H2B Ubiquitylation Plays a Role in Nucleosome Dynamics during Transcription Elongation

The monoubiquitylation of histone H2B has been associated with transcription initiation and elongation, but its role in these processes is poorly understood. We report that H2B ubiquitylation is required for efficient reassembly of nucleosomes during RNA polymerase II (Pol II)-mediated transcription...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 31; no. 1; pp. 57 - 66
Main Authors Fleming, Alastair B., Kao, Cheng-Fu, Hillyer, Cory, Pikaart, Michael, Osley, Mary Ann
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 11.07.2008
Subjects
Online AccessGet full text
ISSN1097-2765
1097-4164
1097-4164
DOI10.1016/j.molcel.2008.04.025

Cover

Abstract The monoubiquitylation of histone H2B has been associated with transcription initiation and elongation, but its role in these processes is poorly understood. We report that H2B ubiquitylation is required for efficient reassembly of nucleosomes during RNA polymerase II (Pol II)-mediated transcription elongation in yeast. This role is carried out in cooperation with the histone chaperone Spt16, and in the absence of H2B ubiquitylation and functional Spt16, chromatin structure is not properly restored in the wake of elongating Pol II. Moreover, H2B ubiquitylation and Spt16 play a role in each other's regulation. H2B ubiquitylation is required for the stable accumulation of Spt16 at the GAL1 coding region, and Spt16 regulates the formation of ubiquitylated H2B both globally and at the GAL1 gene. These data provide a mechanism linking H2B ubiquitylation to Spt16 in the regulation of nucleosome dynamics during transcription elongation.
AbstractList The monoubiquitylation of histone H2B has been associated with transcription initiation and elongation, but its role in these processes is poorly understood. We report that H2B ubiquitylation is required for efficient reassembly of nucleosomes during RNA polymerase II (Pol II)-mediated transcription elongation in yeast. This role is carried out in cooperation with the histone chaperone Spt16, and in the absence of H2B ubiquitylation and functional Spt16, chromatin structure is not properly restored in the wake of elongating Pol II. Moreover, H2B ubiquitylation and Spt16 play a role in each other's regulation. H2B ubiquitylation is required for the stable accumulation of Spt16 at the GAL1 coding region, and Spt16 regulates the formation of ubiquitylated H2B both globally and at the GAL1 gene. These data provide a mechanism linking H2B ubiquitylation to Spt16 in the regulation of nucleosome dynamics during transcription elongation.The monoubiquitylation of histone H2B has been associated with transcription initiation and elongation, but its role in these processes is poorly understood. We report that H2B ubiquitylation is required for efficient reassembly of nucleosomes during RNA polymerase II (Pol II)-mediated transcription elongation in yeast. This role is carried out in cooperation with the histone chaperone Spt16, and in the absence of H2B ubiquitylation and functional Spt16, chromatin structure is not properly restored in the wake of elongating Pol II. Moreover, H2B ubiquitylation and Spt16 play a role in each other's regulation. H2B ubiquitylation is required for the stable accumulation of Spt16 at the GAL1 coding region, and Spt16 regulates the formation of ubiquitylated H2B both globally and at the GAL1 gene. These data provide a mechanism linking H2B ubiquitylation to Spt16 in the regulation of nucleosome dynamics during transcription elongation.
The monoubiquitylation of histone H2B has been associated with transcription initiation and elongation, but its role in these processes is poorly understood. We report that H2B ubiquitylation is required for efficient reassembly of nucleosomes during RNA polymerase II (Pol II)-mediated transcription elongation in yeast. This role is carried out in cooperation with the histone chaperone Spt16, and in the absence of H2B ubiquitylation and functional Spt16, chromatin structure is not properly restored in the wake of elongating Pol II. Moreover, H2B ubiquitylation and Spt16 play a role in each other's regulation. H2B ubiquitylation is required for the stable accumulation of Spt16 at the GAL1 coding region, and Spt16 regulates the formation of ubiquitylated H2B both globally and at the GAL1 gene. These data provide a mechanism linking H2B ubiquitylation to Spt16 in the regulation of nucleosome dynamics during transcription elongation.
The monoubiquitylation of histone H2B has been associated with transcription initiation and elongation, but its role in these processes is poorly understood. We report that H2B ubiquitylation is required for efficient reassembly of nucleosomes during RNA polymerase II (Pol II)-mediated transcription elongation in yeast. This role is carried out in cooperation with the histone chaperone Spt16, and in the absence of H2B ubiquitylation and functional Spt16, chromatin structure is not properly restored in the wake of elongating Pol II. Moreover, H2B ubiquitylation and Spt16 play a role in each other's regulation. H2B ubiquitylation is required for the stable accumulation of Spt16 at the GAL1 coding region, and Spt16 regulates the formation of ubiquitylated H2B both globally and at the GAL1 gene. These data provide a mechanism linking H2B ubiquitylation to Spt16 in the regulation of nucleosome dynamics during transcription elongation.
Author Pikaart, Michael
Fleming, Alastair B.
Osley, Mary Ann
Kao, Cheng-Fu
Hillyer, Cory
Author_xml – sequence: 1
  givenname: Alastair B.
  surname: Fleming
  fullname: Fleming, Alastair B.
  organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
– sequence: 2
  givenname: Cheng-Fu
  surname: Kao
  fullname: Kao, Cheng-Fu
  organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
– sequence: 3
  givenname: Cory
  surname: Hillyer
  fullname: Hillyer, Cory
  organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
– sequence: 4
  givenname: Michael
  surname: Pikaart
  fullname: Pikaart, Michael
  organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
– sequence: 5
  givenname: Mary Ann
  surname: Osley
  fullname: Osley, Mary Ann
  email: mosley@salud.unm.edu
  organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18614047$$D View this record in MEDLINE/PubMed
BookMark eNp9kM1u1DAURi1URH_gDRDyit2Ea8exHRZItLQUqWoRatlaHuem8sixp3aCNG_fdGbooouufBffOZLPMTmIKSIhHxlUDJj8sqqGFByGigPoCkQFvHlDjhi0aiGYFAf7myvZHJLjUlYATDS6fUcOmZZMgFBH5O8lP6V3S_8w-XET7OhTpL-D3RRq6Z8UkPpIrycXMJU0IP2xiXbwrtBuyj7e09tsY3HZr7fgeUjxfut4T972NhT8sH9PyN3F-e3Z5eLq5uevs-9XCycUHxeqwaXou573vXS6raWyiltwzrZ9o7nUsgamel1rhZ2QnDEQDKTCWjDbirY-IZ933nVODxOW0Qy-zFGCjZimYmRbgwKt5-Gn_XBaDtiZdfaDzRvzv8Q8-LobuJxKydgb58ftX8ZsfTAMzFN2szK77OYpuwFh5uwzLF7Az_7XsW87DOdE_zxmU5zH6LDzGd1ouuRfFzwCkxCdig
CitedBy_id crossref_primary_10_1371_journal_pgen_1002825
crossref_primary_10_1371_journal_pgen_1002822
crossref_primary_10_1007_s10571_021_01133_z
crossref_primary_10_1128_JVI_06840_11
crossref_primary_10_1016_j_gene_2024_148616
crossref_primary_10_1134_S0026893315060023
crossref_primary_10_1016_j_bbagrm_2018_07_008
crossref_primary_10_1534_g3_117_300252
crossref_primary_10_1039_b812136b
crossref_primary_10_1016_j_celrep_2016_10_076
crossref_primary_10_1038_ncomms3641
crossref_primary_10_1371_journal_pone_0016244
crossref_primary_10_1074_jbc_RA118_006985
crossref_primary_10_4161_epi_5_6_12314
crossref_primary_10_1016_j_molcel_2011_01_024
crossref_primary_10_1093_bfgp_elr047
crossref_primary_10_1016_j_bbagrm_2020_194669
crossref_primary_10_1073_pnas_1612633114
crossref_primary_10_1016_j_bbagen_2019_129497
crossref_primary_10_1073_pnas_1016923108
crossref_primary_10_3390_ijms22168850
crossref_primary_10_1016_j_molcel_2011_01_015
crossref_primary_10_1016_j_molcel_2016_10_008
crossref_primary_10_1371_journal_pgen_1003101
crossref_primary_10_1534_genetics_118_300943
crossref_primary_10_1093_nar_gkv666
crossref_primary_10_7554_eLife_21356
crossref_primary_10_1021_acs_jproteome_4c00519
crossref_primary_10_1186_s12864_017_3509_9
crossref_primary_10_1002_bies_201900136
crossref_primary_10_1111_j_1365_313X_2009_04096_x
crossref_primary_10_1038_nsmb_2776
crossref_primary_10_1007_s44297_023_00022_9
crossref_primary_10_1016_j_dnarep_2022_103387
crossref_primary_10_1038_s41467_023_39477_3
crossref_primary_10_1074_jbc_M900502200
crossref_primary_10_1093_nar_gkad012
crossref_primary_10_1134_S0026893310060026
crossref_primary_10_1371_journal_pgen_1004667
crossref_primary_10_1016_j_bbagrm_2014_07_022
crossref_primary_10_1016_j_ceb_2012_02_003
crossref_primary_10_1016_j_ijbiomac_2024_135977
crossref_primary_10_1534_genetics_111_132266
crossref_primary_10_1074_jbc_M114_551754
crossref_primary_10_1038_s41594_023_01137_x
crossref_primary_10_1002_wdev_109
crossref_primary_10_1038_nsmb_1780
crossref_primary_10_1074_jbc_M109_019562
crossref_primary_10_1128_MCB_01083_10
crossref_primary_10_7554_eLife_35720
crossref_primary_10_3390_genes9120622
crossref_primary_10_3390_ijms22084031
crossref_primary_10_1073_pnas_0907862106
crossref_primary_10_1126_science_aac5681
crossref_primary_10_1101_gad_348431_121
crossref_primary_10_1016_j_celrep_2024_113972
crossref_primary_10_3389_fendo_2018_00058
crossref_primary_10_1016_j_tibs_2010_01_002
crossref_primary_10_1093_nar_gky918
crossref_primary_10_1128_MCB_01112_15
crossref_primary_10_1371_journal_ppat_1000624
crossref_primary_10_1016_j_molcel_2018_06_020
crossref_primary_10_1038_embor_2012_78
crossref_primary_10_1093_nar_gkx028
crossref_primary_10_3389_fgene_2021_773426
crossref_primary_10_1038_embor_2009_168
crossref_primary_10_1007_s00294_018_0812_1
crossref_primary_10_1016_j_cellsig_2011_10_009
crossref_primary_10_1016_j_molcel_2012_09_019
crossref_primary_10_1111_tpj_12830
crossref_primary_10_1016_j_molcel_2011_05_015
crossref_primary_10_1016_j_tcb_2011_11_005
crossref_primary_10_3390_ijms232113412
crossref_primary_10_1016_j_devcel_2010_01_010
crossref_primary_10_15252_embr_201438793
crossref_primary_10_1016_j_molcel_2012_05_008
crossref_primary_10_1128_EC_00348_08
crossref_primary_10_1038_s41418_021_00759_2
crossref_primary_10_3390_ijms24054939
crossref_primary_10_1016_j_jmb_2021_166979
crossref_primary_10_1016_j_dnarep_2018_09_007
crossref_primary_10_1080_21553769_2013_838193
crossref_primary_10_1073_pnas_2220041120
crossref_primary_10_7554_eLife_84157
crossref_primary_10_1016_j_bbagrm_2023_194981
crossref_primary_10_1016_j_bbagrm_2012_08_015
crossref_primary_10_1016_j_semcancer_2021_12_007
crossref_primary_10_1093_jxb_eru011
crossref_primary_10_1128_MCB_00452_20
crossref_primary_10_4161_nucl_27235
crossref_primary_10_1371_journal_ppat_1008455
crossref_primary_10_7554_eLife_40988
crossref_primary_10_1093_nar_gkab1271
crossref_primary_10_1371_journal_pgen_1002175
crossref_primary_10_1016_j_cell_2010_04_026
crossref_primary_10_1101_gad_243121_114
crossref_primary_10_3389_fgene_2016_00087
crossref_primary_10_3390_cells11152404
crossref_primary_10_1101_gr_120634_111
crossref_primary_10_1073_pnas_1510510112
crossref_primary_10_1016_j_dnarep_2015_09_016
crossref_primary_10_1134_S0026893313050099
crossref_primary_10_1002_ange_201600638
crossref_primary_10_1016_j_biochi_2024_08_004
crossref_primary_10_1002_med_21878
crossref_primary_10_1002_ange_201200020
crossref_primary_10_1080_10409230902858785
crossref_primary_10_1530_ERC_14_0185
crossref_primary_10_26508_lsa_202302494
crossref_primary_10_1016_j_febslet_2012_04_002
crossref_primary_10_1128_MCB_00570_19
crossref_primary_10_3389_fcell_2022_968398
crossref_primary_10_1038_nrm3941
crossref_primary_10_1534_genetics_111_128645
crossref_primary_10_1016_j_molcel_2021_07_010
crossref_primary_10_1084_jem_20112145
crossref_primary_10_1146_annurev_biochem_052110_120012
crossref_primary_10_1016_j_bbagrm_2014_01_002
crossref_primary_10_1093_nar_gkv1173
crossref_primary_10_4061_2011_707641
crossref_primary_10_1016_j_bulcan_2020_12_007
crossref_primary_10_1016_j_freeradbiomed_2021_03_018
crossref_primary_10_1016_j_jmb_2014_05_028
crossref_primary_10_3389_fmicb_2019_01000
crossref_primary_10_1074_jbc_RA120_013196
crossref_primary_10_1093_bfgp_elt045
crossref_primary_10_1074_jbc_M113_450403
crossref_primary_10_1016_j_bbagrm_2025_195077
crossref_primary_10_3390_cells9071699
crossref_primary_10_1007_s10577_020_09640_3
crossref_primary_10_1534_genetics_118_301853
crossref_primary_10_3389_fonc_2024_1481426
crossref_primary_10_1074_jbc_M112_351569
crossref_primary_10_1093_nar_gkw658
crossref_primary_10_1016_j_ymeth_2011_02_003
crossref_primary_10_1101_gr_276674_122
crossref_primary_10_1128_MCB_06026_11
crossref_primary_10_1111_tpj_16707
crossref_primary_10_1371_journal_pgen_1005420
crossref_primary_10_1101_gad_186841_112
crossref_primary_10_1074_jbc_M109_001958
crossref_primary_10_1038_nrm_2016_159
crossref_primary_10_3390_ani10050888
crossref_primary_10_1016_j_jbc_2024_107345
crossref_primary_10_1073_pnas_0810362106
crossref_primary_10_1016_j_molcel_2018_08_020
crossref_primary_10_1093_abbs_gmr016
crossref_primary_10_1371_journal_pgen_1000364
crossref_primary_10_1016_j_bbagrm_2011_07_009
crossref_primary_10_1093_nar_gky526
crossref_primary_10_1021_jacsau_3c00658
crossref_primary_10_1101_gad_177238_111
crossref_primary_10_1038_nchembio_501
crossref_primary_10_1021_acs_biochem_2c00422
crossref_primary_10_1016_j_mce_2011_11_025
crossref_primary_10_1074_jbc_M114_626788
crossref_primary_10_1186_1756_8935_6_16
crossref_primary_10_1002_anie_201600638
crossref_primary_10_1128_MCB_00029_17
crossref_primary_10_1128_MCB_00808_15
crossref_primary_10_1534_genetics_109_111526
crossref_primary_10_1016_j_tibs_2011_01_001
crossref_primary_10_1146_annurev_genet_032608_103928
crossref_primary_10_1016_j_cell_2009_02_027
crossref_primary_10_1016_j_molcel_2016_08_034
crossref_primary_10_1016_j_tig_2020_12_005
crossref_primary_10_1038_s41564_024_01646_5
crossref_primary_10_1186_1756_8935_6_22
crossref_primary_10_1016_j_cell_2014_10_054
crossref_primary_10_1016_j_molcel_2011_02_002
crossref_primary_10_7554_eLife_37892
crossref_primary_10_1080_15384101_2021_1881726
crossref_primary_10_1038_s41598_023_43969_z
crossref_primary_10_3389_fgene_2022_873398
crossref_primary_10_7554_eLife_28231
crossref_primary_10_1093_nar_gkab312
crossref_primary_10_3390_ijms21124510
crossref_primary_10_3390_ijms23137459
crossref_primary_10_1371_journal_pgen_1004029
crossref_primary_10_3109_10409238_2012_730498
crossref_primary_10_1042_BCJ20220550
crossref_primary_10_1073_pnas_2025291118
crossref_primary_10_1038_nsmb_2470
crossref_primary_10_1074_jbc_M115_693085
crossref_primary_10_1016_j_bbagrm_2024_195018
crossref_primary_10_1093_nar_gkaa474
crossref_primary_10_1016_j_molcel_2019_11_016
crossref_primary_10_1021_acs_nanolett_1c02978
crossref_primary_10_1038_s41467_023_36467_3
crossref_primary_10_1002_anie_201200020
crossref_primary_10_1101_gad_211037_112
crossref_primary_10_1093_nar_gkaa912
crossref_primary_10_1089_ars_2011_4381
crossref_primary_10_1021_cr500350x
crossref_primary_10_1016_j_febslet_2011_07_034
crossref_primary_10_1080_21541264_2022_2069995
crossref_primary_10_1093_genetics_iyad071
crossref_primary_10_1093_nar_gkx422
crossref_primary_10_1007_s41048_018_0064_0
crossref_primary_10_1016_j_molcel_2013_06_002
crossref_primary_10_1093_nar_gks1472
crossref_primary_10_3390_cancers12113462
crossref_primary_10_1016_j_chembiol_2021_12_004
crossref_primary_10_1016_j_bbagrm_2012_08_008
crossref_primary_10_1038_s44319_024_00306_3
crossref_primary_10_1111_nph_15418
crossref_primary_10_1146_annurev_biochem_78_062807_091425
crossref_primary_10_1104_pp_112_198283
crossref_primary_10_1371_journal_pgen_1000964
crossref_primary_10_1038_s12276_020_0463_4
crossref_primary_10_1021_acs_accounts_1c00313
crossref_primary_10_1093_g3journal_jkab298
crossref_primary_10_1002_1873_3468_13049
crossref_primary_10_1128_MCB_00478_13
crossref_primary_10_1016_j_molcel_2009_04_010
crossref_primary_10_1016_j_bbagrm_2024_195033
crossref_primary_10_1073_pnas_1116994109
crossref_primary_10_4061_2011_625210
crossref_primary_10_1093_jxb_erac120
crossref_primary_10_4161_trns_26623
crossref_primary_10_1016_j_bbagrm_2011_08_001
crossref_primary_10_1186_1471_2164_12_627
crossref_primary_10_1073_pnas_1403901111
crossref_primary_10_1016_j_tibs_2010_04_001
crossref_primary_10_1016_j_molcel_2009_07_001
crossref_primary_10_1128_MCB_01346_10
crossref_primary_10_1101_gr_188870_114
crossref_primary_10_1128_MCB_00324_10
crossref_primary_10_1126_scisignal_2003199
crossref_primary_10_1016_j_dnarep_2010_07_003
crossref_primary_10_1016_j_ymeth_2011_04_001
crossref_primary_10_1101_gad_341156_120
crossref_primary_10_1080_15592294_2014_1003750
crossref_primary_10_1016_j_ijbiomac_2023_127717
crossref_primary_10_1073_pnas_1713333115
crossref_primary_10_1016_j_molcel_2008_06_012
crossref_primary_10_1186_s12967_020_02604_5
crossref_primary_10_1016_j_bbagrm_2015_01_001
crossref_primary_10_1016_j_bbagrm_2008_07_008
crossref_primary_10_1016_j_jmb_2018_09_014
crossref_primary_10_1016_j_molcel_2009_08_015
crossref_primary_10_1101_gr_176487_114
crossref_primary_10_1007_s11515_011_1000_6
crossref_primary_10_1098_rsob_210137
crossref_primary_10_1371_journal_pone_0150458
crossref_primary_10_1016_j_molcel_2011_02_013
crossref_primary_10_1038_nature12242
crossref_primary_10_1128_mBio_00023_11
crossref_primary_10_1016_j_molcel_2011_12_011
crossref_primary_10_1016_j_ddtec_2012_09_002
crossref_primary_10_1101_gad_1732108
crossref_primary_10_1016_j_sbi_2016_11_016
crossref_primary_10_1128_MCB_00368_21
crossref_primary_10_1371_journal_pgen_1000933
crossref_primary_10_1007_s00438_009_0480_4
crossref_primary_10_1101_gad_1720008
crossref_primary_10_1016_j_molcel_2013_01_033
crossref_primary_10_1021_acschembio_5b00493
crossref_primary_10_1093_nar_gkx101
crossref_primary_10_1038_nsmb_2955
crossref_primary_10_1007_s40610_017_0049_7
crossref_primary_10_1093_nar_gkad793
crossref_primary_10_3390_genes6030451
crossref_primary_10_1038_s41418_020_00614_w
crossref_primary_10_15252_embj_201591279
Cites_doi 10.1016/j.cub.2005.07.028
10.1016/j.cell.2006.04.029
10.1016/S1097-2765(02)00826-2
10.1016/j.molcel.2005.06.010
10.1101/gad.1149604
10.1126/science.287.5452.501
10.1038/nature00883
10.1016/j.cell.2007.02.005
10.1101/gad.1055503
10.1093/bfgp/ell022
10.1038/nature01080
10.1128/MCB.22.20.6979-6992.2002
10.1074/jbc.C300270200
10.1074/jbc.M212134200
10.1074/jbc.M708682200
10.1016/j.cell.2005.10.023
10.1101/gad.12.3.357
10.1016/j.molcel.2006.03.014
10.1128/MCB.24.8.3324-3336.2004
10.1101/gad.1516207
10.1074/jbc.C300269200
10.1016/j.molcel.2006.11.020
10.1101/gad.1539307
10.1128/MCB.01129-06
10.1016/j.molcel.2005.11.021
10.1074/jbc.C200348200
10.1101/gad.831900
10.1101/gad.1144003
10.1128/MCB.25.2.637-651.2005
10.1016/j.molcel.2007.11.002
10.1128/MCB.23.22.8323-8333.2003
10.1126/science.1085712
10.1016/j.molcel.2007.01.035
10.1007/s00438-007-0212-6
10.1186/gb-2004-5-9-r62
10.1038/nature04148
10.1128/MCB.25.14.6123-6139.2005
10.1128/MCB.24.23.10111-10117.2004
10.1038/ng1400
10.1101/gad.1292105
10.1093/emboj/20.13.3506
10.1038/22350
10.1038/sj.emboj.7601870
10.1016/S1097-2765(03)00091-1
10.1126/science.1087374
10.1016/j.molcel.2005.09.025
10.1534/genetics.106.067140
10.1016/j.cell.2005.06.026
10.1016/j.cell.2005.04.030
10.1038/ncb1076
10.1016/S1097-2765(02)00802-X
10.1126/science.1134053
10.1093/emboj/21.7.1764
10.1073/pnas.082249499
10.1021/bi982851d
10.1126/science.1085703
10.1016/j.cell.2007.01.015
ContentType Journal Article
Copyright 2008 Elsevier Inc.
Copyright_xml – notice: 2008 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.molcel.2008.04.025
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 66
ExternalDocumentID 18614047
10_1016_j_molcel_2008_04_025
S109727650800333X
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM040118
– fundername: NIGMS NIH HHS
  grantid: GM40118
GroupedDBID ---
--K
-DZ
-~X
.55
.GJ
0R~
123
1~5
29M
2WC
3O-
4.4
457
4G.
53G
5RE
5VS
62-
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AAKUH
AALRI
AAQFI
AAQXK
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
ADMUD
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGHFR
AGKMS
AHPSJ
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FGOYB
FIRID
HH5
HVGLF
HZ~
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
OZT
P2P
R2-
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
UHS
WQ6
X7M
ZA5
ZGI
ZXP
AAHBH
AAMRU
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ID FETCH-LOGICAL-c472t-75eb4fdf2ff6c89367a72a0cca9f5826863017f8387ed46211041067e341a9493
IEDL.DBID IXB
ISSN 1097-2765
1097-4164
IngestDate Thu Sep 04 19:30:35 EDT 2025
Mon Jul 21 06:02:39 EDT 2025
Tue Jul 01 03:40:37 EDT 2025
Thu Apr 24 23:10:18 EDT 2025
Fri Feb 23 02:27:02 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords DNA
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-75eb4fdf2ff6c89367a72a0cca9f5826863017f8387ed46211041067e341a9493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S109727650800333X
PMID 18614047
PQID 69307088
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_69307088
pubmed_primary_18614047
crossref_citationtrail_10_1016_j_molcel_2008_04_025
crossref_primary_10_1016_j_molcel_2008_04_025
elsevier_sciencedirect_doi_10_1016_j_molcel_2008_04_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-07-11
PublicationDateYYYYMMDD 2008-07-11
PublicationDate_xml – month: 07
  year: 2008
  text: 2008-07-11
  day: 11
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2008
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kao, Hillyer, Tsukuda, Henry, Berger, Osley (bib17) 2004; 18
Orphanides, Wu, Lane, Hampsey, Reinberg (bib33) 1999; 400
Tanny, Erdjument-Bromage, Tempst, Allis (bib46) 2007; 21
Ng, Dole, Struhl (bib32) 2003; 278
Wyers, Rougemaille, Badis, Rousselle, Dufour, Boulay, Regnault, Devaux, Namane, Seraphin (bib53) 2005; 121
Kaplan, Laprade, Winston (bib19) 2003; 301
Krogan, Kim, Ahn, Zhong, Kobor, Cagney, Emili, Shilatifard, Buratowski, Greenblatt (bib22) 2002; 22
Wood, Schneider, Dover, Johnston, Shilatifard (bib51) 2003; 278
Zhu, Mandal, Pham, Zheng, Erdjument-Bromage, Batra, Tempst, Reinberg (bib57) 2005; 19
Zhou, Zhu, Wang, Pascual, Ohgi, Lozach, Glass, Rosenfeld (bib56) 2008; 29
Sun, Allis (bib45) 2002; 418
Govind, Zhang, Qiu, Hofmeyer, Hinnebusch (bib11) 2007; 25
VanDemark, Xin, McCullough, Rawlins, Bentley, Heroux, Stillman, Hill, Formosa (bib48) 2008; 283
Tsukuda, Fleming, Nickoloff, Osley (bib47) 2005; 438
Kouzarides (bib21) 2007; 128
Bernstein, Liu, Humphrey, Perlstein, Schreiber (bib3) 2004; 5
Osley (bib34) 2006; 4
Xiao, Kao, Krogan, Sun, Greenblatt, Osley, Strahl (bib55) 2005; 25
Formosa, Eriksson, Wittmeyer, Ginn, Yu, Stillman (bib9) 2001; 20
Krogan, Dover, Wood, Schneider, Heidt, Boateng, Dean, Ryan, Golshani, Johnston (bib23) 2003; 11
Dover, Schneider, Tawiah-Boateng, Wood, Dean, Johnston, Shilatifard (bib6) 2002; 277
Schwabish, Struhl (bib41) 2004; 24
Pokholok, Harbison, Levine, Cole, Hannett, Lee, Bell, Walker, Rolfe, Herbolsheimer (bib36) 2005; 122
Bernstein, Humphrey, Erlich, Schneider, Bouman, Liu, Kouzarides, Schreiber (bib2) 2002; 99
Gardner, Nelson, Gottschling (bib10) 2005; 25
Squazzo, Costa, Lindstrom, Kumer, Simic, Jennings, Link, Arndt, Hartzog (bib44) 2002; 21
Duina, Rufiange, Bracey, Hall, Nourani, Winston (bib7) 2007; 177
Laribee, Krogan, Xiao, Shibata, Hughes, Greenblatt, Strahl (bib24) 2005; 15
Xiao, Hall, Kizer, Shibata, Hall, Borchers, Strahl (bib54) 2003; 17
Wyce, Xiao, Whelan, Kosman, Walter, Eick, Hughes, Krogan, Strahl, Berger (bib52) 2007; 27
Robzyk, Recht, Osley (bib37) 2000; 287
Hwang, Venkatasubrahmanyam, Ianculescu, Tong, Boone, Madhani (bib14) 2003; 11
Hartzog, Wada, Handa, Winston (bib12) 1998; 12
Wood, Krogan, Dover, Schneider, Heidt, Boateng, Dean, Golshani, Zhang, Greenblatt (bib50) 2003; 11
Pavri, Zhu, Li, Trojer, Mandal, Shilatifard, Reinberg (bib35) 2006; 125
Kaplan, Morris, Wu, Winston (bib18) 2000; 14
Li, Carey, Workman (bib27) 2007; 128
Mason, Struhl (bib29) 2003; 23
Shahbazian, Zhang, Grunstein (bib43) 2005; 19
Wittmeyer, Joss, Formosa (bib49) 1999; 38
Dion, Kaplan, Kim, Buratowski, Friedman, Rando (bib5) 2007; 315
Mutiu, Hoke, Genereaux, Liang, Brandl (bib31) 2007; 277
Zhu, Zheng, Pham, Mandal, Erdjument-Bromage, Tempst, Reinberg (bib58) 2005; 20
Endoh, Zhu, Hasegawa, Watanabe, Kim, Aida, Inukai, Narita, Yamada, Furuya (bib8) 2004; 24
Santos-Rosa, Schneider, Bannister, Sherriff, Bernstein, Emre, Schreiber, Mellor, Kouzarides (bib38) 2002; 419
Li, Gogol, Carey, Pattenden, Seidel, Workman (bib28) 2007; 21
Lee, Shibata, Rao, Strahl, Lieb (bib25) 2004; 36
Li, Howe, Anderson, Yates, Workman (bib26) 2003; 278
Belotserkovskaya, Oh, Bondarenko, Orphanides, Studitsky, Reinberg (bib1) 2003; 301
Schwabish, Struhl (bib42) 2006; 22
Henry, Wyce, Lo, Duggan, Emre, Kao, Pillus, Shilatifard, Osley, Berger (bib13) 2003; 17
Schneider, Bannister, Myers, Thorne, Crane-Robinson, Kouzarides (bib40) 2004; 6
Kim, Seol, Han, Youn, Cho (bib20) 2007; 26
Jimeno-Gonzalez, Gomez-Herreros, Alepuz, Chavez (bib15) 2006; 26
Carrozza, Li, Florens, Suganuma, Swanson, Lee, Shia, Anderson, Yates, Washburn (bib4) 2005; 123
Joshi, Struhl (bib16) 2005; 20
Saunders, Werner, Andrulis, Nakayama, Hirose, Reinberg, Lis (bib39) 2003; 301
Minsky, Shema, Field, Schuster, Segal, Oren (bib30) 2008; 16
Mutiu (10.1016/j.molcel.2008.04.025_bib31) 2007; 277
Jimeno-Gonzalez (10.1016/j.molcel.2008.04.025_bib15) 2006; 26
Orphanides (10.1016/j.molcel.2008.04.025_bib33) 1999; 400
Li (10.1016/j.molcel.2008.04.025_bib27) 2007; 128
Li (10.1016/j.molcel.2008.04.025_bib28) 2007; 21
Li (10.1016/j.molcel.2008.04.025_bib26) 2003; 278
Hartzog (10.1016/j.molcel.2008.04.025_bib12) 1998; 12
Joshi (10.1016/j.molcel.2008.04.025_bib16) 2005; 20
Kim (10.1016/j.molcel.2008.04.025_bib20) 2007; 26
Lee (10.1016/j.molcel.2008.04.025_bib25) 2004; 36
Pavri (10.1016/j.molcel.2008.04.025_bib35) 2006; 125
Ng (10.1016/j.molcel.2008.04.025_bib32) 2003; 278
Wyce (10.1016/j.molcel.2008.04.025_bib52) 2007; 27
Bernstein (10.1016/j.molcel.2008.04.025_bib2) 2002; 99
Krogan (10.1016/j.molcel.2008.04.025_bib22) 2002; 22
Wittmeyer (10.1016/j.molcel.2008.04.025_bib49) 1999; 38
Govind (10.1016/j.molcel.2008.04.025_bib11) 2007; 25
Henry (10.1016/j.molcel.2008.04.025_bib13) 2003; 17
Xiao (10.1016/j.molcel.2008.04.025_bib54) 2003; 17
Squazzo (10.1016/j.molcel.2008.04.025_bib44) 2002; 21
Laribee (10.1016/j.molcel.2008.04.025_bib24) 2005; 15
Kao (10.1016/j.molcel.2008.04.025_bib17) 2004; 18
Minsky (10.1016/j.molcel.2008.04.025_bib30) 2008; 16
Carrozza (10.1016/j.molcel.2008.04.025_bib4) 2005; 123
Dover (10.1016/j.molcel.2008.04.025_bib6) 2002; 277
Schwabish (10.1016/j.molcel.2008.04.025_bib42) 2006; 22
Krogan (10.1016/j.molcel.2008.04.025_bib23) 2003; 11
Wood (10.1016/j.molcel.2008.04.025_bib50) 2003; 11
Mason (10.1016/j.molcel.2008.04.025_bib29) 2003; 23
Kaplan (10.1016/j.molcel.2008.04.025_bib19) 2003; 301
Tanny (10.1016/j.molcel.2008.04.025_bib46) 2007; 21
Wood (10.1016/j.molcel.2008.04.025_bib51) 2003; 278
Xiao (10.1016/j.molcel.2008.04.025_bib55) 2005; 25
Saunders (10.1016/j.molcel.2008.04.025_bib39) 2003; 301
Osley (10.1016/j.molcel.2008.04.025_bib34) 2006; 4
Schneider (10.1016/j.molcel.2008.04.025_bib40) 2004; 6
Sun (10.1016/j.molcel.2008.04.025_bib45) 2002; 418
Zhu (10.1016/j.molcel.2008.04.025_bib57) 2005; 19
Dion (10.1016/j.molcel.2008.04.025_bib5) 2007; 315
Zhu (10.1016/j.molcel.2008.04.025_bib58) 2005; 20
Bernstein (10.1016/j.molcel.2008.04.025_bib3) 2004; 5
Kaplan (10.1016/j.molcel.2008.04.025_bib18) 2000; 14
Zhou (10.1016/j.molcel.2008.04.025_bib56) 2008; 29
Pokholok (10.1016/j.molcel.2008.04.025_bib36) 2005; 122
Belotserkovskaya (10.1016/j.molcel.2008.04.025_bib1) 2003; 301
Shahbazian (10.1016/j.molcel.2008.04.025_bib43) 2005; 19
Kouzarides (10.1016/j.molcel.2008.04.025_bib21) 2007; 128
VanDemark (10.1016/j.molcel.2008.04.025_bib48) 2008; 283
Gardner (10.1016/j.molcel.2008.04.025_bib10) 2005; 25
Duina (10.1016/j.molcel.2008.04.025_bib7) 2007; 177
Endoh (10.1016/j.molcel.2008.04.025_bib8) 2004; 24
Hwang (10.1016/j.molcel.2008.04.025_bib14) 2003; 11
Santos-Rosa (10.1016/j.molcel.2008.04.025_bib38) 2002; 419
Formosa (10.1016/j.molcel.2008.04.025_bib9) 2001; 20
Wyers (10.1016/j.molcel.2008.04.025_bib53) 2005; 121
Schwabish (10.1016/j.molcel.2008.04.025_bib41) 2004; 24
Robzyk (10.1016/j.molcel.2008.04.025_bib37) 2000; 287
Tsukuda (10.1016/j.molcel.2008.04.025_bib47) 2005; 438
18614040 - Mol Cell. 2008 Jul 11;31(1):2-4
References_xml – volume: 287
  start-page: 501
  year: 2000
  end-page: 504
  ident: bib37
  article-title: Rad6-dependent ubiquitination of histone H2B in yeast
  publication-title: Science
– volume: 20
  start-page: 601
  year: 2005
  end-page: 611
  ident: bib58
  article-title: Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation
  publication-title: Mol. Cell
– volume: 4
  start-page: 179
  year: 2006
  end-page: 189
  ident: bib34
  article-title: Regulation of histone H2A and H2B ubiquitylation
  publication-title: Brief. Funct. Genomic Proteomic
– volume: 438
  start-page: 379
  year: 2005
  end-page: 383
  ident: bib47
  article-title: Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae
  publication-title: Nature
– volume: 20
  start-page: 3506
  year: 2001
  end-page: 3517
  ident: bib9
  article-title: Spt16-Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding factor SPN
  publication-title: EMBO J.
– volume: 277
  start-page: 491
  year: 2007
  end-page: 506
  ident: bib31
  article-title: The role of histone ubiquitylation and deubiquitylation in gene expression as determined by the analysis of an HTB1(K123R)
  publication-title: Mol. Genet. Genomics
– volume: 38
  start-page: 8961
  year: 1999
  end-page: 8971
  ident: bib49
  article-title: Spt16 and Pob3 of Saccharomyces cerevisiae form an essential, abundant heterodimer that is nuclear, chromatin-associated, and copurifies with DNA polymerase alpha
  publication-title: Biochemistry
– volume: 21
  start-page: 1764
  year: 2002
  end-page: 1774
  ident: bib44
  article-title: The Paf1 complex physically and functionally associates with transcription elongation factors in vivo
  publication-title: EMBO J.
– volume: 22
  start-page: 415
  year: 2006
  end-page: 422
  ident: bib42
  article-title: Asf1 mediates histone eviction and deposition during elongation by RNA polymerase II
  publication-title: Mol. Cell
– volume: 121
  start-page: 725
  year: 2005
  end-page: 737
  ident: bib53
  article-title: Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase
  publication-title: Cell
– volume: 278
  start-page: 33625
  year: 2003
  end-page: 33628
  ident: bib32
  article-title: The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B
  publication-title: J. Biol. Chem.
– volume: 277
  start-page: 28368
  year: 2002
  end-page: 28371
  ident: bib6
  article-title: Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6
  publication-title: J. Biol. Chem.
– volume: 25
  start-page: 6123
  year: 2005
  end-page: 6139
  ident: bib10
  article-title: Ubp10/Dot4p regulates the persistence of ubiquitinated histone H2B: distinct roles in telomeric silencing and general chromatin
  publication-title: Mol. Cell. Biol.
– volume: 123
  start-page: 581
  year: 2005
  end-page: 592
  ident: bib4
  article-title: Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription
  publication-title: Cell
– volume: 14
  start-page: 2623
  year: 2000
  end-page: 2634
  ident: bib18
  article-title: Spt5 and Spt6 are associated with active transcription and have characteristics of general elongation factors in
  publication-title: Genes Dev.
– volume: 24
  start-page: 10111
  year: 2004
  end-page: 10117
  ident: bib41
  article-title: Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II
  publication-title: Mol. Cell. Biol.
– volume: 99
  start-page: 8695
  year: 2002
  end-page: 8700
  ident: bib2
  article-title: Methylation of histone H3 Lys 4 in coding regions of active genes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 24
  start-page: 3324
  year: 2004
  end-page: 3336
  ident: bib8
  article-title: Human Spt6 stimulates transcription elongation by RNA polymerase II in vitro
  publication-title: Mol. Cell. Biol.
– volume: 21
  start-page: 1422
  year: 2007
  end-page: 1430
  ident: bib28
  article-title: Infrequently transcribed long genes depend on the Set2/Rpd3S pathway for accurate transcription
  publication-title: Genes Dev.
– volume: 418
  start-page: 104
  year: 2002
  end-page: 108
  ident: bib45
  article-title: Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast
  publication-title: Nature
– volume: 19
  start-page: 1668
  year: 2005
  end-page: 1673
  ident: bib57
  article-title: The human PAF complex coordinates transcription with events downstream of RNA synthesis
  publication-title: Genes Dev.
– volume: 122
  start-page: 517
  year: 2005
  end-page: 527
  ident: bib36
  article-title: Genome-wide map of nucleosome acetylation and methylation in yeast
  publication-title: Cell
– volume: 18
  start-page: 184
  year: 2004
  end-page: 195
  ident: bib17
  article-title: Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B
  publication-title: Genes Dev.
– volume: 19
  start-page: 271
  year: 2005
  end-page: 277
  ident: bib43
  article-title: Histone H2B ubiquitylation controls processive methylation but not monomethylation by Dot1 and Set1
  publication-title: Mol. Cell
– volume: 301
  start-page: 1096
  year: 2003
  end-page: 1099
  ident: bib19
  article-title: Transcription elongation factors repress transcription initiation from cryptic sites
  publication-title: Science
– volume: 11
  start-page: 721
  year: 2003
  end-page: 729
  ident: bib23
  article-title: The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation
  publication-title: Mol. Cell
– volume: 400
  start-page: 284
  year: 1999
  end-page: 288
  ident: bib33
  article-title: The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins
  publication-title: Nature
– volume: 125
  start-page: 703
  year: 2006
  end-page: 717
  ident: bib35
  article-title: Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II
  publication-title: Cell
– volume: 12
  start-page: 357
  year: 1998
  end-page: 369
  ident: bib12
  article-title: Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in
  publication-title: Genes Dev.
– volume: 5
  start-page: R62
  year: 2004
  ident: bib3
  article-title: Global nucleosome occupancy in yeast
  publication-title: Genome Biol.
– volume: 278
  start-page: 34739
  year: 2003
  end-page: 34742
  ident: bib51
  article-title: The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p
  publication-title: J. Biol. Chem.
– volume: 419
  start-page: 407
  year: 2002
  end-page: 411
  ident: bib38
  article-title: Active genes are tri-methylated at K4 of histone H3
  publication-title: Nature
– volume: 315
  start-page: 1405
  year: 2007
  end-page: 1408
  ident: bib5
  article-title: Dynamics of replication-independent histone turnover in budding yeast
  publication-title: Science
– volume: 25
  start-page: 31
  year: 2007
  end-page: 42
  ident: bib11
  article-title: Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions
  publication-title: Mol. Cell
– volume: 16
  year: 2008
  ident: bib30
  article-title: Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells
  publication-title: Nat. Cell Biol.
– volume: 36
  start-page: 900
  year: 2004
  end-page: 905
  ident: bib25
  article-title: Evidence for nucleosome depletion at active regulatory regions genome-wide
  publication-title: Nat. Genet.
– volume: 177
  start-page: 101
  year: 2007
  end-page: 112
  ident: bib7
  article-title: Evidence that the localization of the elongation factor Spt16 across transcribed genes is dependent upon histone H3 integrity in
  publication-title: Genetics
– volume: 11
  start-page: 261
  year: 2003
  end-page: 266
  ident: bib14
  article-title: A conserved RING finger protein required for histone H2B monoubiquitination and cell size control
  publication-title: Mol. Cell
– volume: 15
  start-page: 1487
  year: 2005
  end-page: 1493
  ident: bib24
  article-title: BUR kinase selectively regulates H3 K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex
  publication-title: Curr. Biol.
– volume: 26
  start-page: 8710
  year: 2006
  end-page: 8721
  ident: bib15
  article-title: A gene-specific requirement for FACT during transcription is related to the chromatin organization of the transcribed region
  publication-title: Mol. Cell. Biol.
– volume: 128
  start-page: 707
  year: 2007
  end-page: 719
  ident: bib27
  article-title: The role of chromatin during transcription
  publication-title: Cell
– volume: 17
  start-page: 2648
  year: 2003
  end-page: 2663
  ident: bib13
  article-title: Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8
  publication-title: Genes Dev.
– volume: 26
  start-page: 4467
  year: 2007
  end-page: 4474
  ident: bib20
  article-title: Histone chaperones regulate histone exchange during transcription
  publication-title: EMBO J.
– volume: 128
  start-page: 693
  year: 2007
  end-page: 705
  ident: bib21
  article-title: Chromatin modifications and their function
  publication-title: Cell
– volume: 22
  start-page: 6979
  year: 2002
  end-page: 6992
  ident: bib22
  article-title: RNA polymerase II elongation factors of
  publication-title: Mol. Cell. Biol.
– volume: 283
  start-page: 5058
  year: 2008
  end-page: 5068
  ident: bib48
  article-title: Structural and functional analysis of the Spt16p N-terminal domain reveals overlapping roles of yFACT subunits
  publication-title: J. Biol. Chem.
– volume: 6
  start-page: 73
  year: 2004
  end-page: 77
  ident: bib40
  article-title: Histone H3 lysine 4 methylation patterns in higher eukaryotic genes
  publication-title: Nat. Cell Biol.
– volume: 301
  start-page: 1094
  year: 2003
  end-page: 1096
  ident: bib39
  article-title: Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo
  publication-title: Science
– volume: 25
  start-page: 637
  year: 2005
  end-page: 651
  ident: bib55
  article-title: Histone H2B ubiquitylation is associated with elongating RNA polymerase II
  publication-title: Mol. Cell. Biol.
– volume: 20
  start-page: 971
  year: 2005
  end-page: 978
  ident: bib16
  article-title: Eaf3 chromodomain interaction with methylated H3–K36 links histone deacetylation to Pol II elongation
  publication-title: Mol. Cell
– volume: 29
  start-page: 69
  year: 2008
  end-page: 80
  ident: bib56
  article-title: Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation
  publication-title: Mol. Cell
– volume: 11
  start-page: 267
  year: 2003
  end-page: 274
  ident: bib50
  article-title: Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter
  publication-title: Mol. Cell
– volume: 27
  start-page: 275
  year: 2007
  end-page: 288
  ident: bib52
  article-title: H2B ubiquitylation acts as a barrier to Ctk1 nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex
  publication-title: Mol. Cell
– volume: 278
  start-page: 8897
  year: 2003
  end-page: 8903
  ident: bib26
  article-title: The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II
  publication-title: J. Biol. Chem.
– volume: 17
  start-page: 654
  year: 2003
  end-page: 663
  ident: bib54
  article-title: Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast
  publication-title: Genes Dev.
– volume: 301
  start-page: 1090
  year: 2003
  end-page: 1093
  ident: bib1
  article-title: FACT facilitates transcription-dependent nucleosome alteration
  publication-title: Science
– volume: 23
  start-page: 8323
  year: 2003
  end-page: 8333
  ident: bib29
  article-title: The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo
  publication-title: Mol. Cell. Biol.
– volume: 21
  start-page: 835
  year: 2007
  end-page: 847
  ident: bib46
  article-title: Ubiquitylation of histone H2B controls RNA polymerase II transcription elongation independently of histone H3 methylation
  publication-title: Genes Dev.
– volume: 15
  start-page: 1487
  year: 2005
  ident: 10.1016/j.molcel.2008.04.025_bib24
  article-title: BUR kinase selectively regulates H3 K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2005.07.028
– volume: 125
  start-page: 703
  year: 2006
  ident: 10.1016/j.molcel.2008.04.025_bib35
  article-title: Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II
  publication-title: Cell
  doi: 10.1016/j.cell.2006.04.029
– volume: 11
  start-page: 261
  year: 2003
  ident: 10.1016/j.molcel.2008.04.025_bib14
  article-title: A conserved RING finger protein required for histone H2B monoubiquitination and cell size control
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00826-2
– volume: 19
  start-page: 271
  year: 2005
  ident: 10.1016/j.molcel.2008.04.025_bib43
  article-title: Histone H2B ubiquitylation controls processive methylation but not monomethylation by Dot1 and Set1
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.06.010
– volume: 18
  start-page: 184
  year: 2004
  ident: 10.1016/j.molcel.2008.04.025_bib17
  article-title: Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B
  publication-title: Genes Dev.
  doi: 10.1101/gad.1149604
– volume: 287
  start-page: 501
  year: 2000
  ident: 10.1016/j.molcel.2008.04.025_bib37
  article-title: Rad6-dependent ubiquitination of histone H2B in yeast
  publication-title: Science
  doi: 10.1126/science.287.5452.501
– volume: 418
  start-page: 104
  year: 2002
  ident: 10.1016/j.molcel.2008.04.025_bib45
  article-title: Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast
  publication-title: Nature
  doi: 10.1038/nature00883
– volume: 128
  start-page: 693
  year: 2007
  ident: 10.1016/j.molcel.2008.04.025_bib21
  article-title: Chromatin modifications and their function
  publication-title: Cell
  doi: 10.1016/j.cell.2007.02.005
– volume: 17
  start-page: 654
  year: 2003
  ident: 10.1016/j.molcel.2008.04.025_bib54
  article-title: Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast
  publication-title: Genes Dev.
  doi: 10.1101/gad.1055503
– volume: 4
  start-page: 179
  year: 2006
  ident: 10.1016/j.molcel.2008.04.025_bib34
  article-title: Regulation of histone H2A and H2B ubiquitylation
  publication-title: Brief. Funct. Genomic Proteomic
  doi: 10.1093/bfgp/ell022
– volume: 419
  start-page: 407
  year: 2002
  ident: 10.1016/j.molcel.2008.04.025_bib38
  article-title: Active genes are tri-methylated at K4 of histone H3
  publication-title: Nature
  doi: 10.1038/nature01080
– volume: 22
  start-page: 6979
  year: 2002
  ident: 10.1016/j.molcel.2008.04.025_bib22
  article-title: RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.22.20.6979-6992.2002
– volume: 278
  start-page: 33625
  year: 2003
  ident: 10.1016/j.molcel.2008.04.025_bib32
  article-title: The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C300270200
– volume: 278
  start-page: 8897
  year: 2003
  ident: 10.1016/j.molcel.2008.04.025_bib26
  article-title: The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M212134200
– volume: 283
  start-page: 5058
  year: 2008
  ident: 10.1016/j.molcel.2008.04.025_bib48
  article-title: Structural and functional analysis of the Spt16p N-terminal domain reveals overlapping roles of yFACT subunits
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M708682200
– volume: 123
  start-page: 581
  year: 2005
  ident: 10.1016/j.molcel.2008.04.025_bib4
  article-title: Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription
  publication-title: Cell
  doi: 10.1016/j.cell.2005.10.023
– volume: 12
  start-page: 357
  year: 1998
  ident: 10.1016/j.molcel.2008.04.025_bib12
  article-title: Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae
  publication-title: Genes Dev.
  doi: 10.1101/gad.12.3.357
– volume: 22
  start-page: 415
  year: 2006
  ident: 10.1016/j.molcel.2008.04.025_bib42
  article-title: Asf1 mediates histone eviction and deposition during elongation by RNA polymerase II
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.03.014
– volume: 24
  start-page: 3324
  year: 2004
  ident: 10.1016/j.molcel.2008.04.025_bib8
  article-title: Human Spt6 stimulates transcription elongation by RNA polymerase II in vitro
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.8.3324-3336.2004
– volume: 21
  start-page: 835
  year: 2007
  ident: 10.1016/j.molcel.2008.04.025_bib46
  article-title: Ubiquitylation of histone H2B controls RNA polymerase II transcription elongation independently of histone H3 methylation
  publication-title: Genes Dev.
  doi: 10.1101/gad.1516207
– volume: 278
  start-page: 34739
  year: 2003
  ident: 10.1016/j.molcel.2008.04.025_bib51
  article-title: The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C300269200
– volume: 25
  start-page: 31
  year: 2007
  ident: 10.1016/j.molcel.2008.04.025_bib11
  article-title: Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.11.020
– volume: 21
  start-page: 1422
  year: 2007
  ident: 10.1016/j.molcel.2008.04.025_bib28
  article-title: Infrequently transcribed long genes depend on the Set2/Rpd3S pathway for accurate transcription
  publication-title: Genes Dev.
  doi: 10.1101/gad.1539307
– volume: 26
  start-page: 8710
  year: 2006
  ident: 10.1016/j.molcel.2008.04.025_bib15
  article-title: A gene-specific requirement for FACT during transcription is related to the chromatin organization of the transcribed region
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01129-06
– volume: 20
  start-page: 971
  year: 2005
  ident: 10.1016/j.molcel.2008.04.025_bib16
  article-title: Eaf3 chromodomain interaction with methylated H3–K36 links histone deacetylation to Pol II elongation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.11.021
– volume: 277
  start-page: 28368
  year: 2002
  ident: 10.1016/j.molcel.2008.04.025_bib6
  article-title: Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C200348200
– volume: 14
  start-page: 2623
  year: 2000
  ident: 10.1016/j.molcel.2008.04.025_bib18
  article-title: Spt5 and Spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster
  publication-title: Genes Dev.
  doi: 10.1101/gad.831900
– volume: 17
  start-page: 2648
  year: 2003
  ident: 10.1016/j.molcel.2008.04.025_bib13
  article-title: Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8
  publication-title: Genes Dev.
  doi: 10.1101/gad.1144003
– volume: 25
  start-page: 637
  year: 2005
  ident: 10.1016/j.molcel.2008.04.025_bib55
  article-title: Histone H2B ubiquitylation is associated with elongating RNA polymerase II
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.2.637-651.2005
– volume: 29
  start-page: 69
  year: 2008
  ident: 10.1016/j.molcel.2008.04.025_bib56
  article-title: Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.11.002
– volume: 23
  start-page: 8323
  year: 2003
  ident: 10.1016/j.molcel.2008.04.025_bib29
  article-title: The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.22.8323-8333.2003
– volume: 301
  start-page: 1094
  year: 2003
  ident: 10.1016/j.molcel.2008.04.025_bib39
  article-title: Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo
  publication-title: Science
  doi: 10.1126/science.1085712
– volume: 27
  start-page: 275
  year: 2007
  ident: 10.1016/j.molcel.2008.04.025_bib52
  article-title: H2B ubiquitylation acts as a barrier to Ctk1 nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.01.035
– volume: 277
  start-page: 491
  year: 2007
  ident: 10.1016/j.molcel.2008.04.025_bib31
  article-title: The role of histone ubiquitylation and deubiquitylation in gene expression as determined by the analysis of an HTB1(K123R) Saccharomyces cerevisiae strain
  publication-title: Mol. Genet. Genomics
  doi: 10.1007/s00438-007-0212-6
– volume: 5
  start-page: R62
  year: 2004
  ident: 10.1016/j.molcel.2008.04.025_bib3
  article-title: Global nucleosome occupancy in yeast
  publication-title: Genome Biol.
  doi: 10.1186/gb-2004-5-9-r62
– volume: 438
  start-page: 379
  year: 2005
  ident: 10.1016/j.molcel.2008.04.025_bib47
  article-title: Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae
  publication-title: Nature
  doi: 10.1038/nature04148
– volume: 25
  start-page: 6123
  year: 2005
  ident: 10.1016/j.molcel.2008.04.025_bib10
  article-title: Ubp10/Dot4p regulates the persistence of ubiquitinated histone H2B: distinct roles in telomeric silencing and general chromatin
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.14.6123-6139.2005
– volume: 24
  start-page: 10111
  year: 2004
  ident: 10.1016/j.molcel.2008.04.025_bib41
  article-title: Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.23.10111-10117.2004
– volume: 36
  start-page: 900
  year: 2004
  ident: 10.1016/j.molcel.2008.04.025_bib25
  article-title: Evidence for nucleosome depletion at active regulatory regions genome-wide
  publication-title: Nat. Genet.
  doi: 10.1038/ng1400
– volume: 19
  start-page: 1668
  year: 2005
  ident: 10.1016/j.molcel.2008.04.025_bib57
  article-title: The human PAF complex coordinates transcription with events downstream of RNA synthesis
  publication-title: Genes Dev.
  doi: 10.1101/gad.1292105
– volume: 20
  start-page: 3506
  year: 2001
  ident: 10.1016/j.molcel.2008.04.025_bib9
  article-title: Spt16-Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding factor SPN
  publication-title: EMBO J.
  doi: 10.1093/emboj/20.13.3506
– volume: 400
  start-page: 284
  year: 1999
  ident: 10.1016/j.molcel.2008.04.025_bib33
  article-title: The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins
  publication-title: Nature
  doi: 10.1038/22350
– volume: 26
  start-page: 4467
  year: 2007
  ident: 10.1016/j.molcel.2008.04.025_bib20
  article-title: Histone chaperones regulate histone exchange during transcription
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601870
– volume: 11
  start-page: 721
  year: 2003
  ident: 10.1016/j.molcel.2008.04.025_bib23
  article-title: The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00091-1
– volume: 16
  year: 2008
  ident: 10.1016/j.molcel.2008.04.025_bib30
  article-title: Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells
  publication-title: Nat. Cell Biol.
– volume: 301
  start-page: 1096
  year: 2003
  ident: 10.1016/j.molcel.2008.04.025_bib19
  article-title: Transcription elongation factors repress transcription initiation from cryptic sites
  publication-title: Science
  doi: 10.1126/science.1087374
– volume: 20
  start-page: 601
  year: 2005
  ident: 10.1016/j.molcel.2008.04.025_bib58
  article-title: Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.09.025
– volume: 177
  start-page: 101
  year: 2007
  ident: 10.1016/j.molcel.2008.04.025_bib7
  article-title: Evidence that the localization of the elongation factor Spt16 across transcribed genes is dependent upon histone H3 integrity in Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1534/genetics.106.067140
– volume: 122
  start-page: 517
  year: 2005
  ident: 10.1016/j.molcel.2008.04.025_bib36
  article-title: Genome-wide map of nucleosome acetylation and methylation in yeast
  publication-title: Cell
  doi: 10.1016/j.cell.2005.06.026
– volume: 121
  start-page: 725
  year: 2005
  ident: 10.1016/j.molcel.2008.04.025_bib53
  article-title: Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase
  publication-title: Cell
  doi: 10.1016/j.cell.2005.04.030
– volume: 6
  start-page: 73
  year: 2004
  ident: 10.1016/j.molcel.2008.04.025_bib40
  article-title: Histone H3 lysine 4 methylation patterns in higher eukaryotic genes
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1076
– volume: 11
  start-page: 267
  year: 2003
  ident: 10.1016/j.molcel.2008.04.025_bib50
  article-title: Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00802-X
– volume: 315
  start-page: 1405
  year: 2007
  ident: 10.1016/j.molcel.2008.04.025_bib5
  article-title: Dynamics of replication-independent histone turnover in budding yeast
  publication-title: Science
  doi: 10.1126/science.1134053
– volume: 21
  start-page: 1764
  year: 2002
  ident: 10.1016/j.molcel.2008.04.025_bib44
  article-title: The Paf1 complex physically and functionally associates with transcription elongation factors in vivo
  publication-title: EMBO J.
  doi: 10.1093/emboj/21.7.1764
– volume: 99
  start-page: 8695
  year: 2002
  ident: 10.1016/j.molcel.2008.04.025_bib2
  article-title: Methylation of histone H3 Lys 4 in coding regions of active genes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.082249499
– volume: 38
  start-page: 8961
  year: 1999
  ident: 10.1016/j.molcel.2008.04.025_bib49
  article-title: Spt16 and Pob3 of Saccharomyces cerevisiae form an essential, abundant heterodimer that is nuclear, chromatin-associated, and copurifies with DNA polymerase alpha
  publication-title: Biochemistry
  doi: 10.1021/bi982851d
– volume: 301
  start-page: 1090
  year: 2003
  ident: 10.1016/j.molcel.2008.04.025_bib1
  article-title: FACT facilitates transcription-dependent nucleosome alteration
  publication-title: Science
  doi: 10.1126/science.1085703
– volume: 128
  start-page: 707
  year: 2007
  ident: 10.1016/j.molcel.2008.04.025_bib27
  article-title: The role of chromatin during transcription
  publication-title: Cell
  doi: 10.1016/j.cell.2007.01.015
– reference: 18614040 - Mol Cell. 2008 Jul 11;31(1):2-4
SSID ssj0014589
Score 2.4298804
Snippet The monoubiquitylation of histone H2B has been associated with transcription initiation and elongation, but its role in these processes is poorly understood....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 57
SubjectTerms Cell Cycle Proteins - metabolism
Chromatin - metabolism
DNA
Galactokinase - metabolism
Histones - metabolism
Kinetics
Lysine - metabolism
Methylation
Nucleosomes - metabolism
Protein Binding
RNA Polymerase II - metabolism
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - metabolism
Transcription Factors - metabolism
Transcription, Genetic
Transcriptional Elongation Factors
Ubiquitination
Title H2B Ubiquitylation Plays a Role in Nucleosome Dynamics during Transcription Elongation
URI https://dx.doi.org/10.1016/j.molcel.2008.04.025
https://www.ncbi.nlm.nih.gov/pubmed/18614047
https://www.proquest.com/docview/69307088
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jIHgRfzt_5uA1rmvTpD26uTEEh6iT3kqaJTLp2mm3w_5785p2IigDryVtw3vJ976Q996H0LWm2tG-kxCpdUIo04IEAfOJIaM8CTythIYC54cRG47pfeRHDdSra2EgrbLCfovpJVpXT9qVNdvz6bT9DHenLgeGAYJkXmRwGKpKoYgv6q5vEqhfyuDBYAKj6_K5MsdrlqdSpVVGJb1xQDD79_D0F_0sw9BgF-1U_BHf2inuoYbK9tGWVZRcHaDXodvF42T6sTTs2qa54cdUrAos8FOeKjzN8AhaGOdFPlP4zurRF9hWK-IyctU4gvtpnr2V3zhE40H_pTcklXQCkZS7C8J9lVA90a7WTBpKwrjgrnCMu0LtmxNFwMzG5jrwAq4mlMEpkEIzOWWCmghp6B2hZpZn6gRhKTodSX1Do5jZ7dJPZEAnoZY6cUPDPsIW8mqLxbLqKw7yFmlcJ5C9x9bOleQljY2dW4is35rbvhobxvPaGfGP9REb6N_w5lXtu9hsHbgPEZnKl0UMKpDcoGwLHVuXfs8kYNB2iJ_--69naNtmlnDS6Zyj5uJzqS4MfVkkl-X6_AJhre02
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGEIIL4s145sA1rGvTpD3CAI3XhICh3aI0S9BQ1w62Hfj3JE0LQgIhca2SNLId-4ti-wM40kR7OvQSLLVOMKFa4CiiITZglCVRoJXQtsD5tks7PXLVD_s1aFe1MDatsvT9zqcX3rr80iyl2RwPh80H-3bqM4swLCFZ0J-DeYMGPGval_3Tz6cEEhY8eHY0tsOr-rkiyWuUp1KlZUolOfYsY_bP8ek3_FnEoYsVWC4BJDpxe1yFmsrWYMFRSr6vw1PHP0W9ZPg6M_Da5bmhu1S8T5BA93mq0DBDXdvDOJ_kI4XOHCH9BLlyRVSErsqRoPM0z56LNTagd3H-2O7gkjsBS8L8KWahSogeaF9rKg0moUwwX3hGX7EOzZUiouZkMx0FEVMDQu01kNhucspENRGTONiEepZnahuQFK2WJKHBUdQcdxkmMiKDWEud-LGBH3EDgkpiXJaNxS2_RcqrDLIX7uRccl4SbuTcAPw5a-waa_wxnlXK4N8MhBvf_8fMw0p33Jwd-yAiMpXPJtzSQDLjZhuw5VT6tZOI2r5DbOfffz2Exc7j7Q2_uexe78KSSzNhuNXag_r0bab2DZaZJgeFrX4AYBbwWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=H2B+ubiquitylation+plays+a+role+in+nucleosome+dynamics+during+transcription+elongation&rft.jtitle=Molecular+cell&rft.au=Fleming%2C+Alastair+B&rft.au=Kao%2C+Cheng-Fu&rft.au=Hillyer%2C+Cory&rft.au=Pikaart%2C+Michael&rft.date=2008-07-11&rft.eissn=1097-4164&rft.volume=31&rft.issue=1&rft.spage=57&rft_id=info:doi/10.1016%2Fj.molcel.2008.04.025&rft_id=info%3Apmid%2F18614047&rft.externalDocID=18614047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon