental trajectories of... Single cell RNA sequencing can yield high-resolution cell-type-specific expression signatures that reveal new cell types and the developmental trajectories of... Single cell transcriptomic profiling can map developmental trajectories and assess cell-type–specific changes during heat shock at single cell resolution.... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 993 |
SubjectTerms | Arabidopsis - genetics Arabidopsis - physiology Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Gene Expression Profiling Gene Expression Regulation, Plant Heat-Shock Response Plant Roots - genetics Plant Roots - physiology Sequence Analysis, RNA Single-Cell Analysis Stress, Physiological Transcription Factors - genetics Transcription Factors - metabolism Transcriptome |
Title | Dynamics of Gene Expression in Single Root Cells of Arabidopsis thaliana |
URI | https://www.jstor.org/stable/26654612 https://www.ncbi.nlm.nih.gov/pubmed/30923229 https://www.proquest.com/docview/2200767163 https://pubmed.ncbi.nlm.nih.gov/PMC8516002 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1532-298X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001719 issn: 1040-4651 databaseCode: KQ8 dateStart: 19890101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1532-298X dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0001719 issn: 1040-4651 databaseCode: DIK dateStart: 19890101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1532-298X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001719 issn: 1040-4651 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgQYILgoWF8FKQgEuVJXYeTo673a0q9oGAVuotcmKHrVQlJZse4NczY-dVKNLCJUpTN6k8k_E345n5CHmbsVyGKbglymPCwe4jDoBY-Kg86Xq55HGK1cgXl-F07n9cBIt-B19Xl9TpYfZzZ13J_0gVroFcsUr2HyTb3RQuwDnIF44gYTjeSMYnhk5eZ2Ng_2hsXGzyWnX-4ldYllZq9KUs69FYrUyf5KNKpEtZrrERSX2loxxiiFBRb5DJqB5hTL9LsFGicI4F2Jdrw6d31peQXWQTgWDVmSy_bVRVimZnwezBj7roclNLY4LeY21cCtFHY0_KqmooCppcfpP818YksAyqzQDszChzWKxJg2GV2XGtsb0eHehYMDCkseFN_NPAu9gLo15nhxSTYLnh-9nuo335KZnMz8-T2eli9n793UGKMdyKb_hWbpM7jIch0l2cfe5by1OuWWC6v9lVSQQfho_bwi8mhXWXc_J7ju0AtMwekgeNt2EfGdV5RG6pYp_cPS7BI_ixT-6NW7a_x2Ta6pJd5jbqkt3rkr0sbKNLNuqSrXUJxw10yW516QmZT05n46nTsGw4mc9Z7QgmQuVy5meukAygClUZ9TgAcRqJIOKRrwDmxDlA1VSmgnKZ-1y4VNA4z_zY9Q7IXlEW6hmxUwDXLo2USiXzJawNPpzGYOMlz_1A5hYZtXOXZE0LemRCWSXaFXWDBGY6oVGiZ9oi77rRa9N65S_jDrQYukEMGbUBuVvkTSuXBGYT3xpRqHJznTCM0IccfBGLPDVy6n7tueDzMBZbhG9JsBuADdm3vymWV7oxO3gvuM39_AbPfUHu9y_OS7JXVxv1CuBtnb7WavkLISCmig |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+Gene+Expression+in+Single+Root+Cells+of+Arabidopsis+thaliana&rft.jtitle=The+Plant+cell&rft.au=Jean-Baptiste%2C+Ken&rft.au=McFaline-Figueroa%2C+Jos%C3%A9+L&rft.au=Alexandre%2C+Cristina+M&rft.au=Dorrity%2C+Michael+W&rft.date=2019-05-01&rft.issn=1532-298X&rft.eissn=1532-298X&rft.volume=31&rft.issue=5&rft.spage=993&rft_id=info:doi/10.1105%2Ftpc.18.00785&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon |