New horizons for catalysis disclosed by supramolecular chemistry
The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (swi...
Saved in:
Published in | Chemical Society reviews Vol. 5; no. 13; pp. 7681 - 7724 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
05.07.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0306-0012 1460-4744 1460-4744 |
DOI | 10.1039/d1cs00175b |
Cover
Abstract | The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction,
e.g.
selective functionalization of C-H bonds) and regulation (switch ON/OFF, sequential catalysis,
etc.
). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis.
Recent advancements in supramolecular catalysis are reviewed, which show the potential of related tools when applied to organic synthesis. Such tools are recognized as innovative instruments that can pave the way to alternative synthetic strategies. |
---|---|
AbstractList | The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (switch ON/OFF, sequential catalysis, etc.). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis. The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (switch ON/OFF, sequential catalysis, etc. ). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis. Recent advancements in supramolecular catalysis are reviewed, which show the potential of related tools when applied to organic synthesis. Such tools are recognized as innovative instruments that can pave the way to alternative synthetic strategies. The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C–H bonds) and regulation (switch ON/OFF, sequential catalysis, etc. ). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis. The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (switch ON/OFF, sequential catalysis, etc.). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis.The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (switch ON/OFF, sequential catalysis, etc.). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis. |
Author | Lanzalunga, Osvaldo Capocasa, Giorgio Di Stefano, Stefano Del Giudice, Daniele Olivo, Giorgio |
AuthorAffiliation | Università degli Studi di Roma "La Sapienza" Dipartimento di Chimica Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione |
AuthorAffiliation_xml | – name: Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione – name: Dipartimento di Chimica – name: Università degli Studi di Roma "La Sapienza" |
Author_xml | – sequence: 1 givenname: Giorgio surname: Olivo fullname: Olivo, Giorgio – sequence: 2 givenname: Giorgio surname: Capocasa fullname: Capocasa, Giorgio – sequence: 3 givenname: Daniele surname: Del Giudice fullname: Del Giudice, Daniele – sequence: 4 givenname: Osvaldo surname: Lanzalunga fullname: Lanzalunga, Osvaldo – sequence: 5 givenname: Stefano surname: Di Stefano fullname: Di Stefano, Stefano |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34008654$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c9LwzAUB_AgE_dDL96VghcRqi9pmqQ3df6EoQf1XNIkZR1dM5MWmX-90W0KInhKIJ_3wnvfIeo1tjEI7WM4xZBkZxorD4B5WmyhAaYMYsop7aEBJMDi8EL6aOj9LNwwZ2QH9RMKIFhKB-j8wbxFU-uqd9v4qLQuUrKV9dJXPtKVV7X1RkfFMvLdwsm5rY3qahnU1Mwr37rlLtouZe3N3vocoZeb6-fxXTx5vL0fX0xiRTlp44wKUwDXguqiMDxVQkgphIYUM40ZFdowzTQQUUJBM8wyyJKszIjRssS0TEboeNV34exrZ3ybh_-VqWvZGNv5nDCGgSYc8_9pSkRGgIfljdDRLzqznWvCIEFRkaQMCA3qcK26Ym50vnDVXLplvlljALACylnvnSlzVbWyrWzTOlnVOYb8M6n8Co-fvpK6DCUnv0o2Xf_EByvsvPp2P7EnH2Iimyg |
CitedBy_id | crossref_primary_10_1021_jacs_2c08752 crossref_primary_10_1039_D2FD00165A crossref_primary_10_1039_D2FD00177B crossref_primary_10_1002_chem_202304131 crossref_primary_10_1007_s10870_022_00969_7 crossref_primary_10_1039_D1CC06851B crossref_primary_10_3390_molecules27207083 crossref_primary_10_1002_chem_202403964 crossref_primary_10_1002_cctc_202101727 crossref_primary_10_1002_ceur_202300047 crossref_primary_10_1093_bulcsj_bcsj_20230224 crossref_primary_10_1038_s41467_023_38164_7 crossref_primary_10_1016_j_molstruc_2022_134152 crossref_primary_10_1039_D3CP02178E crossref_primary_10_1002_anie_202303494 crossref_primary_10_1021_acscatal_3c01742 crossref_primary_10_3390_org4030030 crossref_primary_10_1002_anie_202303491 crossref_primary_10_1038_s41467_024_47150_6 crossref_primary_10_1038_s41557_022_01003_1 crossref_primary_10_1002_anie_202114932 crossref_primary_10_1016_j_chempr_2021_12_012 crossref_primary_10_1021_acscatal_2c00541 crossref_primary_10_2174_0113852728303168240424052507 crossref_primary_10_1002_ejoc_202101042 crossref_primary_10_3390_inorganics11040175 crossref_primary_10_1002_ange_202301319 crossref_primary_10_1016_j_molliq_2021_118329 crossref_primary_10_1002_ange_202410710 crossref_primary_10_1039_D1TB01719E crossref_primary_10_1039_D3CY01477K crossref_primary_10_3390_chemistry3040088 crossref_primary_10_1016_j_checat_2024_101082 crossref_primary_10_1021_acs_orglett_2c02609 crossref_primary_10_1021_jacs_2c00245 crossref_primary_10_1038_s41467_023_44129_7 crossref_primary_10_1002_ange_202316825 crossref_primary_10_3390_catal15030265 crossref_primary_10_1002_chem_202404041 crossref_primary_10_1016_j_molstruc_2024_137847 crossref_primary_10_1007_s43630_021_00146_3 crossref_primary_10_1038_s41467_024_48584_8 crossref_primary_10_1021_acs_inorgchem_3c03089 crossref_primary_10_5059_yukigoseikyokaishi_80_421 crossref_primary_10_1016_j_molliq_2023_122840 crossref_primary_10_1039_D3RA00062A crossref_primary_10_1021_acs_joc_3c02984 crossref_primary_10_1039_D2QO00011C crossref_primary_10_1016_j_dyepig_2023_111078 crossref_primary_10_1073_pnas_2314704121 crossref_primary_10_1002_anie_202500393 crossref_primary_10_1002_ejoc_202300621 crossref_primary_10_1002_anie_202415404 crossref_primary_10_1039_D4OB01987C crossref_primary_10_1021_acs_orglett_1c03685 crossref_primary_10_1016_j_molstruc_2023_135936 crossref_primary_10_1039_D2QM00998F crossref_primary_10_1016_j_gresc_2024_01_007 crossref_primary_10_1039_D3QO00258F crossref_primary_10_1002_ange_202500393 crossref_primary_10_1039_D4CE00450G crossref_primary_10_1039_D2CP04184G crossref_primary_10_1021_jacs_3c00294 crossref_primary_10_1002_chem_202404061 crossref_primary_10_1021_acs_joc_1c01817 crossref_primary_10_1039_D3NJ04719A crossref_primary_10_1002_ange_202303491 crossref_primary_10_1021_jacs_4c02352 crossref_primary_10_1002_anie_202412622 crossref_primary_10_1039_D1NJ04920H crossref_primary_10_1002_ejoc_202401378 crossref_primary_10_1002_ange_202114932 crossref_primary_10_1002_slct_202403956 crossref_primary_10_1021_acs_joc_4c01498 crossref_primary_10_1002_anie_202421175 crossref_primary_10_1002_anie_202301319 crossref_primary_10_1016_j_comptc_2023_114183 crossref_primary_10_1039_D4CS00761A crossref_primary_10_1039_D2SC02097A crossref_primary_10_1038_s41570_021_00348_4 crossref_primary_10_1039_D4DT03302G crossref_primary_10_3390_magnetochemistry8100116 crossref_primary_10_1002_adsc_202200225 crossref_primary_10_1002_anie_202316825 crossref_primary_10_1016_j_tetlet_2024_154985 crossref_primary_10_3390_molecules28031470 crossref_primary_10_1002_tcr_202100227 crossref_primary_10_1002_cctc_202101411 crossref_primary_10_3389_fchem_2023_1269471 crossref_primary_10_1039_D3CS00801K crossref_primary_10_1002_cplu_202300291 crossref_primary_10_1002_ange_202415404 crossref_primary_10_1039_D4CC04699D crossref_primary_10_1021_acscatal_4c03149 crossref_primary_10_1002_ange_202303494 crossref_primary_10_1039_D2CC00532H crossref_primary_10_1016_j_checat_2022_11_021 crossref_primary_10_1021_acscatal_4c04836 crossref_primary_10_1016_j_cclet_2023_109075 crossref_primary_10_5059_yukigoseikyokaishi_82_954 crossref_primary_10_1002_ange_202114118 crossref_primary_10_1039_D1RA07958A crossref_primary_10_1016_j_jcat_2021_12_018 crossref_primary_10_1039_D2OB02259A crossref_primary_10_1039_D2SC05311J crossref_primary_10_1021_acsmaterialslett_3c00491 crossref_primary_10_1016_j_cclet_2023_109228 crossref_primary_10_1039_D2NJ03171J crossref_primary_10_1016_j_ica_2022_121004 crossref_primary_10_1002_ange_202412622 crossref_primary_10_1021_acs_orglett_3c01854 crossref_primary_10_1134_S1070363224110215 crossref_primary_10_1038_s41557_022_01024_w crossref_primary_10_1021_acscatal_3c02213 crossref_primary_10_1002_chem_202303395 crossref_primary_10_1002_syst_202300009 crossref_primary_10_1021_jacs_2c04182 crossref_primary_10_1002_slct_202403621 crossref_primary_10_1002_ange_202421175 crossref_primary_10_1002_anie_202410710 crossref_primary_10_1002_anie_202114118 crossref_primary_10_1002_chem_202301811 crossref_primary_10_1055_a_1729_9223 crossref_primary_10_1016_j_rechem_2025_102148 crossref_primary_10_1039_D4CC05733C crossref_primary_10_1016_j_mencom_2023_01_005 crossref_primary_10_1002_tcr_202300149 crossref_primary_10_1039_D2NJ03792K crossref_primary_10_1021_acsnano_2c10856 crossref_primary_10_1039_D3CC04934E crossref_primary_10_1021_acs_jafc_4c07615 crossref_primary_10_1039_D3CC00637A crossref_primary_10_1021_acs_cgd_4c01130 crossref_primary_10_1002_asia_202100968 crossref_primary_10_1016_j_chempr_2023_08_028 crossref_primary_10_15826_chimtech_2023_10_4_12 |
Cites_doi | 10.1038/s41557-019-0258-1 10.1021/acs.accounts.8b00320 10.1002/anie.201602355 10.1021/jacs.0c11601 10.1002/anie.201804929 10.1021/jacs.6b12951 10.1016/j.biortech.2017.04.026 10.1021/ja802839v 10.1021/acs.chemrev.6b00847 10.1021/ar00113a001 10.1126/science.1114731 10.1021/acscatal.0c02957 10.1021/jacs.8b05195 10.1038/ncomms7541 10.1126/science.1138748 10.1002/1521-3765(20000901)6:17<3228::AID-CHEM3228>3.0.CO;2-P 10.1038/s41557-021-00658-6 10.1021/jacs.9b08464 10.1039/D0SC00444H 10.1021/ja9638770 10.1039/c2ra20922e 10.1021/ja029331x 10.1021/cr500081p 10.1039/C7SC02462B 10.1002/anie.199110241 10.1039/C8SC05315D 10.1016/j.chempr.2018.01.004 10.1002/anie.201812116 10.1002/anie.201408457 10.1002/anie.201808265 10.1021/jacs.0c01464 10.1021/jacs.8b08686 10.1038/nchem.1796 10.1021/jacs.7b04955 10.1021/acs.chemrev.7b00014 10.1039/c3cy00300k 10.1002/chem.202000620 10.1039/C4SC03279A 10.1039/C9CC01891C 10.1038/s41929-020-00528-3 10.1021/ja210068f 10.1002/anie.201908703 10.1021/acs.accounts.8b00261 10.1126/science.1127899 10.1039/C7SC00724H 10.1021/ja804076q 10.1021/ja500214r 10.1021/jacs.8b10816 10.1021/ja802818t 10.1002/chem.201704852 10.1038/s41586-018-0755-1 10.1021/jacs.9b05604 10.1039/C8CC09328H 10.1126/science.abc8320 10.1021/jacs.6b03221 10.1021/jacs.9b01993 10.1002/9783527619191 10.1021/acscatal.8b05005 10.1039/C3CS60027K 10.1074/jbc.M807592200 10.1021/ja501561c 10.1038/161707a0 10.1021/ja5022415 10.1002/anie.201709280 10.1021/jacs.7b04490 10.1002/anie.201000826 10.1021/jacs.9b02287 10.1021/jacs.8b08244 10.1021/ar00051a009 10.1021/jacs.5b13307 10.1002/anie.201912659 10.1021/jacs.9b01182 10.1021/jacs.8b03984 10.3389/fchem.2018.00623 10.1002/(SICI)1521-3773(19980302)37:4<465::AID-ANIE465>3.0.CO;2-A 10.1039/C39930000458 10.1038/nchem.2181 10.1021/ar00051a008 10.1021/acs.chemrev.5b00146 10.3390/molecules22091475 10.1002/anie.201411593 10.1039/D0OB00703J 10.1039/C6SC01454B 10.1038/nature01925 10.1021/ja900766b 10.1021/ja00159a057 10.1021/jacs.5b12237 10.1039/D0SC00105H 10.1074/jbc.RA119.009509 10.1021/ja00194a067 10.1039/C5CS00096C 10.1002/1521-3773(20000703)39:13<2206::AID-ANIE2206>3.0.CO;2-P 10.1021/jacs.0c04074 10.1021/cr200077m 10.1021/ja9704951 10.1021/acs.accounts.8b00231 10.1021/acs.orglett.5b03700 10.1021/jacs.7b05164 10.1021/cr3001803 10.1021/jo00283a024 10.1039/c4cc00794h 10.1021/ja020718+ 10.1038/s41557-020-0455-y 10.1002/anie.201409224 10.1038/s41467-020-19123-y 10.1038/ncomms3670 10.1002/chem.201400055 10.1021/ja412235e 10.1021/ja200551y 10.1039/D0SC03131C 10.1039/C9SC06089H 10.1021/acs.accounts.6b00476 10.1021/ja00101a058 10.1038/nature21418 10.1039/C4CC08833F 10.1039/C7SC04125J 10.1002/anie.201803749 10.1021/acscentsci.6b00032 10.1021/ja0026760 10.1002/anie.201505464 10.1007/1-4020-2000-7 10.1002/9783527621781 10.1126/science.1229753 10.1039/C4CS00273C 10.1021/jacs.7b04480 10.1021/ja308254k 10.1039/9781782622123 10.1021/ja208589c 10.1039/C3CC47842D 10.1002/anie.201705303 10.1021/jacs.0c09519 10.1016/j.cattod.2012.04.048 10.1021/jacs.9b00131 10.1021/ja102633e 10.1002/ejoc.201402690 10.1074/jbc.M605478200 10.1021/jacs.9b07737 10.1021/jacs.8b01701 10.1021/acscatal.0c00127 10.1021/co200010v 10.1002/anie.202003078 10.1021/ar200194b 10.1039/c39780000143 10.1021/jacs.9b03138 10.1021/jacs.9b07267 10.1002/chem.202003897 10.1021/jacs.7b02745 10.1080/00397918108063618 10.1126/science.aba1120 10.1002/anie.201006368 10.1126/science.1124985 10.1021/cs5013415 10.1002/ange.201209582 10.1002/anie.201905250 10.1021/jacs.0c01315 10.1021/jacs.7b00165 10.1039/c3cc44197k 10.1021/acs.chemrev.9b00159 10.1021/acscatal.8b00288 10.1039/c003191g 10.1039/C5CS00861A 10.1126/science.aao4798 10.1002/anie.201708408 10.1002/anie.200503908 10.1021/ol007004t 10.1002/ejoc.201901914 10.1007/s10311-018-0763-2 10.1039/C3SC53505C 10.1039/cs9720100553 10.1038/417507a 10.1021/jo020174u 10.1021/acscatal.6b00283 10.1021/acs.orglett.9b01791 10.1021/ja801107r 10.1021/jacs.6b08164 10.1002/asia.201801302 10.1126/science.1193928 10.1021/jacs.6b11523 10.1038/nature03955 10.1021/jacs.9b13239 10.1016/j.chempr.2019.10.010 10.1002/anie.201814193 10.1021/ja508799p 10.1038/nchem.1531 10.5059/yukigoseikyokaishi.74.1058 10.1038/nchem.1469 10.1002/anie.201201364 10.1021/jacs.5b10028 10.1039/c0cs00182a 10.1039/c0cs00156b 10.1055/s-1998-2054 10.1016/j.chempr.2020.05.011 10.1002/chem.201303885 10.1002/chem.202002876 10.1073/pnas.68.8.1678 10.1002/chem.200700727 10.1002/anie.201602382 10.1038/s41565-020-0652-2 10.1002/anie.201813425 10.1039/c2cc36408e 10.1002/chem.200902553 10.1073/pnas.66.2.445 10.1021/ja016238k 10.1039/C6SC04157D 10.1038/nchem.446 10.1002/cctc.202001570 10.1021/ja0437306 10.1002/anie.201906753 10.1021/ja906386w 10.1039/D0CC08005E 10.1021/ja908524x 10.1021/jacs.9b11595 10.1021/jacs.6b06950 10.1246/cl.190372 10.1002/anie.201907366 10.1039/C8SC03767A 10.1055/s-0037-1610531 10.1021/ja962295f 10.1021/ja00125a005 10.1021/acscatal.6b01776 10.1055/s-2001-9739 10.1038/nature11117 10.1021/ja8013055 10.1038/s41929-018-0115-4 10.1021/ja00166a025 10.1002/anie.201105374 10.1021/jacs.6b08767 10.1002/anie.201709644 10.1002/chem.201402548 10.1021/jacs.5b08707 10.1002/anie.201611875 10.1039/C8CP06344C 10.1021/jacs.0c02803 10.1002/anie.201801642 10.1002/chem.201804543 10.1016/j.chempr.2020.02.006 10.1021/acs.orglett.8b00520 10.1038/s41570-018-0117 10.1021/ja00329a059 10.1038/s41467-020-18487-5 10.1002/anie.202009553 10.1021/ja071591x 10.1002/anie.201301225 10.1039/C9SC01597C 10.1021/acscatal.8b00423 10.1021/ja063294i 10.1021/jo0606608 10.1002/chem.201201679 10.1021/ja0101678 10.1021/acscatal.0c02032 10.1002/anie.199504461 10.1038/nchem.2425 10.1002/anie.201805244 10.1002/anie.201005173 10.1021/acscentsci.9b01185 10.1126/science.1199844 10.1021/ja4080375 10.1021/jacs.5b06317 10.1038/nchem.2322 10.1021/acssuschemeng.8b02110 10.1002/chem.201904708 10.1021/ja01039a044 10.1126/science.1207661 10.1038/ncomms7652 10.1002/anie.201904752 10.1038/nature23677 10.1002/anie.201610041 10.1039/D0DT01961E 10.1021/ja512637k 10.1002/anie.202000045 10.1002/anie.201706487 10.1126/science.1175313 10.1038/35051736 10.1002/(SICI)1521-3765(19980615)4:6<1016::AID-CHEM1016>3.0.CO;2-B 10.1021/cr00017a017 10.1021/acscatal.0c03625 10.1126/science.1143272 10.1021/cr4001226 10.1038/385050a0 10.1038/nchem.2452 10.1021/jacs.7b11334 10.1021/ja9107275 10.1021/jacs.8b11842 10.1002/anie.202004242 10.1016/S0040-4020(99)00633-X 10.1002/anie.201701238 10.1039/c2cc37829a 10.1021/om500253z 10.1021/ar00023a004 10.1021/acs.joc.9b01299 10.1021/acscatal.0c02073 10.1038/nchem.744 10.1002/anie.200461776 10.1002/anie.200705139 10.1021/cs501369z 10.1021/jacs.8b07767 10.1002/anie.201404848 10.1126/science.1164647 10.1002/chem.201804333 10.1002/anie.201708967 10.1002/anie.200701250 10.1021/acs.accounts.8b00328 10.1002/anie.200703192 10.1021/ja803854r 10.1002/cssc.201801620 10.1002/anie.200901603 10.1351/goldbook 10.1002/1521-3773(20000804)39:15<2692::AID-ANIE2692>3.0.CO;2-3 10.1016/j.chempr.2020.09.007 10.1021/cr020018n 10.1002/chem.201702525 10.2174/138527210791616885 10.1126/science.aad3087 10.1021/jacs.6b11218 10.1002/anie.201704074 10.1021/ar010068z 10.1002/anie.201712141 10.1021/ar300014f 10.1039/C4DT01508H 10.1039/C5SC02317C 10.1126/science.4038558 10.1021/ja111106x 10.1021/jacs.7b12085 10.1021/ja982683c 10.1002/anie.201712340 10.1021/ja047612u 10.1021/ja4046235 10.1126/science.217.4558.401 10.1039/C3CS60037H 10.1021/cr00013a001 10.1039/D0CS01339K 10.1016/S0022-328X(01)01065-8 10.1021/ja508804n 10.1021/ar020076v 10.1002/cctc.201801399 10.1021/ar0001665 10.1002/(SICI)1521-3765(20000403)6:7<1193::AID-CHEM1193>3.0.CO;2-F 10.1021/jacs.7b12146 10.1002/anie.201302136 10.1016/j.biortech.2012.12.028 10.1016/j.chempr.2020.04.014 10.1002/ange.201102834 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/d1cs00175b |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 7724 |
ExternalDocumentID | 34008654 10_1039_D1CS00175B d1cs00175b |
Genre | Journal Article Review |
GroupedDBID | - 0-7 02 0R 29B 4.4 53G 5GY 70 705 70J 7~J 85S AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX COF CS3 DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3I JG M4U N9A O9- OK1 P2P R7B R7D RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 X --- -DZ -~X 0R~ 2WC 6J9 70~ AAHBH AAJAE AAMEH AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP H13 HZ~ R56 RAOCF ~02 -JG NPM YIN Z5M 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c472t-948eb07d84dbbe75c88aa88d0516d1648de6d6d028f0b491690939f92edaf14f3 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Fri Jul 11 16:26:50 EDT 2025 Fri Jul 11 04:50:04 EDT 2025 Sun Jun 29 12:41:03 EDT 2025 Wed Feb 19 02:28:58 EST 2025 Tue Jul 01 04:18:46 EDT 2025 Thu Apr 24 23:06:59 EDT 2025 Mon Apr 11 02:55:49 EDT 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c472t-948eb07d84dbbe75c88aa88d0516d1648de6d6d028f0b491690939f92edaf14f3 |
Notes | Giorgio Olivo obtained his PhD in 2015 at "La Sapienza" university of Rome (Italy) with S. Di Stefano. Then, he moved to Girona (Spain) as a postdoctoral fellow in the QBIS group of M. Costas (2016-2020), working on a recognition-driven oxidation of remote aliphatic C-H bonds catalyzed by Fe and Mn catalysts. Recently (2021) he moved back to Rome, where his research interests lie in the design and implementation of a supramolecular approach to control selectivity in late-stage functionalization and in bioinspired metal catalysis. Giorgio Capocasa was born in Rome in 1993. In 2017, he earned a master's degree in Chemistry at "La Sapienza" University of Rome (Italy) and enrolled in a PhD programme at the same university. In 2021, he gained his PhD with a thesis on supramolecular catalysis applied to hydrocarbon functionalization under the supervision of S. Di Stefano. He is currently working as a post-doc in the M. Costas group at "Universitat de Girona" (Catalunya, Spain) with a project on bioinspired C-H functionalization. Osvaldo Lanzalunga received his PhD degree from the University of Rome "La Sapienza" in 1994. After postdoctoral experience in S. Steenken group at the Max Plank Institute fur Strahlenchemie, Mülheim (Germany) he became Researcher and is currently Full Professor in Organic Chemistry at the Dipartimento di Chimica of the University "La Sapienza". His scientific research is mainly focused on the chemistry of radicals and radical ions, on the role of structural and medium effects on hydrogen atom transfer (HAT) and electron-transfer (ET) reactions involving oxygen-centered radicals and on the role of ET processes in organic and bioorganic reactions. Daniele Del Giudice was born in Latina in 1995. In 2019 he earned the master's degree in chemistry at the University of Rome La Sapienza, receiving the "Excellent Graduate" award from the same university. Master's degree internship was performed in the laboratory of S. Di Stefano, regarding the development of chemical fuels triggering the motion of acid-base operating molecular machines. Then he enrolled in a PhD programme under the supervision of the same professor, working on the employment of chemical fuels to obtain dissipative control on several kinds of supramolecular systems. Stefano Di Stefano received his PhD in Chemical Sciences in 2000 at the University of Rome La Sapienza. After a period in the pharmaceutical industry, he came back to the same University where he is now an Associate Professor. His research interests lie in the field of supramolecular catalysis, dynamic covalent chemistry, and chemically driven molecular machines. For his research work, he received an award from Italian Chemical Society in 2020. He also received the prize for "Excellent University Teaching" in 2014, 2017 and 2018 from the Faculty Dean. He has been involved in many national and international scientific collaborations. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3657-5829 0000-0002-9725-2727 0000-0002-0532-1888 0000-0003-4053-7673 0000-0002-6742-0988 |
OpenAccessLink | https://hdl.handle.net/11573/1563178 |
PMID | 34008654 |
PQID | 2548356024 |
PQPubID | 2047503 |
PageCount | 44 |
ParticipantIDs | crossref_citationtrail_10_1039_D1CS00175B proquest_miscellaneous_2661043717 crossref_primary_10_1039_D1CS00175B rsc_primary_d1cs00175b proquest_journals_2548356024 pubmed_primary_34008654 proquest_miscellaneous_2528920710 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210705 |
PublicationDateYYYYMMDD | 2021-07-05 |
PublicationDate_xml | – month: 7 year: 2021 text: 20210705 day: 5 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Walter (D1CS00175B-(cit175f)/*[position()=1]) 1993 Bolliger (D1CS00175B-(cit21b)/*[position()=1]) 2013; 52 Li (D1CS00175B-(cit84)/*[position()=1]) 2015 Yoshizawa (D1CS00175B-(cit52)/*[position()=1]) 2006; 312 Weissermel (D1CS00175B-(cit117d)/*[position()=1]) 2003 Molenveld (D1CS00175B-(cit175l)/*[position()=1]) 1997; 119 Selig (D1CS00175B-(cit132c)/*[position()=1]) 2006; 71 Zhao (D1CS00175B-(cit49)/*[position()=1]) 2014; 136 Kunz (D1CS00175B-(cit90d)/*[position()=1]) 1991; 6 Mihai (D1CS00175B-(cit105b)/*[position()=1]) 2018; 8 Arnold (D1CS00175B-(cit177b)/*[position()=1]) 2018; 57 Dydio (D1CS00175B-(cit120b)/*[position()=1]) 2011; 50 Iwasawa (D1CS00175B-(cit74d)/*[position()=1]) 2007; 317 Martí-Centelles (D1CS00175B-(cit53a)/*[position()=1]) 2018; 140 Dorel (D1CS00175B-(cit147e)/*[position()=1]) 2019; 55 Hastings (D1CS00175B-(cit27)/*[position()=1]) 2010; 132 Gilissen (D1CS00175B-(cit171b)/*[position()=1]) 2020; 11 Palma (D1CS00175B-(cit19d)/*[position()=1]) 2017; 56 Annapureddy (D1CS00175B-(cit127)/*[position()=1]) 2020; 142 Blanco (D1CS00175B-(cit147c)/*[position()=1]) 2015; 44 Kumar (D1CS00175B-(cit139a)/*[position()=1]) 2013; 130 Hosseini (D1CS00175B-(cit175d)/*[position()=1]) 1990; 112 García-Simón (D1CS00175B-(cit59)/*[position()=1]) 2015; 137 Gladysz (D1CS00175B-(cit2b)/*[position()=1]) 2014; 33 Kuil (D1CS00175B-(cit57a)/*[position()=1]) 2006; 128 Menger (D1CS00175B-(cit5g)/*[position()=1]) 1985; 18 Burg (D1CS00175B-(cit83b)/*[position()=1]) 2019; 84 Yu (D1CS00175B-(cit139e)/*[position()=1]) 2017; 238 Raynal (D1CS00175B-(cit4c)/*[position()=1]) 2014; 43 Zhang (D1CS00175B-(cit14)/*[position()=1]) 2017; 117 Bruice (D1CS00175B-(cit5h)/*[position()=1]) 2002; 35 Motloch (D1CS00175B-(cit17f)/*[position()=1]) 2016; 50 Chapman Jr (D1CS00175B-(cit175h)/*[position()=1]) 1995; 117 Dalton (D1CS00175B-(cit45d)/*[position()=1]) 2015; 137 Cavarzan (D1CS00175B-(cit47)/*[position()=1]) 2011; 133 Halpern (D1CS00175B-(cit122)/*[position()=1]) 1982; 217 Cacciapaglia (D1CS00175B-(cit17c)/*[position()=1]) 2004; 37 De (D1CS00175B-(cit155b)/*[position()=1]) 2014; 43 Mouarrawis (D1CS00175B-(cit10b)/*[position()=1]) 2018; 6 Crini (D1CS00175B-(cit11)/*[position()=1]) 2018; 16 Behr (D1CS00175B-(cit175a)/*[position()=1]) 1978 Westheimer (D1CS00175B-(cit5f)/*[position()=1]) 1985; 21 Cullen (D1CS00175B-(cit22b)/*[position()=1]) 2018; 140 Schwizer (D1CS00175B-(cit178)/*[position()=1]) 2018; 118 Ono (D1CS00175B-(cit53b)/*[position()=1]) 2019; 10 Fanourakis (D1CS00175B-(cit82b)/*[position()=1]) 2020; 10 Nakamura (D1CS00175B-(cit55a)/*[position()=1]) 2003; 125 Grill (D1CS00175B-(cit165d)/*[position()=1]) 2020; 142 Qiu (D1CS00175B-(cit76b)/*[position()=1]) 2021; 57 Ueda (D1CS00175B-(cit78)/*[position()=1]) 2017; 139 Ubasart (D1CS00175B-(cit67d)/*[position()=1]) 2021; 13 Wang (D1CS00175B-(cit55e)/*[position()=1]) 2020; 11 Genov (D1CS00175B-(cit136)/*[position()=1]) 2020; 367 Di Stefano (D1CS00175B-(cit85)/*[position()=1]) 2020 Dydio (D1CS00175B-(cit120c)/*[position()=1]) 2013; 135 Zhang (D1CS00175B-(cit38c)/*[position()=1]) 2019; 58 McGuirk (D1CS00175B-(cit160b)/*[position()=1]) 2014; 136 Cram (D1CS00175B-(cit175b)/*[position()=1]) 1984; 106 Fuertes-Espinosa (D1CS00175B-(cit66)/*[position()=1]) 2020; 6 Heard (D1CS00175B-(cit147h)/*[position()=1]) 2020; 6 Lewandowski (D1CS00175B-(cit173)/*[position()=1]) 2013; 339 Berryman (D1CS00175B-(cit165e)/*[position()=1]) 2011; 50 Wang (D1CS00175B-(cit19c)/*[position()=1]) 2016; 8 Fersht (D1CS00175B-(cit8)/*[position()=1]) 1985 Nishioka (D1CS00175B-(cit54a)/*[position()=1]) 2008; 130 Hoque (D1CS00175B-(cit109)/*[position()=1]) 2017; 139 Müller (D1CS00175B-(cit132a)/*[position()=1]) 2009; 48 Camp (D1CS00175B-(cit137c)/*[position()=1]) 2021; 143 Beswick (D1CS00175B-(cit167a)/*[position()=1]) 2015; 6 Brenner (D1CS00175B-(cit67a)/*[position()=1]) 2017; 139 Breslow (D1CS00175B-(cit141)/*[position()=1]) 1989; 111 Brown (D1CS00175B-(cit10a)/*[position()=1]) 2015; 115 Huang (D1CS00175B-(cit87)/*[position()=1]) 2017; 50 Zhang (D1CS00175B-(cit38b)/*[position()=1]) 2018; 1 Di Stefano (D1CS00175B-(cit17d)/*[position()=1]) 2014 Hölzl-Hobmeier (D1CS00175B-(cit133)/*[position()=1]) 2018; 564 Okumura (D1CS00175B-(cit106a)/*[position()=1]) 2016; 138 Deutman (D1CS00175B-(cit170c)/*[position()=1]) 2008; 322 Wasilke (D1CS00175B-(cit3)/*[position()=1]) 2005; 105 Dhayalan (D1CS00175B-(cit137a)/*[position()=1]) 2019; 11 Sun (D1CS00175B-(cit73g)/*[position()=1]) 2019; 58 Saint-Denis (D1CS00175B-(cit123)/*[position()=1]) 2018; 359 Huc (D1CS00175B-(cit175g)/*[position()=1]) 1994; 116 Samanta (D1CS00175B-(cit19b)/*[position()=1]) 2012; 18 Ngai (D1CS00175B-(cit51)/*[position()=1]) 2020; 59 Schmittel (D1CS00175B-(cit155a)/*[position()=1]) 2012; 48 Mondal (D1CS00175B-(cit73a)/*[position()=1]) 2016; 138 Das (D1CS00175B-(cit95)/*[position()=1]) 2006; 312 Reyes (D1CS00175B-(cit124)/*[position()=1]) 2020; 369 Tjivikua (D1CS00175B-(cit175e)/*[position()=1]) 1990; 112 Tröster (D1CS00175B-(cit134)/*[position()=1]) 2019; 58 Mihai (D1CS00175B-(cit111a)/*[position()=1]) 2019; 141 Farrell (D1CS00175B-(cit157)/*[position()=1]) 1998; 37 Vlatković (D1CS00175B-(cit165a)/*[position()=1]) 2014; 50 Tang (D1CS00175B-(cit12b)/*[position()=1]) 2020; 26 Golding (D1CS00175B-(cit115a)/*[position()=1]) 2018; 140 Goswami (D1CS00175B-(cit147f)/*[position()=1]) 2020; 120 De (D1CS00175B-(cit168a)/*[position()=1]) 2014; 53 Howlader (D1CS00175B-(cit50d)/*[position()=1]) 2016; 138 Sherman (D1CS00175B-(cit140a)/*[position()=1]) 2006; 281 Leonhardt (D1CS00175B-(cit67c)/*[position()=1]) 2020; 11 Wang (D1CS00175B-(cit73b)/*[position()=1]) 2016; 138 Schowen (D1CS00175B-(cit5e)/*[position()=1]) 1978 Wang (D1CS00175B-(cit10e)/*[position()=1]) 2020; 59 Bietti (D1CS00175B-(cit89g)/*[position()=1]) 2018; 57 Eichstaedt (D1CS00175B-(cit167b)/*[position()=1]) 2017; 139 Lichtor (D1CS00175B-(cit113)/*[position()=1]) 2011; 13 Nurttila (D1CS00175B-(cit121)/*[position()=1]) 2018; 8 Neufeldt (D1CS00175B-(cit88e)/*[position()=1]) 2012; 45 Biswas (D1CS00175B-(cit155g)/*[position()=1]) 2020; 142 Godula (D1CS00175B-(cit90b)/*[position()=1]) 2006; 312 Salles (D1CS00175B-(cit79)/*[position()=1]) 2013; 135 Otte (D1CS00175B-(cit70)/*[position()=1]) 2016; 6 Shenoy (D1CS00175B-(cit50b)/*[position()=1]) 2008; 130 Bach (D1CS00175B-(cit131)/*[position()=1]) 2000; 122 Monnereau (D1CS00175B-(cit170b)/*[position()=1]) 2010; 132 Fang (D1CS00175B-(cit21a)/*[position()=1]) 2019; 10 Yamaguchi (D1CS00175B-(cit45c)/*[position()=1]) 2008; 47 Kuninobu (D1CS00175B-(cit104)/*[position()=1]) 2015; 7 Zhang (D1CS00175B-(cit37a)/*[position()=1]) 2013; 135 Finbloom (D1CS00175B-(cit19e)/*[position()=1]) 2017; 139 Pluth (D1CS00175B-(cit33)/*[position()=1]) 2007; 316 McGuirk (D1CS00175B-(cit160c)/*[position()=1]) 2014; 136 Yang (D1CS00175B-(cit111b)/*[position()=1]) 2017; 56 Ohmatsu (D1CS00175B-(cit138a)/*[position()=1]) 2014; 6 Jin (D1CS00175B-(cit139g)/*[position()=1]) 2019; 12 Robertson (D1CS00175B-(cit175i)/*[position()=1]) 1999; 55 Lu (D1CS00175B-(cit144)/*[position()=1]) 2019; 9 Labinger (D1CS00175B-(cit88a)/*[position()=1]) 2002; 417 Mock (D1CS00175B-(cit175c)/*[position()=1]) 1989; 54 Breslow (D1CS00175B-(cit92)/*[position()=1]) 1997; 119 Kaphan (D1CS00175B-(cit42)/*[position()=1]) 2015; 350 Masseroni (D1CS00175B-(cit63)/*[position()=1]) 2016; 55 Trouve (D1CS00175B-(cit82a)/*[position()=1]) 2021; 50 White (D1CS00175B-(cit90a)/*[position()=1]) 2012; 335 Syntrivanis (D1CS00175B-(cit38d)/*[position()=1]) 2020; 142 Shi (D1CS00175B-(cit24b)/*[position()=1]) 2016; 138 Jans (D1CS00175B-(cit48)/*[position()=1]) 2019; 11 Liu (D1CS00175B-(cit10c)/*[position()=1]) 2019; 58 Dydio (D1CS00175B-(cit81b)/*[position()=1]) 2014; 5 Bach (D1CS00175B-(cit132d)/*[position()=1]) 2001; 3 Martinez-Cuezva (D1CS00175B-(cit153c)/*[position()=1]) 2017; 8 Gonell (D1CS00175B-(cit19f)/*[position()=1]) 2019; 10 Crini (D1CS00175B-(cit86a)/*[position()=1]) 2014; 114 Cullen (D1CS00175B-(cit44)/*[position()=1]) 2019; 58 Wang (D1CS00175B-(cit77)/*[position()=1]) 2013; 5 Li (D1CS00175B-(cit107a)/*[position()=1]) 2017; 56 Bai (D1CS00175B-(cit108)/*[position()=1]) 2019; 58 Lifschitz (D1CS00175B-(cit160d)/*[position()=1]) 2015; 6 Hastings (D1CS00175B-(cit25b)/*[position()=1]) 2008; 130 D1CS00175B-(cit116)/*[position()=1] Linnebank (D1CS00175B-(cit120e)/*[position()=1]) 2020; 26 Leigh (D1CS00175B-(cit147a)/*[position()=1]) 2014; 4 Giust (D1CS00175B-(cit68)/*[position()=1]) 2015; 51 Gutekunst (D1CS00175B-(cit89c)/*[position()=1]) 2011; 40 Reetz (D1CS00175B-(cit177a)/*[position()=1]) 2010; 50 Lee (D1CS00175B-(cit153f)/*[position()=1]) 2017; 23 Bocokić (D1CS00175B-(cit57b)/*[position()=1]) 2013; 4 Kuroda (D1CS00175B-(cit110)/*[position()=1]) 2019; 48 Sharafi (D1CS00175B-(cit65)/*[position()=1]) 2020; 6 Vu (D1CS00175B-(cit139f)/*[position()=1]) 2019; 294 Pizzolato (D1CS00175B-(cit165c)/*[position()=1]) 2018; 140 Knezevic (D1CS00175B-(cit99)/*[position()=1]) 2020; 59 De Bo (D1CS00175B-(cit150a)/*[position()=1]) 2017; 8 Yoshizawa (D1CS00175B-(cit45a)/*[position()=1]) 2004; 126 Eyring (D1CS00175B-(cit5a)/*[position()=1]) 1954 Hong (D1CS00175B-(cit26)/*[position()=1]) 2018; 51 Kuninobu (D1CS00175B-(cit107b)/*[position()=1]) 2018 Davis (D1CS00175B-(cit105c)/*[position()=1]) 2017; 56 Zhang (D1CS00175B-(cit56)/*[position()=1]) 2017; 56 Xu (D1CS00175B-(cit73d)/*[position()=1]) 2017; 139 Decker (D1CS00175B-(cit117f)/*[position()=1]) 2001; 635 Mandolini (D1CS00175B-(cit17b)/*[position()=1]) 1986 Zhang (D1CS00175B-(cit40)/*[position()=1]) 2020; 10 Miyaura (D1CS00175B-(cit102)/*[position()=1]) 1981; 11 Raynal (D1CS00175B-(cit4b)/*[position()=1]) 2014; 43 Yoshizawa (D1CS00175B-(cit20a)/*[position()=1]) 2003; 125 Kwamen (D1CS00175B-(cit147i)/*[position()=1]) 2021; 27 Jencks (D1CS00175B-(cit5d)/*[position()=1]) 1975; 43 Dydio (D1CS00175B-(cit120d)/*[position()=1]) 2013; 125 Würthner (D1CS00175B-(cit161)/*[position()=1]) 1995; 34 Kang (D1CS00175B-(cit179)/*[position()=1]) 2017; 8 Van Axel (D1CS00175B-(cit175j)/*[position()=1]) 2000; 6 Olivo (D1CS00175B-(cit100)/*[position()=1]) 2020; 59 Dey (D1CS00175B-(cit112b)/*[position()=1]) 2019; 58 Yang (D1CS00175B-(cit94)/*[position()=1]) 2000; 39 Martinez-Cuezva (D1CS00175B-(cit147g)/*[position()=1]) 2020; 1 |
References_xml | – issn: 2008 publication-title: Supramolecular Catalysis doi: Van Leeuwen – issn: 1954 publication-title: The Mechanism of Enzyme Action doi: Eyring Lowry Spikes – issn: 2003 end-page: p 127-144 publication-title: Industrial Organic Chemistry doi: Weissermel Arpe – issn: 1978 volume-title: Catalytic Power and Transition State Stabilization publication-title: Transition States of Biochemical Process doi: Schowen – issn: 1985 publication-title: Enzyme Structure and Mechanism doi: Fersht – issn: 2006 publication-title: Modern Physical Organic Chemistry CA doi: Anslyn Dougherty – issn: 2004 publication-title: Homogeneous Catalysis: Understanding the Art doi: van Leeuwen – issn: 1986 end-page: p 1-111 publication-title: Advances in Physical Organic Chemistry doi: Mandolini – issn: 2015 publication-title: Boron: Sensing, Synthesis and Supramolecular Self-Assembly doi: Li Fossey James – volume-title: The Mechanism of Enzyme Action year: 1954 ident: D1CS00175B-(cit31)/*[position()=1] – volume: 11 start-page: 543 year: 2019 ident: D1CS00175B-(cit137a)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/s41557-019-0258-1 – volume: 51 start-page: 2107 year: 2018 ident: D1CS00175B-(cit16a)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00320 – volume: 55 start-page: 8290 year: 2016 ident: D1CS00175B-(cit63)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201602355 – volume: 143 start-page: 2792 year: 2021 ident: D1CS00175B-(cit137c)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c11601 – volume: 57 start-page: 16618 year: 2018 ident: D1CS00175B-(cit89g)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201804929 – volume: 139 start-page: 4270 year: 2017 ident: D1CS00175B-(cit155c)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12951 – volume: 238 start-page: 716 year: 2017 ident: D1CS00175B-(cit139e)/*[position()=1] publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.04.026 – volume: 130 start-page: 11423 year: 2008 ident: D1CS00175B-(cit34)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja802839v – volume: 117 start-page: 4900 year: 2017 ident: D1CS00175B-(cit14)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00847 – volume: 18 start-page: 128 year: 1985 ident: D1CS00175B-(cit5g)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar00113a001 – volume: 312 start-page: 67 year: 2006 ident: D1CS00175B-(cit88c)/*[position()=1] publication-title: Science doi: 10.1126/science.1114731 – volume: 10 start-page: 10672 year: 2020 ident: D1CS00175B-(cit82b)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.0c02957 – volume: 140 start-page: 13988 year: 2018 ident: D1CS00175B-(cit98a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05195 – volume: 6 start-page: 6541 year: 2015 ident: D1CS00175B-(cit160d)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms7541 – volume: 316 start-page: 85 year: 2007 ident: D1CS00175B-(cit33)/*[position()=1] publication-title: Science doi: 10.1126/science.1138748 – volume: 6 start-page: 3228 year: 2000 ident: D1CS00175B-(cit175k)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/1521-3765(20000901)6:17<3228::AID-CHEM3228>3.0.CO;2-P – volume: 13 start-page: 420 year: 2021 ident: D1CS00175B-(cit67d)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/s41557-021-00658-6 – volume: 141 start-page: 15483 year: 2019 ident: D1CS00175B-(cit111c)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b08464 – volume: 11 start-page: 3629 year: 2020 ident: D1CS00175B-(cit153b)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/D0SC00444H – volume: 43 start-page: 219 year: 1975 ident: D1CS00175B-(cit5d)/*[position()=1] publication-title: Adv. Enzymol. Relat. Area Mol. Biol. – volume: 119 start-page: 2948 year: 1997 ident: D1CS00175B-(cit175l)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9638770 – volume: 2 start-page: 12575 year: 2012 ident: D1CS00175B-(cit139c)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/c2ra20922e – volume: 312 start-page: 67 year: 2006 ident: D1CS00175B-(cit90b)/*[position()=1] publication-title: Science doi: 10.1126/science.1114731 – volume: 125 start-page: 2224 year: 2003 ident: D1CS00175B-(cit162)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja029331x – volume: 114 start-page: 10940 year: 2014 ident: D1CS00175B-(cit86a)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr500081p – volume: 8 start-page: 7077 year: 2017 ident: D1CS00175B-(cit150a)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C7SC02462B – volume: 30 start-page: 1024 year: 1991 ident: D1CS00175B-(cit74b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199110241 – volume: 10 start-page: 3529 year: 2019 ident: D1CS00175B-(cit21a)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC05315D – volume: 4 start-page: 555 year: 2018 ident: D1CS00175B-(cit73f)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2018.01.004 – volume: 58 start-page: 10820 year: 2019 ident: D1CS00175B-(cit112b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201812116 – volume: 53 start-page: 14255 year: 2014 ident: D1CS00175B-(cit168a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201408457 – volume: 57 start-page: 15091 year: 2018 ident: D1CS00175B-(cit24c)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201808265 – volume: 142 start-page: 5894 year: 2020 ident: D1CS00175B-(cit38d)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01464 – volume: 140 start-page: 13570 year: 2018 ident: D1CS00175B-(cit115a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08686 – volume: 6 start-page: 47 year: 2014 ident: D1CS00175B-(cit138a)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1796 – volume: 139 start-page: 9376 year: 2017 ident: D1CS00175B-(cit150b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04955 – volume: 118 start-page: 142 year: 2018 ident: D1CS00175B-(cit178)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00014 – volume: 3 start-page: 2898 year: 2013 ident: D1CS00175B-(cit69a)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/c3cy00300k – volume: 26 start-page: 8214 year: 2020 ident: D1CS00175B-(cit120e)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.202000620 – volume: 6 start-page: 140 year: 2015 ident: D1CS00175B-(cit167a)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C4SC03279A – volume: 55 start-page: 6477 year: 2019 ident: D1CS00175B-(cit147e)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC01891C – volume: 3 start-page: 969 year: 2020 ident: D1CS00175B-(cit10d)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-020-00528-3 – volume: 134 start-page: 162 year: 2012 ident: D1CS00175B-(cit35)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja210068f – volume: 58 start-page: 18011 year: 2019 ident: D1CS00175B-(cit73g)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201908703 – volume: 51 start-page: 2073 year: 2018 ident: D1CS00175B-(cit22c)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00261 – volume: 312 start-page: 1941 year: 2006 ident: D1CS00175B-(cit95)/*[position()=1] publication-title: Science doi: 10.1126/science.1127899 – volume: 8 start-page: 3775 year: 2017 ident: D1CS00175B-(cit153c)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C7SC00724H – volume: 130 start-page: 11590 year: 2008 ident: D1CS00175B-(cit159)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja804076q – volume: 136 start-page: 4689 year: 2014 ident: D1CS00175B-(cit160c)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500214r – volume: 140 start-page: 17278 year: 2018 ident: D1CS00175B-(cit165c)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10816 – volume: 50 start-page: 77 year: 2016 ident: D1CS00175B-(cit17f)/*[position()=1] publication-title: Adv. Phys. Org. Chem. – volume: 130 start-page: 8160 year: 2008 ident: D1CS00175B-(cit54a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja802818t – volume: 24 start-page: 5042 year: 2018 ident: D1CS00175B-(cit96)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201704852 – volume: 564 start-page: 240 year: 2018 ident: D1CS00175B-(cit133)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-018-0755-1 – volume: 141 start-page: 11806 year: 2019 ident: D1CS00175B-(cit61)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05604 – volume: 55 start-page: 917 year: 2019 ident: D1CS00175B-(cit142)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC09328H – volume: 17 start-page: 183 year: 1980 ident: D1CS00175B-(cit17a)/*[position()=1] publication-title: Adv. Phys. Org. Chem. – volume: 369 start-page: 970 year: 2020 ident: D1CS00175B-(cit124)/*[position()=1] publication-title: Science doi: 10.1126/science.abc8320 – volume: 138 start-page: 7808 year: 2016 ident: D1CS00175B-(cit132e)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03221 – volume: 141 start-page: 9225 year: 2019 ident: D1CS00175B-(cit55d)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b01993 – volume-title: Industrial Organic Chemistry year: 2003 ident: D1CS00175B-(cit117d)/*[position()=1] doi: 10.1002/9783527619191 – volume: 9 start-page: 1705 year: 2019 ident: D1CS00175B-(cit144)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.8b05005 – volume: 43 start-page: 1660 year: 2014 ident: D1CS00175B-(cit4b)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60027K – volume: 284 start-page: 5723 year: 2009 ident: D1CS00175B-(cit140b)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.M807592200 – volume: 136 start-page: 4905 year: 2014 ident: D1CS00175B-(cit149)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja501561c – volume: 161 start-page: 707 year: 1948 ident: D1CS00175B-(cit7)/*[position()=1] publication-title: Nature doi: 10.1038/161707a0 – volume: 136 start-page: 5811 year: 2014 ident: D1CS00175B-(cit174)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5022415 – volume: 56 start-page: 16347 year: 2017 ident: D1CS00175B-(cit97)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201709280 – volume: 139 start-page: 7745 year: 2017 ident: D1CS00175B-(cit109)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04490 – volume: 50 start-page: 138 year: 2010 ident: D1CS00175B-(cit177a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201000826 – volume: 141 start-page: 6740 year: 2019 ident: D1CS00175B-(cit30)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02287 – volume: 140 start-page: 13413 year: 2018 ident: D1CS00175B-(cit67b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08244 – volume: 28 start-page: 154 year: 1995 ident: D1CS00175B-(cit88d)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar00051a009 – volume: 138 start-page: 1709 year: 2016 ident: D1CS00175B-(cit73a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b13307 – volume: 59 start-page: 8344 year: 2020 ident: D1CS00175B-(cit152)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201912659 – volume: 141 start-page: 5139 year: 2019 ident: D1CS00175B-(cit155d)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b01182 – volume: 140 start-page: 8078 year: 2018 ident: D1CS00175B-(cit69b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b03984 – volume: 6 start-page: 623 year: 2018 ident: D1CS00175B-(cit10b)/*[position()=1] publication-title: Front. Chem. doi: 10.3389/fchem.2018.00623 – volume: 37 start-page: 465 year: 1998 ident: D1CS00175B-(cit157)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/(SICI)1521-3773(19980302)37:4<465::AID-ANIE465>3.0.CO;2-A – start-page: 458 year: 1993 ident: D1CS00175B-(cit175f)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C39930000458 – volume: 7 start-page: 197 year: 2015 ident: D1CS00175B-(cit36)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2181 – volume: 28 start-page: 146 year: 1995 ident: D1CS00175B-(cit80)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar00051a008 – volume: 115 start-page: 10081 year: 2015 ident: D1CS00175B-(cit146)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00146 – volume-title: The Mechanism of Enzyme Action year: 1954 ident: D1CS00175B-(cit5a)/*[position()=1] – volume: 22 start-page: 1475 year: 2017 ident: D1CS00175B-(cit86b)/*[position()=1] publication-title: Molecules doi: 10.3390/molecules22091475 – volume: 54 start-page: 4334 year: 2015 ident: D1CS00175B-(cit153e)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201411593 – volume: 18 start-page: 4126 year: 2020 ident: D1CS00175B-(cit103)/*[position()=1] publication-title: Org. Biomol. Chem. doi: 10.1039/D0OB00703J – volume: 7 start-page: 6674 year: 2016 ident: D1CS00175B-(cit160a)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C6SC01454B – volume: 424 start-page: 915 year: 2003 ident: D1CS00175B-(cit170a)/*[position()=1] publication-title: Nature doi: 10.1038/nature01925 – volume: 131 start-page: 7402 year: 2009 ident: D1CS00175B-(cit50c)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja900766b – volume: 112 start-page: 1249 year: 1990 ident: D1CS00175B-(cit175e)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00159a057 – volume: 138 start-page: 1668 year: 2016 ident: D1CS00175B-(cit50d)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b12237 – volume: 11 start-page: 3022 year: 2020 ident: D1CS00175B-(cit115b)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/D0SC00105H – volume: 294 start-page: 12157 year: 2019 ident: D1CS00175B-(cit139f)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.009509 – volume: 111 start-page: 4517 year: 1989 ident: D1CS00175B-(cit141)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00194a067 – volume: 44 start-page: 5341 year: 2015 ident: D1CS00175B-(cit147c)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00096C – volume: 39 start-page: 2206 year: 2000 ident: D1CS00175B-(cit2a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20000703)39:13<2206::AID-ANIE2206>3.0.CO;2-P – volume: 111 start-page: 4517 year: 1989 ident: D1CS00175B-(cit89b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00194a067 – volume: 142 start-page: 10571 year: 2020 ident: D1CS00175B-(cit112c)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c04074 – volume: 111 start-page: 6810 year: 2011 ident: D1CS00175B-(cit15)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200077m – volume: 119 start-page: 4535 year: 1997 ident: D1CS00175B-(cit92)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9704951 – volume: 51 start-page: 1984 year: 2018 ident: D1CS00175B-(cit89f)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00231 – volume: 18 start-page: 976 year: 2016 ident: D1CS00175B-(cit166)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/acs.orglett.5b03700 – volume: 139 start-page: 9691 year: 2017 ident: D1CS00175B-(cit19e)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05164 – volume: 112 start-page: 5675 year: 2012 ident: D1CS00175B-(cit117a)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr3001803 – volume: 54 start-page: 5302 year: 1989 ident: D1CS00175B-(cit175c)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo00283a024 – volume: 50 start-page: 7773 year: 2014 ident: D1CS00175B-(cit165a)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c4cc00794h – volume: 125 start-page: 3243 year: 2003 ident: D1CS00175B-(cit20a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja020718+ – volume: 12 start-page: 574 year: 2020 ident: D1CS00175B-(cit32)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/s41557-020-0455-y – volume: 54 start-page: 691 year: 2015 ident: D1CS00175B-(cit125)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201409224 – volume: 11 start-page: 5291 year: 2020 ident: D1CS00175B-(cit171b)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-020-19123-y – volume: 4 start-page: 2670 year: 2013 ident: D1CS00175B-(cit57b)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms3670 – volume: 20 start-page: 4880 year: 2014 ident: D1CS00175B-(cit75)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201400055 – volume: 135 start-page: 19143 year: 2013 ident: D1CS00175B-(cit79)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja412235e – volume: 133 start-page: 7853 year: 2011 ident: D1CS00175B-(cit140c)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja200551y – volume: 11 start-page: 8409 year: 2020 ident: D1CS00175B-(cit67c)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/D0SC03131C – volume: 11 start-page: 2121 year: 2020 ident: D1CS00175B-(cit126b)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC06089H – volume: 50 start-page: 465 year: 2017 ident: D1CS00175B-(cit87)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00476 – volume: 116 start-page: 10296 year: 1994 ident: D1CS00175B-(cit175g)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00101a058 – volume: 543 start-page: 538 year: 2017 ident: D1CS00175B-(cit112a)/*[position()=1] publication-title: Nature doi: 10.1038/nature21418 – volume: 51 start-page: 1658 year: 2015 ident: D1CS00175B-(cit68)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC08833F – volume: 8 start-page: 8357 year: 2017 ident: D1CS00175B-(cit179)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C7SC04125J – volume: 57 start-page: 8545 year: 2018 ident: D1CS00175B-(cit180)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201803749 – volume: 2 start-page: 281 year: 2016 ident: D1CS00175B-(cit89e)/*[position()=1] publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.6b00032 – volume: 122 start-page: 11525 year: 2000 ident: D1CS00175B-(cit131)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0026760 – volume: 54 start-page: 13545 year: 2015 ident: D1CS00175B-(cit154)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201505464 – volume-title: Homogeneous Catalysis: Understanding the Art year: 2004 ident: D1CS00175B-(cit117h)/*[position()=1] doi: 10.1007/1-4020-2000-7 – volume-title: Supramolecular Catalysis year: 2008 ident: D1CS00175B-(cit4a)/*[position()=1] doi: 10.1002/9783527621781 – volume: 339 start-page: 189 year: 2013 ident: D1CS00175B-(cit173)/*[position()=1] publication-title: Science doi: 10.1126/science.1229753 – volume: 44 start-page: 394 year: 2015 ident: D1CS00175B-(cit12a)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00273C – volume: 139 start-page: 11482 year: 2017 ident: D1CS00175B-(cit38a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04480 – volume-title: Transition States of Biochemical Process year: 1978 ident: D1CS00175B-(cit5e)/*[position()=1] – volume: 134 start-page: 17873 year: 2012 ident: D1CS00175B-(cit46)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308254k – volume-title: Boron: Sensing, Synthesis and Supramolecular Self-Assembly year: 2015 ident: D1CS00175B-(cit84)/*[position()=1] doi: 10.1039/9781782622123 – volume: 133 start-page: 17176 year: 2011 ident: D1CS00175B-(cit135)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja208589c – volume: 50 start-page: 5128 year: 2014 ident: D1CS00175B-(cit147b)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C3CC47842D – volume: 56 start-page: 10821 year: 2017 ident: D1CS00175B-(cit56)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201705303 – volume: 142 start-page: 19300 year: 2020 ident: D1CS00175B-(cit165d)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c09519 – volume: 195 start-page: 136 year: 2012 ident: D1CS00175B-(cit139d)/*[position()=1] publication-title: Catal. Today doi: 10.1016/j.cattod.2012.04.048 – volume: 141 start-page: 5112 year: 2019 ident: D1CS00175B-(cit62)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b00131 – volume: 132 start-page: 6938 year: 2010 ident: D1CS00175B-(cit27)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja102633e – start-page: 7304 year: 2014 ident: D1CS00175B-(cit17d)/*[position()=1] publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201402690 – volume: 281 start-page: 26289 year: 2006 ident: D1CS00175B-(cit140a)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.M605478200 – volume: 141 start-page: 15656 year: 2019 ident: D1CS00175B-(cit168b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07737 – volume: 140 start-page: 6591 year: 2018 ident: D1CS00175B-(cit29)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b01701 – volume: 10 start-page: 5964 year: 2020 ident: D1CS00175B-(cit54b)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.0c00127 – volume: 13 start-page: 321 year: 2011 ident: D1CS00175B-(cit113)/*[position()=1] publication-title: ACS Comb. Sci. doi: 10.1021/co200010v – volume: 139 start-page: 9376 year: 2017 ident: D1CS00175B-(cit167b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04955 – volume: 59 start-page: 12703 year: 2020 ident: D1CS00175B-(cit100)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202003078 – volume: 45 start-page: 826 year: 2012 ident: D1CS00175B-(cit1a)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar200194b – start-page: 143 year: 1978 ident: D1CS00175B-(cit175a)/*[position()=1] publication-title: J. Chem. Soc., Chem. Commun. doi: 10.1039/c39780000143 – volume: 141 start-page: 7972 year: 2019 ident: D1CS00175B-(cit106b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03138 – volume: 141 start-page: 15477 year: 2019 ident: D1CS00175B-(cit111a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07267 – volume: 26 start-page: 15446 year: 2020 ident: D1CS00175B-(cit12b)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.202003897 – volume: 139 start-page: 6090 year: 2017 ident: D1CS00175B-(cit78)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02745 – volume: 11 start-page: 513 year: 1981 ident: D1CS00175B-(cit102)/*[position()=1] publication-title: Synth. Commun. doi: 10.1080/00397918108063618 – volume: 367 start-page: 1246 year: 2020 ident: D1CS00175B-(cit136)/*[position()=1] publication-title: Science doi: 10.1126/science.aba1120 – volume: 50 start-page: 3362 year: 2011 ident: D1CS00175B-(cit88b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201006368 – volume: 312 start-page: 251 year: 2006 ident: D1CS00175B-(cit52)/*[position()=1] publication-title: Science doi: 10.1126/science.1124985 – volume: 4 start-page: 4490 year: 2014 ident: D1CS00175B-(cit147a)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/cs5013415 – volume: 125 start-page: 3970 year: 2013 ident: D1CS00175B-(cit120d)/*[position()=1] publication-title: Angew. Chem. doi: 10.1002/ange.201209582 – volume: 58 start-page: 9876 year: 2019 ident: D1CS00175B-(cit151)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201905250 – volume: 142 start-page: 7889 year: 2020 ident: D1CS00175B-(cit155g)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01315 – volume: 139 start-page: 5285 year: 2017 ident: D1CS00175B-(cit73d)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00165 – volume: 49 start-page: 8009 year: 2013 ident: D1CS00175B-(cit128)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c3cc44197k – volume: 120 start-page: 125 year: 2020 ident: D1CS00175B-(cit147f)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00159 – volume: 8 start-page: 3469 year: 2018 ident: D1CS00175B-(cit121)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.8b00288 – volume: 46 start-page: 3460 year: 2010 ident: D1CS00175B-(cit20b)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c003191g – volume: 45 start-page: 1720 year: 2016 ident: D1CS00175B-(cit74a)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00861A – volume: 359 start-page: 759 year: 2018 ident: D1CS00175B-(cit123)/*[position()=1] publication-title: Science doi: 10.1126/science.aao4798 – volume: 57 start-page: 4143 year: 2018 ident: D1CS00175B-(cit177b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201708408 – volume: 45 start-page: 6640 year: 2006 ident: D1CS00175B-(cit130b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200503908 – volume: 3 start-page: 601 year: 2001 ident: D1CS00175B-(cit132d)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/ol007004t – start-page: 3340 year: 2020 ident: D1CS00175B-(cit85)/*[position()=1] publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201901914 – volume: 16 start-page: 1361 year: 2018 ident: D1CS00175B-(cit11)/*[position()=1] publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-018-0763-2 – volume: 5 start-page: 2135 year: 2014 ident: D1CS00175B-(cit81b)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C3SC53505C – volume: 1 start-page: 553 year: 1972 ident: D1CS00175B-(cit91)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/cs9720100553 – volume: 417 start-page: 507 year: 2002 ident: D1CS00175B-(cit90c)/*[position()=1] publication-title: Nature doi: 10.1038/417507a – volume: 67 start-page: 5057 year: 2002 ident: D1CS00175B-(cit93)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo020174u – volume: 6 start-page: 3106 year: 2016 ident: D1CS00175B-(cit76a)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b00283 – volume: 21 start-page: 5192 year: 2019 ident: D1CS00175B-(cit153a)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b01791 – volume: 130 start-page: 5658 year: 2008 ident: D1CS00175B-(cit50b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja801107r – volume: 138 start-page: 12759 year: 2016 ident: D1CS00175B-(cit105a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b08164 – volume: 13 start-page: 3623 year: 2018 ident: D1CS00175B-(cit83a)/*[position()=1] publication-title: Chem. – Asian J. doi: 10.1002/asia.201801302 – volume: 330 start-page: 66 year: 2010 ident: D1CS00175B-(cit156)/*[position()=1] publication-title: Science doi: 10.1126/science.1193928 – volume: 139 start-page: 75 year: 2017 ident: D1CS00175B-(cit67a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11523 – volume: 436 start-page: 1139 year: 2005 ident: D1CS00175B-(cit130a)/*[position()=1] publication-title: Nature doi: 10.1038/nature03955 – volume: 142 start-page: 4400 year: 2020 ident: D1CS00175B-(cit37b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13239 – volume: 6 start-page: 169 year: 2020 ident: D1CS00175B-(cit66)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2019.10.010 – volume: 58 start-page: 3538 year: 2019 ident: D1CS00175B-(cit134)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201814193 – volume: 136 start-page: 14409 year: 2014 ident: D1CS00175B-(cit49)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja508799p – volume: 5 start-page: 100 year: 2013 ident: D1CS00175B-(cit77)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1531 – volume: 71 start-page: 1058 year: 2016 ident: D1CS00175B-(cit107c)/*[position()=1] publication-title: J. Synth. Org. Chem., Jpn. doi: 10.5059/yukigoseikyokaishi.74.1058 – volume: 4 start-page: 990 year: 2012 ident: D1CS00175B-(cit114)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1469 – volume: 51 start-page: 5166 year: 2012 ident: D1CS00175B-(cit148)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201201364 – volume: 137 start-page: 14582 year: 2015 ident: D1CS00175B-(cit24a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10028 – volume: 40 start-page: 1976 year: 2011 ident: D1CS00175B-(cit89c)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00182a – volume: 40 start-page: 1992 year: 2011 ident: D1CS00175B-(cit101)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00156b – start-page: 683 year: 1998 ident: D1CS00175B-(cit129a)/*[position()=1] publication-title: Synthesis doi: 10.1055/s-1998-2054 – volume: 6 start-page: 1469 year: 2020 ident: D1CS00175B-(cit65)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2020.05.011 – volume: 20 start-page: 3966 year: 2014 ident: D1CS00175B-(cit28)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201303885 – volume: 27 start-page: 175 year: 2021 ident: D1CS00175B-(cit147i)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.202002876 – volume: 68 start-page: 1678 year: 1971 ident: D1CS00175B-(cit5c)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.68.8.1678 – volume: 14 start-page: 1843 year: 2008 ident: D1CS00175B-(cit117g)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.200700727 – volume: 55 start-page: 7698 year: 2016 ident: D1CS00175B-(cit60)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201602382 – volume: 15 start-page: 256 year: 2020 ident: D1CS00175B-(cit9a)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0652-2 – volume: 58 start-page: 2510 year: 2019 ident: D1CS00175B-(cit10c)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201813425 – volume: 48 start-page: 11730 year: 2012 ident: D1CS00175B-(cit155a)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c2cc36408e – volume: 16 start-page: 2470 year: 2010 ident: D1CS00175B-(cit119)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.200902553 – volume: 66 start-page: 445 year: 1970 ident: D1CS00175B-(cit5b)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.66.2.445 – volume: 125 start-page: 966 year: 2003 ident: D1CS00175B-(cit55a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja016238k – volume: 8 start-page: 864 year: 2017 ident: D1CS00175B-(cit81c)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C6SC04157D – volume: 2 start-page: 25 year: 2010 ident: D1CS00175B-(cit72)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.446 – volume: 3 start-page: 1638 year: 2021 ident: D1CS00175B-(cit16b)/*[position()=1] publication-title: ChemCatChem doi: 10.1002/cctc.202001570 – start-page: 329 year: 2020 ident: D1CS00175B-(cit137b)/*[position()=1] publication-title: Synlett – volume: 127 start-page: 1644 year: 2005 ident: D1CS00175B-(cit158)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0437306 – volume: 58 start-page: 12688 year: 2019 ident: D1CS00175B-(cit38c)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201906753 – volume: 131 start-page: 17530 year: 2009 ident: D1CS00175B-(cit25c)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja906386w – volume: 57 start-page: 2281 year: 2021 ident: D1CS00175B-(cit76b)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/D0CC08005E – start-page: 2588 year: 2004 ident: D1CS00175B-(cit132b)/*[position()=1] publication-title: Synlett – volume: 132 start-page: 1529 year: 2010 ident: D1CS00175B-(cit170b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja908524x – volume: 142 start-page: 2396 year: 2020 ident: D1CS00175B-(cit181)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11595 – volume: 5 start-page: 2135 year: 2014 ident: D1CS00175B-(cit120a)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C3SC53505C – volume: 138 start-page: 10846 year: 2016 ident: D1CS00175B-(cit24b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b06950 – volume: 48 start-page: 1092 year: 2019 ident: D1CS00175B-(cit110)/*[position()=1] publication-title: Chem. Lett. doi: 10.1246/cl.190372 – volume: 58 start-page: 13039 year: 2019 ident: D1CS00175B-(cit108)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201907366 – volume: 10 start-page: 1316 year: 2019 ident: D1CS00175B-(cit19f)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC03767A – start-page: 2093 year: 2018 ident: D1CS00175B-(cit107b)/*[position()=1] publication-title: Synlett doi: 10.1055/s-0037-1610531 – volume: 118 start-page: 11678 year: 1996 ident: D1CS00175B-(cit143a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja962295f – volume: 117 start-page: 5462 year: 1995 ident: D1CS00175B-(cit175h)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00125a005 – volume: 6 start-page: 6491 year: 2016 ident: D1CS00175B-(cit70)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b01776 – start-page: 1 year: 2001 ident: D1CS00175B-(cit117c)/*[position()=1] publication-title: Synthesis doi: 10.1055/s-2001-9739 – volume: 485 start-page: 185 year: 2012 ident: D1CS00175B-(cit176b)/*[position()=1] publication-title: Nature doi: 10.1038/nature11117 – volume: 130 start-page: 10977 year: 2008 ident: D1CS00175B-(cit25b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8013055 – volume: 1 start-page: 609 year: 2018 ident: D1CS00175B-(cit38b)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-018-0115-4 – volume: 112 start-page: 3896 year: 1990 ident: D1CS00175B-(cit175d)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00166a025 – volume: 50 start-page: 9400 year: 2011 ident: D1CS00175B-(cit165e)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201105374 – volume: 138 start-page: 14699 year: 2016 ident: D1CS00175B-(cit106a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b08767 – volume: 57 start-page: 354 year: 2018 ident: D1CS00175B-(cit155f)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201709644 – volume: 20 start-page: 13432 year: 2014 ident: D1CS00175B-(cit71)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201402548 – volume: 138 start-page: 2 year: 2016 ident: D1CS00175B-(cit89d)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08707 – volume: 56 start-page: 3852 year: 2017 ident: D1CS00175B-(cit45e)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201611875 – volume: 417 start-page: 507 year: 2002 ident: D1CS00175B-(cit88a)/*[position()=1] publication-title: Nature doi: 10.1038/417507a – volume: 21 start-page: 955 year: 2019 ident: D1CS00175B-(cit17g)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP06344C – volume: 142 start-page: 7374 year: 2020 ident: D1CS00175B-(cit127)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c02803 – volume: 57 start-page: 5423 year: 2018 ident: D1CS00175B-(cit41)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201801642 – volume: 25 start-page: 627 year: 2019 ident: D1CS00175B-(cit145)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201804543 – volume: 6 start-page: 994 year: 2020 ident: D1CS00175B-(cit153d)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2020.02.006 – volume: 20 start-page: 1680 year: 2018 ident: D1CS00175B-(cit55c)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b00520 – volume: 50 start-page: 1 year: 2016 ident: D1CS00175B-(cit17e)/*[position()=1] publication-title: Adv. Phys. Org. Chem. – volume: 2 start-page: 0117 year: 2018 ident: D1CS00175B-(cit147d)/*[position()=1] publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0117 – volume: 106 start-page: 4987 year: 1984 ident: D1CS00175B-(cit175b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00329a059 – volume: 11 start-page: 4675 year: 2020 ident: D1CS00175B-(cit55e)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-020-18487-5 – volume: 59 start-page: 23505 year: 2020 ident: D1CS00175B-(cit51)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202009553 – volume: 129 start-page: 7000 year: 2007 ident: D1CS00175B-(cit20c)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja071591x – volume: 52 start-page: 7213 year: 2013 ident: D1CS00175B-(cit58)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201301225 – volume: 10 start-page: 7627 year: 2019 ident: D1CS00175B-(cit53b)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC01597C – volume: 8 start-page: 3764 year: 2018 ident: D1CS00175B-(cit105b)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.8b00423 – volume: 128 start-page: 11344 year: 2006 ident: D1CS00175B-(cit57a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja063294i – volume: 138 start-page: 2 year: 2016 ident: D1CS00175B-(cit1b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08707 – volume: 71 start-page: 5662 year: 2006 ident: D1CS00175B-(cit132c)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo0606608 – volume: 18 start-page: 12322 year: 2012 ident: D1CS00175B-(cit19b)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201201679 – volume-title: Advances in Physical Organic Chemistry year: 1986 ident: D1CS00175B-(cit17b)/*[position()=1] – volume-title: Modern Physical Organic Chemistry : CA year: 2006 ident: D1CS00175B-(cit6)/*[position()=1] – volume: 123 start-page: 7630 year: 2001 ident: D1CS00175B-(cit117e)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0101678 – volume: 10 start-page: 7719 year: 2020 ident: D1CS00175B-(cit147g)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.0c02032 – volume: 34 start-page: 446 year: 1995 ident: D1CS00175B-(cit161)/*[position()=1] publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199504461 – volume: 6 start-page: 631 year: 1991 ident: D1CS00175B-(cit90d)/*[position()=1] publication-title: Compr. Org. Chem. – volume: 8 start-page: 225 year: 2016 ident: D1CS00175B-(cit19c)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2425 – volume: 57 start-page: 11247 year: 2018 ident: D1CS00175B-(cit18)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201805244 – volume: 50 start-page: 396 year: 2011 ident: D1CS00175B-(cit120b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201005173 – volume: 6 start-page: 117 year: 2020 ident: D1CS00175B-(cit147h)/*[position()=1] publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.9b01185 – volume: 331 start-page: 1429 year: 2011 ident: D1CS00175B-(cit164)/*[position()=1] publication-title: Science doi: 10.1126/science.1199844 – volume: 135 start-page: 16213 year: 2013 ident: D1CS00175B-(cit37a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4080375 – volume: 137 start-page: 10128 year: 2015 ident: D1CS00175B-(cit45d)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06317 – volume: 7 start-page: 712 year: 2015 ident: D1CS00175B-(cit104)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2322 – volume: 6 start-page: 12855 year: 2018 ident: D1CS00175B-(cit139b)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b02110 – volume: 26 start-page: 3065 year: 2020 ident: D1CS00175B-(cit22d)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201904708 – volume: 91 start-page: 3085 year: 1969 ident: D1CS00175B-(cit64)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01039a044 – volume: 335 start-page: 807 year: 2012 ident: D1CS00175B-(cit90a)/*[position()=1] publication-title: Science doi: 10.1126/science.1207661 – volume: 6 start-page: 6652 year: 2015 ident: D1CS00175B-(cit165b)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms7652 – volume: 58 start-page: 9171 year: 2019 ident: D1CS00175B-(cit44)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201904752 – volume: 549 start-page: 374 year: 2017 ident: D1CS00175B-(cit163)/*[position()=1] publication-title: Nature doi: 10.1038/nature23677 – volume: 56 start-page: 1495 year: 2017 ident: D1CS00175B-(cit107a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201610041 – volume: 49 start-page: 8693 year: 2020 ident: D1CS00175B-(cit155e)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/D0DT01961E – volume: 137 start-page: 2680 year: 2015 ident: D1CS00175B-(cit59)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja512637k – volume: 59 start-page: 13712 year: 2020 ident: D1CS00175B-(cit10e)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202000045 – volume: 56 start-page: 15688 year: 2017 ident: D1CS00175B-(cit19d)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201706487 – volume: 324 start-page: 1697 year: 2009 ident: D1CS00175B-(cit74c)/*[position()=1] publication-title: Science doi: 10.1126/science.1175313 – volume: 409 start-page: 258 year: 2001 ident: D1CS00175B-(cit176a)/*[position()=1] publication-title: Nature doi: 10.1038/35051736 – volume: 4 start-page: 1016 year: 1998 ident: D1CS00175B-(cit23)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/(SICI)1521-3765(19980615)4:6<1016::AID-CHEM1016>3.0.CO;2-B – volume: 93 start-page: 359 year: 1993 ident: D1CS00175B-(cit129b)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr00017a017 – volume: 10 start-page: 13371 year: 2020 ident: D1CS00175B-(cit40)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.0c03625 – volume: 317 start-page: 493 year: 2007 ident: D1CS00175B-(cit74d)/*[position()=1] publication-title: Science doi: 10.1126/science.1143272 – volume: 115 start-page: 3012 year: 2015 ident: D1CS00175B-(cit10a)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr4001226 – volume: 385 start-page: 50 year: 1997 ident: D1CS00175B-(cit19a)/*[position()=1] publication-title: Nature doi: 10.1038/385050a0 – volume: 8 start-page: 231 year: 2016 ident: D1CS00175B-(cit22a)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2452 – volume: 140 start-page: 2821 year: 2018 ident: D1CS00175B-(cit22b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11334 – volume: 132 start-page: 2866 year: 2010 ident: D1CS00175B-(cit20d)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9107275 – volume: 141 start-page: 1701 year: 2019 ident: D1CS00175B-(cit43)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11842 – volume: 59 start-page: 12387 year: 2020 ident: D1CS00175B-(cit99)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202004242 – volume: 55 start-page: 11365 year: 1999 ident: D1CS00175B-(cit175i)/*[position()=1] publication-title: Tetrahedron doi: 10.1016/S0040-4020(99)00633-X – volume: 8 start-page: 3469 year: 2018 ident: D1CS00175B-(cit57c)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.8b00288 – volume: 56 start-page: 4853 year: 2017 ident: D1CS00175B-(cit111b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201701238 – volume: 49 start-page: 1288 year: 2013 ident: D1CS00175B-(cit143b)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c2cc37829a – volume: 33 start-page: 1505 year: 2014 ident: D1CS00175B-(cit2b)/*[position()=1] publication-title: Organometallics doi: 10.1021/om500253z – volume: 25 start-page: 504 year: 1992 ident: D1CS00175B-(cit89a)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar00023a004 – volume: 84 start-page: 8815 year: 2019 ident: D1CS00175B-(cit83b)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/acs.joc.9b01299 – volume: 10 start-page: 8611 year: 2020 ident: D1CS00175B-(cit98b)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.0c02073 – volume: 2 start-page: 615 year: 2010 ident: D1CS00175B-(cit81a)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.744 – volume: 43 start-page: 6748 year: 2004 ident: D1CS00175B-(cit25a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200461776 – volume: 47 start-page: 2067 year: 2008 ident: D1CS00175B-(cit45c)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200705139 – volume: 4 start-page: 4304 year: 2014 ident: D1CS00175B-(cit138b)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/cs501369z – volume: 140 start-page: 12592 year: 2018 ident: D1CS00175B-(cit73e)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07767 – volume: 53 start-page: 11420 year: 2014 ident: D1CS00175B-(cit169)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201404848 – volume: 322 start-page: 1668 year: 2008 ident: D1CS00175B-(cit170c)/*[position()=1] publication-title: Science doi: 10.1126/science.1164647 – volume: 25 start-page: 609 year: 2019 ident: D1CS00175B-(cit69c)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201804333 – volume: 56 start-page: 13351 year: 2017 ident: D1CS00175B-(cit105c)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201708967 – volume: 46 start-page: 5717 year: 2007 ident: D1CS00175B-(cit45b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200701250 – volume: 51 start-page: 2447 year: 2018 ident: D1CS00175B-(cit26)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00328 – volume: 47 start-page: 311 year: 2008 ident: D1CS00175B-(cit118)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200703192 – volume: 130 start-page: 11850 year: 2008 ident: D1CS00175B-(cit50a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja803854r – volume: 12 start-page: 71 year: 2019 ident: D1CS00175B-(cit139g)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201801620 – volume: 48 start-page: 6640 year: 2009 ident: D1CS00175B-(cit132a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200901603 – ident: D1CS00175B-(cit116)/*[position()=1] doi: 10.1351/goldbook – volume: 39 start-page: 2692 year: 2000 ident: D1CS00175B-(cit94)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20000804)39:15<2692::AID-ANIE2692>3.0.CO;2-3 – volume: 6 start-page: 2515 year: 2020 ident: D1CS00175B-(cit9b)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2020.09.007 – volume: 105 start-page: 1001 year: 2005 ident: D1CS00175B-(cit3)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr020018n – volume: 23 start-page: 9756 year: 2017 ident: D1CS00175B-(cit153f)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201702525 – volume: 21 start-page: 1 year: 1985 ident: D1CS00175B-(cit5f)/*[position()=1] publication-title: Adv. Phys. Org. Chem. – volume: 14 start-page: 1380 year: 2010 ident: D1CS00175B-(cit86c)/*[position()=1] publication-title: Curr. Org. Chem. doi: 10.2174/138527210791616885 – volume: 350 start-page: 1235 year: 2015 ident: D1CS00175B-(cit42)/*[position()=1] publication-title: Science doi: 10.1126/science.aad3087 – volume: 138 start-page: 16236 year: 2016 ident: D1CS00175B-(cit73b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11218 – volume: 56 start-page: 8780 year: 2017 ident: D1CS00175B-(cit73c)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201704074 – volume: 35 start-page: 695 year: 2002 ident: D1CS00175B-(cit117b)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar010068z – volume: 57 start-page: 14589 year: 2018 ident: D1CS00175B-(cit39)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201712141 – volume: 45 start-page: 936 year: 2012 ident: D1CS00175B-(cit88e)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar300014f – volume: 43 start-page: 10977 year: 2014 ident: D1CS00175B-(cit155b)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C4DT01508H – volume: 6 start-page: 6050 year: 2015 ident: D1CS00175B-(cit171a)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C5SC02317C – volume: 227 start-page: 857 year: 1985 ident: D1CS00175B-(cit129d)/*[position()=1] publication-title: Science doi: 10.1126/science.4038558 – volume-title: Enzyme Structure and Mechanism year: 1985 ident: D1CS00175B-(cit8)/*[position()=1] – volume: 133 start-page: 2848 year: 2011 ident: D1CS00175B-(cit47)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja111106x – volume: 140 start-page: 3959 year: 2018 ident: D1CS00175B-(cit55b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12085 – volume: 120 start-page: 10780 year: 1998 ident: D1CS00175B-(cit175h)/*[position()=2] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja982683c – volume: 57 start-page: 2953 year: 2018 ident: D1CS00175B-(cit126a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201712340 – volume: 126 start-page: 9172 year: 2004 ident: D1CS00175B-(cit45a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja047612u – volume: 135 start-page: 10817 year: 2013 ident: D1CS00175B-(cit120c)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4046235 – volume: 217 start-page: 401 year: 1982 ident: D1CS00175B-(cit122)/*[position()=1] publication-title: Science doi: 10.1126/science.217.4558.401 – volume: 43 start-page: 1734 year: 2014 ident: D1CS00175B-(cit4c)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60037H – volume: 92 start-page: 741 year: 1992 ident: D1CS00175B-(cit129c)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr00013a001 – volume: 50 start-page: 3565 year: 2021 ident: D1CS00175B-(cit82a)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01339K – volume: 635 start-page: 132 year: 2001 ident: D1CS00175B-(cit117f)/*[position()=1] publication-title: J. Organomet. Chem. doi: 10.1016/S0022-328X(01)01065-8 – volume: 136 start-page: 16594 year: 2014 ident: D1CS00175B-(cit160b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja508804n – volume: 37 start-page: 113 year: 2004 ident: D1CS00175B-(cit17c)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar020076v – volume: 11 start-page: 287 year: 2019 ident: D1CS00175B-(cit48)/*[position()=1] publication-title: ChemCatChem doi: 10.1002/cctc.201801399 – volume: 35 start-page: 139 year: 2002 ident: D1CS00175B-(cit5h)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar0001665 – volume: 6 start-page: 1193 year: 2000 ident: D1CS00175B-(cit175j)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/(SICI)1521-3765(20000403)6:7<1193::AID-CHEM1193>3.0.CO;2-F – volume: 140 start-page: 2862 year: 2018 ident: D1CS00175B-(cit53a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12146 – volume: 52 start-page: 7958 year: 2013 ident: D1CS00175B-(cit21b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201302136 – volume: 130 start-page: 372 year: 2013 ident: D1CS00175B-(cit139a)/*[position()=1] publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.12.028 – volume: 6 start-page: 1265 year: 2020 ident: D1CS00175B-(cit13)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2020.04.014 – volume: 123 start-page: 7666 year: 2011 ident: D1CS00175B-(cit172)/*[position()=1] publication-title: Angew. Chem. doi: 10.1002/ange.201102834 |
SSID | ssj0011762 |
Score | 2.6643126 |
SecondaryResourceType | review_article |
Snippet | The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7681 |
SubjectTerms | carbon-hydrogen bond activation Catalysis catalysts catalytic activity fields Molecular machines Recognition researchers Selectivity selectivity (chemistry) Stoichiometry |
Title | New horizons for catalysis disclosed by supramolecular chemistry |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34008654 https://www.proquest.com/docview/2548356024 https://www.proquest.com/docview/2528920710 https://www.proquest.com/docview/2661043717 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLWgk2AviK-xjIGC4AWhQGK7cfzG6AYDDXigk_ZW-atQqWuqpEViv55rO3ZXVhDwElW2k1T3uLfH9r3nIvSMYVkK4AUZMVhmlGCeSSlZxriyPpNxJm2i8MdP5fEp_XDWPwsVsrvskoV8qS425pX8D6rQBrjaLNl_QDY-FBrgM-ALV0AYrn-FsQ1O_FY3kwsb72LjBd1mjNMYsdm207r1_LJdzhtxHgrhvlChyNtlZhqVA0IcZ6dTutqFnXx326rvJnXz1Udv-cOLOfwdtmJD16GZQtNSd4Xlu2z20HsCrFRMwde4Wz-3YBhdX96EwIULWPWn0cY7TlrmGWVey_GKW86JVTXVhXIV1_trvhtMOj93ABFqF1heU_oXEezQdR1tYQYkqYe2Do6G70_igVEBTj2ozxL-avWqbXQj3LxOPa6sJ4BdNKHqi2MXw9voVrcsSA88xnfQNTO7i24OAlD30GvAOg1Yp4B1GrFOI9ap_JGuY51GrO-j07dHw8Fx1lW_yBRleJFxWhmZM11RLaVhfVVVQlSVBi9aaljkVtqUutTAD8e5pNwed3LCxxwbLcYFHZMd1JvVM7OLUnigKYTIhcwNxYpLBWgJIsEBA9_EKkHPg2FGqpOGtxVKpiMXokD46LAYfHH2fJOgp3Hs3AuibBy1H-w76n4w7QjD6pgAw8Y0QU9iNxjBnlGJmamXdgyuOLa89w9jgFNaSa6CJeiBxy5-lYB1gnYAzNi8mg97v73lIdpeTe191Fs0S_MIGOdCPu5m20_TK4HN |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+horizons+for+catalysis+disclosed+by+supramolecular+chemistry&rft.jtitle=Chemical+Society+reviews&rft.au=Olivo%2C+Giorgio&rft.au=Capocasa%2C+Giorgio&rft.au=Del+Giudice%2C+Daniele&rft.au=Lanzalunga%2C+Osvaldo&rft.date=2021-07-05&rft.eissn=1460-4744&rft_id=info:doi/10.1039%2Fd1cs00175b&rft_id=info%3Apmid%2F34008654&rft.externalDocID=34008654 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |