Dynamics of Gene Expression in Single Root Cells of Arabidopsis thaliana

Single cell RNA sequencing can yield high-resolution cell-type–specific expression signatures that reveal new cell types and the developmental trajectories of cell lineages. Here, we apply this approach to Arabidopsis (Arabidopsis thaliana) root cells to capture gene expression in 3,121 root cells....

Full description

Saved in:
Bibliographic Details
Published inThe Plant cell Vol. 31; no. 5; pp. 993 - 1011
Main Authors Jean-Baptiste, Ken, McFaline-Figueroa, José L., Alexandre, Cristina M., Dorrity, Michael W., Saunders, Lauren, Bubb, Kerry L., Trapnell, Cole, Fields, Stanley, Queitsch, Christine, Cuperus, Josh T.
Format Journal Article
LanguageEnglish
Published England American Society of Plant Biologists (ASPB) 01.05.2019
American Society of Plant Biologists
Subjects
Online AccessGet full text
ISSN1040-4651
1532-298X
1532-298X
DOI10.1105/tpc.18.00785

Cover

Abstract Single cell RNA sequencing can yield high-resolution cell-type–specific expression signatures that reveal new cell types and the developmental trajectories of cell lineages. Here, we apply this approach to Arabidopsis (Arabidopsis thaliana) root cells to capture gene expression in 3,121 root cells. We analyze these data with Monocle 3, which orders single cell transcriptomes in an unsupervised manner and uses machine learning to reconstruct single cell developmental trajectories along pseudotime. We identify hundreds of genes with cell-type–specific expression, with pseudotime analysis of several cell lineages revealing both known and novel genes that are expressed along a developmental trajectory. We identify transcription factor motifs that are enriched in early and late cells, together with the corresponding candidate transcription factors that likely drive the observed expression patterns. We assess and interpret changes in total RNA expression along developmental trajectories and show that trajectory branch points mark developmental decisions. Finally, by applying heat stress to whole seedlings, we address the longstanding question of possible heterogeneity among cell types in the response to an abiotic stress. Although the response of canonical heat-shock genes dominates expression across cell types, subtle but significant differences in other genes can be detected among cell types. Taken together, our results demonstrate that single cell transcriptomics holds promise for studying plant development and plant physiology with unprecedented resolution.
AbstractList Single cell RNA sequencing can yield high-resolution cell-type-specific expression signatures that reveal new cell types and the developmental trajectories of cell lineages. Here, we apply this approach to Arabidopsis ( ) root cells to capture gene expression in 3,121 root cells. We analyze these data with Monocle 3, which orders single cell transcriptomes in an unsupervised manner and uses machine learning to reconstruct single cell developmental trajectories along pseudotime. We identify hundreds of genes with cell-type-specific expression, with pseudotime analysis of several cell lineages revealing both known and novel genes that are expressed along a developmental trajectory. We identify transcription factor motifs that are enriched in early and late cells, together with the corresponding candidate transcription factors that likely drive the observed expression patterns. We assess and interpret changes in total RNA expression along developmental trajectories and show that trajectory branch points mark developmental decisions. Finally, by applying heat stress to whole seedlings, we address the longstanding question of possible heterogeneity among cell types in the response to an abiotic stress. Although the response of canonical heat-shock genes dominates expression across cell types, subtle but significant differences in other genes can be detected among cell types. Taken together, our results demonstrate that single cell transcriptomics holds promise for studying plant development and plant physiology with unprecedented resolution.
Single cell RNA sequencing can yield high-resolution cell-type-specific expression signatures that reveal new cell types and the developmental trajectories of cell lineages. Here, we apply this approach to Arabidopsis (Arabidopsis thaliana) root cells to capture gene expression in 3,121 root cells. We analyze these data with Monocle 3, which orders single cell transcriptomes in an unsupervised manner and uses machine learning to reconstruct single cell developmental trajectories along pseudotime. We identify hundreds of genes with cell-type-specific expression, with pseudotime analysis of several cell lineages revealing both known and novel genes that are expressed along a developmental trajectory. We identify transcription factor motifs that are enriched in early and late cells, together with the corresponding candidate transcription factors that likely drive the observed expression patterns. We assess and interpret changes in total RNA expression along developmental trajectories and show that trajectory branch points mark developmental decisions. Finally, by applying heat stress to whole seedlings, we address the longstanding question of possible heterogeneity among cell types in the response to an abiotic stress. Although the response of canonical heat-shock genes dominates expression across cell types, subtle but significant differences in other genes can be detected among cell types. Taken together, our results demonstrate that single cell transcriptomics holds promise for studying plant development and plant physiology with unprecedented resolution.Single cell RNA sequencing can yield high-resolution cell-type-specific expression signatures that reveal new cell types and the developmental trajectories of cell lineages. Here, we apply this approach to Arabidopsis (Arabidopsis thaliana) root cells to capture gene expression in 3,121 root cells. We analyze these data with Monocle 3, which orders single cell transcriptomes in an unsupervised manner and uses machine learning to reconstruct single cell developmental trajectories along pseudotime. We identify hundreds of genes with cell-type-specific expression, with pseudotime analysis of several cell lineages revealing both known and novel genes that are expressed along a developmental trajectory. We identify transcription factor motifs that are enriched in early and late cells, together with the corresponding candidate transcription factors that likely drive the observed expression patterns. We assess and interpret changes in total RNA expression along developmental trajectories and show that trajectory branch points mark developmental decisions. Finally, by applying heat stress to whole seedlings, we address the longstanding question of possible heterogeneity among cell types in the response to an abiotic stress. Although the response of canonical heat-shock genes dominates expression across cell types, subtle but significant differences in other genes can be detected among cell types. Taken together, our results demonstrate that single cell transcriptomics holds promise for studying plant development and plant physiology with unprecedented resolution.
Single cell RNA sequencing can yield high-resolution cell-type–specific expression signatures that reveal new cell types and the developmental trajectories of cell lineages. Here, we apply this approach to Arabidopsis (Arabidopsis thaliana) root cells to capture gene expression in 3,121 root cells. We analyze these data with Monocle 3, which orders single cell transcriptomes in an unsupervised manner and uses machine learning to reconstruct single cell developmental trajectories along pseudotime. We identify hundreds of genes with cell-type–specific expression, with pseudotime analysis of several cell lineages revealing both known and novel genes that are expressed along a developmental trajectory. We identify transcription factor motifs that are enriched in early and late cells, together with the corresponding candidate transcription factors that likely drive the observed expression patterns. We assess and interpret changes in total RNA expression along developmental trajectories and show that trajectory branch points mark developmental decisions. Finally, by applying heat stress to whole seedlings, we address the longstanding question of possible heterogeneity among cell types in the response to an abiotic stress. Although the response of canonical heat-shock genes dominates expression across cell types, subtle but significant differences in other genes can be detected among cell types. Taken together, our results demonstrate that single cell transcriptomics holds promise for studying plant development and plant physiology with unprecedented resolution.
Single cell transcriptomic profiling can map developmental trajectories and assess cell-type–specific changes during heat shock at single cell resolution. Single cell RNA sequencing can yield high-resolution cell-type–specific expression signatures that reveal new cell types and the developmental trajectories of cell lineages. Here, we apply this approach to Arabidopsis ( Arabidopsis thaliana ) root cells to capture gene expression in 3,121 root cells. We analyze these data with Monocle 3, which orders single cell transcriptomes in an unsupervised manner and uses machine learning to reconstruct single cell developmental trajectories along pseudotime. We identify hundreds of genes with cell-type–specific expression, with pseudotime analysis of several cell lineages revealing both known and novel genes that are expressed along a developmental trajectory. We identify transcription factor motifs that are enriched in early and late cells, together with the corresponding candidate transcription factors that likely drive the observed expression patterns. We assess and interpret changes in total RNA expression along developmental trajectories and show that trajectory branch points mark developmental decisions. Finally, by applying heat stress to whole seedlings, we address the longstanding question of possible heterogeneity among cell types in the response to an abiotic stress. Although the response of canonical heat-shock genes dominates expression across cell types, subtle but significant differences in other genes can be detected among cell types. Taken together, our results demonstrate that single cell transcriptomics holds promise for studying plant development and plant physiology with unprecedented resolution.
Author Cuperus, Josh T.
Alexandre, Cristina M.
Queitsch, Christine
Dorrity, Michael W.
Bubb, Kerry L.
Saunders, Lauren
Jean-Baptiste, Ken
McFaline-Figueroa, José L.
Fields, Stanley
Trapnell, Cole
AuthorAffiliation b Department of Medicine, University of Washington, Seattle, Washington 98195
a Department of Genome Sciences, University of Washington, Seattle, Washington 98195
AuthorAffiliation_xml – name: a Department of Genome Sciences, University of Washington, Seattle, Washington 98195
– name: b Department of Medicine, University of Washington, Seattle, Washington 98195
Author_xml – sequence: 1
  givenname: Ken
  surname: Jean-Baptiste
  fullname: Jean-Baptiste, Ken
– sequence: 2
  givenname: José L.
  surname: McFaline-Figueroa
  fullname: McFaline-Figueroa, José L.
– sequence: 3
  givenname: Cristina M.
  surname: Alexandre
  fullname: Alexandre, Cristina M.
– sequence: 4
  givenname: Michael W.
  surname: Dorrity
  fullname: Dorrity, Michael W.
– sequence: 5
  givenname: Lauren
  surname: Saunders
  fullname: Saunders, Lauren
– sequence: 6
  givenname: Kerry L.
  surname: Bubb
  fullname: Bubb, Kerry L.
– sequence: 7
  givenname: Cole
  surname: Trapnell
  fullname: Trapnell, Cole
– sequence: 8
  givenname: Stanley
  surname: Fields
  fullname: Fields, Stanley
– sequence: 9
  givenname: Christine
  surname: Queitsch
  fullname: Queitsch, Christine
– sequence: 10
  givenname: Josh T.
  surname: Cuperus
  fullname: Cuperus, Josh T.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30923229$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rFTEUxYNU7Ifu3Cqz7MJ5vTeZfMxGKM_aFgoFP8BdyMtk2pR5yZjkif3vjX31UQVXCeR3z7k555DshRgcIa8RFojAT8psF6gWAFLxZ-QAOaMt7dW3vXqHDtpOcNwnhznfAQBK7F-QfQY9ZZT2B-Tiw30wa29zE8fm3AXXnP2ck8vZx9D40Hz24WZyzacYS7N00_TAnSaz8kOcs89NuTWTN8G8JM9HM2X36vE8Il8_nn1ZXrRX1-eXy9Or1naSltZQIxxI2lkwA5Wo0FlkkiOiMlxJ1TkGrB8FV6thZVAOYycNoMF-tF0P7Ii83-rOm9XaDdaFksyk5-TXJt3raLz--yX4W30Tf2jFUQDQKnD8KJDi943LRa99tvVrJri4yZrSGqWQKFhF3z712pn8ia8C77aATTHn5MYdgqB_t6NrOxqVfmin4vQf3PpiSo26buqn_w292Q7d5RLTzoAKwTuBlP0C9V6cJg
CitedBy_id crossref_primary_10_1016_j_xplc_2023_100717
crossref_primary_10_1126_science_aba5531
crossref_primary_10_3390_ijms22031399
crossref_primary_10_1111_tpj_15314
crossref_primary_10_3389_fpls_2024_1446561
crossref_primary_10_1016_j_devcel_2023_05_014
crossref_primary_10_1093_plphys_kiab537
crossref_primary_10_1016_j_molp_2020_06_010
crossref_primary_10_1242_dev_200179
crossref_primary_10_1016_j_coisb_2020_07_010
crossref_primary_10_1038_s41477_024_01771_3
crossref_primary_10_3390_ijms23094497
crossref_primary_10_1093_nar_gkac276
crossref_primary_10_1146_annurev_arplant_081720_010120
crossref_primary_10_1016_j_tplants_2024_03_010
crossref_primary_10_1093_pcp_pcz228
crossref_primary_10_1093_plcell_koab099
crossref_primary_10_34133_bdr_0029
crossref_primary_10_1093_plcell_koae003
crossref_primary_10_1093_jxb_erae107
crossref_primary_10_1016_j_pbi_2021_102094
crossref_primary_10_1007_s42994_021_00040_7
crossref_primary_10_1093_bib_bbaa273
crossref_primary_10_1042_ETLS20200274
crossref_primary_10_1016_j_cpb_2023_100289
crossref_primary_10_1007_s10725_023_00979_1
crossref_primary_10_1016_j_devcel_2021_02_021
crossref_primary_10_1093_gpbjnl_qzae026
crossref_primary_10_3390_ijms23052845
crossref_primary_10_1111_pbi_14097
crossref_primary_10_1093_plphys_kiab403
crossref_primary_10_1016_j_molp_2021_05_028
crossref_primary_10_1016_j_tplants_2021_09_003
crossref_primary_10_1093_jxb_erab303
crossref_primary_10_1186_s13059_023_03032_6
crossref_primary_10_3390_plants9030377
crossref_primary_10_1016_j_molp_2022_10_019
crossref_primary_10_1016_j_plantsci_2022_111535
crossref_primary_10_3390_cells9091943
crossref_primary_10_1039_D0AN02163F
crossref_primary_10_1002_leg3_16
crossref_primary_10_1016_j_molp_2022_10_016
crossref_primary_10_1093_plphys_kiae346
crossref_primary_10_1016_j_cropd_2024_100057
crossref_primary_10_1093_pcp_pcac078
crossref_primary_10_1016_j_csbj_2023_06_016
crossref_primary_10_1146_annurev_genet_022123_110824
crossref_primary_10_1038_s41467_024_55755_0
crossref_primary_10_1038_s41588_023_01546_0
crossref_primary_10_1111_nph_18086
crossref_primary_10_1016_j_jplph_2021_153569
crossref_primary_10_3389_fgene_2020_596150
crossref_primary_10_1093_plphys_kiab508
crossref_primary_10_1111_tpj_16070
crossref_primary_10_1093_plcell_koae038
crossref_primary_10_1186_s12915_022_01473_2
crossref_primary_10_3389_fpls_2022_863849
crossref_primary_10_1016_j_tig_2024_07_001
crossref_primary_10_3389_fpls_2022_988594
crossref_primary_10_1016_j_cj_2022_02_004
crossref_primary_10_1016_j_stress_2024_100356
crossref_primary_10_1038_s41477_023_01544_4
crossref_primary_10_1007_s00299_024_03168_0
crossref_primary_10_1016_j_jgg_2025_01_012
crossref_primary_10_1016_j_pbi_2021_102059
crossref_primary_10_1093_plphys_kiab336
crossref_primary_10_1007_s12210_020_00893_y
crossref_primary_10_1093_plphys_kiae605
crossref_primary_10_3390_plants13091276
crossref_primary_10_1016_j_cell_2021_04_024
crossref_primary_10_1093_plcell_koae045
crossref_primary_10_1016_j_jgg_2021_06_001
crossref_primary_10_1016_j_plantsci_2022_111486
crossref_primary_10_1111_jipb_13163
crossref_primary_10_1016_j_cell_2023_10_013
crossref_primary_10_1093_plphys_kiab325
crossref_primary_10_1016_j_xplc_2024_100979
crossref_primary_10_1016_j_xplc_2024_100978
crossref_primary_10_1002_advs_202415083
crossref_primary_10_1016_j_pbi_2021_102041
crossref_primary_10_3389_fpls_2024_1437118
crossref_primary_10_3389_fpls_2021_696811
crossref_primary_10_3390_ijms241612643
crossref_primary_10_3389_fpls_2022_958808
crossref_primary_10_3389_fpls_2022_891861
crossref_primary_10_1093_jxb_erad091
crossref_primary_10_1016_j_ceb_2022_102102
crossref_primary_10_3389_fgene_2021_652974
crossref_primary_10_1093_jxb_erab228
crossref_primary_10_1016_j_tplants_2020_04_016
crossref_primary_10_1134_S1021443723602835
crossref_primary_10_1016_j_tplants_2024_06_008
crossref_primary_10_1038_s41467_024_55485_3
crossref_primary_10_1111_pbi_13656
crossref_primary_10_1021_acsagscitech_4c00273
crossref_primary_10_1111_pbi_13893
crossref_primary_10_1186_s12870_024_05916_6
crossref_primary_10_17660_ActaHortic_2021_1310_7
crossref_primary_10_1016_j_tplants_2023_10_002
crossref_primary_10_1016_j_molp_2023_02_005
crossref_primary_10_3390_ijms252111360
crossref_primary_10_1111_nph_20406
crossref_primary_10_7554_eLife_95891_3
crossref_primary_10_1016_j_cpb_2025_100467
crossref_primary_10_1186_s13062_024_00501_1
crossref_primary_10_1016_j_indcrop_2024_118338
crossref_primary_10_1016_j_xplc_2024_100984
crossref_primary_10_1126_science_aay4970
crossref_primary_10_1016_j_xinn_2022_100342
crossref_primary_10_1007_s10265_020_01198_9
crossref_primary_10_1093_jxb_erab248
crossref_primary_10_3390_plants12132466
crossref_primary_10_1093_plcell_koaa038
crossref_primary_10_3390_membranes12090874
crossref_primary_10_1016_j_tplants_2021_03_001
crossref_primary_10_1016_j_jplph_2021_153511
crossref_primary_10_7554_eLife_95891
crossref_primary_10_1016_j_devcel_2023_03_004
crossref_primary_10_1016_j_isci_2020_101890
crossref_primary_10_1016_j_pbi_2020_08_004
crossref_primary_10_3389_fpls_2022_1053669
crossref_primary_10_1016_j_heliyon_2024_e33079
crossref_primary_10_1016_j_tibs_2023_06_001
crossref_primary_10_3390_cimb43030119
crossref_primary_10_1111_jipb_13495
crossref_primary_10_1093_jxb_erab110
crossref_primary_10_1016_j_aca_2024_342217
crossref_primary_10_1093_plcell_koab255
crossref_primary_10_1016_j_devcel_2022_01_008
crossref_primary_10_1093_plphys_kiae199
crossref_primary_10_1016_j_tplants_2021_07_004
crossref_primary_10_1007_s00344_024_11238_6
crossref_primary_10_3390_f15030512
crossref_primary_10_1007_s42994_025_00196_6
crossref_primary_10_1016_j_ncrops_2024_100025
crossref_primary_10_1007_s12298_025_01558_6
crossref_primary_10_1016_j_celrep_2025_115240
crossref_primary_10_1016_j_tplants_2023_07_010
crossref_primary_10_1093_nar_gkaa264
crossref_primary_10_1016_j_pbi_2024_102662
crossref_primary_10_1093_plphys_kiab489
crossref_primary_10_1016_j_molp_2020_12_014
crossref_primary_10_1101_gr_279091_124
crossref_primary_10_1093_plcell_koab101
crossref_primary_10_1038_s42003_021_02477_4
crossref_primary_10_1016_j_molp_2019_04_004
crossref_primary_10_1016_j_pbi_2020_04_002
crossref_primary_10_1038_s41467_021_22352_4
crossref_primary_10_1111_tpj_14603
crossref_primary_10_1111_pce_14012
crossref_primary_10_1016_j_tplants_2019_10_008
crossref_primary_10_1002_advs_202308384
crossref_primary_10_1111_jipb_13159
crossref_primary_10_48130_FR_2023_0027
crossref_primary_10_1093_plphys_kiab478
crossref_primary_10_1016_j_pbi_2021_102113
crossref_primary_10_1038_s41477_024_01738_4
crossref_primary_10_1016_j_tibtech_2022_09_007
crossref_primary_10_1016_j_xplc_2022_100508
crossref_primary_10_1186_s43897_023_00067_y
crossref_primary_10_1016_j_indcrop_2025_120752
crossref_primary_10_3390_plants10071274
crossref_primary_10_3389_fpls_2022_1007866
crossref_primary_10_1016_j_cj_2021_06_012
crossref_primary_10_1111_pce_14266
crossref_primary_10_1186_s13059_023_02886_0
crossref_primary_10_1146_annurev_genet_071719_020453
crossref_primary_10_1093_plphys_kiab584
crossref_primary_10_1186_s12870_024_05574_8
crossref_primary_10_1111_nph_18008
crossref_primary_10_1111_nph_16627
crossref_primary_10_1093_plphys_kiab228
crossref_primary_10_1016_j_xplc_2024_100941
crossref_primary_10_1038_s41467_020_15351_4
crossref_primary_10_1002_cyto_a_24196
crossref_primary_10_1042_ETLS20210286
crossref_primary_10_1038_s41477_025_01908_y
crossref_primary_10_1016_j_molp_2021_05_002
crossref_primary_10_1093_aobpla_plad032
crossref_primary_10_1111_pce_14906
crossref_primary_10_3389_fpls_2023_1185377
crossref_primary_10_1093_bib_bbac144
crossref_primary_10_1093_plcell_koab281
crossref_primary_10_1186_s12915_021_01071_8
crossref_primary_10_1016_j_pbi_2019_04_002
crossref_primary_10_1111_pce_15321
crossref_primary_10_1111_tpj_14940
crossref_primary_10_1016_j_jmb_2019_06_028
crossref_primary_10_3390_cells13181561
crossref_primary_10_1038_s41467_023_37607_5
crossref_primary_10_1080_07388551_2023_2165900
crossref_primary_10_1016_j_tplants_2021_08_016
crossref_primary_10_1016_j_xplc_2023_100631
crossref_primary_10_1186_s12870_024_05958_w
crossref_primary_10_1016_j_pbi_2019_10_008
crossref_primary_10_1111_pbi_13918
crossref_primary_10_1002_cppb_20120
crossref_primary_10_1093_bioinformatics_btaf057
crossref_primary_10_1093_nar_gkaa979
crossref_primary_10_1111_nph_19153
crossref_primary_10_1093_nar_gkab949
crossref_primary_10_1093_hr_uhac182
crossref_primary_10_1002_cpz1_498
crossref_primary_10_1007_s00253_022_11963_6
crossref_primary_10_1242_dev_199589
crossref_primary_10_1002_dvg_23596
crossref_primary_10_1016_j_xplc_2023_100740
crossref_primary_10_1016_j_molp_2022_10_021
crossref_primary_10_1016_j_pbi_2023_102444
crossref_primary_10_1016_j_chom_2020_11_014
crossref_primary_10_3390_agronomy14112530
crossref_primary_10_1093_jxb_erad244
crossref_primary_10_1016_j_pbi_2024_102526
crossref_primary_10_1016_j_chom_2024_02_014
crossref_primary_10_1186_s42397_024_00181_2
crossref_primary_10_1186_s13059_022_02834_4
crossref_primary_10_1111_tpj_15458
crossref_primary_10_1111_nph_18053
crossref_primary_10_1186_s13007_023_01109_8
crossref_primary_10_1038_s42003_021_02676_z
crossref_primary_10_1093_plphys_kiae425
crossref_primary_10_1111_ppl_14188
crossref_primary_10_1111_nph_16437
crossref_primary_10_1016_j_molp_2020_10_012
crossref_primary_10_1093_jxb_erad235
crossref_primary_10_1111_nph_17992
crossref_primary_10_1016_j_xplc_2022_100306
crossref_primary_10_1093_nar_gkad307
crossref_primary_10_1186_s13059_021_02288_0
crossref_primary_10_1016_j_xplc_2022_100308
crossref_primary_10_1111_tpj_15101
crossref_primary_10_3389_fpls_2021_661361
crossref_primary_10_3389_fpls_2022_924660
crossref_primary_10_1111_tpj_15589
crossref_primary_10_1038_s41477_024_01838_1
crossref_primary_10_1093_plcell_koaa060
crossref_primary_10_1016_j_pld_2024_03_008
crossref_primary_10_1186_s13007_019_0498_5
crossref_primary_10_1016_j_molp_2021_01_001
crossref_primary_10_3389_fpls_2020_603302
crossref_primary_10_1016_j_pbi_2019_09_003
crossref_primary_10_1186_s13059_022_02845_1
crossref_primary_10_1111_pce_14585
crossref_primary_10_3389_fpls_2021_774994
crossref_primary_10_1002_advs_202304017
crossref_primary_10_1016_j_xplc_2022_100302
ContentType Journal Article
Copyright 2019 ASPB
2019 All rights reserved.
2019 American Society of Plant Biologists. All rights reserved. 2019
Copyright_xml – notice: 2019 ASPB
– notice: 2019 All rights reserved.
– notice: 2019 American Society of Plant Biologists. All rights reserved. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1105/tpc.18.00785
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Botany
EISSN 1532-298X
EndPage 1011
ExternalDocumentID PMC8516002
30923229
10_1105_tpc_18_00785
26654612
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: U54 DK107979
– fundername: NHLBI NIH HHS
  grantid: T32 HL007828
– fundername: NIDDK NIH HHS
  grantid: RC2 DK114777
– fundername: NICHD NIH HHS
  grantid: DP2 HD088158
– fundername: NHLBI NIH HHS
  grantid: R01 HL118342
– fundername: NLM NIH HHS
  grantid: T32 LM012419
– fundername: NIGMS NIH HHS
  grantid: R35 GM139532
– fundername: University of Washington National Institutes of Health
  grantid: T32LM012419
– fundername: ;
  grantid: MCB-1516701; RESEARCH-PGR 1748843
– fundername: Paul G. Allen Frontiers Group
– fundername: ;
  grantid: U54DK107979; DP2HD088158; RC2DK114777; R01HL118342
GroupedDBID ---
-DZ
-~X
0R~
123
29O
2AX
2FS
2WC
2~F
4.4
5VS
5WD
85S
8R4
8R5
AAHBH
AAHKG
AAPXW
AARHZ
AAUAY
AAVAP
AAXTN
ABBHK
ABDFA
ABEJV
ABGNP
ABJNI
ABMNT
ABPLY
ABPPZ
ABPTD
ABTLG
ABVGC
ABXVV
ABXZS
ACBTR
ACGFO
ACGOD
ACIPB
ACIWK
ACNCT
ACPRK
ACUFI
ADBBV
ADGKP
ADIPN
ADIYS
ADQBN
ADVEK
ADYHW
AEEJZ
AENEX
AEUPB
AFAZZ
AFFZL
AFGWE
AFRAH
AGORE
AHMBA
AICQM
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ATGXG
BAWUL
BCRHZ
BEYMZ
BTFSW
CBGCD
CS3
DATOO
DIK
DU5
E3Z
EBS
ECGQY
EJD
F5P
F8P
F9R
FLUFQ
FOEOM
GX1
H13
H~9
IPSME
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KOP
KQ8
KSI
KSN
MV1
N9A
NOMLY
OBOKY
OJZSN
OK1
OWPYF
P2P
Q2X
RHI
ROX
RPB
RWL
RXW
SA0
TAE
TN5
TR2
U5U
W8F
WH7
WOQ
XSW
YBU
YR2
YSK
ZCA
ZCN
~KM
53G
7X2
7X7
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
AAWDT
AAYJJ
AAYXX
ABIME
ABPIB
ABUWG
ABXSQ
ABZEO
ACFRR
ACHIC
ACUTJ
ACVCV
ACZBC
ADULT
ADXHL
AEUYN
AFFNX
AFKRA
AFYAG
AGCDD
AGMDO
AGUYK
AHGBF
AHXOZ
AJBYB
AJDVS
ANFBD
APJGH
AQDSO
AQVQM
AS~
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CITATION
D1J
DWQXO
FYUFA
GNUQQ
GTFYD
HCIFZ
HGD
HMCUK
HTVGU
LK8
M0K
M1P
M2P
M2Q
M7P
MVM
NEJ
NU-
P0-
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
S0X
TCN
UBC
UKHRP
UKR
WHG
XOL
Y6R
ZCG
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7X8
5PM
ID FETCH-LOGICAL-c472t-a2a6e0724c0ad27181ec13751118a58784e3039f658bdba17df47a01a19fc4903
ISSN 1040-4651
1532-298X
IngestDate Thu Aug 21 18:34:55 EDT 2025
Sun Sep 28 04:50:59 EDT 2025
Wed Jul 23 01:45:52 EDT 2025
Thu Apr 24 23:11:02 EDT 2025
Tue Jul 01 03:49:49 EDT 2025
Thu May 29 08:50:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License 2019 All rights reserved.
The Author(s) 2019. Published by Oxford University Press on behalf of American Society of Plant Biologists. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c472t-a2a6e0724c0ad27181ec13751118a58784e3039f658bdba17df47a01a19fc4903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
www.plantcell.org/cgi/doi/10.1105/tpc.18.00785
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Josh T. Cuperus (cuperusj@uw.edu).
ORCID 0000-0001-5768-5993
0000-0002-8105-4347
0000-0003-4387-1511
0000-0003-0047-0312
0000-0003-4377-4252
0000-0002-1117-2591
0000-0001-5504-5925
0000-0002-8019-7733
0000-0002-0905-4705
0000-0002-7691-6504
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8516002
PMID 30923229
PQID 2200767163
PQPubID 23479
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8516002
proquest_miscellaneous_2200767163
pubmed_primary_30923229
crossref_primary_10_1105_tpc_18_00785
crossref_citationtrail_10_1105_tpc_18_00785
jstor_primary_26654612
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle The Plant cell
PublicationTitleAlternate Plant Cell
PublicationYear 2019
Publisher American Society of Plant Biologists (ASPB)
American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists (ASPB)
– name: American Society of Plant Biologists
References 30979794 - Plant Cell. 2019 May;31(5):933-934. doi: 10.1105/tpc.19.00247.
References_xml – reference: 30979794 - Plant Cell. 2019 May;31(5):933-934. doi: 10.1105/tpc.19.00247.
SSID ssj0001719
Score 2.6679327
Snippet Single cell RNA sequencing can yield high-resolution cell-type–specific expression signatures that reveal new cell types and the developmental trajectories of...
Single cell RNA sequencing can yield high-resolution cell-type-specific expression signatures that reveal new cell types and the developmental trajectories of...
Single cell transcriptomic profiling can map developmental trajectories and assess cell-type–specific changes during heat shock at single cell resolution....
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 993
SubjectTerms Arabidopsis - genetics
Arabidopsis - physiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Gene Expression Profiling
Gene Expression Regulation, Plant
Heat-Shock Response
Plant Roots - genetics
Plant Roots - physiology
Sequence Analysis, RNA
Single-Cell Analysis
Stress, Physiological
Transcription Factors - genetics
Transcription Factors - metabolism
Transcriptome
Title Dynamics of Gene Expression in Single Root Cells of Arabidopsis thaliana
URI https://www.jstor.org/stable/26654612
https://www.ncbi.nlm.nih.gov/pubmed/30923229
https://www.proquest.com/docview/2200767163
https://pubmed.ncbi.nlm.nih.gov/PMC8516002
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1532-298X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001719
  issn: 1040-4651
  databaseCode: KQ8
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1532-298X
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0001719
  issn: 1040-4651
  databaseCode: DIK
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1532-298X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001719
  issn: 1040-4651
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgQYILgoWF8FKQgEuVJXYeTo673a0q9oGAVuotcmKHrVQlJZse4NczY-dVKNLCJUpTN6k8k_E345n5CHmbsVyGKbglymPCwe4jDoBY-Kg86Xq55HGK1cgXl-F07n9cBIt-B19Xl9TpYfZzZ13J_0gVroFcsUr2HyTb3RQuwDnIF44gYTjeSMYnhk5eZ2Ng_2hsXGzyWnX-4ldYllZq9KUs69FYrUyf5KNKpEtZrrERSX2loxxiiFBRb5DJqB5hTL9LsFGicI4F2Jdrw6d31peQXWQTgWDVmSy_bVRVimZnwezBj7roclNLY4LeY21cCtFHY0_KqmooCppcfpP818YksAyqzQDszChzWKxJg2GV2XGtsb0eHehYMDCkseFN_NPAu9gLo15nhxSTYLnh-9nuo335KZnMz8-T2eli9n793UGKMdyKb_hWbpM7jIch0l2cfe5by1OuWWC6v9lVSQQfho_bwi8mhXWXc_J7ju0AtMwekgeNt2EfGdV5RG6pYp_cPS7BI_ixT-6NW7a_x2Ta6pJd5jbqkt3rkr0sbKNLNuqSrXUJxw10yW516QmZT05n46nTsGw4mc9Z7QgmQuVy5meukAygClUZ9TgAcRqJIOKRrwDmxDlA1VSmgnKZ-1y4VNA4z_zY9Q7IXlEW6hmxUwDXLo2USiXzJawNPpzGYOMlz_1A5hYZtXOXZE0LemRCWSXaFXWDBGY6oVGiZ9oi77rRa9N65S_jDrQYukEMGbUBuVvkTSuXBGYT3xpRqHJznTCM0IccfBGLPDVy6n7tueDzMBZbhG9JsBuADdm3vymWV7oxO3gvuM39_AbPfUHu9y_OS7JXVxv1CuBtnb7WavkLISCmig
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+Gene+Expression+in+Single+Root+Cells+of+Arabidopsis+thaliana&rft.jtitle=The+Plant+cell&rft.au=Jean-Baptiste%2C+Ken&rft.au=McFaline-Figueroa%2C+Jos%C3%A9+L&rft.au=Alexandre%2C+Cristina+M&rft.au=Dorrity%2C+Michael+W&rft.date=2019-05-01&rft.issn=1532-298X&rft.eissn=1532-298X&rft.volume=31&rft.issue=5&rft.spage=993&rft_id=info:doi/10.1105%2Ftpc.18.00785&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon