New horizons for catalysis disclosed by supramolecular chemistry

The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (swi...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 5; no. 13; pp. 7681 - 7724
Main Authors Olivo, Giorgio, Capocasa, Giorgio, Del Giudice, Daniele, Lanzalunga, Osvaldo, Di Stefano, Stefano
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 05.07.2021
Subjects
Online AccessGet full text
ISSN0306-0012
1460-4744
1460-4744
DOI10.1039/d1cs00175b

Cover

Abstract The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (switch ON/OFF, sequential catalysis, etc. ). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis. Recent advancements in supramolecular catalysis are reviewed, which show the potential of related tools when applied to organic synthesis. Such tools are recognized as innovative instruments that can pave the way to alternative synthetic strategies.
AbstractList The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (switch ON/OFF, sequential catalysis, etc.). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis.
The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (switch ON/OFF, sequential catalysis, etc. ). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis. Recent advancements in supramolecular catalysis are reviewed, which show the potential of related tools when applied to organic synthesis. Such tools are recognized as innovative instruments that can pave the way to alternative synthetic strategies.
The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C–H bonds) and regulation (switch ON/OFF, sequential catalysis, etc. ). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis.
The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (switch ON/OFF, sequential catalysis, etc.). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis.The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (switch ON/OFF, sequential catalysis, etc.). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis.
Author Lanzalunga, Osvaldo
Capocasa, Giorgio
Di Stefano, Stefano
Del Giudice, Daniele
Olivo, Giorgio
AuthorAffiliation Università degli Studi di Roma "La Sapienza"
Dipartimento di Chimica
Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione
AuthorAffiliation_xml – name: Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione
– name: Dipartimento di Chimica
– name: Università degli Studi di Roma "La Sapienza"
Author_xml – sequence: 1
  givenname: Giorgio
  surname: Olivo
  fullname: Olivo, Giorgio
– sequence: 2
  givenname: Giorgio
  surname: Capocasa
  fullname: Capocasa, Giorgio
– sequence: 3
  givenname: Daniele
  surname: Del Giudice
  fullname: Del Giudice, Daniele
– sequence: 4
  givenname: Osvaldo
  surname: Lanzalunga
  fullname: Lanzalunga, Osvaldo
– sequence: 5
  givenname: Stefano
  surname: Di Stefano
  fullname: Di Stefano, Stefano
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34008654$$D View this record in MEDLINE/PubMed
BookMark eNqF0c9LwzAUB_AgE_dDL96VghcRqi9pmqQ3df6EoQf1XNIkZR1dM5MWmX-90W0KInhKIJ_3wnvfIeo1tjEI7WM4xZBkZxorD4B5WmyhAaYMYsop7aEBJMDi8EL6aOj9LNwwZ2QH9RMKIFhKB-j8wbxFU-uqd9v4qLQuUrKV9dJXPtKVV7X1RkfFMvLdwsm5rY3qahnU1Mwr37rlLtouZe3N3vocoZeb6-fxXTx5vL0fX0xiRTlp44wKUwDXguqiMDxVQkgphIYUM40ZFdowzTQQUUJBM8wyyJKszIjRssS0TEboeNV34exrZ3ybh_-VqWvZGNv5nDCGgSYc8_9pSkRGgIfljdDRLzqznWvCIEFRkaQMCA3qcK26Ym50vnDVXLplvlljALACylnvnSlzVbWyrWzTOlnVOYb8M6n8Co-fvpK6DCUnv0o2Xf_EByvsvPp2P7EnH2Iimyg
CitedBy_id crossref_primary_10_1021_jacs_2c08752
crossref_primary_10_1039_D2FD00165A
crossref_primary_10_1039_D2FD00177B
crossref_primary_10_1002_chem_202304131
crossref_primary_10_1007_s10870_022_00969_7
crossref_primary_10_1039_D1CC06851B
crossref_primary_10_3390_molecules27207083
crossref_primary_10_1002_chem_202403964
crossref_primary_10_1002_cctc_202101727
crossref_primary_10_1002_ceur_202300047
crossref_primary_10_1093_bulcsj_bcsj_20230224
crossref_primary_10_1038_s41467_023_38164_7
crossref_primary_10_1016_j_molstruc_2022_134152
crossref_primary_10_1039_D3CP02178E
crossref_primary_10_1002_anie_202303494
crossref_primary_10_1021_acscatal_3c01742
crossref_primary_10_3390_org4030030
crossref_primary_10_1002_anie_202303491
crossref_primary_10_1038_s41467_024_47150_6
crossref_primary_10_1038_s41557_022_01003_1
crossref_primary_10_1002_anie_202114932
crossref_primary_10_1016_j_chempr_2021_12_012
crossref_primary_10_1021_acscatal_2c00541
crossref_primary_10_2174_0113852728303168240424052507
crossref_primary_10_1002_ejoc_202101042
crossref_primary_10_3390_inorganics11040175
crossref_primary_10_1002_ange_202301319
crossref_primary_10_1016_j_molliq_2021_118329
crossref_primary_10_1002_ange_202410710
crossref_primary_10_1039_D1TB01719E
crossref_primary_10_1039_D3CY01477K
crossref_primary_10_3390_chemistry3040088
crossref_primary_10_1016_j_checat_2024_101082
crossref_primary_10_1021_acs_orglett_2c02609
crossref_primary_10_1021_jacs_2c00245
crossref_primary_10_1038_s41467_023_44129_7
crossref_primary_10_1002_ange_202316825
crossref_primary_10_3390_catal15030265
crossref_primary_10_1002_chem_202404041
crossref_primary_10_1016_j_molstruc_2024_137847
crossref_primary_10_1007_s43630_021_00146_3
crossref_primary_10_1038_s41467_024_48584_8
crossref_primary_10_1021_acs_inorgchem_3c03089
crossref_primary_10_5059_yukigoseikyokaishi_80_421
crossref_primary_10_1016_j_molliq_2023_122840
crossref_primary_10_1039_D3RA00062A
crossref_primary_10_1021_acs_joc_3c02984
crossref_primary_10_1039_D2QO00011C
crossref_primary_10_1016_j_dyepig_2023_111078
crossref_primary_10_1073_pnas_2314704121
crossref_primary_10_1002_anie_202500393
crossref_primary_10_1002_ejoc_202300621
crossref_primary_10_1002_anie_202415404
crossref_primary_10_1039_D4OB01987C
crossref_primary_10_1021_acs_orglett_1c03685
crossref_primary_10_1016_j_molstruc_2023_135936
crossref_primary_10_1039_D2QM00998F
crossref_primary_10_1016_j_gresc_2024_01_007
crossref_primary_10_1039_D3QO00258F
crossref_primary_10_1002_ange_202500393
crossref_primary_10_1039_D4CE00450G
crossref_primary_10_1039_D2CP04184G
crossref_primary_10_1021_jacs_3c00294
crossref_primary_10_1002_chem_202404061
crossref_primary_10_1021_acs_joc_1c01817
crossref_primary_10_1039_D3NJ04719A
crossref_primary_10_1002_ange_202303491
crossref_primary_10_1021_jacs_4c02352
crossref_primary_10_1002_anie_202412622
crossref_primary_10_1039_D1NJ04920H
crossref_primary_10_1002_ejoc_202401378
crossref_primary_10_1002_ange_202114932
crossref_primary_10_1002_slct_202403956
crossref_primary_10_1021_acs_joc_4c01498
crossref_primary_10_1002_anie_202421175
crossref_primary_10_1002_anie_202301319
crossref_primary_10_1016_j_comptc_2023_114183
crossref_primary_10_1039_D4CS00761A
crossref_primary_10_1039_D2SC02097A
crossref_primary_10_1038_s41570_021_00348_4
crossref_primary_10_1039_D4DT03302G
crossref_primary_10_3390_magnetochemistry8100116
crossref_primary_10_1002_adsc_202200225
crossref_primary_10_1002_anie_202316825
crossref_primary_10_1016_j_tetlet_2024_154985
crossref_primary_10_3390_molecules28031470
crossref_primary_10_1002_tcr_202100227
crossref_primary_10_1002_cctc_202101411
crossref_primary_10_3389_fchem_2023_1269471
crossref_primary_10_1039_D3CS00801K
crossref_primary_10_1002_cplu_202300291
crossref_primary_10_1002_ange_202415404
crossref_primary_10_1039_D4CC04699D
crossref_primary_10_1021_acscatal_4c03149
crossref_primary_10_1002_ange_202303494
crossref_primary_10_1039_D2CC00532H
crossref_primary_10_1016_j_checat_2022_11_021
crossref_primary_10_1021_acscatal_4c04836
crossref_primary_10_1016_j_cclet_2023_109075
crossref_primary_10_5059_yukigoseikyokaishi_82_954
crossref_primary_10_1002_ange_202114118
crossref_primary_10_1039_D1RA07958A
crossref_primary_10_1016_j_jcat_2021_12_018
crossref_primary_10_1039_D2OB02259A
crossref_primary_10_1039_D2SC05311J
crossref_primary_10_1021_acsmaterialslett_3c00491
crossref_primary_10_1016_j_cclet_2023_109228
crossref_primary_10_1039_D2NJ03171J
crossref_primary_10_1016_j_ica_2022_121004
crossref_primary_10_1002_ange_202412622
crossref_primary_10_1021_acs_orglett_3c01854
crossref_primary_10_1134_S1070363224110215
crossref_primary_10_1038_s41557_022_01024_w
crossref_primary_10_1021_acscatal_3c02213
crossref_primary_10_1002_chem_202303395
crossref_primary_10_1002_syst_202300009
crossref_primary_10_1021_jacs_2c04182
crossref_primary_10_1002_slct_202403621
crossref_primary_10_1002_ange_202421175
crossref_primary_10_1002_anie_202410710
crossref_primary_10_1002_anie_202114118
crossref_primary_10_1002_chem_202301811
crossref_primary_10_1055_a_1729_9223
crossref_primary_10_1016_j_rechem_2025_102148
crossref_primary_10_1039_D4CC05733C
crossref_primary_10_1016_j_mencom_2023_01_005
crossref_primary_10_1002_tcr_202300149
crossref_primary_10_1039_D2NJ03792K
crossref_primary_10_1021_acsnano_2c10856
crossref_primary_10_1039_D3CC04934E
crossref_primary_10_1021_acs_jafc_4c07615
crossref_primary_10_1039_D3CC00637A
crossref_primary_10_1021_acs_cgd_4c01130
crossref_primary_10_1002_asia_202100968
crossref_primary_10_1016_j_chempr_2023_08_028
crossref_primary_10_15826_chimtech_2023_10_4_12
Cites_doi 10.1038/s41557-019-0258-1
10.1021/acs.accounts.8b00320
10.1002/anie.201602355
10.1021/jacs.0c11601
10.1002/anie.201804929
10.1021/jacs.6b12951
10.1016/j.biortech.2017.04.026
10.1021/ja802839v
10.1021/acs.chemrev.6b00847
10.1021/ar00113a001
10.1126/science.1114731
10.1021/acscatal.0c02957
10.1021/jacs.8b05195
10.1038/ncomms7541
10.1126/science.1138748
10.1002/1521-3765(20000901)6:17<3228::AID-CHEM3228>3.0.CO;2-P
10.1038/s41557-021-00658-6
10.1021/jacs.9b08464
10.1039/D0SC00444H
10.1021/ja9638770
10.1039/c2ra20922e
10.1021/ja029331x
10.1021/cr500081p
10.1039/C7SC02462B
10.1002/anie.199110241
10.1039/C8SC05315D
10.1016/j.chempr.2018.01.004
10.1002/anie.201812116
10.1002/anie.201408457
10.1002/anie.201808265
10.1021/jacs.0c01464
10.1021/jacs.8b08686
10.1038/nchem.1796
10.1021/jacs.7b04955
10.1021/acs.chemrev.7b00014
10.1039/c3cy00300k
10.1002/chem.202000620
10.1039/C4SC03279A
10.1039/C9CC01891C
10.1038/s41929-020-00528-3
10.1021/ja210068f
10.1002/anie.201908703
10.1021/acs.accounts.8b00261
10.1126/science.1127899
10.1039/C7SC00724H
10.1021/ja804076q
10.1021/ja500214r
10.1021/jacs.8b10816
10.1021/ja802818t
10.1002/chem.201704852
10.1038/s41586-018-0755-1
10.1021/jacs.9b05604
10.1039/C8CC09328H
10.1126/science.abc8320
10.1021/jacs.6b03221
10.1021/jacs.9b01993
10.1002/9783527619191
10.1021/acscatal.8b05005
10.1039/C3CS60027K
10.1074/jbc.M807592200
10.1021/ja501561c
10.1038/161707a0
10.1021/ja5022415
10.1002/anie.201709280
10.1021/jacs.7b04490
10.1002/anie.201000826
10.1021/jacs.9b02287
10.1021/jacs.8b08244
10.1021/ar00051a009
10.1021/jacs.5b13307
10.1002/anie.201912659
10.1021/jacs.9b01182
10.1021/jacs.8b03984
10.3389/fchem.2018.00623
10.1002/(SICI)1521-3773(19980302)37:4<465::AID-ANIE465>3.0.CO;2-A
10.1039/C39930000458
10.1038/nchem.2181
10.1021/ar00051a008
10.1021/acs.chemrev.5b00146
10.3390/molecules22091475
10.1002/anie.201411593
10.1039/D0OB00703J
10.1039/C6SC01454B
10.1038/nature01925
10.1021/ja900766b
10.1021/ja00159a057
10.1021/jacs.5b12237
10.1039/D0SC00105H
10.1074/jbc.RA119.009509
10.1021/ja00194a067
10.1039/C5CS00096C
10.1002/1521-3773(20000703)39:13<2206::AID-ANIE2206>3.0.CO;2-P
10.1021/jacs.0c04074
10.1021/cr200077m
10.1021/ja9704951
10.1021/acs.accounts.8b00231
10.1021/acs.orglett.5b03700
10.1021/jacs.7b05164
10.1021/cr3001803
10.1021/jo00283a024
10.1039/c4cc00794h
10.1021/ja020718+
10.1038/s41557-020-0455-y
10.1002/anie.201409224
10.1038/s41467-020-19123-y
10.1038/ncomms3670
10.1002/chem.201400055
10.1021/ja412235e
10.1021/ja200551y
10.1039/D0SC03131C
10.1039/C9SC06089H
10.1021/acs.accounts.6b00476
10.1021/ja00101a058
10.1038/nature21418
10.1039/C4CC08833F
10.1039/C7SC04125J
10.1002/anie.201803749
10.1021/acscentsci.6b00032
10.1021/ja0026760
10.1002/anie.201505464
10.1007/1-4020-2000-7
10.1002/9783527621781
10.1126/science.1229753
10.1039/C4CS00273C
10.1021/jacs.7b04480
10.1021/ja308254k
10.1039/9781782622123
10.1021/ja208589c
10.1039/C3CC47842D
10.1002/anie.201705303
10.1021/jacs.0c09519
10.1016/j.cattod.2012.04.048
10.1021/jacs.9b00131
10.1021/ja102633e
10.1002/ejoc.201402690
10.1074/jbc.M605478200
10.1021/jacs.9b07737
10.1021/jacs.8b01701
10.1021/acscatal.0c00127
10.1021/co200010v
10.1002/anie.202003078
10.1021/ar200194b
10.1039/c39780000143
10.1021/jacs.9b03138
10.1021/jacs.9b07267
10.1002/chem.202003897
10.1021/jacs.7b02745
10.1080/00397918108063618
10.1126/science.aba1120
10.1002/anie.201006368
10.1126/science.1124985
10.1021/cs5013415
10.1002/ange.201209582
10.1002/anie.201905250
10.1021/jacs.0c01315
10.1021/jacs.7b00165
10.1039/c3cc44197k
10.1021/acs.chemrev.9b00159
10.1021/acscatal.8b00288
10.1039/c003191g
10.1039/C5CS00861A
10.1126/science.aao4798
10.1002/anie.201708408
10.1002/anie.200503908
10.1021/ol007004t
10.1002/ejoc.201901914
10.1007/s10311-018-0763-2
10.1039/C3SC53505C
10.1039/cs9720100553
10.1038/417507a
10.1021/jo020174u
10.1021/acscatal.6b00283
10.1021/acs.orglett.9b01791
10.1021/ja801107r
10.1021/jacs.6b08164
10.1002/asia.201801302
10.1126/science.1193928
10.1021/jacs.6b11523
10.1038/nature03955
10.1021/jacs.9b13239
10.1016/j.chempr.2019.10.010
10.1002/anie.201814193
10.1021/ja508799p
10.1038/nchem.1531
10.5059/yukigoseikyokaishi.74.1058
10.1038/nchem.1469
10.1002/anie.201201364
10.1021/jacs.5b10028
10.1039/c0cs00182a
10.1039/c0cs00156b
10.1055/s-1998-2054
10.1016/j.chempr.2020.05.011
10.1002/chem.201303885
10.1002/chem.202002876
10.1073/pnas.68.8.1678
10.1002/chem.200700727
10.1002/anie.201602382
10.1038/s41565-020-0652-2
10.1002/anie.201813425
10.1039/c2cc36408e
10.1002/chem.200902553
10.1073/pnas.66.2.445
10.1021/ja016238k
10.1039/C6SC04157D
10.1038/nchem.446
10.1002/cctc.202001570
10.1021/ja0437306
10.1002/anie.201906753
10.1021/ja906386w
10.1039/D0CC08005E
10.1021/ja908524x
10.1021/jacs.9b11595
10.1021/jacs.6b06950
10.1246/cl.190372
10.1002/anie.201907366
10.1039/C8SC03767A
10.1055/s-0037-1610531
10.1021/ja962295f
10.1021/ja00125a005
10.1021/acscatal.6b01776
10.1055/s-2001-9739
10.1038/nature11117
10.1021/ja8013055
10.1038/s41929-018-0115-4
10.1021/ja00166a025
10.1002/anie.201105374
10.1021/jacs.6b08767
10.1002/anie.201709644
10.1002/chem.201402548
10.1021/jacs.5b08707
10.1002/anie.201611875
10.1039/C8CP06344C
10.1021/jacs.0c02803
10.1002/anie.201801642
10.1002/chem.201804543
10.1016/j.chempr.2020.02.006
10.1021/acs.orglett.8b00520
10.1038/s41570-018-0117
10.1021/ja00329a059
10.1038/s41467-020-18487-5
10.1002/anie.202009553
10.1021/ja071591x
10.1002/anie.201301225
10.1039/C9SC01597C
10.1021/acscatal.8b00423
10.1021/ja063294i
10.1021/jo0606608
10.1002/chem.201201679
10.1021/ja0101678
10.1021/acscatal.0c02032
10.1002/anie.199504461
10.1038/nchem.2425
10.1002/anie.201805244
10.1002/anie.201005173
10.1021/acscentsci.9b01185
10.1126/science.1199844
10.1021/ja4080375
10.1021/jacs.5b06317
10.1038/nchem.2322
10.1021/acssuschemeng.8b02110
10.1002/chem.201904708
10.1021/ja01039a044
10.1126/science.1207661
10.1038/ncomms7652
10.1002/anie.201904752
10.1038/nature23677
10.1002/anie.201610041
10.1039/D0DT01961E
10.1021/ja512637k
10.1002/anie.202000045
10.1002/anie.201706487
10.1126/science.1175313
10.1038/35051736
10.1002/(SICI)1521-3765(19980615)4:6<1016::AID-CHEM1016>3.0.CO;2-B
10.1021/cr00017a017
10.1021/acscatal.0c03625
10.1126/science.1143272
10.1021/cr4001226
10.1038/385050a0
10.1038/nchem.2452
10.1021/jacs.7b11334
10.1021/ja9107275
10.1021/jacs.8b11842
10.1002/anie.202004242
10.1016/S0040-4020(99)00633-X
10.1002/anie.201701238
10.1039/c2cc37829a
10.1021/om500253z
10.1021/ar00023a004
10.1021/acs.joc.9b01299
10.1021/acscatal.0c02073
10.1038/nchem.744
10.1002/anie.200461776
10.1002/anie.200705139
10.1021/cs501369z
10.1021/jacs.8b07767
10.1002/anie.201404848
10.1126/science.1164647
10.1002/chem.201804333
10.1002/anie.201708967
10.1002/anie.200701250
10.1021/acs.accounts.8b00328
10.1002/anie.200703192
10.1021/ja803854r
10.1002/cssc.201801620
10.1002/anie.200901603
10.1351/goldbook
10.1002/1521-3773(20000804)39:15<2692::AID-ANIE2692>3.0.CO;2-3
10.1016/j.chempr.2020.09.007
10.1021/cr020018n
10.1002/chem.201702525
10.2174/138527210791616885
10.1126/science.aad3087
10.1021/jacs.6b11218
10.1002/anie.201704074
10.1021/ar010068z
10.1002/anie.201712141
10.1021/ar300014f
10.1039/C4DT01508H
10.1039/C5SC02317C
10.1126/science.4038558
10.1021/ja111106x
10.1021/jacs.7b12085
10.1021/ja982683c
10.1002/anie.201712340
10.1021/ja047612u
10.1021/ja4046235
10.1126/science.217.4558.401
10.1039/C3CS60037H
10.1021/cr00013a001
10.1039/D0CS01339K
10.1016/S0022-328X(01)01065-8
10.1021/ja508804n
10.1021/ar020076v
10.1002/cctc.201801399
10.1021/ar0001665
10.1002/(SICI)1521-3765(20000403)6:7<1193::AID-CHEM1193>3.0.CO;2-F
10.1021/jacs.7b12146
10.1002/anie.201302136
10.1016/j.biortech.2012.12.028
10.1016/j.chempr.2020.04.014
10.1002/ange.201102834
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
DOI 10.1039/d1cs00175b
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

Materials Research Database
CrossRef
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 7724
ExternalDocumentID 34008654
10_1039_D1CS00175B
d1cs00175b
Genre Journal Article
Review
GroupedDBID -
0-7
02
0R
29B
4.4
53G
5GY
70
705
70J
7~J
85S
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABFLS
ABGFH
ABPTK
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
COF
CS3
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3I
JG
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
X
---
-DZ
-~X
0R~
2WC
6J9
70~
AAHBH
AAJAE
AAMEH
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
~02
-JG
NPM
YIN
Z5M
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c472t-948eb07d84dbbe75c88aa88d0516d1648de6d6d028f0b491690939f92edaf14f3
ISSN 0306-0012
1460-4744
IngestDate Fri Jul 11 16:26:50 EDT 2025
Fri Jul 11 04:50:04 EDT 2025
Sun Jun 29 12:41:03 EDT 2025
Wed Feb 19 02:28:58 EST 2025
Tue Jul 01 04:18:46 EDT 2025
Thu Apr 24 23:06:59 EDT 2025
Mon Apr 11 02:55:49 EDT 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c472t-948eb07d84dbbe75c88aa88d0516d1648de6d6d028f0b491690939f92edaf14f3
Notes Giorgio Olivo obtained his PhD in 2015 at "La Sapienza" university of Rome (Italy) with S. Di Stefano. Then, he moved to Girona (Spain) as a postdoctoral fellow in the QBIS group of M. Costas (2016-2020), working on a recognition-driven oxidation of remote aliphatic C-H bonds catalyzed by Fe and Mn catalysts. Recently (2021) he moved back to Rome, where his research interests lie in the design and implementation of a supramolecular approach to control selectivity in late-stage functionalization and in bioinspired metal catalysis.
Giorgio Capocasa was born in Rome in 1993. In 2017, he earned a master's degree in Chemistry at "La Sapienza" University of Rome (Italy) and enrolled in a PhD programme at the same university. In 2021, he gained his PhD with a thesis on supramolecular catalysis applied to hydrocarbon functionalization under the supervision of S. Di Stefano. He is currently working as a post-doc in the M. Costas group at "Universitat de Girona" (Catalunya, Spain) with a project on bioinspired C-H functionalization.
Osvaldo Lanzalunga received his PhD degree from the University of Rome "La Sapienza" in 1994. After postdoctoral experience in S. Steenken group at the Max Plank Institute fur Strahlenchemie, Mülheim (Germany) he became Researcher and is currently Full Professor in Organic Chemistry at the Dipartimento di Chimica of the University "La Sapienza". His scientific research is mainly focused on the chemistry of radicals and radical ions, on the role of structural and medium effects on hydrogen atom transfer (HAT) and electron-transfer (ET) reactions involving oxygen-centered radicals and on the role of ET processes in organic and bioorganic reactions.
Daniele Del Giudice was born in Latina in 1995. In 2019 he earned the master's degree in chemistry at the University of Rome La Sapienza, receiving the "Excellent Graduate" award from the same university. Master's degree internship was performed in the laboratory of S. Di Stefano, regarding the development of chemical fuels triggering the motion of acid-base operating molecular machines. Then he enrolled in a PhD programme under the supervision of the same professor, working on the employment of chemical fuels to obtain dissipative control on several kinds of supramolecular systems.
Stefano Di Stefano received his PhD in Chemical Sciences in 2000 at the University of Rome La Sapienza. After a period in the pharmaceutical industry, he came back to the same University where he is now an Associate Professor. His research interests lie in the field of supramolecular catalysis, dynamic covalent chemistry, and chemically driven molecular machines. For his research work, he received an award from Italian Chemical Society in 2020. He also received the prize for "Excellent University Teaching" in 2014, 2017 and 2018 from the Faculty Dean. He has been involved in many national and international scientific collaborations.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3657-5829
0000-0002-9725-2727
0000-0002-0532-1888
0000-0003-4053-7673
0000-0002-6742-0988
OpenAccessLink https://hdl.handle.net/11573/1563178
PMID 34008654
PQID 2548356024
PQPubID 2047503
PageCount 44
ParticipantIDs crossref_citationtrail_10_1039_D1CS00175B
proquest_miscellaneous_2661043717
crossref_primary_10_1039_D1CS00175B
rsc_primary_d1cs00175b
proquest_journals_2548356024
pubmed_primary_34008654
proquest_miscellaneous_2528920710
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210705
PublicationDateYYYYMMDD 2021-07-05
PublicationDate_xml – month: 7
  year: 2021
  text: 20210705
  day: 5
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Walter (D1CS00175B-(cit175f)/*[position()=1]) 1993
Bolliger (D1CS00175B-(cit21b)/*[position()=1]) 2013; 52
Li (D1CS00175B-(cit84)/*[position()=1]) 2015
Yoshizawa (D1CS00175B-(cit52)/*[position()=1]) 2006; 312
Weissermel (D1CS00175B-(cit117d)/*[position()=1]) 2003
Molenveld (D1CS00175B-(cit175l)/*[position()=1]) 1997; 119
Selig (D1CS00175B-(cit132c)/*[position()=1]) 2006; 71
Zhao (D1CS00175B-(cit49)/*[position()=1]) 2014; 136
Kunz (D1CS00175B-(cit90d)/*[position()=1]) 1991; 6
Mihai (D1CS00175B-(cit105b)/*[position()=1]) 2018; 8
Arnold (D1CS00175B-(cit177b)/*[position()=1]) 2018; 57
Dydio (D1CS00175B-(cit120b)/*[position()=1]) 2011; 50
Iwasawa (D1CS00175B-(cit74d)/*[position()=1]) 2007; 317
Martí-Centelles (D1CS00175B-(cit53a)/*[position()=1]) 2018; 140
Dorel (D1CS00175B-(cit147e)/*[position()=1]) 2019; 55
Hastings (D1CS00175B-(cit27)/*[position()=1]) 2010; 132
Gilissen (D1CS00175B-(cit171b)/*[position()=1]) 2020; 11
Palma (D1CS00175B-(cit19d)/*[position()=1]) 2017; 56
Annapureddy (D1CS00175B-(cit127)/*[position()=1]) 2020; 142
Blanco (D1CS00175B-(cit147c)/*[position()=1]) 2015; 44
Kumar (D1CS00175B-(cit139a)/*[position()=1]) 2013; 130
Hosseini (D1CS00175B-(cit175d)/*[position()=1]) 1990; 112
García-Simón (D1CS00175B-(cit59)/*[position()=1]) 2015; 137
Gladysz (D1CS00175B-(cit2b)/*[position()=1]) 2014; 33
Kuil (D1CS00175B-(cit57a)/*[position()=1]) 2006; 128
Menger (D1CS00175B-(cit5g)/*[position()=1]) 1985; 18
Burg (D1CS00175B-(cit83b)/*[position()=1]) 2019; 84
Yu (D1CS00175B-(cit139e)/*[position()=1]) 2017; 238
Raynal (D1CS00175B-(cit4c)/*[position()=1]) 2014; 43
Zhang (D1CS00175B-(cit14)/*[position()=1]) 2017; 117
Bruice (D1CS00175B-(cit5h)/*[position()=1]) 2002; 35
Motloch (D1CS00175B-(cit17f)/*[position()=1]) 2016; 50
Chapman Jr (D1CS00175B-(cit175h)/*[position()=1]) 1995; 117
Dalton (D1CS00175B-(cit45d)/*[position()=1]) 2015; 137
Cavarzan (D1CS00175B-(cit47)/*[position()=1]) 2011; 133
Halpern (D1CS00175B-(cit122)/*[position()=1]) 1982; 217
Cacciapaglia (D1CS00175B-(cit17c)/*[position()=1]) 2004; 37
De (D1CS00175B-(cit155b)/*[position()=1]) 2014; 43
Mouarrawis (D1CS00175B-(cit10b)/*[position()=1]) 2018; 6
Crini (D1CS00175B-(cit11)/*[position()=1]) 2018; 16
Behr (D1CS00175B-(cit175a)/*[position()=1]) 1978
Westheimer (D1CS00175B-(cit5f)/*[position()=1]) 1985; 21
Cullen (D1CS00175B-(cit22b)/*[position()=1]) 2018; 140
Schwizer (D1CS00175B-(cit178)/*[position()=1]) 2018; 118
Ono (D1CS00175B-(cit53b)/*[position()=1]) 2019; 10
Fanourakis (D1CS00175B-(cit82b)/*[position()=1]) 2020; 10
Nakamura (D1CS00175B-(cit55a)/*[position()=1]) 2003; 125
Grill (D1CS00175B-(cit165d)/*[position()=1]) 2020; 142
Qiu (D1CS00175B-(cit76b)/*[position()=1]) 2021; 57
Ueda (D1CS00175B-(cit78)/*[position()=1]) 2017; 139
Ubasart (D1CS00175B-(cit67d)/*[position()=1]) 2021; 13
Wang (D1CS00175B-(cit55e)/*[position()=1]) 2020; 11
Genov (D1CS00175B-(cit136)/*[position()=1]) 2020; 367
Di Stefano (D1CS00175B-(cit85)/*[position()=1]) 2020
Dydio (D1CS00175B-(cit120c)/*[position()=1]) 2013; 135
Zhang (D1CS00175B-(cit38c)/*[position()=1]) 2019; 58
McGuirk (D1CS00175B-(cit160b)/*[position()=1]) 2014; 136
Cram (D1CS00175B-(cit175b)/*[position()=1]) 1984; 106
Fuertes-Espinosa (D1CS00175B-(cit66)/*[position()=1]) 2020; 6
Heard (D1CS00175B-(cit147h)/*[position()=1]) 2020; 6
Lewandowski (D1CS00175B-(cit173)/*[position()=1]) 2013; 339
Berryman (D1CS00175B-(cit165e)/*[position()=1]) 2011; 50
Wang (D1CS00175B-(cit19c)/*[position()=1]) 2016; 8
Fersht (D1CS00175B-(cit8)/*[position()=1]) 1985
Nishioka (D1CS00175B-(cit54a)/*[position()=1]) 2008; 130
Hoque (D1CS00175B-(cit109)/*[position()=1]) 2017; 139
Müller (D1CS00175B-(cit132a)/*[position()=1]) 2009; 48
Camp (D1CS00175B-(cit137c)/*[position()=1]) 2021; 143
Beswick (D1CS00175B-(cit167a)/*[position()=1]) 2015; 6
Brenner (D1CS00175B-(cit67a)/*[position()=1]) 2017; 139
Breslow (D1CS00175B-(cit141)/*[position()=1]) 1989; 111
Brown (D1CS00175B-(cit10a)/*[position()=1]) 2015; 115
Huang (D1CS00175B-(cit87)/*[position()=1]) 2017; 50
Zhang (D1CS00175B-(cit38b)/*[position()=1]) 2018; 1
Di Stefano (D1CS00175B-(cit17d)/*[position()=1]) 2014
Hölzl-Hobmeier (D1CS00175B-(cit133)/*[position()=1]) 2018; 564
Okumura (D1CS00175B-(cit106a)/*[position()=1]) 2016; 138
Deutman (D1CS00175B-(cit170c)/*[position()=1]) 2008; 322
Wasilke (D1CS00175B-(cit3)/*[position()=1]) 2005; 105
Dhayalan (D1CS00175B-(cit137a)/*[position()=1]) 2019; 11
Sun (D1CS00175B-(cit73g)/*[position()=1]) 2019; 58
Saint-Denis (D1CS00175B-(cit123)/*[position()=1]) 2018; 359
Huc (D1CS00175B-(cit175g)/*[position()=1]) 1994; 116
Samanta (D1CS00175B-(cit19b)/*[position()=1]) 2012; 18
Ngai (D1CS00175B-(cit51)/*[position()=1]) 2020; 59
Schmittel (D1CS00175B-(cit155a)/*[position()=1]) 2012; 48
Mondal (D1CS00175B-(cit73a)/*[position()=1]) 2016; 138
Das (D1CS00175B-(cit95)/*[position()=1]) 2006; 312
Reyes (D1CS00175B-(cit124)/*[position()=1]) 2020; 369
Tjivikua (D1CS00175B-(cit175e)/*[position()=1]) 1990; 112
Tröster (D1CS00175B-(cit134)/*[position()=1]) 2019; 58
Mihai (D1CS00175B-(cit111a)/*[position()=1]) 2019; 141
Farrell (D1CS00175B-(cit157)/*[position()=1]) 1998; 37
Vlatković (D1CS00175B-(cit165a)/*[position()=1]) 2014; 50
Tang (D1CS00175B-(cit12b)/*[position()=1]) 2020; 26
Golding (D1CS00175B-(cit115a)/*[position()=1]) 2018; 140
Goswami (D1CS00175B-(cit147f)/*[position()=1]) 2020; 120
De (D1CS00175B-(cit168a)/*[position()=1]) 2014; 53
Howlader (D1CS00175B-(cit50d)/*[position()=1]) 2016; 138
Sherman (D1CS00175B-(cit140a)/*[position()=1]) 2006; 281
Leonhardt (D1CS00175B-(cit67c)/*[position()=1]) 2020; 11
Wang (D1CS00175B-(cit73b)/*[position()=1]) 2016; 138
Schowen (D1CS00175B-(cit5e)/*[position()=1]) 1978
Wang (D1CS00175B-(cit10e)/*[position()=1]) 2020; 59
Bietti (D1CS00175B-(cit89g)/*[position()=1]) 2018; 57
Eichstaedt (D1CS00175B-(cit167b)/*[position()=1]) 2017; 139
Lichtor (D1CS00175B-(cit113)/*[position()=1]) 2011; 13
Nurttila (D1CS00175B-(cit121)/*[position()=1]) 2018; 8
Neufeldt (D1CS00175B-(cit88e)/*[position()=1]) 2012; 45
Biswas (D1CS00175B-(cit155g)/*[position()=1]) 2020; 142
Godula (D1CS00175B-(cit90b)/*[position()=1]) 2006; 312
Salles (D1CS00175B-(cit79)/*[position()=1]) 2013; 135
Otte (D1CS00175B-(cit70)/*[position()=1]) 2016; 6
Shenoy (D1CS00175B-(cit50b)/*[position()=1]) 2008; 130
Bach (D1CS00175B-(cit131)/*[position()=1]) 2000; 122
Monnereau (D1CS00175B-(cit170b)/*[position()=1]) 2010; 132
Fang (D1CS00175B-(cit21a)/*[position()=1]) 2019; 10
Yamaguchi (D1CS00175B-(cit45c)/*[position()=1]) 2008; 47
Kuninobu (D1CS00175B-(cit104)/*[position()=1]) 2015; 7
Zhang (D1CS00175B-(cit37a)/*[position()=1]) 2013; 135
Finbloom (D1CS00175B-(cit19e)/*[position()=1]) 2017; 139
Pluth (D1CS00175B-(cit33)/*[position()=1]) 2007; 316
McGuirk (D1CS00175B-(cit160c)/*[position()=1]) 2014; 136
Yang (D1CS00175B-(cit111b)/*[position()=1]) 2017; 56
Ohmatsu (D1CS00175B-(cit138a)/*[position()=1]) 2014; 6
Jin (D1CS00175B-(cit139g)/*[position()=1]) 2019; 12
Robertson (D1CS00175B-(cit175i)/*[position()=1]) 1999; 55
Lu (D1CS00175B-(cit144)/*[position()=1]) 2019; 9
Labinger (D1CS00175B-(cit88a)/*[position()=1]) 2002; 417
Mock (D1CS00175B-(cit175c)/*[position()=1]) 1989; 54
Breslow (D1CS00175B-(cit92)/*[position()=1]) 1997; 119
Kaphan (D1CS00175B-(cit42)/*[position()=1]) 2015; 350
Masseroni (D1CS00175B-(cit63)/*[position()=1]) 2016; 55
Trouve (D1CS00175B-(cit82a)/*[position()=1]) 2021; 50
White (D1CS00175B-(cit90a)/*[position()=1]) 2012; 335
Syntrivanis (D1CS00175B-(cit38d)/*[position()=1]) 2020; 142
Shi (D1CS00175B-(cit24b)/*[position()=1]) 2016; 138
Jans (D1CS00175B-(cit48)/*[position()=1]) 2019; 11
Liu (D1CS00175B-(cit10c)/*[position()=1]) 2019; 58
Dydio (D1CS00175B-(cit81b)/*[position()=1]) 2014; 5
Bach (D1CS00175B-(cit132d)/*[position()=1]) 2001; 3
Martinez-Cuezva (D1CS00175B-(cit153c)/*[position()=1]) 2017; 8
Gonell (D1CS00175B-(cit19f)/*[position()=1]) 2019; 10
Crini (D1CS00175B-(cit86a)/*[position()=1]) 2014; 114
Cullen (D1CS00175B-(cit44)/*[position()=1]) 2019; 58
Wang (D1CS00175B-(cit77)/*[position()=1]) 2013; 5
Li (D1CS00175B-(cit107a)/*[position()=1]) 2017; 56
Bai (D1CS00175B-(cit108)/*[position()=1]) 2019; 58
Lifschitz (D1CS00175B-(cit160d)/*[position()=1]) 2015; 6
Hastings (D1CS00175B-(cit25b)/*[position()=1]) 2008; 130
D1CS00175B-(cit116)/*[position()=1]
Linnebank (D1CS00175B-(cit120e)/*[position()=1]) 2020; 26
Leigh (D1CS00175B-(cit147a)/*[position()=1]) 2014; 4
Giust (D1CS00175B-(cit68)/*[position()=1]) 2015; 51
Gutekunst (D1CS00175B-(cit89c)/*[position()=1]) 2011; 40
Reetz (D1CS00175B-(cit177a)/*[position()=1]) 2010; 50
Lee (D1CS00175B-(cit153f)/*[position()=1]) 2017; 23
Bocokić (D1CS00175B-(cit57b)/*[position()=1]) 2013; 4
Kuroda (D1CS00175B-(cit110)/*[position()=1]) 2019; 48
Sharafi (D1CS00175B-(cit65)/*[position()=1]) 2020; 6
Vu (D1CS00175B-(cit139f)/*[position()=1]) 2019; 294
Pizzolato (D1CS00175B-(cit165c)/*[position()=1]) 2018; 140
Knezevic (D1CS00175B-(cit99)/*[position()=1]) 2020; 59
De Bo (D1CS00175B-(cit150a)/*[position()=1]) 2017; 8
Yoshizawa (D1CS00175B-(cit45a)/*[position()=1]) 2004; 126
Eyring (D1CS00175B-(cit5a)/*[position()=1]) 1954
Hong (D1CS00175B-(cit26)/*[position()=1]) 2018; 51
Kuninobu (D1CS00175B-(cit107b)/*[position()=1]) 2018
Davis (D1CS00175B-(cit105c)/*[position()=1]) 2017; 56
Zhang (D1CS00175B-(cit56)/*[position()=1]) 2017; 56
Xu (D1CS00175B-(cit73d)/*[position()=1]) 2017; 139
Decker (D1CS00175B-(cit117f)/*[position()=1]) 2001; 635
Mandolini (D1CS00175B-(cit17b)/*[position()=1]) 1986
Zhang (D1CS00175B-(cit40)/*[position()=1]) 2020; 10
Miyaura (D1CS00175B-(cit102)/*[position()=1]) 1981; 11
Raynal (D1CS00175B-(cit4b)/*[position()=1]) 2014; 43
Yoshizawa (D1CS00175B-(cit20a)/*[position()=1]) 2003; 125
Kwamen (D1CS00175B-(cit147i)/*[position()=1]) 2021; 27
Jencks (D1CS00175B-(cit5d)/*[position()=1]) 1975; 43
Dydio (D1CS00175B-(cit120d)/*[position()=1]) 2013; 125
Würthner (D1CS00175B-(cit161)/*[position()=1]) 1995; 34
Kang (D1CS00175B-(cit179)/*[position()=1]) 2017; 8
Van Axel (D1CS00175B-(cit175j)/*[position()=1]) 2000; 6
Olivo (D1CS00175B-(cit100)/*[position()=1]) 2020; 59
Dey (D1CS00175B-(cit112b)/*[position()=1]) 2019; 58
Yang (D1CS00175B-(cit94)/*[position()=1]) 2000; 39
Martinez-Cuezva (D1CS00175B-(cit147g)/*[position()=1]) 2020; 1
References_xml – issn: 2008
  publication-title: Supramolecular Catalysis
  doi: Van Leeuwen
– issn: 1954
  publication-title: The Mechanism of Enzyme Action
  doi: Eyring Lowry Spikes
– issn: 2003
  end-page: p 127-144
  publication-title: Industrial Organic Chemistry
  doi: Weissermel Arpe
– issn: 1978
  volume-title: Catalytic Power and Transition State Stabilization
  publication-title: Transition States of Biochemical Process
  doi: Schowen
– issn: 1985
  publication-title: Enzyme Structure and Mechanism
  doi: Fersht
– issn: 2006
  publication-title: Modern Physical Organic Chemistry CA
  doi: Anslyn Dougherty
– issn: 2004
  publication-title: Homogeneous Catalysis: Understanding the Art
  doi: van Leeuwen
– issn: 1986
  end-page: p 1-111
  publication-title: Advances in Physical Organic Chemistry
  doi: Mandolini
– issn: 2015
  publication-title: Boron: Sensing, Synthesis and Supramolecular Self-Assembly
  doi: Li Fossey James
– volume-title: The Mechanism of Enzyme Action
  year: 1954
  ident: D1CS00175B-(cit31)/*[position()=1]
– volume: 11
  start-page: 543
  year: 2019
  ident: D1CS00175B-(cit137a)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-019-0258-1
– volume: 51
  start-page: 2107
  year: 2018
  ident: D1CS00175B-(cit16a)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00320
– volume: 55
  start-page: 8290
  year: 2016
  ident: D1CS00175B-(cit63)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201602355
– volume: 143
  start-page: 2792
  year: 2021
  ident: D1CS00175B-(cit137c)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c11601
– volume: 57
  start-page: 16618
  year: 2018
  ident: D1CS00175B-(cit89g)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201804929
– volume: 139
  start-page: 4270
  year: 2017
  ident: D1CS00175B-(cit155c)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12951
– volume: 238
  start-page: 716
  year: 2017
  ident: D1CS00175B-(cit139e)/*[position()=1]
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.04.026
– volume: 130
  start-page: 11423
  year: 2008
  ident: D1CS00175B-(cit34)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja802839v
– volume: 117
  start-page: 4900
  year: 2017
  ident: D1CS00175B-(cit14)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00847
– volume: 18
  start-page: 128
  year: 1985
  ident: D1CS00175B-(cit5g)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00113a001
– volume: 312
  start-page: 67
  year: 2006
  ident: D1CS00175B-(cit88c)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1114731
– volume: 10
  start-page: 10672
  year: 2020
  ident: D1CS00175B-(cit82b)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c02957
– volume: 140
  start-page: 13988
  year: 2018
  ident: D1CS00175B-(cit98a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05195
– volume: 6
  start-page: 6541
  year: 2015
  ident: D1CS00175B-(cit160d)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7541
– volume: 316
  start-page: 85
  year: 2007
  ident: D1CS00175B-(cit33)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1138748
– volume: 6
  start-page: 3228
  year: 2000
  ident: D1CS00175B-(cit175k)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/1521-3765(20000901)6:17<3228::AID-CHEM3228>3.0.CO;2-P
– volume: 13
  start-page: 420
  year: 2021
  ident: D1CS00175B-(cit67d)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-021-00658-6
– volume: 141
  start-page: 15483
  year: 2019
  ident: D1CS00175B-(cit111c)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b08464
– volume: 11
  start-page: 3629
  year: 2020
  ident: D1CS00175B-(cit153b)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC00444H
– volume: 43
  start-page: 219
  year: 1975
  ident: D1CS00175B-(cit5d)/*[position()=1]
  publication-title: Adv. Enzymol. Relat. Area Mol. Biol.
– volume: 119
  start-page: 2948
  year: 1997
  ident: D1CS00175B-(cit175l)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9638770
– volume: 2
  start-page: 12575
  year: 2012
  ident: D1CS00175B-(cit139c)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/c2ra20922e
– volume: 312
  start-page: 67
  year: 2006
  ident: D1CS00175B-(cit90b)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1114731
– volume: 125
  start-page: 2224
  year: 2003
  ident: D1CS00175B-(cit162)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja029331x
– volume: 114
  start-page: 10940
  year: 2014
  ident: D1CS00175B-(cit86a)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr500081p
– volume: 8
  start-page: 7077
  year: 2017
  ident: D1CS00175B-(cit150a)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC02462B
– volume: 30
  start-page: 1024
  year: 1991
  ident: D1CS00175B-(cit74b)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199110241
– volume: 10
  start-page: 3529
  year: 2019
  ident: D1CS00175B-(cit21a)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC05315D
– volume: 4
  start-page: 555
  year: 2018
  ident: D1CS00175B-(cit73f)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.01.004
– volume: 58
  start-page: 10820
  year: 2019
  ident: D1CS00175B-(cit112b)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201812116
– volume: 53
  start-page: 14255
  year: 2014
  ident: D1CS00175B-(cit168a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201408457
– volume: 57
  start-page: 15091
  year: 2018
  ident: D1CS00175B-(cit24c)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201808265
– volume: 142
  start-page: 5894
  year: 2020
  ident: D1CS00175B-(cit38d)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c01464
– volume: 140
  start-page: 13570
  year: 2018
  ident: D1CS00175B-(cit115a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08686
– volume: 6
  start-page: 47
  year: 2014
  ident: D1CS00175B-(cit138a)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1796
– volume: 139
  start-page: 9376
  year: 2017
  ident: D1CS00175B-(cit150b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04955
– volume: 118
  start-page: 142
  year: 2018
  ident: D1CS00175B-(cit178)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00014
– volume: 3
  start-page: 2898
  year: 2013
  ident: D1CS00175B-(cit69a)/*[position()=1]
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/c3cy00300k
– volume: 26
  start-page: 8214
  year: 2020
  ident: D1CS00175B-(cit120e)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202000620
– volume: 6
  start-page: 140
  year: 2015
  ident: D1CS00175B-(cit167a)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC03279A
– volume: 55
  start-page: 6477
  year: 2019
  ident: D1CS00175B-(cit147e)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC01891C
– volume: 3
  start-page: 969
  year: 2020
  ident: D1CS00175B-(cit10d)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-00528-3
– volume: 134
  start-page: 162
  year: 2012
  ident: D1CS00175B-(cit35)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja210068f
– volume: 58
  start-page: 18011
  year: 2019
  ident: D1CS00175B-(cit73g)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201908703
– volume: 51
  start-page: 2073
  year: 2018
  ident: D1CS00175B-(cit22c)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00261
– volume: 312
  start-page: 1941
  year: 2006
  ident: D1CS00175B-(cit95)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1127899
– volume: 8
  start-page: 3775
  year: 2017
  ident: D1CS00175B-(cit153c)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC00724H
– volume: 130
  start-page: 11590
  year: 2008
  ident: D1CS00175B-(cit159)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja804076q
– volume: 136
  start-page: 4689
  year: 2014
  ident: D1CS00175B-(cit160c)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja500214r
– volume: 140
  start-page: 17278
  year: 2018
  ident: D1CS00175B-(cit165c)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10816
– volume: 50
  start-page: 77
  year: 2016
  ident: D1CS00175B-(cit17f)/*[position()=1]
  publication-title: Adv. Phys. Org. Chem.
– volume: 130
  start-page: 8160
  year: 2008
  ident: D1CS00175B-(cit54a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja802818t
– volume: 24
  start-page: 5042
  year: 2018
  ident: D1CS00175B-(cit96)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201704852
– volume: 564
  start-page: 240
  year: 2018
  ident: D1CS00175B-(cit133)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-018-0755-1
– volume: 141
  start-page: 11806
  year: 2019
  ident: D1CS00175B-(cit61)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05604
– volume: 55
  start-page: 917
  year: 2019
  ident: D1CS00175B-(cit142)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC09328H
– volume: 17
  start-page: 183
  year: 1980
  ident: D1CS00175B-(cit17a)/*[position()=1]
  publication-title: Adv. Phys. Org. Chem.
– volume: 369
  start-page: 970
  year: 2020
  ident: D1CS00175B-(cit124)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.abc8320
– volume: 138
  start-page: 7808
  year: 2016
  ident: D1CS00175B-(cit132e)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03221
– volume: 141
  start-page: 9225
  year: 2019
  ident: D1CS00175B-(cit55d)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b01993
– volume-title: Industrial Organic Chemistry
  year: 2003
  ident: D1CS00175B-(cit117d)/*[position()=1]
  doi: 10.1002/9783527619191
– volume: 9
  start-page: 1705
  year: 2019
  ident: D1CS00175B-(cit144)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b05005
– volume: 43
  start-page: 1660
  year: 2014
  ident: D1CS00175B-(cit4b)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60027K
– volume: 284
  start-page: 5723
  year: 2009
  ident: D1CS00175B-(cit140b)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M807592200
– volume: 136
  start-page: 4905
  year: 2014
  ident: D1CS00175B-(cit149)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja501561c
– volume: 161
  start-page: 707
  year: 1948
  ident: D1CS00175B-(cit7)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/161707a0
– volume: 136
  start-page: 5811
  year: 2014
  ident: D1CS00175B-(cit174)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5022415
– volume: 56
  start-page: 16347
  year: 2017
  ident: D1CS00175B-(cit97)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201709280
– volume: 139
  start-page: 7745
  year: 2017
  ident: D1CS00175B-(cit109)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04490
– volume: 50
  start-page: 138
  year: 2010
  ident: D1CS00175B-(cit177a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201000826
– volume: 141
  start-page: 6740
  year: 2019
  ident: D1CS00175B-(cit30)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b02287
– volume: 140
  start-page: 13413
  year: 2018
  ident: D1CS00175B-(cit67b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08244
– volume: 28
  start-page: 154
  year: 1995
  ident: D1CS00175B-(cit88d)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00051a009
– volume: 138
  start-page: 1709
  year: 2016
  ident: D1CS00175B-(cit73a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b13307
– volume: 59
  start-page: 8344
  year: 2020
  ident: D1CS00175B-(cit152)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201912659
– volume: 141
  start-page: 5139
  year: 2019
  ident: D1CS00175B-(cit155d)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b01182
– volume: 140
  start-page: 8078
  year: 2018
  ident: D1CS00175B-(cit69b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b03984
– volume: 6
  start-page: 623
  year: 2018
  ident: D1CS00175B-(cit10b)/*[position()=1]
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2018.00623
– volume: 37
  start-page: 465
  year: 1998
  ident: D1CS00175B-(cit157)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/(SICI)1521-3773(19980302)37:4<465::AID-ANIE465>3.0.CO;2-A
– start-page: 458
  year: 1993
  ident: D1CS00175B-(cit175f)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C39930000458
– volume: 7
  start-page: 197
  year: 2015
  ident: D1CS00175B-(cit36)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2181
– volume: 28
  start-page: 146
  year: 1995
  ident: D1CS00175B-(cit80)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00051a008
– volume: 115
  start-page: 10081
  year: 2015
  ident: D1CS00175B-(cit146)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00146
– volume-title: The Mechanism of Enzyme Action
  year: 1954
  ident: D1CS00175B-(cit5a)/*[position()=1]
– volume: 22
  start-page: 1475
  year: 2017
  ident: D1CS00175B-(cit86b)/*[position()=1]
  publication-title: Molecules
  doi: 10.3390/molecules22091475
– volume: 54
  start-page: 4334
  year: 2015
  ident: D1CS00175B-(cit153e)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201411593
– volume: 18
  start-page: 4126
  year: 2020
  ident: D1CS00175B-(cit103)/*[position()=1]
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/D0OB00703J
– volume: 7
  start-page: 6674
  year: 2016
  ident: D1CS00175B-(cit160a)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC01454B
– volume: 424
  start-page: 915
  year: 2003
  ident: D1CS00175B-(cit170a)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature01925
– volume: 131
  start-page: 7402
  year: 2009
  ident: D1CS00175B-(cit50c)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja900766b
– volume: 112
  start-page: 1249
  year: 1990
  ident: D1CS00175B-(cit175e)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00159a057
– volume: 138
  start-page: 1668
  year: 2016
  ident: D1CS00175B-(cit50d)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b12237
– volume: 11
  start-page: 3022
  year: 2020
  ident: D1CS00175B-(cit115b)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC00105H
– volume: 294
  start-page: 12157
  year: 2019
  ident: D1CS00175B-(cit139f)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA119.009509
– volume: 111
  start-page: 4517
  year: 1989
  ident: D1CS00175B-(cit141)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00194a067
– volume: 44
  start-page: 5341
  year: 2015
  ident: D1CS00175B-(cit147c)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00096C
– volume: 39
  start-page: 2206
  year: 2000
  ident: D1CS00175B-(cit2a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20000703)39:13<2206::AID-ANIE2206>3.0.CO;2-P
– volume: 111
  start-page: 4517
  year: 1989
  ident: D1CS00175B-(cit89b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00194a067
– volume: 142
  start-page: 10571
  year: 2020
  ident: D1CS00175B-(cit112c)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c04074
– volume: 111
  start-page: 6810
  year: 2011
  ident: D1CS00175B-(cit15)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200077m
– volume: 119
  start-page: 4535
  year: 1997
  ident: D1CS00175B-(cit92)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9704951
– volume: 51
  start-page: 1984
  year: 2018
  ident: D1CS00175B-(cit89f)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00231
– volume: 18
  start-page: 976
  year: 2016
  ident: D1CS00175B-(cit166)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.5b03700
– volume: 139
  start-page: 9691
  year: 2017
  ident: D1CS00175B-(cit19e)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05164
– volume: 112
  start-page: 5675
  year: 2012
  ident: D1CS00175B-(cit117a)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr3001803
– volume: 54
  start-page: 5302
  year: 1989
  ident: D1CS00175B-(cit175c)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00283a024
– volume: 50
  start-page: 7773
  year: 2014
  ident: D1CS00175B-(cit165a)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c4cc00794h
– volume: 125
  start-page: 3243
  year: 2003
  ident: D1CS00175B-(cit20a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja020718+
– volume: 12
  start-page: 574
  year: 2020
  ident: D1CS00175B-(cit32)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-0455-y
– volume: 54
  start-page: 691
  year: 2015
  ident: D1CS00175B-(cit125)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201409224
– volume: 11
  start-page: 5291
  year: 2020
  ident: D1CS00175B-(cit171b)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19123-y
– volume: 4
  start-page: 2670
  year: 2013
  ident: D1CS00175B-(cit57b)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3670
– volume: 20
  start-page: 4880
  year: 2014
  ident: D1CS00175B-(cit75)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201400055
– volume: 135
  start-page: 19143
  year: 2013
  ident: D1CS00175B-(cit79)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja412235e
– volume: 133
  start-page: 7853
  year: 2011
  ident: D1CS00175B-(cit140c)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja200551y
– volume: 11
  start-page: 8409
  year: 2020
  ident: D1CS00175B-(cit67c)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC03131C
– volume: 11
  start-page: 2121
  year: 2020
  ident: D1CS00175B-(cit126b)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC06089H
– volume: 50
  start-page: 465
  year: 2017
  ident: D1CS00175B-(cit87)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00476
– volume: 116
  start-page: 10296
  year: 1994
  ident: D1CS00175B-(cit175g)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00101a058
– volume: 543
  start-page: 538
  year: 2017
  ident: D1CS00175B-(cit112a)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature21418
– volume: 51
  start-page: 1658
  year: 2015
  ident: D1CS00175B-(cit68)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC08833F
– volume: 8
  start-page: 8357
  year: 2017
  ident: D1CS00175B-(cit179)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC04125J
– volume: 57
  start-page: 8545
  year: 2018
  ident: D1CS00175B-(cit180)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201803749
– volume: 2
  start-page: 281
  year: 2016
  ident: D1CS00175B-(cit89e)/*[position()=1]
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.6b00032
– volume: 122
  start-page: 11525
  year: 2000
  ident: D1CS00175B-(cit131)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0026760
– volume: 54
  start-page: 13545
  year: 2015
  ident: D1CS00175B-(cit154)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201505464
– volume-title: Homogeneous Catalysis: Understanding the Art
  year: 2004
  ident: D1CS00175B-(cit117h)/*[position()=1]
  doi: 10.1007/1-4020-2000-7
– volume-title: Supramolecular Catalysis
  year: 2008
  ident: D1CS00175B-(cit4a)/*[position()=1]
  doi: 10.1002/9783527621781
– volume: 339
  start-page: 189
  year: 2013
  ident: D1CS00175B-(cit173)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1229753
– volume: 44
  start-page: 394
  year: 2015
  ident: D1CS00175B-(cit12a)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00273C
– volume: 139
  start-page: 11482
  year: 2017
  ident: D1CS00175B-(cit38a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04480
– volume-title: Transition States of Biochemical Process
  year: 1978
  ident: D1CS00175B-(cit5e)/*[position()=1]
– volume: 134
  start-page: 17873
  year: 2012
  ident: D1CS00175B-(cit46)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308254k
– volume-title: Boron: Sensing, Synthesis and Supramolecular Self-Assembly
  year: 2015
  ident: D1CS00175B-(cit84)/*[position()=1]
  doi: 10.1039/9781782622123
– volume: 133
  start-page: 17176
  year: 2011
  ident: D1CS00175B-(cit135)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja208589c
– volume: 50
  start-page: 5128
  year: 2014
  ident: D1CS00175B-(cit147b)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C3CC47842D
– volume: 56
  start-page: 10821
  year: 2017
  ident: D1CS00175B-(cit56)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201705303
– volume: 142
  start-page: 19300
  year: 2020
  ident: D1CS00175B-(cit165d)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c09519
– volume: 195
  start-page: 136
  year: 2012
  ident: D1CS00175B-(cit139d)/*[position()=1]
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2012.04.048
– volume: 141
  start-page: 5112
  year: 2019
  ident: D1CS00175B-(cit62)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b00131
– volume: 132
  start-page: 6938
  year: 2010
  ident: D1CS00175B-(cit27)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja102633e
– start-page: 7304
  year: 2014
  ident: D1CS00175B-(cit17d)/*[position()=1]
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201402690
– volume: 281
  start-page: 26289
  year: 2006
  ident: D1CS00175B-(cit140a)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M605478200
– volume: 141
  start-page: 15656
  year: 2019
  ident: D1CS00175B-(cit168b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07737
– volume: 140
  start-page: 6591
  year: 2018
  ident: D1CS00175B-(cit29)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b01701
– volume: 10
  start-page: 5964
  year: 2020
  ident: D1CS00175B-(cit54b)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c00127
– volume: 13
  start-page: 321
  year: 2011
  ident: D1CS00175B-(cit113)/*[position()=1]
  publication-title: ACS Comb. Sci.
  doi: 10.1021/co200010v
– volume: 139
  start-page: 9376
  year: 2017
  ident: D1CS00175B-(cit167b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04955
– volume: 59
  start-page: 12703
  year: 2020
  ident: D1CS00175B-(cit100)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202003078
– volume: 45
  start-page: 826
  year: 2012
  ident: D1CS00175B-(cit1a)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200194b
– start-page: 143
  year: 1978
  ident: D1CS00175B-(cit175a)/*[position()=1]
  publication-title: J. Chem. Soc., Chem. Commun.
  doi: 10.1039/c39780000143
– volume: 141
  start-page: 7972
  year: 2019
  ident: D1CS00175B-(cit106b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03138
– volume: 141
  start-page: 15477
  year: 2019
  ident: D1CS00175B-(cit111a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07267
– volume: 26
  start-page: 15446
  year: 2020
  ident: D1CS00175B-(cit12b)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202003897
– volume: 139
  start-page: 6090
  year: 2017
  ident: D1CS00175B-(cit78)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02745
– volume: 11
  start-page: 513
  year: 1981
  ident: D1CS00175B-(cit102)/*[position()=1]
  publication-title: Synth. Commun.
  doi: 10.1080/00397918108063618
– volume: 367
  start-page: 1246
  year: 2020
  ident: D1CS00175B-(cit136)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aba1120
– volume: 50
  start-page: 3362
  year: 2011
  ident: D1CS00175B-(cit88b)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201006368
– volume: 312
  start-page: 251
  year: 2006
  ident: D1CS00175B-(cit52)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1124985
– volume: 4
  start-page: 4490
  year: 2014
  ident: D1CS00175B-(cit147a)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/cs5013415
– volume: 125
  start-page: 3970
  year: 2013
  ident: D1CS00175B-(cit120d)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201209582
– volume: 58
  start-page: 9876
  year: 2019
  ident: D1CS00175B-(cit151)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201905250
– volume: 142
  start-page: 7889
  year: 2020
  ident: D1CS00175B-(cit155g)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c01315
– volume: 139
  start-page: 5285
  year: 2017
  ident: D1CS00175B-(cit73d)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00165
– volume: 49
  start-page: 8009
  year: 2013
  ident: D1CS00175B-(cit128)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc44197k
– volume: 120
  start-page: 125
  year: 2020
  ident: D1CS00175B-(cit147f)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00159
– volume: 8
  start-page: 3469
  year: 2018
  ident: D1CS00175B-(cit121)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00288
– volume: 46
  start-page: 3460
  year: 2010
  ident: D1CS00175B-(cit20b)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c003191g
– volume: 45
  start-page: 1720
  year: 2016
  ident: D1CS00175B-(cit74a)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00861A
– volume: 359
  start-page: 759
  year: 2018
  ident: D1CS00175B-(cit123)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aao4798
– volume: 57
  start-page: 4143
  year: 2018
  ident: D1CS00175B-(cit177b)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201708408
– volume: 45
  start-page: 6640
  year: 2006
  ident: D1CS00175B-(cit130b)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200503908
– volume: 3
  start-page: 601
  year: 2001
  ident: D1CS00175B-(cit132d)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/ol007004t
– start-page: 3340
  year: 2020
  ident: D1CS00175B-(cit85)/*[position()=1]
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201901914
– volume: 16
  start-page: 1361
  year: 2018
  ident: D1CS00175B-(cit11)/*[position()=1]
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-018-0763-2
– volume: 5
  start-page: 2135
  year: 2014
  ident: D1CS00175B-(cit81b)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C3SC53505C
– volume: 1
  start-page: 553
  year: 1972
  ident: D1CS00175B-(cit91)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/cs9720100553
– volume: 417
  start-page: 507
  year: 2002
  ident: D1CS00175B-(cit90c)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/417507a
– volume: 67
  start-page: 5057
  year: 2002
  ident: D1CS00175B-(cit93)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo020174u
– volume: 6
  start-page: 3106
  year: 2016
  ident: D1CS00175B-(cit76a)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00283
– volume: 21
  start-page: 5192
  year: 2019
  ident: D1CS00175B-(cit153a)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b01791
– volume: 130
  start-page: 5658
  year: 2008
  ident: D1CS00175B-(cit50b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja801107r
– volume: 138
  start-page: 12759
  year: 2016
  ident: D1CS00175B-(cit105a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b08164
– volume: 13
  start-page: 3623
  year: 2018
  ident: D1CS00175B-(cit83a)/*[position()=1]
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.201801302
– volume: 330
  start-page: 66
  year: 2010
  ident: D1CS00175B-(cit156)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1193928
– volume: 139
  start-page: 75
  year: 2017
  ident: D1CS00175B-(cit67a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11523
– volume: 436
  start-page: 1139
  year: 2005
  ident: D1CS00175B-(cit130a)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature03955
– volume: 142
  start-page: 4400
  year: 2020
  ident: D1CS00175B-(cit37b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13239
– volume: 6
  start-page: 169
  year: 2020
  ident: D1CS00175B-(cit66)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.10.010
– volume: 58
  start-page: 3538
  year: 2019
  ident: D1CS00175B-(cit134)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201814193
– volume: 136
  start-page: 14409
  year: 2014
  ident: D1CS00175B-(cit49)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja508799p
– volume: 5
  start-page: 100
  year: 2013
  ident: D1CS00175B-(cit77)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1531
– volume: 71
  start-page: 1058
  year: 2016
  ident: D1CS00175B-(cit107c)/*[position()=1]
  publication-title: J. Synth. Org. Chem., Jpn.
  doi: 10.5059/yukigoseikyokaishi.74.1058
– volume: 4
  start-page: 990
  year: 2012
  ident: D1CS00175B-(cit114)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1469
– volume: 51
  start-page: 5166
  year: 2012
  ident: D1CS00175B-(cit148)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201201364
– volume: 137
  start-page: 14582
  year: 2015
  ident: D1CS00175B-(cit24a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10028
– volume: 40
  start-page: 1976
  year: 2011
  ident: D1CS00175B-(cit89c)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00182a
– volume: 40
  start-page: 1992
  year: 2011
  ident: D1CS00175B-(cit101)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00156b
– start-page: 683
  year: 1998
  ident: D1CS00175B-(cit129a)/*[position()=1]
  publication-title: Synthesis
  doi: 10.1055/s-1998-2054
– volume: 6
  start-page: 1469
  year: 2020
  ident: D1CS00175B-(cit65)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.05.011
– volume: 20
  start-page: 3966
  year: 2014
  ident: D1CS00175B-(cit28)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201303885
– volume: 27
  start-page: 175
  year: 2021
  ident: D1CS00175B-(cit147i)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202002876
– volume: 68
  start-page: 1678
  year: 1971
  ident: D1CS00175B-(cit5c)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.68.8.1678
– volume: 14
  start-page: 1843
  year: 2008
  ident: D1CS00175B-(cit117g)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.200700727
– volume: 55
  start-page: 7698
  year: 2016
  ident: D1CS00175B-(cit60)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201602382
– volume: 15
  start-page: 256
  year: 2020
  ident: D1CS00175B-(cit9a)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0652-2
– volume: 58
  start-page: 2510
  year: 2019
  ident: D1CS00175B-(cit10c)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201813425
– volume: 48
  start-page: 11730
  year: 2012
  ident: D1CS00175B-(cit155a)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc36408e
– volume: 16
  start-page: 2470
  year: 2010
  ident: D1CS00175B-(cit119)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.200902553
– volume: 66
  start-page: 445
  year: 1970
  ident: D1CS00175B-(cit5b)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.66.2.445
– volume: 125
  start-page: 966
  year: 2003
  ident: D1CS00175B-(cit55a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja016238k
– volume: 8
  start-page: 864
  year: 2017
  ident: D1CS00175B-(cit81c)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC04157D
– volume: 2
  start-page: 25
  year: 2010
  ident: D1CS00175B-(cit72)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.446
– volume: 3
  start-page: 1638
  year: 2021
  ident: D1CS00175B-(cit16b)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.202001570
– start-page: 329
  year: 2020
  ident: D1CS00175B-(cit137b)/*[position()=1]
  publication-title: Synlett
– volume: 127
  start-page: 1644
  year: 2005
  ident: D1CS00175B-(cit158)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0437306
– volume: 58
  start-page: 12688
  year: 2019
  ident: D1CS00175B-(cit38c)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201906753
– volume: 131
  start-page: 17530
  year: 2009
  ident: D1CS00175B-(cit25c)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja906386w
– volume: 57
  start-page: 2281
  year: 2021
  ident: D1CS00175B-(cit76b)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC08005E
– start-page: 2588
  year: 2004
  ident: D1CS00175B-(cit132b)/*[position()=1]
  publication-title: Synlett
– volume: 132
  start-page: 1529
  year: 2010
  ident: D1CS00175B-(cit170b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja908524x
– volume: 142
  start-page: 2396
  year: 2020
  ident: D1CS00175B-(cit181)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11595
– volume: 5
  start-page: 2135
  year: 2014
  ident: D1CS00175B-(cit120a)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C3SC53505C
– volume: 138
  start-page: 10846
  year: 2016
  ident: D1CS00175B-(cit24b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b06950
– volume: 48
  start-page: 1092
  year: 2019
  ident: D1CS00175B-(cit110)/*[position()=1]
  publication-title: Chem. Lett.
  doi: 10.1246/cl.190372
– volume: 58
  start-page: 13039
  year: 2019
  ident: D1CS00175B-(cit108)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201907366
– volume: 10
  start-page: 1316
  year: 2019
  ident: D1CS00175B-(cit19f)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC03767A
– start-page: 2093
  year: 2018
  ident: D1CS00175B-(cit107b)/*[position()=1]
  publication-title: Synlett
  doi: 10.1055/s-0037-1610531
– volume: 118
  start-page: 11678
  year: 1996
  ident: D1CS00175B-(cit143a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja962295f
– volume: 117
  start-page: 5462
  year: 1995
  ident: D1CS00175B-(cit175h)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00125a005
– volume: 6
  start-page: 6491
  year: 2016
  ident: D1CS00175B-(cit70)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01776
– start-page: 1
  year: 2001
  ident: D1CS00175B-(cit117c)/*[position()=1]
  publication-title: Synthesis
  doi: 10.1055/s-2001-9739
– volume: 485
  start-page: 185
  year: 2012
  ident: D1CS00175B-(cit176b)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature11117
– volume: 130
  start-page: 10977
  year: 2008
  ident: D1CS00175B-(cit25b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8013055
– volume: 1
  start-page: 609
  year: 2018
  ident: D1CS00175B-(cit38b)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0115-4
– volume: 112
  start-page: 3896
  year: 1990
  ident: D1CS00175B-(cit175d)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00166a025
– volume: 50
  start-page: 9400
  year: 2011
  ident: D1CS00175B-(cit165e)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201105374
– volume: 138
  start-page: 14699
  year: 2016
  ident: D1CS00175B-(cit106a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b08767
– volume: 57
  start-page: 354
  year: 2018
  ident: D1CS00175B-(cit155f)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201709644
– volume: 20
  start-page: 13432
  year: 2014
  ident: D1CS00175B-(cit71)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201402548
– volume: 138
  start-page: 2
  year: 2016
  ident: D1CS00175B-(cit89d)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08707
– volume: 56
  start-page: 3852
  year: 2017
  ident: D1CS00175B-(cit45e)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201611875
– volume: 417
  start-page: 507
  year: 2002
  ident: D1CS00175B-(cit88a)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/417507a
– volume: 21
  start-page: 955
  year: 2019
  ident: D1CS00175B-(cit17g)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP06344C
– volume: 142
  start-page: 7374
  year: 2020
  ident: D1CS00175B-(cit127)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c02803
– volume: 57
  start-page: 5423
  year: 2018
  ident: D1CS00175B-(cit41)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201801642
– volume: 25
  start-page: 627
  year: 2019
  ident: D1CS00175B-(cit145)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201804543
– volume: 6
  start-page: 994
  year: 2020
  ident: D1CS00175B-(cit153d)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.02.006
– volume: 20
  start-page: 1680
  year: 2018
  ident: D1CS00175B-(cit55c)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b00520
– volume: 50
  start-page: 1
  year: 2016
  ident: D1CS00175B-(cit17e)/*[position()=1]
  publication-title: Adv. Phys. Org. Chem.
– volume: 2
  start-page: 0117
  year: 2018
  ident: D1CS00175B-(cit147d)/*[position()=1]
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0117
– volume: 106
  start-page: 4987
  year: 1984
  ident: D1CS00175B-(cit175b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00329a059
– volume: 11
  start-page: 4675
  year: 2020
  ident: D1CS00175B-(cit55e)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18487-5
– volume: 59
  start-page: 23505
  year: 2020
  ident: D1CS00175B-(cit51)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202009553
– volume: 129
  start-page: 7000
  year: 2007
  ident: D1CS00175B-(cit20c)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja071591x
– volume: 52
  start-page: 7213
  year: 2013
  ident: D1CS00175B-(cit58)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201301225
– volume: 10
  start-page: 7627
  year: 2019
  ident: D1CS00175B-(cit53b)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC01597C
– volume: 8
  start-page: 3764
  year: 2018
  ident: D1CS00175B-(cit105b)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00423
– volume: 128
  start-page: 11344
  year: 2006
  ident: D1CS00175B-(cit57a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja063294i
– volume: 138
  start-page: 2
  year: 2016
  ident: D1CS00175B-(cit1b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08707
– volume: 71
  start-page: 5662
  year: 2006
  ident: D1CS00175B-(cit132c)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo0606608
– volume: 18
  start-page: 12322
  year: 2012
  ident: D1CS00175B-(cit19b)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201201679
– volume-title: Advances in Physical Organic Chemistry
  year: 1986
  ident: D1CS00175B-(cit17b)/*[position()=1]
– volume-title: Modern Physical Organic Chemistry : CA
  year: 2006
  ident: D1CS00175B-(cit6)/*[position()=1]
– volume: 123
  start-page: 7630
  year: 2001
  ident: D1CS00175B-(cit117e)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0101678
– volume: 10
  start-page: 7719
  year: 2020
  ident: D1CS00175B-(cit147g)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c02032
– volume: 34
  start-page: 446
  year: 1995
  ident: D1CS00175B-(cit161)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199504461
– volume: 6
  start-page: 631
  year: 1991
  ident: D1CS00175B-(cit90d)/*[position()=1]
  publication-title: Compr. Org. Chem.
– volume: 8
  start-page: 225
  year: 2016
  ident: D1CS00175B-(cit19c)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2425
– volume: 57
  start-page: 11247
  year: 2018
  ident: D1CS00175B-(cit18)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201805244
– volume: 50
  start-page: 396
  year: 2011
  ident: D1CS00175B-(cit120b)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201005173
– volume: 6
  start-page: 117
  year: 2020
  ident: D1CS00175B-(cit147h)/*[position()=1]
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.9b01185
– volume: 331
  start-page: 1429
  year: 2011
  ident: D1CS00175B-(cit164)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1199844
– volume: 135
  start-page: 16213
  year: 2013
  ident: D1CS00175B-(cit37a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4080375
– volume: 137
  start-page: 10128
  year: 2015
  ident: D1CS00175B-(cit45d)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06317
– volume: 7
  start-page: 712
  year: 2015
  ident: D1CS00175B-(cit104)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2322
– volume: 6
  start-page: 12855
  year: 2018
  ident: D1CS00175B-(cit139b)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b02110
– volume: 26
  start-page: 3065
  year: 2020
  ident: D1CS00175B-(cit22d)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201904708
– volume: 91
  start-page: 3085
  year: 1969
  ident: D1CS00175B-(cit64)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01039a044
– volume: 335
  start-page: 807
  year: 2012
  ident: D1CS00175B-(cit90a)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1207661
– volume: 6
  start-page: 6652
  year: 2015
  ident: D1CS00175B-(cit165b)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7652
– volume: 58
  start-page: 9171
  year: 2019
  ident: D1CS00175B-(cit44)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201904752
– volume: 549
  start-page: 374
  year: 2017
  ident: D1CS00175B-(cit163)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature23677
– volume: 56
  start-page: 1495
  year: 2017
  ident: D1CS00175B-(cit107a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201610041
– volume: 49
  start-page: 8693
  year: 2020
  ident: D1CS00175B-(cit155e)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/D0DT01961E
– volume: 137
  start-page: 2680
  year: 2015
  ident: D1CS00175B-(cit59)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja512637k
– volume: 59
  start-page: 13712
  year: 2020
  ident: D1CS00175B-(cit10e)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202000045
– volume: 56
  start-page: 15688
  year: 2017
  ident: D1CS00175B-(cit19d)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201706487
– volume: 324
  start-page: 1697
  year: 2009
  ident: D1CS00175B-(cit74c)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1175313
– volume: 409
  start-page: 258
  year: 2001
  ident: D1CS00175B-(cit176a)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/35051736
– volume: 4
  start-page: 1016
  year: 1998
  ident: D1CS00175B-(cit23)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/(SICI)1521-3765(19980615)4:6<1016::AID-CHEM1016>3.0.CO;2-B
– volume: 93
  start-page: 359
  year: 1993
  ident: D1CS00175B-(cit129b)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr00017a017
– volume: 10
  start-page: 13371
  year: 2020
  ident: D1CS00175B-(cit40)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03625
– volume: 317
  start-page: 493
  year: 2007
  ident: D1CS00175B-(cit74d)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1143272
– volume: 115
  start-page: 3012
  year: 2015
  ident: D1CS00175B-(cit10a)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr4001226
– volume: 385
  start-page: 50
  year: 1997
  ident: D1CS00175B-(cit19a)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/385050a0
– volume: 8
  start-page: 231
  year: 2016
  ident: D1CS00175B-(cit22a)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2452
– volume: 140
  start-page: 2821
  year: 2018
  ident: D1CS00175B-(cit22b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11334
– volume: 132
  start-page: 2866
  year: 2010
  ident: D1CS00175B-(cit20d)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9107275
– volume: 141
  start-page: 1701
  year: 2019
  ident: D1CS00175B-(cit43)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11842
– volume: 59
  start-page: 12387
  year: 2020
  ident: D1CS00175B-(cit99)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202004242
– volume: 55
  start-page: 11365
  year: 1999
  ident: D1CS00175B-(cit175i)/*[position()=1]
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(99)00633-X
– volume: 8
  start-page: 3469
  year: 2018
  ident: D1CS00175B-(cit57c)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00288
– volume: 56
  start-page: 4853
  year: 2017
  ident: D1CS00175B-(cit111b)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201701238
– volume: 49
  start-page: 1288
  year: 2013
  ident: D1CS00175B-(cit143b)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc37829a
– volume: 33
  start-page: 1505
  year: 2014
  ident: D1CS00175B-(cit2b)/*[position()=1]
  publication-title: Organometallics
  doi: 10.1021/om500253z
– volume: 25
  start-page: 504
  year: 1992
  ident: D1CS00175B-(cit89a)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00023a004
– volume: 84
  start-page: 8815
  year: 2019
  ident: D1CS00175B-(cit83b)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.9b01299
– volume: 10
  start-page: 8611
  year: 2020
  ident: D1CS00175B-(cit98b)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c02073
– volume: 2
  start-page: 615
  year: 2010
  ident: D1CS00175B-(cit81a)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.744
– volume: 43
  start-page: 6748
  year: 2004
  ident: D1CS00175B-(cit25a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200461776
– volume: 47
  start-page: 2067
  year: 2008
  ident: D1CS00175B-(cit45c)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200705139
– volume: 4
  start-page: 4304
  year: 2014
  ident: D1CS00175B-(cit138b)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/cs501369z
– volume: 140
  start-page: 12592
  year: 2018
  ident: D1CS00175B-(cit73e)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07767
– volume: 53
  start-page: 11420
  year: 2014
  ident: D1CS00175B-(cit169)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201404848
– volume: 322
  start-page: 1668
  year: 2008
  ident: D1CS00175B-(cit170c)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1164647
– volume: 25
  start-page: 609
  year: 2019
  ident: D1CS00175B-(cit69c)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201804333
– volume: 56
  start-page: 13351
  year: 2017
  ident: D1CS00175B-(cit105c)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201708967
– volume: 46
  start-page: 5717
  year: 2007
  ident: D1CS00175B-(cit45b)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200701250
– volume: 51
  start-page: 2447
  year: 2018
  ident: D1CS00175B-(cit26)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00328
– volume: 47
  start-page: 311
  year: 2008
  ident: D1CS00175B-(cit118)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200703192
– volume: 130
  start-page: 11850
  year: 2008
  ident: D1CS00175B-(cit50a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja803854r
– volume: 12
  start-page: 71
  year: 2019
  ident: D1CS00175B-(cit139g)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201801620
– volume: 48
  start-page: 6640
  year: 2009
  ident: D1CS00175B-(cit132a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200901603
– ident: D1CS00175B-(cit116)/*[position()=1]
  doi: 10.1351/goldbook
– volume: 39
  start-page: 2692
  year: 2000
  ident: D1CS00175B-(cit94)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20000804)39:15<2692::AID-ANIE2692>3.0.CO;2-3
– volume: 6
  start-page: 2515
  year: 2020
  ident: D1CS00175B-(cit9b)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.09.007
– volume: 105
  start-page: 1001
  year: 2005
  ident: D1CS00175B-(cit3)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr020018n
– volume: 23
  start-page: 9756
  year: 2017
  ident: D1CS00175B-(cit153f)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201702525
– volume: 21
  start-page: 1
  year: 1985
  ident: D1CS00175B-(cit5f)/*[position()=1]
  publication-title: Adv. Phys. Org. Chem.
– volume: 14
  start-page: 1380
  year: 2010
  ident: D1CS00175B-(cit86c)/*[position()=1]
  publication-title: Curr. Org. Chem.
  doi: 10.2174/138527210791616885
– volume: 350
  start-page: 1235
  year: 2015
  ident: D1CS00175B-(cit42)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aad3087
– volume: 138
  start-page: 16236
  year: 2016
  ident: D1CS00175B-(cit73b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11218
– volume: 56
  start-page: 8780
  year: 2017
  ident: D1CS00175B-(cit73c)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201704074
– volume: 35
  start-page: 695
  year: 2002
  ident: D1CS00175B-(cit117b)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar010068z
– volume: 57
  start-page: 14589
  year: 2018
  ident: D1CS00175B-(cit39)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201712141
– volume: 45
  start-page: 936
  year: 2012
  ident: D1CS00175B-(cit88e)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300014f
– volume: 43
  start-page: 10977
  year: 2014
  ident: D1CS00175B-(cit155b)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C4DT01508H
– volume: 6
  start-page: 6050
  year: 2015
  ident: D1CS00175B-(cit171a)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC02317C
– volume: 227
  start-page: 857
  year: 1985
  ident: D1CS00175B-(cit129d)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.4038558
– volume-title: Enzyme Structure and Mechanism
  year: 1985
  ident: D1CS00175B-(cit8)/*[position()=1]
– volume: 133
  start-page: 2848
  year: 2011
  ident: D1CS00175B-(cit47)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja111106x
– volume: 140
  start-page: 3959
  year: 2018
  ident: D1CS00175B-(cit55b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12085
– volume: 120
  start-page: 10780
  year: 1998
  ident: D1CS00175B-(cit175h)/*[position()=2]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja982683c
– volume: 57
  start-page: 2953
  year: 2018
  ident: D1CS00175B-(cit126a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201712340
– volume: 126
  start-page: 9172
  year: 2004
  ident: D1CS00175B-(cit45a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja047612u
– volume: 135
  start-page: 10817
  year: 2013
  ident: D1CS00175B-(cit120c)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4046235
– volume: 217
  start-page: 401
  year: 1982
  ident: D1CS00175B-(cit122)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.217.4558.401
– volume: 43
  start-page: 1734
  year: 2014
  ident: D1CS00175B-(cit4c)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60037H
– volume: 92
  start-page: 741
  year: 1992
  ident: D1CS00175B-(cit129c)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr00013a001
– volume: 50
  start-page: 3565
  year: 2021
  ident: D1CS00175B-(cit82a)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01339K
– volume: 635
  start-page: 132
  year: 2001
  ident: D1CS00175B-(cit117f)/*[position()=1]
  publication-title: J. Organomet. Chem.
  doi: 10.1016/S0022-328X(01)01065-8
– volume: 136
  start-page: 16594
  year: 2014
  ident: D1CS00175B-(cit160b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja508804n
– volume: 37
  start-page: 113
  year: 2004
  ident: D1CS00175B-(cit17c)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar020076v
– volume: 11
  start-page: 287
  year: 2019
  ident: D1CS00175B-(cit48)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201801399
– volume: 35
  start-page: 139
  year: 2002
  ident: D1CS00175B-(cit5h)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar0001665
– volume: 6
  start-page: 1193
  year: 2000
  ident: D1CS00175B-(cit175j)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/(SICI)1521-3765(20000403)6:7<1193::AID-CHEM1193>3.0.CO;2-F
– volume: 140
  start-page: 2862
  year: 2018
  ident: D1CS00175B-(cit53a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12146
– volume: 52
  start-page: 7958
  year: 2013
  ident: D1CS00175B-(cit21b)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201302136
– volume: 130
  start-page: 372
  year: 2013
  ident: D1CS00175B-(cit139a)/*[position()=1]
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.12.028
– volume: 6
  start-page: 1265
  year: 2020
  ident: D1CS00175B-(cit13)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.04.014
– volume: 123
  start-page: 7666
  year: 2011
  ident: D1CS00175B-(cit172)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201102834
SSID ssj0011762
Score 2.6643126
SecondaryResourceType review_article
Snippet The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7681
SubjectTerms carbon-hydrogen bond activation
Catalysis
catalysts
catalytic activity
fields
Molecular machines
Recognition
researchers
Selectivity
selectivity (chemistry)
Stoichiometry
Title New horizons for catalysis disclosed by supramolecular chemistry
URI https://www.ncbi.nlm.nih.gov/pubmed/34008654
https://www.proquest.com/docview/2548356024
https://www.proquest.com/docview/2528920710
https://www.proquest.com/docview/2661043717
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLWgk2AviK-xjIGC4AWhQGK7cfzG6AYDDXigk_ZW-atQqWuqpEViv55rO3ZXVhDwElW2k1T3uLfH9r3nIvSMYVkK4AUZMVhmlGCeSSlZxriyPpNxJm2i8MdP5fEp_XDWPwsVsrvskoV8qS425pX8D6rQBrjaLNl_QDY-FBrgM-ALV0AYrn-FsQ1O_FY3kwsb72LjBd1mjNMYsdm207r1_LJdzhtxHgrhvlChyNtlZhqVA0IcZ6dTutqFnXx326rvJnXz1Udv-cOLOfwdtmJD16GZQtNSd4Xlu2z20HsCrFRMwde4Wz-3YBhdX96EwIULWPWn0cY7TlrmGWVey_GKW86JVTXVhXIV1_trvhtMOj93ABFqF1heU_oXEezQdR1tYQYkqYe2Do6G70_igVEBTj2ozxL-avWqbXQj3LxOPa6sJ4BdNKHqi2MXw9voVrcsSA88xnfQNTO7i24OAlD30GvAOg1Yp4B1GrFOI9ap_JGuY51GrO-j07dHw8Fx1lW_yBRleJFxWhmZM11RLaVhfVVVQlSVBi9aaljkVtqUutTAD8e5pNwed3LCxxwbLcYFHZMd1JvVM7OLUnigKYTIhcwNxYpLBWgJIsEBA9_EKkHPg2FGqpOGtxVKpiMXokD46LAYfHH2fJOgp3Hs3AuibBy1H-w76n4w7QjD6pgAw8Y0QU9iNxjBnlGJmamXdgyuOLa89w9jgFNaSa6CJeiBxy5-lYB1gnYAzNi8mg97v73lIdpeTe191Fs0S_MIGOdCPu5m20_TK4HN
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+horizons+for+catalysis+disclosed+by+supramolecular+chemistry&rft.jtitle=Chemical+Society+reviews&rft.au=Olivo%2C+Giorgio&rft.au=Capocasa%2C+Giorgio&rft.au=Del+Giudice%2C+Daniele&rft.au=Lanzalunga%2C+Osvaldo&rft.date=2021-07-05&rft.eissn=1460-4744&rft_id=info:doi/10.1039%2Fd1cs00175b&rft_id=info%3Apmid%2F34008654&rft.externalDocID=34008654
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon