Activation of Peroxisome Proliferator-Activated Receptor γ (PPARγ) by Rosiglitazone Suppresses Components of the Insulin-Like Growth Factor Regulatory System in Vitro and in Vivo
Rosiglitazone (Rosi) belongs to the class of thiazolidinediones (TZDs) that are ligands for peroxisome proliferator-activated receptor γ (PPARγ). Stimulation of PPARγ suppresses bone formation and enhances marrow adipogenesis. We hypothesized that activation of PPARγ down-regulates components of the...
Saved in:
Published in | Endocrinology (Philadelphia) Vol. 148; no. 2; pp. 903 - 911 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bethesda, MD
Endocrine Society
01.02.2007
Oxford University Press |
Subjects | |
Online Access | Get full text |
ISSN | 0013-7227 1945-7170 |
DOI | 10.1210/en.2006-1121 |
Cover
Abstract | Rosiglitazone (Rosi) belongs to the class of thiazolidinediones (TZDs) that are ligands for peroxisome proliferator-activated receptor γ (PPARγ). Stimulation of PPARγ suppresses bone formation and enhances marrow adipogenesis. We hypothesized that activation of PPARγ down-regulates components of the IGF regulatory system, leading to impaired osteoblast function. Rosi treatment (1 μm) of a marrow stromal cell line (UAMS-33) transfected with empty vector (U-33/c) or with PPARγ2 (U-33/γ2) were analyzed by microarray. Rosi reduced IGF-I, IGF-II, IGFBP-4, and the type I and II IGF receptor (IGF1R and IGF2R) expression at 72 h in U-33/γ2 compared with U-33/c cells (P < 0.01); these findings were confirmed by RT-PCR. Rosi reduced secreted IGF-I from U-33/γ2 cells by 75% (P < 0.05). Primary marrow stromal cells (MSCs) extracted from adult (8 months) and old (24 months) C57BL/6J (B6) mice were treated with Rosi (1 μm) for 48 h. IGF-I, IGFBP-4, and IGF1R transcripts were reduced in Rosi-treated MSCs compared with vehicle (P < 0.01) and secreted IGF-I was also suppressed (P < 0.05). B6 mice treated with Rosi (20 mg/kg·d) for short duration (i.e. 4 d), and long term (i.e. 7 wk) had reduced serum IGF-I; this was accompanied by markedly suppressed IGF-I transcripts in the liver and peripheral fat of treated animals. To determine whether Rosi affected circulating IGF-I in humans, we measured serum IGF-I, IGFBP-2, and IGFBP-3 at four time points in 50 postmenopausal women randomized to either Rosi (8 mg/d) or placebo. Rosi-treated subjects had significantly lower IGF-I at 8 wk than baseline (−25%, P < 0.05), and at 16 wk their levels were reduced 14% vs. placebo (P = 0.15). We conclude that Rosi suppresses IGF-I expression in bone and liver; these changes could affect skeletal acquisition through endocrine and paracrine pathways. |
---|---|
AbstractList | Rosiglitazone (Rosi) belongs to the class of thiazolidinediones (TZDs) that are ligands for peroxisome proliferator-activated receptor γ (PPARγ). Stimulation of PPARγ suppresses bone formation and enhances marrow adipogenesis. We hypothesized that activation of PPARγ down-regulates components of the IGF regulatory system, leading to impaired osteoblast function. Rosi treatment (1 μm) of a marrow stromal cell line (UAMS-33) transfected with empty vector (U-33/c) or with PPARγ2 (U-33/γ2) were analyzed by microarray. Rosi reduced IGF-I, IGF-II, IGFBP-4, and the type I and II IGF receptor (IGF1R and IGF2R) expression at 72 h in U-33/γ2 compared with U-33/c cells (P < 0.01); these findings were confirmed by RT-PCR. Rosi reduced secreted IGF-I from U-33/γ2 cells by 75% (P < 0.05). Primary marrow stromal cells (MSCs) extracted from adult (8 months) and old (24 months) C57BL/6J (B6) mice were treated with Rosi (1 μm) for 48 h. IGF-I, IGFBP-4, and IGF1R transcripts were reduced in Rosi-treated MSCs compared with vehicle (P < 0.01) and secreted IGF-I was also suppressed (P < 0.05). B6 mice treated with Rosi (20 mg/kg·d) for short duration (i.e. 4 d), and long term (i.e. 7 wk) had reduced serum IGF-I; this was accompanied by markedly suppressed IGF-I transcripts in the liver and peripheral fat of treated animals. To determine whether Rosi affected circulating IGF-I in humans, we measured serum IGF-I, IGFBP-2, and IGFBP-3 at four time points in 50 postmenopausal women randomized to either Rosi (8 mg/d) or placebo. Rosi-treated subjects had significantly lower IGF-I at 8 wk than baseline (−25%, P < 0.05), and at 16 wk their levels were reduced 14% vs. placebo (P = 0.15). We conclude that Rosi suppresses IGF-I expression in bone and liver; these changes could affect skeletal acquisition through endocrine and paracrine pathways. Rosiglitazone (Rosi) belongs to the class of thiazolidinediones (TZDs) that are ligands for peroxisome proliferator-activated receptor gamma (PPARgamma). Stimulation of PPARgamma suppresses bone formation and enhances marrow adipogenesis. We hypothesized that activation of PPARgamma down-regulates components of the IGF regulatory system, leading to impaired osteoblast function. Rosi treatment (1 microm) of a marrow stromal cell line (UAMS-33) transfected with empty vector (U-33/c) or with PPARgamma2 (U-33/gamma2) were analyzed by microarray. Rosi reduced IGF-I, IGF-II, IGFBP-4, and the type I and II IGF receptor (IGF1R and IGF2R) expression at 72 h in U-33/gamma2 compared with U-33/c cells (P < 0.01); these findings were confirmed by RT-PCR. Rosi reduced secreted IGF-I from U-33/gamma2 cells by 75% (P < 0.05). Primary marrow stromal cells (MSCs) extracted from adult (8 months) and old (24 months) C57BL/6J (B6) mice were treated with Rosi (1 microm) for 48 h. IGF-I, IGFBP-4, and IGF1R transcripts were reduced in Rosi-treated MSCs compared with vehicle (P < 0.01) and secreted IGF-I was also suppressed (P < 0.05). B6 mice treated with Rosi (20 mg/kg.d) for short duration (i.e. 4 d), and long term (i.e. 7 wk) had reduced serum IGF-I; this was accompanied by markedly suppressed IGF-I transcripts in the liver and peripheral fat of treated animals. To determine whether Rosi affected circulating IGF-I in humans, we measured serum IGF-I, IGFBP-2, and IGFBP-3 at four time points in 50 postmenopausal women randomized to either Rosi (8 mg/d) or placebo. Rosi-treated subjects had significantly lower IGF-I at 8 wk than baseline (-25%, P < 0.05), and at 16 wk their levels were reduced 14% vs. placebo (P = 0.15). We conclude that Rosi suppresses IGF-I expression in bone and liver; these changes could affect skeletal acquisition through endocrine and paracrine pathways. Rosiglitazone (Rosi) belongs to the class of thiazolidinediones (TZDs) that are ligands for peroxisome proliferator-activated receptor gamma (PPARgamma). Stimulation of PPARgamma suppresses bone formation and enhances marrow adipogenesis. We hypothesized that activation of PPARgamma down-regulates components of the IGF regulatory system, leading to impaired osteoblast function. Rosi treatment (1 microm) of a marrow stromal cell line (UAMS-33) transfected with empty vector (U-33/c) or with PPARgamma2 (U-33/gamma2) were analyzed by microarray. Rosi reduced IGF-I, IGF-II, IGFBP-4, and the type I and II IGF receptor (IGF1R and IGF2R) expression at 72 h in U-33/gamma2 compared with U-33/c cells (P < 0.01); these findings were confirmed by RT-PCR. Rosi reduced secreted IGF-I from U-33/gamma2 cells by 75% (P < 0.05). Primary marrow stromal cells (MSCs) extracted from adult (8 months) and old (24 months) C57BL/6J (B6) mice were treated with Rosi (1 microm) for 48 h. IGF-I, IGFBP-4, and IGF1R transcripts were reduced in Rosi-treated MSCs compared with vehicle (P < 0.01) and secreted IGF-I was also suppressed (P < 0.05). B6 mice treated with Rosi (20 mg/kg.d) for short duration (i.e. 4 d), and long term (i.e. 7 wk) had reduced serum IGF-I; this was accompanied by markedly suppressed IGF-I transcripts in the liver and peripheral fat of treated animals. To determine whether Rosi affected circulating IGF-I in humans, we measured serum IGF-I, IGFBP-2, and IGFBP-3 at four time points in 50 postmenopausal women randomized to either Rosi (8 mg/d) or placebo. Rosi-treated subjects had significantly lower IGF-I at 8 wk than baseline (-25%, P < 0.05), and at 16 wk their levels were reduced 14% vs. placebo (P = 0.15). We conclude that Rosi suppresses IGF-I expression in bone and liver; these changes could affect skeletal acquisition through endocrine and paracrine pathways.Rosiglitazone (Rosi) belongs to the class of thiazolidinediones (TZDs) that are ligands for peroxisome proliferator-activated receptor gamma (PPARgamma). Stimulation of PPARgamma suppresses bone formation and enhances marrow adipogenesis. We hypothesized that activation of PPARgamma down-regulates components of the IGF regulatory system, leading to impaired osteoblast function. Rosi treatment (1 microm) of a marrow stromal cell line (UAMS-33) transfected with empty vector (U-33/c) or with PPARgamma2 (U-33/gamma2) were analyzed by microarray. Rosi reduced IGF-I, IGF-II, IGFBP-4, and the type I and II IGF receptor (IGF1R and IGF2R) expression at 72 h in U-33/gamma2 compared with U-33/c cells (P < 0.01); these findings were confirmed by RT-PCR. Rosi reduced secreted IGF-I from U-33/gamma2 cells by 75% (P < 0.05). Primary marrow stromal cells (MSCs) extracted from adult (8 months) and old (24 months) C57BL/6J (B6) mice were treated with Rosi (1 microm) for 48 h. IGF-I, IGFBP-4, and IGF1R transcripts were reduced in Rosi-treated MSCs compared with vehicle (P < 0.01) and secreted IGF-I was also suppressed (P < 0.05). B6 mice treated with Rosi (20 mg/kg.d) for short duration (i.e. 4 d), and long term (i.e. 7 wk) had reduced serum IGF-I; this was accompanied by markedly suppressed IGF-I transcripts in the liver and peripheral fat of treated animals. To determine whether Rosi affected circulating IGF-I in humans, we measured serum IGF-I, IGFBP-2, and IGFBP-3 at four time points in 50 postmenopausal women randomized to either Rosi (8 mg/d) or placebo. Rosi-treated subjects had significantly lower IGF-I at 8 wk than baseline (-25%, P < 0.05), and at 16 wk their levels were reduced 14% vs. placebo (P = 0.15). We conclude that Rosi suppresses IGF-I expression in bone and liver; these changes could affect skeletal acquisition through endocrine and paracrine pathways. Rosiglitazone ( Rosi ) belongs to the class of thiazolidinediones (TZDs) that are ligands for peroxisome proliferator-activated receptor γ (PPAR γ ). Stimulation of PPAR γ suppresses bone formation and enhances marrow adipogenesis. We hypothesized that activation of PPAR γ down-regulates components of the IGF regulatory system, leading to impaired osteoblast function. Rosi treatment (1 μM) of a marrow stromal cell line (UAMS-33) transfected with empty vector (U-33/c) or with PPAR γ 2 (U-33/ γ 2) were analyzed by microarray. Rosi reduced IGF-I, IGF-II, IGFBP-4, and the type I and II IGF receptor (IGF1R and IGF2R) expression at 72 h in U-33/ γ 2 compared with U-33/c cells ( P < 0.01); these findings were confirmed by RT-PCR. Rosi reduced secreted IGF-I from U-33/ γ 2 cells by 75% ( P < 0.05). Primary marrow stromal cells (MSCs) extracted from adult (8 months) and old (24 months) C57BL/6J (B6) mice were treated with Rosi (1 μM) for 48 h. IGF-I, IGFBP-4, and IGF1R transcripts were reduced in Rosi -treated MSCs compared with vehicle ( P < 0.01) and secreted IGF-I was also suppressed ( P < 0.05). B6 mice treated with Rosi (20 mg/kg·d) for short duration ( i.e. 4 d), and long term ( i.e. 7 wk) had reduced serum IGF-I; this was accompanied by markedly suppressed IGF-I transcripts in the liver and peripheral fat of treated animals. To determine whether Rosi affected circulating IGF-I in humans, we measured serum IGF-I, IGFBP-2, and IGFBP-3 at four time points in 50 postmenopausal women randomized to either Rosi (8 mg/d) or placebo. Rosi -treated subjects had significantly lower IGF-I at 8 wk than baseline (−25%, P < 0.05), and at 16 wk their levels were reduced 14% vs. placebo ( P = 0.15). We conclude that Rosi suppresses IGF-I expression in bone and liver; these changes could affect skeletal acquisition through endocrine and paracrine pathways. |
Author | Grey, A. Shockley, K. R. Rosen, C. J. Lecka-Czernik, B. Adamo, M. L. Marmolejos, V. Churchill, G. A. Reid, I. R. Ackert-Bicknell, C. |
Author_xml | – sequence: 1 givenname: B. surname: Lecka-Czernik fullname: Lecka-Czernik, B. – sequence: 2 givenname: C. surname: Ackert-Bicknell fullname: Ackert-Bicknell, C. – sequence: 3 givenname: M. L. surname: Adamo fullname: Adamo, M. L. – sequence: 4 givenname: V. surname: Marmolejos fullname: Marmolejos, V. – sequence: 5 givenname: G. A. surname: Churchill fullname: Churchill, G. A. – sequence: 6 givenname: K. R. surname: Shockley fullname: Shockley, K. R. – sequence: 7 givenname: I. R. surname: Reid fullname: Reid, I. R. – sequence: 8 givenname: A. surname: Grey fullname: Grey, A. – sequence: 9 givenname: C. J. surname: Rosen fullname: Rosen, C. J. email: rofe@aol.com |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18479333$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17122083$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kstuEzEUhi1URNPAjjWyhLhJTPFlrhukKKKlUiSiFNhaHudM4jJjD_ZM2vBa5Tn6THhIoFCpK-scf-f-H6EDYw0g9JSSY8ooeQfmmBGSRjRYD9CIFnESZTQjB2hECOVRxlh2iI68vwhmHMf8ETqkGWWM5HyEfk5Upzey09ZgW-E5OHulvW0Az52tdQVOdtZFewqWeAEK2uDCN9f49Xw-Wdxcv8HlFi-s16tad_JHaA-f923rwHvweGqbNrhM54cC3RrwmfF9rU00098Anzp72a3xiVRD0gWs-nqouMXnW99Bg7XBX3XnLJZmuTM29jF6WMnaw5P9O0ZfTj58nn6MZp9Oz6aTWaTijHVRXhLIyiIpmeRplRBekDIuh32keVWqKudKUqZyyUlwLCVRGUtpWqVlVRZKAh-j97u8bV82sFRhCCdr0TrdSLcVVmrx_4_Ra7GyG0HzhA7LH6OX-wTOfu_Bd6LRXkFdSwO29yLNC8aScJMxen4HvLC9M2E4wSknScFpzAL17N9-_jby55wBeLEHpFeyrpw0SvtbLo-zgvOBe7vjlLPeO6huESIGVQkwYlCVGFQVcHYHV-HQg2bC1Lq-L-jVLsj27X3pf4uW_wJr3eBf |
CODEN | ENDOAO |
CitedBy_id | crossref_primary_10_1007_s12020_017_1278_5 crossref_primary_10_1097_MED_0b013e328325d155 crossref_primary_10_1111_jdi_12928 crossref_primary_10_1155_2014_917823 crossref_primary_10_1155_2008_314974 crossref_primary_10_4103_jod_jod_48_22 crossref_primary_10_1016_j_beem_2014_07_002 crossref_primary_10_2337_dc07_2270 crossref_primary_10_1007_s00198_017_4171_4 crossref_primary_10_1007_s00018_012_1211_2 crossref_primary_10_1016_j_jbspin_2009_01_005 crossref_primary_10_1289_ehp_0901161 crossref_primary_10_1016_j_bone_2011_06_032 crossref_primary_10_1155_2009_830501 crossref_primary_10_1007_s00467_008_1040_6 crossref_primary_10_2217_dmt_10_17 crossref_primary_10_1007_s11033_012_2000_6 crossref_primary_10_1157_13126222 crossref_primary_10_1111_j_1463_1326_2008_00931_x crossref_primary_10_1155_2012_890671 crossref_primary_10_1016_j_rhum_2007_10_628 crossref_primary_10_1007_s00198_007_0477_y crossref_primary_10_1517_14712598_2015_970632 crossref_primary_10_2337_dc09_zb07 crossref_primary_10_1016_j_biopha_2018_11_032 crossref_primary_10_1016_j_clinbiochem_2012_03_006 crossref_primary_10_1124_mol_108_044826 crossref_primary_10_1007_s12013_011_9269_2 crossref_primary_10_1185_03007990902801147 crossref_primary_10_1016_j_bone_2015_04_026 crossref_primary_10_1210_en_2008_0936 crossref_primary_10_1111_dom_12077 crossref_primary_10_1590_1414_431x20144212 crossref_primary_10_1007_s11892_010_0099_1 crossref_primary_10_1155_2012_978687 crossref_primary_10_1007_s12020_009_9294_8 crossref_primary_10_1517_13543784_2013_805201 crossref_primary_10_1007_s12020_017_1265_x crossref_primary_10_3389_fendo_2023_1248985 crossref_primary_10_1007_s00774_009_0104_4 crossref_primary_10_1155_2007_81219 crossref_primary_10_1155_2008_904041 crossref_primary_10_1586_17446651_3_2_223 crossref_primary_10_1210_en_2019_00337 crossref_primary_10_1007_BF03347060 crossref_primary_10_3389_fendo_2016_00090 crossref_primary_10_1016_j_gene_2012_07_051 crossref_primary_10_1016_j_bone_2009_12_020 crossref_primary_10_1016_j_bone_2014_07_024 crossref_primary_10_1038_ncpendmet0920 crossref_primary_10_1007_s12018_009_9050_x crossref_primary_10_1016_S0084_3873_10_79794_7 crossref_primary_10_1097_MED_0b013e3282f4f084 crossref_primary_10_1007_s12018_012_9129_7 crossref_primary_10_1074_jbc_M109_041913 crossref_primary_10_1142_S0219519412005022 crossref_primary_10_1016_S2213_8587_14_70007_5 crossref_primary_10_1359_jbmr_080419 crossref_primary_10_1016_j_bone_2008_03_017 crossref_primary_10_1111_jcmm_12845 crossref_primary_10_1111_j_1365_2265_2011_04133_x crossref_primary_10_1089_ten_tec_2024_0292 crossref_primary_10_1080_1120009X_2023_2300224 crossref_primary_10_1007_s00223_016_0203_x crossref_primary_10_1038_nrendo_2010_155 crossref_primary_10_4161_cc_9_18_13046 crossref_primary_10_1016_S0084_3741_10_79501_9 crossref_primary_10_1080_10408444_2017_1351420 crossref_primary_10_4093_kdj_2009_33_3_169 crossref_primary_10_1016_j_jbo_2016_03_006 crossref_primary_10_1111_1440_1681_12939 crossref_primary_10_1016_j_bone_2009_06_006 crossref_primary_10_1111_j_1365_2265_2012_04411_x crossref_primary_10_1002_dmrr_1197 crossref_primary_10_1016_j_jorep_2024_100485 crossref_primary_10_1210_en_2007_0211 crossref_primary_10_1016_j_jep_2024_118961 crossref_primary_10_1016_j_mce_2016_11_011 crossref_primary_10_3389_fendo_2015_00190 crossref_primary_10_1007_s12020_024_04070_1 crossref_primary_10_1007_s00198_015_3123_0 crossref_primary_10_1530_JOE_11_0170 crossref_primary_10_1007_s00223_011_9505_1 crossref_primary_10_3892_mmr_2014_2407 crossref_primary_10_1016_j_tox_2008_03_025 crossref_primary_10_1210_jc_2007_0328 crossref_primary_10_1186_s12935_019_0732_2 crossref_primary_10_1016_j_bone_2018_03_012 crossref_primary_10_1002_ijc_23588 crossref_primary_10_1016_j_ejphar_2015_10_057 crossref_primary_10_1210_en_2012_1476 crossref_primary_10_1097_JIM_0000000000000191 crossref_primary_10_1093_toxsci_kfr140 crossref_primary_10_1016_j_plipres_2010_06_002 crossref_primary_10_1002_stem_405 crossref_primary_10_1002_jcb_21994 crossref_primary_10_1371_journal_pone_0173174 crossref_primary_10_1164_rccm_200705_659OC crossref_primary_10_1124_pr_109_002469 crossref_primary_10_1210_en_2010_0407 crossref_primary_10_1073_pnas_2203779120 |
Cites_doi | 10.1210/er.2003-0034 10.1016/j.bone.2005.07.008 10.1101/gr.533003 10.1016/j.cell.2005.11.026 10.1210/en.2005-1610 10.1016/S8756-3282(97)00143-9 10.1093/biostatistics/kxh018 10.2144/04372TE01 10.1093/bioinformatics/btg405 10.1038/25931 10.1210/en.2004-1677 10.1097/00001813-200603000-00011 10.1359/jbmr.2001.16.7.1195 10.1016/S8756-3282(00)00354-9 10.1016/j.ctrv.2004.04.004 10.1172/JCI0215463 10.1210/en.2003-0746 10.1042/bj20030426 10.1210/jc.2005-2226 10.1073/pnas.0408742102 10.1111/j.1749-6632.1993.tb26202.x 10.1016/S8756-3282(96)00258-X 10.1126/science.1110955 10.1210/endo.143.6.8834 10.1073/pnas.0405928102 10.1007/s00467-004-1612-z 10.1152/physiolgenomics.2001.5.4.205 10.1677/joe.1.05723 10.1002/(SICI)1097-4644(19990901)74:3<357::AID-JCB5>3.0.CO;2-7 10.1016/j.bcp.2006.05.009 10.1016/j.bone.2004.07.008 10.1016/j.fertnstert.2003.08.024 10.1158/0008-5472.CAN-05-3111 10.1186/gb-2003-4-10-r70 10.1016/j.bone.2006.02.068 10.1210/en.2004-0735 10.1210/en.2006-0277 10.1074/jbc.M208265200 10.1359/JBMR.0301255 10.1016/8756-3282(96)00047-6 10.1007/0-387-21679-0_14 10.1038/75556 10.1111/1467-9868.00346 10.1093/nar/gng015 10.1016/S1359-6101(99)00011-8 10.1172/JCI200419900 10.1016/j.gene.2004.06.044 10.1111/j.1474-9728.2004.00127.x 10.1101/gad.14.11.1293 |
ContentType | Journal Article |
Copyright | Copyright © 2007 by the Endocrine Society 2007 2007 INIST-CNRS Copyright © 2007 by the Endocrine Society |
Copyright_xml | – notice: Copyright © 2007 by the Endocrine Society 2007 – notice: 2007 INIST-CNRS – notice: Copyright © 2007 by the Endocrine Society |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QG 7QP 7QR 7T5 7TM 7TO 7U7 8FD C1K FR3 H94 K9. P64 7X8 5PM |
DOI | 10.1210/en.2006-1121 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Oncogenes and Growth Factors Abstracts Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Animal Behavior Abstracts AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Oncogenes and Growth Factors Abstracts MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1945-7170 |
EndPage | 911 |
ExternalDocumentID | PMC1851001 17122083 18479333 10_1210_en_2006_1121 10.1210/en.2006-1121 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01 AG017482 – fundername: NIA NIH HHS grantid: AG17482 – fundername: NIAMS NIH HHS grantid: AR45433 – fundername: NIAMS NIH HHS grantid: R01 AR045433 |
GroupedDBID | --- -DZ -~X .55 .XZ 08P 0R~ 18M 1TH 2WC 34G 354 39C 3O- 4.4 48X 53G 5GY 5RE 5RS 5YH 79B 8F7 AABZA AACZT AAIMJ AAPQZ AAPXW AARHZ AAUAY AAVAP ABDFA ABEJV ABGNP ABHFT ABJNI ABLJU ABMNT ABNHQ ABPPZ ABPQP ABPTD ABQNK ABVGC ABWST ABXVV ACGFO ACGFS ACIWK ACPRK ADBBV ADGKP ADGZP ADHKW ADIYS ADQBN ADRTK ADVEK AELWJ AEMDU AENEX AENZO AETBJ AEWNT AFFNX AFFZL AFGWE AFOFC AFRAH AFXAL AGINJ AGQXC AGUTN AHMBA AHMMS AJEEA ALMA_UNASSIGNED_HOLDINGS APIBT ARIXL ATGXG BAWUL BAYMD BCRHZ BEYMZ BSWAC BTRTY C1A C45 CDBKE CJ0 CS3 DAKXR DIK DU5 E3Z EBS EJD ENERS F5P FECEO FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 HF~ HZ~ H~9 IH2 J5H KBUDW KOP KQ8 KSI KSN L7B LMP M5~ MHKGH MJL MVM NLBLG NOMLY NOYVH NVLIB O9- OAUYM OBH ODMLO OFXIZ OHH OJZSN OK1 OPAEJ OVD OVIDX P2P Q-A REU ROX ROZ TEORI TJX TLC TR2 TWZ UPT VVN W2D W8F WH7 WOQ X7M XOL YBU YHG YOC YSK ZCA ZCG ZY1 AAYXX ABXZS ADNBA AEMQT AETEA AFYAG AGORE ALXQX CITATION NU- .GJ 29G AAJQQ AAKAS AAPGJ AAUQX AAWDT AAYJJ ABEFU ACFRR ACIPB ACUTJ ACVCV ACZBC ADMTO ADZCM AFFQV AGKRT AGMDO AHGBF AJBYB AJDVS APJGH AQKUS AVNTJ BPHCQ BVXVI EMOBN FA8 IAO IHR IQODW ITC MBLQV OBFPC OHT PQQKQ PROAC TMA VQP WHG X52 XJT YQI YYP ZGI ZKB ZXP 3V. AFULF BENPR CGR CUY CVF ECM EIF NPM VXZ 7QG 7QP 7QR 7T5 7TM 7TO 7U7 8FD AEHZK C1K FR3 H94 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c472t-8b0e7b95b2a36f50390b4b722768fbcf83ca12c8a3068fda0c72616f6bfb9cae3 |
ISSN | 0013-7227 |
IngestDate | Thu Aug 21 13:59:11 EDT 2025 Fri Jul 11 02:42:49 EDT 2025 Fri Sep 19 20:54:26 EDT 2025 Wed Feb 19 01:46:47 EST 2025 Mon Jul 21 09:13:14 EDT 2025 Thu Apr 24 23:08:49 EDT 2025 Tue Jul 01 02:22:28 EDT 2025 Fri Feb 07 10:35:35 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | In vivo Insulin like growth factor Rosiglitazone Thiazolidinedione derivatives Activation PPAR-γ receptor In vitro |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c472t-8b0e7b95b2a36f50390b4b722768fbcf83ca12c8a3068fda0c72616f6bfb9cae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://academic.oup.com/endo/article-pdf/148/2/903/9035636/endo0903.pdf |
PMID | 17122083 |
PQID | 3130593142 |
PQPubID | 2046207 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1851001 proquest_miscellaneous_68922544 proquest_journals_3130593142 pubmed_primary_17122083 pascalfrancis_primary_18479333 crossref_primary_10_1210_en_2006_1121 crossref_citationtrail_10_1210_en_2006_1121 oup_primary_10_1210_en_2006-1121 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-02-01 |
PublicationDateYYYYMMDD | 2007-02-01 |
PublicationDate_xml | – month: 02 year: 2007 text: 2007-02-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Bethesda, MD |
PublicationPlace_xml | – name: Bethesda, MD – name: United States – name: Washington |
PublicationTitle | Endocrinology (Philadelphia) |
PublicationTitleAlternate | Endocrinology |
PublicationYear | 2007 |
Publisher | Endocrine Society Oxford University Press |
Publisher_xml | – name: Endocrine Society – name: Oxford University Press |
References | Rosen (2020071613145965800_R1) 2000; 14 Lehrke (2020071613145965800_R4) 2005; 123 Mulholland (2020071613145965800_R18) 2005; 26 Soroceanu (2020071613145965800_R10) 2004; 183 Yakar (2020071613145965800_R41) 2002; 110 Westendorf (2020071613145965800_R15) 2004; 341 Wu (2020071613145965800_R35) 2003 Botolin (2020071613145965800_R23) 2005; 146 Zhang (2020071613145965800_R48) 2002; 277 Kim (2020071613145965800_R8) 2006; 72 Hosack (2020071613145965800_R38) 2003; 4 Drake (2020071613145965800_R53) 2001; 5 Moerman (2020071613145965800_R22) 2004; 3 Gimble (2020071613145965800_R17) 1996; 19 Gautier (2020071613145965800_R32) 2004; 20 Akilesh (2020071613145965800_R28) 2004; 113 Rzonca (2020071613145965800_R9) 2004; 145 Jiang (2020071613145965800_R49) 2006; 39 Akune (2020071613145965800_R12) 2004; 113 Aiello (2020071613145965800_R6) 2006; 147 Beamer (2020071613145965800_R25) 2001; 16 Ashburner (2020071613145965800_R39) 2000; 25 He (2020071613145965800_R7) 2006; 66 Nolte (2020071613145965800_R2) 1998; 395 Cui (2020071613145965800_R36) 2005; 6 Bouxsein (2020071613145965800_R24) 2004; 19 Storey (2020071613145965800_R37) 2002; 64 Rosen (2020071613145965800_R26) 2000; 27 Churchill (2020071613145965800_R34) 2004; 37 Grimley (2020071613145965800_R50) 1999; 10 Lecka-Czernik (2020071613145965800_R47) 2006; 21 Freudlsperger (2020071613145965800_R5) 2006; 17 Lecka-Czernik (2020071613145965800_R27) 2005; 107 Beamer (2020071613145965800_R52) 1996; 18 Lecka-Czernik (2020071613145965800_R20) 2002; 143 Akilesh (2020071613145965800_R29) 2003; 13 Irizarry (2020071613145965800_R33) 2003; 31 Delahunty (2020071613145965800_R31) 2006; 147 Belli (2020071613145965800_R51) 2004; 81 Theocharis (2020071613145965800_R3) 2004; 30 Jansson (2020071613145965800_R45) 2005; 102 LeRoith (2020071613145965800_R40) 1993; 692 Lecka-Czernik (2020071613145965800_R19) 1999; 74 Rosen (2020071613145965800_R44) 2005; 20 Lazarenko (2020071613145965800_R21) 2006; 38 Rosen (2020071613145965800_R42) 1997; 21 Ali (2020071613145965800_R11) 2005; 146 Hong (2020071613145965800_R16) 2005; 309 Bennett (2020071613145965800_R13) 2005; 102 Schwartz (2020071613145965800_R14) 2006; 91 Rosen (2020071613145965800_R43) 2004; 35 Bustin (2020071613145965800_R30) 2004; 15 Moldes (2020071613145965800_R46) 2003; 376 15335204 - Biotechniques. 2004 Aug;37(2):173-5, 177 15331581 - J Biomol Tech. 2004 Sep;15(3):155-66 15542029 - Bone. 2004 Nov;35(5):1046-58 12840047 - Genome Res. 2003 Jul;13(7):1719-27 11450694 - J Bone Miner Res. 2001 Jul;16(7):1195-206 8922639 - Bone. 1996 Nov;19(5):421-8 12954078 - Biochem J. 2003 Dec 15;376(Pt 3):607-13 10412038 - J Cell Biochem. 1999 Sep 1;74(3):357-71 16137931 - Bone. 2006 Jan;38(1):74-84 16452250 - Cancer Res. 2006 Feb 1;66(3):1873-8 9744270 - Nature. 1998 Sep 10;395(6698):137-43 15325034 - Cancer Treat Rev. 2004 Oct;30(6):545-54 15591153 - Endocrinology. 2005 Mar;146(3):1226-35 15618528 - Biostatistics. 2005 Jan;6(1):59-75 12235108 - J Clin Invest. 2002 Sep;110(6):771-81 10802651 - Nat Genet. 2000 May;25(1):25-9 16099986 - Science. 2005 Aug 12;309(5737):1074-8 12021203 - Endocrinology. 2002 Jun;143(6):2376-84 12582260 - Nucleic Acids Res. 2003 Feb 15;31(4):e15 16520661 - Anticancer Drugs. 2006 Mar;17(3):325-32 15665104 - Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1460-5 16806087 - Biochem Pharmacol. 2006 Aug 28;72(5):530-40 15525588 - J Endocrinol. 2004 Oct;183(1):203-16 15549416 - Pediatr Nephrol. 2005 Mar;20(3):255-60 16360030 - Cell. 2005 Dec 16;123(6):993-9 8739896 - Bone. 1996 May;18(5):397-403 11328966 - Physiol Genomics. 2001 Apr 27;5(4):205-15 15905321 - Endocrinology. 2005 Aug;146(8):3622-31 11033447 - Bone. 2000 Oct;27(4):521-8 15569355 - Aging Cell. 2004 Dec;3(6):379-89 15474285 - Gene. 2004 Oct 27;341:19-39 15005846 - J Bone Miner Res. 2004 Apr;19(4):587-99 16126938 - Endocr Rev. 2005 Dec;26(7):898-915 15728361 - Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3324-9 16675518 - Endocrinology. 2006 Aug;147(8):3915-23 16608888 - J Clin Endocrinol Metab. 2006 Sep;91(9):3349-54 15067317 - J Clin Invest. 2004 Mar;113(6):846-55 12215457 - J Biol Chem. 2002 Nov 15;277(46):44005-12 7692787 - Ann N Y Acad Sci. 1993 Aug 27;692:22-32 16777971 - Endocrinology. 2006 Sep;147(9):4463-75 14519205 - Genome Biol. 2003;4(10):R70 16644298 - Bone. 2006 Sep;39(3):494-504 10743504 - Cytokine Growth Factor Rev. 1999 Jun;10(2):131-57 15124024 - J Clin Invest. 2004 May;113(9):1328-33 9276086 - Bone. 1997 Sep;21(3):217-23 14500573 - Endocrinology. 2004 Jan;145(1):401-6 14960456 - Bioinformatics. 2004 Feb 12;20(3):307-15 10837022 - Genes Dev. 2000 Jun 1;14(11):1293-307 15037412 - Fertil Steril. 2004 Mar;81(3):624-9 |
References_xml | – volume: 26 start-page: 898 year: 2005 ident: 2020071613145965800_R18 article-title: Interaction of nuclear receptors with the Wnt/β-catenin/Tcf signaling axis: Wnt you like to know? publication-title: Endocr Rev doi: 10.1210/er.2003-0034 – volume: 38 start-page: 74 year: 2006 ident: 2020071613145965800_R21 article-title: Netoglitazone is a PPAR-γ ligand with selective effects on bone and fat. publication-title: Bone doi: 10.1016/j.bone.2005.07.008 – volume: 13 start-page: 1719 year: 2003 ident: 2020071613145965800_R29 article-title: Customized molecular phenotyping by quantitative gene expression and pattern recognition analysis. publication-title: Genome Res doi: 10.1101/gr.533003 – volume: 21 start-page: S382 year: 2006 ident: 2020071613145965800_R47 article-title: Osteoblastic activity of Wnt signaling pathway is controlled by PPAR-y2 nuclear receptor publication-title: J Bone Miner Res – volume: 123 start-page: 993 year: 2005 ident: 2020071613145965800_R4 article-title: The many faces of PPARγ. publication-title: Cell doi: 10.1016/j.cell.2005.11.026 – volume: 147 start-page: 4463 year: 2006 ident: 2020071613145965800_R6 article-title: Peroxisomal proliferator-activated receptor-γ agonists induce partial reversion of epithelial-mesenchymal transition in anaplastic thyroid cancer cells. publication-title: Endocrinology doi: 10.1210/en.2005-1610 – volume: 21 start-page: 217 year: 1997 ident: 2020071613145965800_R42 article-title: Circulating and skeletal insulin-like growth factor-I (IGF-I) concentrations in two inbred strains of mice with different bone mineral densities. publication-title: Bone doi: 10.1016/S8756-3282(97)00143-9 – volume: 6 start-page: 59 year: 2005 ident: 2020071613145965800_R36 article-title: Improved statistical tests for differential gene expression by shrinking variance components estimates. publication-title: Biostatistics doi: 10.1093/biostatistics/kxh018 – volume: 37 start-page: 173 year: 2004 ident: 2020071613145965800_R34 article-title: Using ANOVA to analyze microarray data. publication-title: Biotechniques doi: 10.2144/04372TE01 – volume: 20 start-page: 307 year: 2004 ident: 2020071613145965800_R32 article-title: Affy–analysis of Affymetrix GeneChip data at the probe level. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg405 – volume: 395 start-page: 137 year: 1998 ident: 2020071613145965800_R2 article-title: Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. publication-title: Nature doi: 10.1038/25931 – volume: 146 start-page: 3622 year: 2005 ident: 2020071613145965800_R23 article-title: Increased bone adiposity and peroxisomal proliferator-activated receptor-γ2 expression in type I diabetic mice. publication-title: Endocrinology doi: 10.1210/en.2004-1677 – volume: 17 start-page: 325 year: 2006 ident: 2020071613145965800_R5 article-title: Anti-proliferative effect of peroxisome proliferator-activated receptor γ agonists on human malignant melanoma cells in vitro. publication-title: Anticancer Drugs doi: 10.1097/00001813-200603000-00011 – volume: 16 start-page: 1195 year: 2001 ident: 2020071613145965800_R25 article-title: Quantitative trait loci for femoral and lumbar vertebral bone mineral density in C57BL/6J and C3H/HeJ inbred strains of mice. publication-title: J Bone Miner Res doi: 10.1359/jbmr.2001.16.7.1195 – volume: 27 start-page: 521 year: 2000 ident: 2020071613145965800_R26 article-title: Mapping quantitative trait loci for serum insulin-like growth factor-1 levels in mice. publication-title: Bone doi: 10.1016/S8756-3282(00)00354-9 – volume: 30 start-page: 545 year: 2004 ident: 2020071613145965800_R3 article-title: Peroxisome proliferator-activated receptor-γ ligands as cell-cycle modulators. publication-title: Cancer Treat Rev doi: 10.1016/j.ctrv.2004.04.004 – volume: 110 start-page: 771 year: 2002 ident: 2020071613145965800_R41 article-title: Circulating levels of IGF-1 directly regulate bone growth and density. publication-title: J Clin Invest doi: 10.1172/JCI0215463 – volume: 145 start-page: 401 year: 2004 ident: 2020071613145965800_R9 article-title: Bone is a target for the antidiabetic compound rosiglitazone. publication-title: Endocrinology doi: 10.1210/en.2003-0746 – volume: 376 start-page: 607 year: 2003 ident: 2020071613145965800_R46 article-title: Peroxisome-proliferator-activated receptor γ suppresses Wnt/β-catenin signalling during adipogenesis. publication-title: Biochem J doi: 10.1042/bj20030426 – volume: 91 start-page: 3349 year: 2006 ident: 2020071613145965800_R14 article-title: Thiazolidinedione use and bone loss in older diabetic adults. publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2005-2226 – volume: 102 start-page: 3324 year: 2005 ident: 2020071613145965800_R13 article-title: Regulation of osteoblastogenesis and bone mass by Wnt10b. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0408742102 – volume: 692 start-page: 22 year: 1993 ident: 2020071613145965800_R40 article-title: Insulin-like growth factor receptors. Implications for nervous system function. publication-title: Ann NY Acad Sci doi: 10.1111/j.1749-6632.1993.tb26202.x – volume: 19 start-page: 421 year: 1996 ident: 2020071613145965800_R17 article-title: The function of adipocytes in the bone marrow stroma: an update. publication-title: Bone doi: 10.1016/S8756-3282(96)00258-X – volume: 309 start-page: 1074 year: 2005 ident: 2020071613145965800_R16 article-title: TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. publication-title: Science doi: 10.1126/science.1110955 – volume: 143 start-page: 2376 year: 2002 ident: 2020071613145965800_R20 article-title: Divergent effects of selective peroxisome proliferator-activated receptor-γ 2 ligands on adipocyte versus osteoblast differentiation. publication-title: Endocrinology doi: 10.1210/endo.143.6.8834 – volume: 102 start-page: 1460 year: 2005 ident: 2020071613145965800_R45 article-title: The Wnt/β-catenin signaling pathway targets PPARγ activity in colon cancer cells. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0405928102 – volume: 20 start-page: 255 year: 2005 ident: 2020071613145965800_R44 article-title: Allelic differences in a quantitative trait locus affecting insulin-like growth factor-I impact skeletal acquisition and body composition. publication-title: Pediatr Nephrol doi: 10.1007/s00467-004-1612-z – volume: 5 start-page: 205 year: 2001 ident: 2020071613145965800_R53 article-title: Genetic loci determining bone density in mice with diet-induced atherosclerosis. publication-title: Physiol Genom doi: 10.1152/physiolgenomics.2001.5.4.205 – volume: 183 start-page: 203 year: 2004 ident: 2020071613145965800_R10 article-title: Rosiglitazone impacts negatively on bone by promoting osteoblast/osteocyte apoptosis. publication-title: J Endocrinol doi: 10.1677/joe.1.05723 – volume: 74 start-page: 357 year: 1999 ident: 2020071613145965800_R19 article-title: Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARγ2. publication-title: J Cell Biochem doi: 10.1002/(SICI)1097-4644(19990901)74:3<357::AID-JCB5>3.0.CO;2-7 – volume: 72 start-page: 530 year: 2006 ident: 2020071613145965800_R8 article-title: Differential anti-proliferative actions of peroxisome proliferator-activated receptor-γ agonists in MCF-7 breast cancer cells. publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2006.05.009 – volume: 35 start-page: 1046 year: 2004 ident: 2020071613145965800_R43 article-title: Congenic mice with low serum IGF-I have increased body fat, reduced bone mineral density, and an altered osteoblast differentiation program. publication-title: Bone doi: 10.1016/j.bone.2004.07.008 – volume: 81 start-page: 624 year: 2004 ident: 2020071613145965800_R51 article-title: Effect of rosiglitazone on insulin resistance, growth factors, and reproductive disturbances in women with polycystic ovary syndrome. publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2003.08.024 – volume: 66 start-page: 1873 year: 2006 ident: 2020071613145965800_R7 article-title: Thiazolidinediones inhibit insulin-like growth factor-I-induced activation of p70S6 kinase and suppress insulin-like growth factor-I tumor-promoting activity. publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-05-3111 – volume: 4 start-page: R70 year: 2003 ident: 2020071613145965800_R38 article-title: Identifying biological themes within lists of genes with EASE publication-title: Genome Biol doi: 10.1186/gb-2003-4-10-r70 – volume: 39 start-page: 494 year: 2006 ident: 2020071613145965800_R49 article-title: Transgenic mice with osteoblast-targeted insulin-like growth factor-I show increased bone remodeling. publication-title: Bone doi: 10.1016/j.bone.2006.02.068 – volume: 146 start-page: 1226 year: 2005 ident: 2020071613145965800_R11 article-title: Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. publication-title: Endocrinology doi: 10.1210/en.2004-0735 – volume: 147 start-page: 3915 year: 2006 ident: 2020071613145965800_R31 article-title: Congenic mice provide in vivo evidence for a genetic locus that modulates serum insulin-like growth factor-I and bone acquisition. publication-title: Endocrinology doi: 10.1210/en.2006-0277 – volume: 277 start-page: 44005 year: 2002 ident: 2020071613145965800_R48 article-title: Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. publication-title: J Biol Chem doi: 10.1074/jbc.M208265200 – volume: 19 start-page: 587 year: 2004 ident: 2020071613145965800_R24 article-title: Mapping quantitative trait loci for vertebral trabecular bone volume fraction and microarchitecture in mice. publication-title: J Bone Miner Res doi: 10.1359/JBMR.0301255 – volume: 15 start-page: 155 year: 2004 ident: 2020071613145965800_R30 article-title: Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. publication-title: J Biomol Tech – volume: 18 start-page: 397 year: 1996 ident: 2020071613145965800_R52 article-title: Genetic variability in adult bone density among inbred strains of mice. publication-title: Bone doi: 10.1016/8756-3282(96)00047-6 – volume: 113 start-page: 1328 year: 2004 ident: 2020071613145965800_R28 article-title: The MHC class I-like Fc receptor promotes humorally mediated autoimmune disease. publication-title: J Clin Invest – start-page: 313 volume-title: The analysis of gene expression data: an overview of methods and software year: 2003 ident: 2020071613145965800_R35 article-title: MAANOVA: a software package for the analysis of spotted cDNA Microarray Experiements doi: 10.1007/0-387-21679-0_14 – volume: 25 start-page: 25 year: 2000 ident: 2020071613145965800_R39 article-title: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. publication-title: Nat Genet doi: 10.1038/75556 – volume: 64 start-page: 479 year: 2002 ident: 2020071613145965800_R37 article-title: A direct approach to false discovery rates. publication-title: J R Statistical Soc B doi: 10.1111/1467-9868.00346 – volume: 107 year: 2005 ident: 2020071613145965800_R27 article-title: Activation of PPAR-y2 down regulates hepatic and skeletal IGF-I in vivo and in viro: a potential pathogenic mechanism in age-related osteoporosis publication-title: Endocrinology – volume: 31 start-page: e15 year: 2003 ident: 2020071613145965800_R33 article-title: Summaries of Affymetrix GeneChip probe level data publication-title: Nucleic Acids Res doi: 10.1093/nar/gng015 – volume: 10 start-page: 131 year: 1999 ident: 2020071613145965800_R50 article-title: Stat5a and Stat5b: fraternal twins of signal transduction and transcriptional activation. publication-title: Cytokine Growth Factor Rev doi: 10.1016/S1359-6101(99)00011-8 – volume: 113 start-page: 846 year: 2004 ident: 2020071613145965800_R12 article-title: PPARγ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. publication-title: J Clin Invest doi: 10.1172/JCI200419900 – volume: 341 start-page: 19 year: 2004 ident: 2020071613145965800_R15 article-title: Wnt signaling in osteoblasts and bone diseases. publication-title: Gene doi: 10.1016/j.gene.2004.06.044 – volume: 3 start-page: 379 year: 2004 ident: 2020071613145965800_R22 article-title: Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-γ2 transcription factor and TGF-β/BMP signaling pathways. publication-title: Aging Cell doi: 10.1111/j.1474-9728.2004.00127.x – volume: 14 start-page: 1293 year: 2000 ident: 2020071613145965800_R1 article-title: Transcriptional regulation of adipogenesis. publication-title: Genes Dev doi: 10.1101/gad.14.11.1293 – reference: 16137931 - Bone. 2006 Jan;38(1):74-84 – reference: 16126938 - Endocr Rev. 2005 Dec;26(7):898-915 – reference: 16452250 - Cancer Res. 2006 Feb 1;66(3):1873-8 – reference: 11450694 - J Bone Miner Res. 2001 Jul;16(7):1195-206 – reference: 12021203 - Endocrinology. 2002 Jun;143(6):2376-84 – reference: 14500573 - Endocrinology. 2004 Jan;145(1):401-6 – reference: 10837022 - Genes Dev. 2000 Jun 1;14(11):1293-307 – reference: 15124024 - J Clin Invest. 2004 May;113(9):1328-33 – reference: 10412038 - J Cell Biochem. 1999 Sep 1;74(3):357-71 – reference: 15569355 - Aging Cell. 2004 Dec;3(6):379-89 – reference: 16608888 - J Clin Endocrinol Metab. 2006 Sep;91(9):3349-54 – reference: 15525588 - J Endocrinol. 2004 Oct;183(1):203-16 – reference: 15067317 - J Clin Invest. 2004 Mar;113(6):846-55 – reference: 15005846 - J Bone Miner Res. 2004 Apr;19(4):587-99 – reference: 15331581 - J Biomol Tech. 2004 Sep;15(3):155-66 – reference: 15549416 - Pediatr Nephrol. 2005 Mar;20(3):255-60 – reference: 16675518 - Endocrinology. 2006 Aug;147(8):3915-23 – reference: 10802651 - Nat Genet. 2000 May;25(1):25-9 – reference: 9744270 - Nature. 1998 Sep 10;395(6698):137-43 – reference: 10743504 - Cytokine Growth Factor Rev. 1999 Jun;10(2):131-57 – reference: 15542029 - Bone. 2004 Nov;35(5):1046-58 – reference: 8922639 - Bone. 1996 Nov;19(5):421-8 – reference: 15335204 - Biotechniques. 2004 Aug;37(2):173-5, 177 – reference: 11328966 - Physiol Genomics. 2001 Apr 27;5(4):205-15 – reference: 16806087 - Biochem Pharmacol. 2006 Aug 28;72(5):530-40 – reference: 16777971 - Endocrinology. 2006 Sep;147(9):4463-75 – reference: 15325034 - Cancer Treat Rev. 2004 Oct;30(6):545-54 – reference: 15037412 - Fertil Steril. 2004 Mar;81(3):624-9 – reference: 11033447 - Bone. 2000 Oct;27(4):521-8 – reference: 12840047 - Genome Res. 2003 Jul;13(7):1719-27 – reference: 16644298 - Bone. 2006 Sep;39(3):494-504 – reference: 9276086 - Bone. 1997 Sep;21(3):217-23 – reference: 16099986 - Science. 2005 Aug 12;309(5737):1074-8 – reference: 15591153 - Endocrinology. 2005 Mar;146(3):1226-35 – reference: 12582260 - Nucleic Acids Res. 2003 Feb 15;31(4):e15 – reference: 15905321 - Endocrinology. 2005 Aug;146(8):3622-31 – reference: 7692787 - Ann N Y Acad Sci. 1993 Aug 27;692:22-32 – reference: 16520661 - Anticancer Drugs. 2006 Mar;17(3):325-32 – reference: 14960456 - Bioinformatics. 2004 Feb 12;20(3):307-15 – reference: 12215457 - J Biol Chem. 2002 Nov 15;277(46):44005-12 – reference: 15665104 - Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1460-5 – reference: 15618528 - Biostatistics. 2005 Jan;6(1):59-75 – reference: 8739896 - Bone. 1996 May;18(5):397-403 – reference: 15728361 - Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3324-9 – reference: 12954078 - Biochem J. 2003 Dec 15;376(Pt 3):607-13 – reference: 16360030 - Cell. 2005 Dec 16;123(6):993-9 – reference: 14519205 - Genome Biol. 2003;4(10):R70 – reference: 15474285 - Gene. 2004 Oct 27;341:19-39 – reference: 12235108 - J Clin Invest. 2002 Sep;110(6):771-81 |
SSID | ssj0014443 |
Score | 2.2609975 |
Snippet | Rosiglitazone (Rosi) belongs to the class of thiazolidinediones (TZDs) that are ligands for peroxisome proliferator-activated receptor γ (PPARγ). Stimulation... Rosiglitazone (Rosi) belongs to the class of thiazolidinediones (TZDs) that are ligands for peroxisome proliferator-activated receptor gamma (PPARgamma).... Rosiglitazone ( Rosi ) belongs to the class of thiazolidinediones (TZDs) that are ligands for peroxisome proliferator-activated receptor γ (PPAR γ ).... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 903 |
SubjectTerms | Adipogenesis Adipose Tissue - metabolism Animals Biological and medical sciences Bone growth Bone Marrow Cells - metabolism C cells Cell Line Down-Regulation Drug Administration Schedule Female Fundamental and applied biological sciences. Psychology Growth factors Humans Insulin-Like Growth Factor Binding Protein 2 - blood Insulin-Like Growth Factor Binding Protein 3 - blood Insulin-Like Growth Factor Binding Protein 4 - antagonists & inhibitors Insulin-Like Growth Factor Binding Protein 4 - genetics Insulin-like growth factor I Insulin-Like Growth Factor I - antagonists & inhibitors Insulin-Like Growth Factor I - genetics Insulin-Like Growth Factor I - metabolism Insulin-Like Growth Factor I - secretion Insulin-like growth factor II Insulin-Like Growth Factor II - antagonists & inhibitors Insulin-Like Growth Factor II - metabolism Insulin-like growth factor II receptors Insulin-like growth factor-binding protein 2 Insulin-like growth factor-binding protein 3 Insulin-like growth factor-binding protein 4 Insulin-like growth factors Liver Liver - cytology Liver - metabolism Mice Mice, Inbred C57BL Microarray Analysis Osteoblasts - physiology Osteogenesis Ovariectomy Paracrine signalling Peroxisome proliferator-activated receptors Placebos Post-menopause PPAR gamma - drug effects PPAR gamma - genetics PPAR gamma - metabolism Receptor, IGF Type 1 - antagonists & inhibitors Receptor, IGF Type 1 - genetics Receptors RNA, Messenger - metabolism Rosiglitazone Somatomedins - metabolism Stromal cells Stromal Cells - drug effects Stromal Cells - metabolism Thiazolidinediones Thiazolidinediones - administration & dosage Thiazolidinediones - pharmacology Transfection Vertebrates: endocrinology |
Title | Activation of Peroxisome Proliferator-Activated Receptor γ (PPARγ) by Rosiglitazone Suppresses Components of the Insulin-Like Growth Factor Regulatory System in Vitro and in Vivo |
URI | https://www.ncbi.nlm.nih.gov/pubmed/17122083 https://www.proquest.com/docview/3130593142 https://www.proquest.com/docview/68922544 https://pubmed.ncbi.nlm.nih.gov/PMC1851001 |
Volume | 148 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6VIiEkhKDlCJSyD4BA1Ua-j8c0alWgQVXVVn2L1vYuMU3sKkkL7d8qv6P_CImZXZ-QiuPFiu2JD83n2ZnZb2cIeSVtMADgCjA3SCRzXFswHnKTeVJGns-FHUrMQw4-eTuHzodj93hp6UeDtXQ2j7rx5cJ1Jf-jVTgGesVVsv-g2eqicAB-g35hCxqG7V_puBeXzckUlU1M82_pLJ8IpP-PkbOCETUrpAQuREQSC7bU6G-93rTRu9zb6-3rPcwPgC-6n8_Sz1i5-zIH_xObfqry4jNlOeBQQZvRpEvFY2e76YnAJNbX-WhjW_XvgTupFvc4ga9romNe5SidT_Oi3BPsnOetaYEsycGC6TS_erJROsYalqcj5PNW-YpdEZ9w1r8U0yxVlnyzW4FWrUBim2l8UpJ3-vXJhE9UWnjQ3ditjg74dJKPxRdNNjzqtpIgfsmbLjNzxSOKkuvaNPmmzXxLFyDoCm3lQ8dlEMcarWHACRp4txpGPTTshn8Q6sHht6EHYmcFQjWdxcCNNeshtiI-Lha8RW5bPrh-6NO__1hNgjlOQfos3qBYt4GLrpr_bnlUepXmvVM-g09c6t4si4KnXznADafq4AG5X0RDtKeh_ZAsiWyFrPYyQM7kgr6hip-sELFC7gwKGsgq-V4Dn-aS1sCni4FPS-DT6yv6FiF_ffWORhe0BXZag53WYMcbANhpE-xUg51qsNMa7FSDnaYZVWCnAHa9c54_IofbWwf9HVa0H2Gx41tzFkSG8KPQjSxue9I17NCInAgV4QUyimVgx9y04oBD1B3IhBuxb3mmJ71IRmEMZu4xWc7gUZ8SanMrcZIYQvckcCweBq4hzdhIRGKJxOBOh2yUKhzGRW1-bBEzHmKMDgoHa4cNY70hKrxDXlfSp7omzQ1yFNBwkwjTIustqNTCAabcbbtD1krsDAvLNxva4Pi6oW06Voe8rE7DuISTjTwT-dls6AWhheUPO-SJBlp9ad-0LIj8OsRvQbASwIr37TNZOlKV7yG4wJpxz_78Ys_J3dpOrJHl-fRMvIDwYR6tq4_sJxwQHi0 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activation+of+Peroxisome+Proliferator-Activated+Receptor+%CE%B3+%28PPAR%CE%B3%29+by+Rosiglitazone+Suppresses+Components+of+the+Insulin-Like+Growth+Factor+Regulatory+System+in+Vitro+and+in+Vivo&rft.jtitle=Endocrinology+%28Philadelphia%29&rft.au=Lecka-Czernik%2C+B.&rft.au=Ackert-Bicknell%2C+C.&rft.au=Adamo%2C+M.+L.&rft.au=Marmolejos%2C+V.&rft.date=2007-02-01&rft.pub=Endocrine+Society&rft.issn=0013-7227&rft.eissn=1945-7170&rft.volume=148&rft.issue=2&rft.spage=903&rft.epage=911&rft_id=info:doi/10.1210%2Fen.2006-1121&rft.externalDocID=10.1210%2Fen.2006-1121 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7227&client=summon |