H2B Ubiquitylation Plays a Role in Nucleosome Dynamics during Transcription Elongation
The monoubiquitylation of histone H2B has been associated with transcription initiation and elongation, but its role in these processes is poorly understood. We report that H2B ubiquitylation is required for efficient reassembly of nucleosomes during RNA polymerase II (Pol II)-mediated transcription...
Saved in:
Published in | Molecular cell Vol. 31; no. 1; pp. 57 - 66 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
11.07.2008
|
Subjects | |
Online Access | Get full text |
ISSN | 1097-2765 1097-4164 1097-4164 |
DOI | 10.1016/j.molcel.2008.04.025 |
Cover
Abstract | The monoubiquitylation of histone H2B has been associated with transcription initiation and elongation, but its role in these processes is poorly understood. We report that H2B ubiquitylation is required for efficient reassembly of nucleosomes during RNA polymerase II (Pol II)-mediated transcription elongation in yeast. This role is carried out in cooperation with the histone chaperone Spt16, and in the absence of H2B ubiquitylation and functional Spt16, chromatin structure is not properly restored in the wake of elongating Pol II. Moreover, H2B ubiquitylation and Spt16 play a role in each other's regulation. H2B ubiquitylation is required for the stable accumulation of Spt16 at the
GAL1 coding region, and Spt16 regulates the formation of ubiquitylated H2B both globally and at the
GAL1 gene. These data provide a mechanism linking H2B ubiquitylation to Spt16 in the regulation of nucleosome dynamics during transcription elongation. |
---|---|
AbstractList | The monoubiquitylation of histone H2B has been associated with transcription initiation and elongation, but its role in these processes is poorly understood. We report that H2B ubiquitylation is required for efficient reassembly of nucleosomes during RNA polymerase II (Pol II)-mediated transcription elongation in yeast. This role is carried out in cooperation with the histone chaperone Spt16, and in the absence of H2B ubiquitylation and functional Spt16, chromatin structure is not properly restored in the wake of elongating Pol II. Moreover, H2B ubiquitylation and Spt16 play a role in each other's regulation. H2B ubiquitylation is required for the stable accumulation of Spt16 at the GAL1 coding region, and Spt16 regulates the formation of ubiquitylated H2B both globally and at the GAL1 gene. These data provide a mechanism linking H2B ubiquitylation to Spt16 in the regulation of nucleosome dynamics during transcription elongation.The monoubiquitylation of histone H2B has been associated with transcription initiation and elongation, but its role in these processes is poorly understood. We report that H2B ubiquitylation is required for efficient reassembly of nucleosomes during RNA polymerase II (Pol II)-mediated transcription elongation in yeast. This role is carried out in cooperation with the histone chaperone Spt16, and in the absence of H2B ubiquitylation and functional Spt16, chromatin structure is not properly restored in the wake of elongating Pol II. Moreover, H2B ubiquitylation and Spt16 play a role in each other's regulation. H2B ubiquitylation is required for the stable accumulation of Spt16 at the GAL1 coding region, and Spt16 regulates the formation of ubiquitylated H2B both globally and at the GAL1 gene. These data provide a mechanism linking H2B ubiquitylation to Spt16 in the regulation of nucleosome dynamics during transcription elongation. The monoubiquitylation of histone H2B has been associated with transcription initiation and elongation, but its role in these processes is poorly understood. We report that H2B ubiquitylation is required for efficient reassembly of nucleosomes during RNA polymerase II (Pol II)-mediated transcription elongation in yeast. This role is carried out in cooperation with the histone chaperone Spt16, and in the absence of H2B ubiquitylation and functional Spt16, chromatin structure is not properly restored in the wake of elongating Pol II. Moreover, H2B ubiquitylation and Spt16 play a role in each other's regulation. H2B ubiquitylation is required for the stable accumulation of Spt16 at the GAL1 coding region, and Spt16 regulates the formation of ubiquitylated H2B both globally and at the GAL1 gene. These data provide a mechanism linking H2B ubiquitylation to Spt16 in the regulation of nucleosome dynamics during transcription elongation. The monoubiquitylation of histone H2B has been associated with transcription initiation and elongation, but its role in these processes is poorly understood. We report that H2B ubiquitylation is required for efficient reassembly of nucleosomes during RNA polymerase II (Pol II)-mediated transcription elongation in yeast. This role is carried out in cooperation with the histone chaperone Spt16, and in the absence of H2B ubiquitylation and functional Spt16, chromatin structure is not properly restored in the wake of elongating Pol II. Moreover, H2B ubiquitylation and Spt16 play a role in each other's regulation. H2B ubiquitylation is required for the stable accumulation of Spt16 at the GAL1 coding region, and Spt16 regulates the formation of ubiquitylated H2B both globally and at the GAL1 gene. These data provide a mechanism linking H2B ubiquitylation to Spt16 in the regulation of nucleosome dynamics during transcription elongation. |
Author | Pikaart, Michael Fleming, Alastair B. Osley, Mary Ann Kao, Cheng-Fu Hillyer, Cory |
Author_xml | – sequence: 1 givenname: Alastair B. surname: Fleming fullname: Fleming, Alastair B. organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA – sequence: 2 givenname: Cheng-Fu surname: Kao fullname: Kao, Cheng-Fu organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA – sequence: 3 givenname: Cory surname: Hillyer fullname: Hillyer, Cory organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA – sequence: 4 givenname: Michael surname: Pikaart fullname: Pikaart, Michael organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA – sequence: 5 givenname: Mary Ann surname: Osley fullname: Osley, Mary Ann email: mosley@salud.unm.edu organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18614047$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kM1u1DAURi1URH_gDRDyit2Ea8exHRZItLQUqWoRatlaHuem8sixp3aCNG_fdGbooouufBffOZLPMTmIKSIhHxlUDJj8sqqGFByGigPoCkQFvHlDjhi0aiGYFAf7myvZHJLjUlYATDS6fUcOmZZMgFBH5O8lP6V3S_8w-XET7OhTpL-D3RRq6Z8UkPpIrycXMJU0IP2xiXbwrtBuyj7e09tsY3HZr7fgeUjxfut4T972NhT8sH9PyN3F-e3Z5eLq5uevs-9XCycUHxeqwaXou573vXS6raWyiltwzrZ9o7nUsgamel1rhZ2QnDEQDKTCWjDbirY-IZ933nVODxOW0Qy-zFGCjZimYmRbgwKt5-Gn_XBaDtiZdfaDzRvzv8Q8-LobuJxKydgb58ftX8ZsfTAMzFN2szK77OYpuwFh5uwzLF7Az_7XsW87DOdE_zxmU5zH6LDzGd1ouuRfFzwCkxCdig |
CitedBy_id | crossref_primary_10_1371_journal_pgen_1002825 crossref_primary_10_1371_journal_pgen_1002822 crossref_primary_10_1007_s10571_021_01133_z crossref_primary_10_1128_JVI_06840_11 crossref_primary_10_1016_j_gene_2024_148616 crossref_primary_10_1134_S0026893315060023 crossref_primary_10_1016_j_bbagrm_2018_07_008 crossref_primary_10_1534_g3_117_300252 crossref_primary_10_1039_b812136b crossref_primary_10_1016_j_celrep_2016_10_076 crossref_primary_10_1038_ncomms3641 crossref_primary_10_1371_journal_pone_0016244 crossref_primary_10_1074_jbc_RA118_006985 crossref_primary_10_4161_epi_5_6_12314 crossref_primary_10_1016_j_molcel_2011_01_024 crossref_primary_10_1093_bfgp_elr047 crossref_primary_10_1016_j_bbagrm_2020_194669 crossref_primary_10_1073_pnas_1612633114 crossref_primary_10_1016_j_bbagen_2019_129497 crossref_primary_10_1073_pnas_1016923108 crossref_primary_10_3390_ijms22168850 crossref_primary_10_1016_j_molcel_2011_01_015 crossref_primary_10_1016_j_molcel_2016_10_008 crossref_primary_10_1371_journal_pgen_1003101 crossref_primary_10_1534_genetics_118_300943 crossref_primary_10_1093_nar_gkv666 crossref_primary_10_7554_eLife_21356 crossref_primary_10_1021_acs_jproteome_4c00519 crossref_primary_10_1186_s12864_017_3509_9 crossref_primary_10_1002_bies_201900136 crossref_primary_10_1111_j_1365_313X_2009_04096_x crossref_primary_10_1038_nsmb_2776 crossref_primary_10_1007_s44297_023_00022_9 crossref_primary_10_1016_j_dnarep_2022_103387 crossref_primary_10_1038_s41467_023_39477_3 crossref_primary_10_1074_jbc_M900502200 crossref_primary_10_1093_nar_gkad012 crossref_primary_10_1134_S0026893310060026 crossref_primary_10_1371_journal_pgen_1004667 crossref_primary_10_1016_j_bbagrm_2014_07_022 crossref_primary_10_1016_j_ceb_2012_02_003 crossref_primary_10_1016_j_ijbiomac_2024_135977 crossref_primary_10_1534_genetics_111_132266 crossref_primary_10_1074_jbc_M114_551754 crossref_primary_10_1038_s41594_023_01137_x crossref_primary_10_1002_wdev_109 crossref_primary_10_1038_nsmb_1780 crossref_primary_10_1074_jbc_M109_019562 crossref_primary_10_1128_MCB_01083_10 crossref_primary_10_7554_eLife_35720 crossref_primary_10_3390_genes9120622 crossref_primary_10_3390_ijms22084031 crossref_primary_10_1073_pnas_0907862106 crossref_primary_10_1126_science_aac5681 crossref_primary_10_1101_gad_348431_121 crossref_primary_10_1016_j_celrep_2024_113972 crossref_primary_10_3389_fendo_2018_00058 crossref_primary_10_1016_j_tibs_2010_01_002 crossref_primary_10_1093_nar_gky918 crossref_primary_10_1128_MCB_01112_15 crossref_primary_10_1371_journal_ppat_1000624 crossref_primary_10_1016_j_molcel_2018_06_020 crossref_primary_10_1038_embor_2012_78 crossref_primary_10_1093_nar_gkx028 crossref_primary_10_3389_fgene_2021_773426 crossref_primary_10_1038_embor_2009_168 crossref_primary_10_1007_s00294_018_0812_1 crossref_primary_10_1016_j_cellsig_2011_10_009 crossref_primary_10_1016_j_molcel_2012_09_019 crossref_primary_10_1111_tpj_12830 crossref_primary_10_1016_j_molcel_2011_05_015 crossref_primary_10_1016_j_tcb_2011_11_005 crossref_primary_10_3390_ijms232113412 crossref_primary_10_1016_j_devcel_2010_01_010 crossref_primary_10_15252_embr_201438793 crossref_primary_10_1016_j_molcel_2012_05_008 crossref_primary_10_1128_EC_00348_08 crossref_primary_10_1038_s41418_021_00759_2 crossref_primary_10_3390_ijms24054939 crossref_primary_10_1016_j_jmb_2021_166979 crossref_primary_10_1016_j_dnarep_2018_09_007 crossref_primary_10_1080_21553769_2013_838193 crossref_primary_10_1073_pnas_2220041120 crossref_primary_10_7554_eLife_84157 crossref_primary_10_1016_j_bbagrm_2023_194981 crossref_primary_10_1016_j_bbagrm_2012_08_015 crossref_primary_10_1016_j_semcancer_2021_12_007 crossref_primary_10_1093_jxb_eru011 crossref_primary_10_1128_MCB_00452_20 crossref_primary_10_4161_nucl_27235 crossref_primary_10_1371_journal_ppat_1008455 crossref_primary_10_7554_eLife_40988 crossref_primary_10_1093_nar_gkab1271 crossref_primary_10_1371_journal_pgen_1002175 crossref_primary_10_1016_j_cell_2010_04_026 crossref_primary_10_1101_gad_243121_114 crossref_primary_10_3389_fgene_2016_00087 crossref_primary_10_3390_cells11152404 crossref_primary_10_1101_gr_120634_111 crossref_primary_10_1073_pnas_1510510112 crossref_primary_10_1016_j_dnarep_2015_09_016 crossref_primary_10_1134_S0026893313050099 crossref_primary_10_1002_ange_201600638 crossref_primary_10_1016_j_biochi_2024_08_004 crossref_primary_10_1002_med_21878 crossref_primary_10_1002_ange_201200020 crossref_primary_10_1080_10409230902858785 crossref_primary_10_1530_ERC_14_0185 crossref_primary_10_26508_lsa_202302494 crossref_primary_10_1016_j_febslet_2012_04_002 crossref_primary_10_1128_MCB_00570_19 crossref_primary_10_3389_fcell_2022_968398 crossref_primary_10_1038_nrm3941 crossref_primary_10_1534_genetics_111_128645 crossref_primary_10_1016_j_molcel_2021_07_010 crossref_primary_10_1084_jem_20112145 crossref_primary_10_1146_annurev_biochem_052110_120012 crossref_primary_10_1016_j_bbagrm_2014_01_002 crossref_primary_10_1093_nar_gkv1173 crossref_primary_10_4061_2011_707641 crossref_primary_10_1016_j_bulcan_2020_12_007 crossref_primary_10_1016_j_freeradbiomed_2021_03_018 crossref_primary_10_1016_j_jmb_2014_05_028 crossref_primary_10_3389_fmicb_2019_01000 crossref_primary_10_1074_jbc_RA120_013196 crossref_primary_10_1093_bfgp_elt045 crossref_primary_10_1074_jbc_M113_450403 crossref_primary_10_1016_j_bbagrm_2025_195077 crossref_primary_10_3390_cells9071699 crossref_primary_10_1007_s10577_020_09640_3 crossref_primary_10_1534_genetics_118_301853 crossref_primary_10_3389_fonc_2024_1481426 crossref_primary_10_1074_jbc_M112_351569 crossref_primary_10_1093_nar_gkw658 crossref_primary_10_1016_j_ymeth_2011_02_003 crossref_primary_10_1101_gr_276674_122 crossref_primary_10_1128_MCB_06026_11 crossref_primary_10_1111_tpj_16707 crossref_primary_10_1371_journal_pgen_1005420 crossref_primary_10_1101_gad_186841_112 crossref_primary_10_1074_jbc_M109_001958 crossref_primary_10_1038_nrm_2016_159 crossref_primary_10_3390_ani10050888 crossref_primary_10_1016_j_jbc_2024_107345 crossref_primary_10_1073_pnas_0810362106 crossref_primary_10_1016_j_molcel_2018_08_020 crossref_primary_10_1093_abbs_gmr016 crossref_primary_10_1371_journal_pgen_1000364 crossref_primary_10_1016_j_bbagrm_2011_07_009 crossref_primary_10_1093_nar_gky526 crossref_primary_10_1021_jacsau_3c00658 crossref_primary_10_1101_gad_177238_111 crossref_primary_10_1038_nchembio_501 crossref_primary_10_1021_acs_biochem_2c00422 crossref_primary_10_1016_j_mce_2011_11_025 crossref_primary_10_1074_jbc_M114_626788 crossref_primary_10_1186_1756_8935_6_16 crossref_primary_10_1002_anie_201600638 crossref_primary_10_1128_MCB_00029_17 crossref_primary_10_1128_MCB_00808_15 crossref_primary_10_1534_genetics_109_111526 crossref_primary_10_1016_j_tibs_2011_01_001 crossref_primary_10_1146_annurev_genet_032608_103928 crossref_primary_10_1016_j_cell_2009_02_027 crossref_primary_10_1016_j_molcel_2016_08_034 crossref_primary_10_1016_j_tig_2020_12_005 crossref_primary_10_1038_s41564_024_01646_5 crossref_primary_10_1186_1756_8935_6_22 crossref_primary_10_1016_j_cell_2014_10_054 crossref_primary_10_1016_j_molcel_2011_02_002 crossref_primary_10_7554_eLife_37892 crossref_primary_10_1080_15384101_2021_1881726 crossref_primary_10_1038_s41598_023_43969_z crossref_primary_10_3389_fgene_2022_873398 crossref_primary_10_7554_eLife_28231 crossref_primary_10_1093_nar_gkab312 crossref_primary_10_3390_ijms21124510 crossref_primary_10_3390_ijms23137459 crossref_primary_10_1371_journal_pgen_1004029 crossref_primary_10_3109_10409238_2012_730498 crossref_primary_10_1042_BCJ20220550 crossref_primary_10_1073_pnas_2025291118 crossref_primary_10_1038_nsmb_2470 crossref_primary_10_1074_jbc_M115_693085 crossref_primary_10_1016_j_bbagrm_2024_195018 crossref_primary_10_1093_nar_gkaa474 crossref_primary_10_1016_j_molcel_2019_11_016 crossref_primary_10_1021_acs_nanolett_1c02978 crossref_primary_10_1038_s41467_023_36467_3 crossref_primary_10_1002_anie_201200020 crossref_primary_10_1101_gad_211037_112 crossref_primary_10_1093_nar_gkaa912 crossref_primary_10_1089_ars_2011_4381 crossref_primary_10_1021_cr500350x crossref_primary_10_1016_j_febslet_2011_07_034 crossref_primary_10_1080_21541264_2022_2069995 crossref_primary_10_1093_genetics_iyad071 crossref_primary_10_1093_nar_gkx422 crossref_primary_10_1007_s41048_018_0064_0 crossref_primary_10_1016_j_molcel_2013_06_002 crossref_primary_10_1093_nar_gks1472 crossref_primary_10_3390_cancers12113462 crossref_primary_10_1016_j_chembiol_2021_12_004 crossref_primary_10_1016_j_bbagrm_2012_08_008 crossref_primary_10_1038_s44319_024_00306_3 crossref_primary_10_1111_nph_15418 crossref_primary_10_1146_annurev_biochem_78_062807_091425 crossref_primary_10_1104_pp_112_198283 crossref_primary_10_1371_journal_pgen_1000964 crossref_primary_10_1038_s12276_020_0463_4 crossref_primary_10_1021_acs_accounts_1c00313 crossref_primary_10_1093_g3journal_jkab298 crossref_primary_10_1002_1873_3468_13049 crossref_primary_10_1128_MCB_00478_13 crossref_primary_10_1016_j_molcel_2009_04_010 crossref_primary_10_1016_j_bbagrm_2024_195033 crossref_primary_10_1073_pnas_1116994109 crossref_primary_10_4061_2011_625210 crossref_primary_10_1093_jxb_erac120 crossref_primary_10_4161_trns_26623 crossref_primary_10_1016_j_bbagrm_2011_08_001 crossref_primary_10_1186_1471_2164_12_627 crossref_primary_10_1073_pnas_1403901111 crossref_primary_10_1016_j_tibs_2010_04_001 crossref_primary_10_1016_j_molcel_2009_07_001 crossref_primary_10_1128_MCB_01346_10 crossref_primary_10_1101_gr_188870_114 crossref_primary_10_1128_MCB_00324_10 crossref_primary_10_1126_scisignal_2003199 crossref_primary_10_1016_j_dnarep_2010_07_003 crossref_primary_10_1016_j_ymeth_2011_04_001 crossref_primary_10_1101_gad_341156_120 crossref_primary_10_1080_15592294_2014_1003750 crossref_primary_10_1016_j_ijbiomac_2023_127717 crossref_primary_10_1073_pnas_1713333115 crossref_primary_10_1016_j_molcel_2008_06_012 crossref_primary_10_1186_s12967_020_02604_5 crossref_primary_10_1016_j_bbagrm_2015_01_001 crossref_primary_10_1016_j_bbagrm_2008_07_008 crossref_primary_10_1016_j_jmb_2018_09_014 crossref_primary_10_1016_j_molcel_2009_08_015 crossref_primary_10_1101_gr_176487_114 crossref_primary_10_1007_s11515_011_1000_6 crossref_primary_10_1098_rsob_210137 crossref_primary_10_1371_journal_pone_0150458 crossref_primary_10_1016_j_molcel_2011_02_013 crossref_primary_10_1038_nature12242 crossref_primary_10_1128_mBio_00023_11 crossref_primary_10_1016_j_molcel_2011_12_011 crossref_primary_10_1016_j_ddtec_2012_09_002 crossref_primary_10_1101_gad_1732108 crossref_primary_10_1016_j_sbi_2016_11_016 crossref_primary_10_1128_MCB_00368_21 crossref_primary_10_1371_journal_pgen_1000933 crossref_primary_10_1007_s00438_009_0480_4 crossref_primary_10_1101_gad_1720008 crossref_primary_10_1016_j_molcel_2013_01_033 crossref_primary_10_1021_acschembio_5b00493 crossref_primary_10_1093_nar_gkx101 crossref_primary_10_1038_nsmb_2955 crossref_primary_10_1007_s40610_017_0049_7 crossref_primary_10_1093_nar_gkad793 crossref_primary_10_3390_genes6030451 crossref_primary_10_1038_s41418_020_00614_w crossref_primary_10_15252_embj_201591279 |
Cites_doi | 10.1016/j.cub.2005.07.028 10.1016/j.cell.2006.04.029 10.1016/S1097-2765(02)00826-2 10.1016/j.molcel.2005.06.010 10.1101/gad.1149604 10.1126/science.287.5452.501 10.1038/nature00883 10.1016/j.cell.2007.02.005 10.1101/gad.1055503 10.1093/bfgp/ell022 10.1038/nature01080 10.1128/MCB.22.20.6979-6992.2002 10.1074/jbc.C300270200 10.1074/jbc.M212134200 10.1074/jbc.M708682200 10.1016/j.cell.2005.10.023 10.1101/gad.12.3.357 10.1016/j.molcel.2006.03.014 10.1128/MCB.24.8.3324-3336.2004 10.1101/gad.1516207 10.1074/jbc.C300269200 10.1016/j.molcel.2006.11.020 10.1101/gad.1539307 10.1128/MCB.01129-06 10.1016/j.molcel.2005.11.021 10.1074/jbc.C200348200 10.1101/gad.831900 10.1101/gad.1144003 10.1128/MCB.25.2.637-651.2005 10.1016/j.molcel.2007.11.002 10.1128/MCB.23.22.8323-8333.2003 10.1126/science.1085712 10.1016/j.molcel.2007.01.035 10.1007/s00438-007-0212-6 10.1186/gb-2004-5-9-r62 10.1038/nature04148 10.1128/MCB.25.14.6123-6139.2005 10.1128/MCB.24.23.10111-10117.2004 10.1038/ng1400 10.1101/gad.1292105 10.1093/emboj/20.13.3506 10.1038/22350 10.1038/sj.emboj.7601870 10.1016/S1097-2765(03)00091-1 10.1126/science.1087374 10.1016/j.molcel.2005.09.025 10.1534/genetics.106.067140 10.1016/j.cell.2005.06.026 10.1016/j.cell.2005.04.030 10.1038/ncb1076 10.1016/S1097-2765(02)00802-X 10.1126/science.1134053 10.1093/emboj/21.7.1764 10.1073/pnas.082249499 10.1021/bi982851d 10.1126/science.1085703 10.1016/j.cell.2007.01.015 |
ContentType | Journal Article |
Copyright | 2008 Elsevier Inc. |
Copyright_xml | – notice: 2008 Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.molcel.2008.04.025 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 66 |
ExternalDocumentID | 18614047 10_1016_j_molcel_2008_04_025 S109727650800333X |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM040118 – fundername: NIGMS NIH HHS grantid: GM40118 |
GroupedDBID | --- --K -DZ -~X .55 .GJ 0R~ 123 1~5 29M 2WC 3O- 4.4 457 4G. 53G 5RE 5VS 62- 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AAKUH AALRI AAQFI AAQXK AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV ADMUD AEFWE AENEX AEXQZ AFFNX AFTJW AGHFR AGKMS AHPSJ AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FGOYB FIRID HH5 HVGLF HZ~ IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 OZT P2P R2- RCE RIG ROL RPZ SDG SES SSZ TR2 UHS WQ6 X7M ZA5 ZGI ZXP AAHBH AAMRU AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AGCQF AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION CGR CUY CVF ECM EFKBS EIF NPM 7X8 |
ID | FETCH-LOGICAL-c472t-75eb4fdf2ff6c89367a72a0cca9f5826863017f8387ed46211041067e341a9493 |
IEDL.DBID | IXB |
ISSN | 1097-2765 1097-4164 |
IngestDate | Thu Sep 04 19:30:35 EDT 2025 Mon Jul 21 06:02:39 EDT 2025 Tue Jul 01 03:40:37 EDT 2025 Thu Apr 24 23:10:18 EDT 2025 Fri Feb 23 02:27:02 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | DNA |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c472t-75eb4fdf2ff6c89367a72a0cca9f5826863017f8387ed46211041067e341a9493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S109727650800333X |
PMID | 18614047 |
PQID | 69307088 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_69307088 pubmed_primary_18614047 crossref_citationtrail_10_1016_j_molcel_2008_04_025 crossref_primary_10_1016_j_molcel_2008_04_025 elsevier_sciencedirect_doi_10_1016_j_molcel_2008_04_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-07-11 |
PublicationDateYYYYMMDD | 2008-07-11 |
PublicationDate_xml | – month: 07 year: 2008 text: 2008-07-11 day: 11 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2008 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Kao, Hillyer, Tsukuda, Henry, Berger, Osley (bib17) 2004; 18 Orphanides, Wu, Lane, Hampsey, Reinberg (bib33) 1999; 400 Tanny, Erdjument-Bromage, Tempst, Allis (bib46) 2007; 21 Ng, Dole, Struhl (bib32) 2003; 278 Wyers, Rougemaille, Badis, Rousselle, Dufour, Boulay, Regnault, Devaux, Namane, Seraphin (bib53) 2005; 121 Kaplan, Laprade, Winston (bib19) 2003; 301 Krogan, Kim, Ahn, Zhong, Kobor, Cagney, Emili, Shilatifard, Buratowski, Greenblatt (bib22) 2002; 22 Wood, Schneider, Dover, Johnston, Shilatifard (bib51) 2003; 278 Zhu, Mandal, Pham, Zheng, Erdjument-Bromage, Batra, Tempst, Reinberg (bib57) 2005; 19 Zhou, Zhu, Wang, Pascual, Ohgi, Lozach, Glass, Rosenfeld (bib56) 2008; 29 Sun, Allis (bib45) 2002; 418 Govind, Zhang, Qiu, Hofmeyer, Hinnebusch (bib11) 2007; 25 VanDemark, Xin, McCullough, Rawlins, Bentley, Heroux, Stillman, Hill, Formosa (bib48) 2008; 283 Tsukuda, Fleming, Nickoloff, Osley (bib47) 2005; 438 Kouzarides (bib21) 2007; 128 Bernstein, Liu, Humphrey, Perlstein, Schreiber (bib3) 2004; 5 Osley (bib34) 2006; 4 Xiao, Kao, Krogan, Sun, Greenblatt, Osley, Strahl (bib55) 2005; 25 Formosa, Eriksson, Wittmeyer, Ginn, Yu, Stillman (bib9) 2001; 20 Krogan, Dover, Wood, Schneider, Heidt, Boateng, Dean, Ryan, Golshani, Johnston (bib23) 2003; 11 Dover, Schneider, Tawiah-Boateng, Wood, Dean, Johnston, Shilatifard (bib6) 2002; 277 Schwabish, Struhl (bib41) 2004; 24 Pokholok, Harbison, Levine, Cole, Hannett, Lee, Bell, Walker, Rolfe, Herbolsheimer (bib36) 2005; 122 Bernstein, Humphrey, Erlich, Schneider, Bouman, Liu, Kouzarides, Schreiber (bib2) 2002; 99 Gardner, Nelson, Gottschling (bib10) 2005; 25 Squazzo, Costa, Lindstrom, Kumer, Simic, Jennings, Link, Arndt, Hartzog (bib44) 2002; 21 Duina, Rufiange, Bracey, Hall, Nourani, Winston (bib7) 2007; 177 Laribee, Krogan, Xiao, Shibata, Hughes, Greenblatt, Strahl (bib24) 2005; 15 Xiao, Hall, Kizer, Shibata, Hall, Borchers, Strahl (bib54) 2003; 17 Wyce, Xiao, Whelan, Kosman, Walter, Eick, Hughes, Krogan, Strahl, Berger (bib52) 2007; 27 Robzyk, Recht, Osley (bib37) 2000; 287 Hwang, Venkatasubrahmanyam, Ianculescu, Tong, Boone, Madhani (bib14) 2003; 11 Hartzog, Wada, Handa, Winston (bib12) 1998; 12 Wood, Krogan, Dover, Schneider, Heidt, Boateng, Dean, Golshani, Zhang, Greenblatt (bib50) 2003; 11 Pavri, Zhu, Li, Trojer, Mandal, Shilatifard, Reinberg (bib35) 2006; 125 Kaplan, Morris, Wu, Winston (bib18) 2000; 14 Li, Carey, Workman (bib27) 2007; 128 Mason, Struhl (bib29) 2003; 23 Shahbazian, Zhang, Grunstein (bib43) 2005; 19 Wittmeyer, Joss, Formosa (bib49) 1999; 38 Dion, Kaplan, Kim, Buratowski, Friedman, Rando (bib5) 2007; 315 Mutiu, Hoke, Genereaux, Liang, Brandl (bib31) 2007; 277 Zhu, Zheng, Pham, Mandal, Erdjument-Bromage, Tempst, Reinberg (bib58) 2005; 20 Endoh, Zhu, Hasegawa, Watanabe, Kim, Aida, Inukai, Narita, Yamada, Furuya (bib8) 2004; 24 Santos-Rosa, Schneider, Bannister, Sherriff, Bernstein, Emre, Schreiber, Mellor, Kouzarides (bib38) 2002; 419 Li, Gogol, Carey, Pattenden, Seidel, Workman (bib28) 2007; 21 Lee, Shibata, Rao, Strahl, Lieb (bib25) 2004; 36 Li, Howe, Anderson, Yates, Workman (bib26) 2003; 278 Belotserkovskaya, Oh, Bondarenko, Orphanides, Studitsky, Reinberg (bib1) 2003; 301 Schwabish, Struhl (bib42) 2006; 22 Henry, Wyce, Lo, Duggan, Emre, Kao, Pillus, Shilatifard, Osley, Berger (bib13) 2003; 17 Schneider, Bannister, Myers, Thorne, Crane-Robinson, Kouzarides (bib40) 2004; 6 Kim, Seol, Han, Youn, Cho (bib20) 2007; 26 Jimeno-Gonzalez, Gomez-Herreros, Alepuz, Chavez (bib15) 2006; 26 Carrozza, Li, Florens, Suganuma, Swanson, Lee, Shia, Anderson, Yates, Washburn (bib4) 2005; 123 Joshi, Struhl (bib16) 2005; 20 Saunders, Werner, Andrulis, Nakayama, Hirose, Reinberg, Lis (bib39) 2003; 301 Minsky, Shema, Field, Schuster, Segal, Oren (bib30) 2008; 16 Mutiu (10.1016/j.molcel.2008.04.025_bib31) 2007; 277 Jimeno-Gonzalez (10.1016/j.molcel.2008.04.025_bib15) 2006; 26 Orphanides (10.1016/j.molcel.2008.04.025_bib33) 1999; 400 Li (10.1016/j.molcel.2008.04.025_bib27) 2007; 128 Li (10.1016/j.molcel.2008.04.025_bib28) 2007; 21 Li (10.1016/j.molcel.2008.04.025_bib26) 2003; 278 Hartzog (10.1016/j.molcel.2008.04.025_bib12) 1998; 12 Joshi (10.1016/j.molcel.2008.04.025_bib16) 2005; 20 Kim (10.1016/j.molcel.2008.04.025_bib20) 2007; 26 Lee (10.1016/j.molcel.2008.04.025_bib25) 2004; 36 Pavri (10.1016/j.molcel.2008.04.025_bib35) 2006; 125 Ng (10.1016/j.molcel.2008.04.025_bib32) 2003; 278 Wyce (10.1016/j.molcel.2008.04.025_bib52) 2007; 27 Bernstein (10.1016/j.molcel.2008.04.025_bib2) 2002; 99 Krogan (10.1016/j.molcel.2008.04.025_bib22) 2002; 22 Wittmeyer (10.1016/j.molcel.2008.04.025_bib49) 1999; 38 Govind (10.1016/j.molcel.2008.04.025_bib11) 2007; 25 Henry (10.1016/j.molcel.2008.04.025_bib13) 2003; 17 Xiao (10.1016/j.molcel.2008.04.025_bib54) 2003; 17 Squazzo (10.1016/j.molcel.2008.04.025_bib44) 2002; 21 Laribee (10.1016/j.molcel.2008.04.025_bib24) 2005; 15 Kao (10.1016/j.molcel.2008.04.025_bib17) 2004; 18 Minsky (10.1016/j.molcel.2008.04.025_bib30) 2008; 16 Carrozza (10.1016/j.molcel.2008.04.025_bib4) 2005; 123 Dover (10.1016/j.molcel.2008.04.025_bib6) 2002; 277 Schwabish (10.1016/j.molcel.2008.04.025_bib42) 2006; 22 Krogan (10.1016/j.molcel.2008.04.025_bib23) 2003; 11 Wood (10.1016/j.molcel.2008.04.025_bib50) 2003; 11 Mason (10.1016/j.molcel.2008.04.025_bib29) 2003; 23 Kaplan (10.1016/j.molcel.2008.04.025_bib19) 2003; 301 Tanny (10.1016/j.molcel.2008.04.025_bib46) 2007; 21 Wood (10.1016/j.molcel.2008.04.025_bib51) 2003; 278 Xiao (10.1016/j.molcel.2008.04.025_bib55) 2005; 25 Saunders (10.1016/j.molcel.2008.04.025_bib39) 2003; 301 Osley (10.1016/j.molcel.2008.04.025_bib34) 2006; 4 Schneider (10.1016/j.molcel.2008.04.025_bib40) 2004; 6 Sun (10.1016/j.molcel.2008.04.025_bib45) 2002; 418 Zhu (10.1016/j.molcel.2008.04.025_bib57) 2005; 19 Dion (10.1016/j.molcel.2008.04.025_bib5) 2007; 315 Zhu (10.1016/j.molcel.2008.04.025_bib58) 2005; 20 Bernstein (10.1016/j.molcel.2008.04.025_bib3) 2004; 5 Kaplan (10.1016/j.molcel.2008.04.025_bib18) 2000; 14 Zhou (10.1016/j.molcel.2008.04.025_bib56) 2008; 29 Pokholok (10.1016/j.molcel.2008.04.025_bib36) 2005; 122 Belotserkovskaya (10.1016/j.molcel.2008.04.025_bib1) 2003; 301 Shahbazian (10.1016/j.molcel.2008.04.025_bib43) 2005; 19 Kouzarides (10.1016/j.molcel.2008.04.025_bib21) 2007; 128 VanDemark (10.1016/j.molcel.2008.04.025_bib48) 2008; 283 Gardner (10.1016/j.molcel.2008.04.025_bib10) 2005; 25 Duina (10.1016/j.molcel.2008.04.025_bib7) 2007; 177 Endoh (10.1016/j.molcel.2008.04.025_bib8) 2004; 24 Hwang (10.1016/j.molcel.2008.04.025_bib14) 2003; 11 Santos-Rosa (10.1016/j.molcel.2008.04.025_bib38) 2002; 419 Formosa (10.1016/j.molcel.2008.04.025_bib9) 2001; 20 Wyers (10.1016/j.molcel.2008.04.025_bib53) 2005; 121 Schwabish (10.1016/j.molcel.2008.04.025_bib41) 2004; 24 Robzyk (10.1016/j.molcel.2008.04.025_bib37) 2000; 287 Tsukuda (10.1016/j.molcel.2008.04.025_bib47) 2005; 438 18614040 - Mol Cell. 2008 Jul 11;31(1):2-4 |
References_xml | – volume: 287 start-page: 501 year: 2000 end-page: 504 ident: bib37 article-title: Rad6-dependent ubiquitination of histone H2B in yeast publication-title: Science – volume: 20 start-page: 601 year: 2005 end-page: 611 ident: bib58 article-title: Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation publication-title: Mol. Cell – volume: 4 start-page: 179 year: 2006 end-page: 189 ident: bib34 article-title: Regulation of histone H2A and H2B ubiquitylation publication-title: Brief. Funct. Genomic Proteomic – volume: 438 start-page: 379 year: 2005 end-page: 383 ident: bib47 article-title: Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae publication-title: Nature – volume: 20 start-page: 3506 year: 2001 end-page: 3517 ident: bib9 article-title: Spt16-Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding factor SPN publication-title: EMBO J. – volume: 277 start-page: 491 year: 2007 end-page: 506 ident: bib31 article-title: The role of histone ubiquitylation and deubiquitylation in gene expression as determined by the analysis of an HTB1(K123R) publication-title: Mol. Genet. Genomics – volume: 38 start-page: 8961 year: 1999 end-page: 8971 ident: bib49 article-title: Spt16 and Pob3 of Saccharomyces cerevisiae form an essential, abundant heterodimer that is nuclear, chromatin-associated, and copurifies with DNA polymerase alpha publication-title: Biochemistry – volume: 21 start-page: 1764 year: 2002 end-page: 1774 ident: bib44 article-title: The Paf1 complex physically and functionally associates with transcription elongation factors in vivo publication-title: EMBO J. – volume: 22 start-page: 415 year: 2006 end-page: 422 ident: bib42 article-title: Asf1 mediates histone eviction and deposition during elongation by RNA polymerase II publication-title: Mol. Cell – volume: 121 start-page: 725 year: 2005 end-page: 737 ident: bib53 article-title: Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase publication-title: Cell – volume: 278 start-page: 33625 year: 2003 end-page: 33628 ident: bib32 article-title: The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B publication-title: J. Biol. Chem. – volume: 277 start-page: 28368 year: 2002 end-page: 28371 ident: bib6 article-title: Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6 publication-title: J. Biol. Chem. – volume: 25 start-page: 6123 year: 2005 end-page: 6139 ident: bib10 article-title: Ubp10/Dot4p regulates the persistence of ubiquitinated histone H2B: distinct roles in telomeric silencing and general chromatin publication-title: Mol. Cell. Biol. – volume: 123 start-page: 581 year: 2005 end-page: 592 ident: bib4 article-title: Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription publication-title: Cell – volume: 14 start-page: 2623 year: 2000 end-page: 2634 ident: bib18 article-title: Spt5 and Spt6 are associated with active transcription and have characteristics of general elongation factors in publication-title: Genes Dev. – volume: 24 start-page: 10111 year: 2004 end-page: 10117 ident: bib41 article-title: Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II publication-title: Mol. Cell. Biol. – volume: 99 start-page: 8695 year: 2002 end-page: 8700 ident: bib2 article-title: Methylation of histone H3 Lys 4 in coding regions of active genes publication-title: Proc. Natl. Acad. Sci. USA – volume: 24 start-page: 3324 year: 2004 end-page: 3336 ident: bib8 article-title: Human Spt6 stimulates transcription elongation by RNA polymerase II in vitro publication-title: Mol. Cell. Biol. – volume: 21 start-page: 1422 year: 2007 end-page: 1430 ident: bib28 article-title: Infrequently transcribed long genes depend on the Set2/Rpd3S pathway for accurate transcription publication-title: Genes Dev. – volume: 418 start-page: 104 year: 2002 end-page: 108 ident: bib45 article-title: Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast publication-title: Nature – volume: 19 start-page: 1668 year: 2005 end-page: 1673 ident: bib57 article-title: The human PAF complex coordinates transcription with events downstream of RNA synthesis publication-title: Genes Dev. – volume: 122 start-page: 517 year: 2005 end-page: 527 ident: bib36 article-title: Genome-wide map of nucleosome acetylation and methylation in yeast publication-title: Cell – volume: 18 start-page: 184 year: 2004 end-page: 195 ident: bib17 article-title: Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B publication-title: Genes Dev. – volume: 19 start-page: 271 year: 2005 end-page: 277 ident: bib43 article-title: Histone H2B ubiquitylation controls processive methylation but not monomethylation by Dot1 and Set1 publication-title: Mol. Cell – volume: 301 start-page: 1096 year: 2003 end-page: 1099 ident: bib19 article-title: Transcription elongation factors repress transcription initiation from cryptic sites publication-title: Science – volume: 11 start-page: 721 year: 2003 end-page: 729 ident: bib23 article-title: The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation publication-title: Mol. Cell – volume: 400 start-page: 284 year: 1999 end-page: 288 ident: bib33 article-title: The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins publication-title: Nature – volume: 125 start-page: 703 year: 2006 end-page: 717 ident: bib35 article-title: Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II publication-title: Cell – volume: 12 start-page: 357 year: 1998 end-page: 369 ident: bib12 article-title: Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in publication-title: Genes Dev. – volume: 5 start-page: R62 year: 2004 ident: bib3 article-title: Global nucleosome occupancy in yeast publication-title: Genome Biol. – volume: 278 start-page: 34739 year: 2003 end-page: 34742 ident: bib51 article-title: The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p publication-title: J. Biol. Chem. – volume: 419 start-page: 407 year: 2002 end-page: 411 ident: bib38 article-title: Active genes are tri-methylated at K4 of histone H3 publication-title: Nature – volume: 315 start-page: 1405 year: 2007 end-page: 1408 ident: bib5 article-title: Dynamics of replication-independent histone turnover in budding yeast publication-title: Science – volume: 25 start-page: 31 year: 2007 end-page: 42 ident: bib11 article-title: Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions publication-title: Mol. Cell – volume: 16 year: 2008 ident: bib30 article-title: Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells publication-title: Nat. Cell Biol. – volume: 36 start-page: 900 year: 2004 end-page: 905 ident: bib25 article-title: Evidence for nucleosome depletion at active regulatory regions genome-wide publication-title: Nat. Genet. – volume: 177 start-page: 101 year: 2007 end-page: 112 ident: bib7 article-title: Evidence that the localization of the elongation factor Spt16 across transcribed genes is dependent upon histone H3 integrity in publication-title: Genetics – volume: 11 start-page: 261 year: 2003 end-page: 266 ident: bib14 article-title: A conserved RING finger protein required for histone H2B monoubiquitination and cell size control publication-title: Mol. Cell – volume: 15 start-page: 1487 year: 2005 end-page: 1493 ident: bib24 article-title: BUR kinase selectively regulates H3 K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex publication-title: Curr. Biol. – volume: 26 start-page: 8710 year: 2006 end-page: 8721 ident: bib15 article-title: A gene-specific requirement for FACT during transcription is related to the chromatin organization of the transcribed region publication-title: Mol. Cell. Biol. – volume: 128 start-page: 707 year: 2007 end-page: 719 ident: bib27 article-title: The role of chromatin during transcription publication-title: Cell – volume: 17 start-page: 2648 year: 2003 end-page: 2663 ident: bib13 article-title: Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8 publication-title: Genes Dev. – volume: 26 start-page: 4467 year: 2007 end-page: 4474 ident: bib20 article-title: Histone chaperones regulate histone exchange during transcription publication-title: EMBO J. – volume: 128 start-page: 693 year: 2007 end-page: 705 ident: bib21 article-title: Chromatin modifications and their function publication-title: Cell – volume: 22 start-page: 6979 year: 2002 end-page: 6992 ident: bib22 article-title: RNA polymerase II elongation factors of publication-title: Mol. Cell. Biol. – volume: 283 start-page: 5058 year: 2008 end-page: 5068 ident: bib48 article-title: Structural and functional analysis of the Spt16p N-terminal domain reveals overlapping roles of yFACT subunits publication-title: J. Biol. Chem. – volume: 6 start-page: 73 year: 2004 end-page: 77 ident: bib40 article-title: Histone H3 lysine 4 methylation patterns in higher eukaryotic genes publication-title: Nat. Cell Biol. – volume: 301 start-page: 1094 year: 2003 end-page: 1096 ident: bib39 article-title: Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo publication-title: Science – volume: 25 start-page: 637 year: 2005 end-page: 651 ident: bib55 article-title: Histone H2B ubiquitylation is associated with elongating RNA polymerase II publication-title: Mol. Cell. Biol. – volume: 20 start-page: 971 year: 2005 end-page: 978 ident: bib16 article-title: Eaf3 chromodomain interaction with methylated H3–K36 links histone deacetylation to Pol II elongation publication-title: Mol. Cell – volume: 29 start-page: 69 year: 2008 end-page: 80 ident: bib56 article-title: Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation publication-title: Mol. Cell – volume: 11 start-page: 267 year: 2003 end-page: 274 ident: bib50 article-title: Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter publication-title: Mol. Cell – volume: 27 start-page: 275 year: 2007 end-page: 288 ident: bib52 article-title: H2B ubiquitylation acts as a barrier to Ctk1 nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex publication-title: Mol. Cell – volume: 278 start-page: 8897 year: 2003 end-page: 8903 ident: bib26 article-title: The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II publication-title: J. Biol. Chem. – volume: 17 start-page: 654 year: 2003 end-page: 663 ident: bib54 article-title: Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast publication-title: Genes Dev. – volume: 301 start-page: 1090 year: 2003 end-page: 1093 ident: bib1 article-title: FACT facilitates transcription-dependent nucleosome alteration publication-title: Science – volume: 23 start-page: 8323 year: 2003 end-page: 8333 ident: bib29 article-title: The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo publication-title: Mol. Cell. Biol. – volume: 21 start-page: 835 year: 2007 end-page: 847 ident: bib46 article-title: Ubiquitylation of histone H2B controls RNA polymerase II transcription elongation independently of histone H3 methylation publication-title: Genes Dev. – volume: 15 start-page: 1487 year: 2005 ident: 10.1016/j.molcel.2008.04.025_bib24 article-title: BUR kinase selectively regulates H3 K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex publication-title: Curr. Biol. doi: 10.1016/j.cub.2005.07.028 – volume: 125 start-page: 703 year: 2006 ident: 10.1016/j.molcel.2008.04.025_bib35 article-title: Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II publication-title: Cell doi: 10.1016/j.cell.2006.04.029 – volume: 11 start-page: 261 year: 2003 ident: 10.1016/j.molcel.2008.04.025_bib14 article-title: A conserved RING finger protein required for histone H2B monoubiquitination and cell size control publication-title: Mol. Cell doi: 10.1016/S1097-2765(02)00826-2 – volume: 19 start-page: 271 year: 2005 ident: 10.1016/j.molcel.2008.04.025_bib43 article-title: Histone H2B ubiquitylation controls processive methylation but not monomethylation by Dot1 and Set1 publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.06.010 – volume: 18 start-page: 184 year: 2004 ident: 10.1016/j.molcel.2008.04.025_bib17 article-title: Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B publication-title: Genes Dev. doi: 10.1101/gad.1149604 – volume: 287 start-page: 501 year: 2000 ident: 10.1016/j.molcel.2008.04.025_bib37 article-title: Rad6-dependent ubiquitination of histone H2B in yeast publication-title: Science doi: 10.1126/science.287.5452.501 – volume: 418 start-page: 104 year: 2002 ident: 10.1016/j.molcel.2008.04.025_bib45 article-title: Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast publication-title: Nature doi: 10.1038/nature00883 – volume: 128 start-page: 693 year: 2007 ident: 10.1016/j.molcel.2008.04.025_bib21 article-title: Chromatin modifications and their function publication-title: Cell doi: 10.1016/j.cell.2007.02.005 – volume: 17 start-page: 654 year: 2003 ident: 10.1016/j.molcel.2008.04.025_bib54 article-title: Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast publication-title: Genes Dev. doi: 10.1101/gad.1055503 – volume: 4 start-page: 179 year: 2006 ident: 10.1016/j.molcel.2008.04.025_bib34 article-title: Regulation of histone H2A and H2B ubiquitylation publication-title: Brief. Funct. Genomic Proteomic doi: 10.1093/bfgp/ell022 – volume: 419 start-page: 407 year: 2002 ident: 10.1016/j.molcel.2008.04.025_bib38 article-title: Active genes are tri-methylated at K4 of histone H3 publication-title: Nature doi: 10.1038/nature01080 – volume: 22 start-page: 6979 year: 2002 ident: 10.1016/j.molcel.2008.04.025_bib22 article-title: RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.22.20.6979-6992.2002 – volume: 278 start-page: 33625 year: 2003 ident: 10.1016/j.molcel.2008.04.025_bib32 article-title: The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B publication-title: J. Biol. Chem. doi: 10.1074/jbc.C300270200 – volume: 278 start-page: 8897 year: 2003 ident: 10.1016/j.molcel.2008.04.025_bib26 article-title: The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II publication-title: J. Biol. Chem. doi: 10.1074/jbc.M212134200 – volume: 283 start-page: 5058 year: 2008 ident: 10.1016/j.molcel.2008.04.025_bib48 article-title: Structural and functional analysis of the Spt16p N-terminal domain reveals overlapping roles of yFACT subunits publication-title: J. Biol. Chem. doi: 10.1074/jbc.M708682200 – volume: 123 start-page: 581 year: 2005 ident: 10.1016/j.molcel.2008.04.025_bib4 article-title: Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription publication-title: Cell doi: 10.1016/j.cell.2005.10.023 – volume: 12 start-page: 357 year: 1998 ident: 10.1016/j.molcel.2008.04.025_bib12 article-title: Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae publication-title: Genes Dev. doi: 10.1101/gad.12.3.357 – volume: 22 start-page: 415 year: 2006 ident: 10.1016/j.molcel.2008.04.025_bib42 article-title: Asf1 mediates histone eviction and deposition during elongation by RNA polymerase II publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.03.014 – volume: 24 start-page: 3324 year: 2004 ident: 10.1016/j.molcel.2008.04.025_bib8 article-title: Human Spt6 stimulates transcription elongation by RNA polymerase II in vitro publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.8.3324-3336.2004 – volume: 21 start-page: 835 year: 2007 ident: 10.1016/j.molcel.2008.04.025_bib46 article-title: Ubiquitylation of histone H2B controls RNA polymerase II transcription elongation independently of histone H3 methylation publication-title: Genes Dev. doi: 10.1101/gad.1516207 – volume: 278 start-page: 34739 year: 2003 ident: 10.1016/j.molcel.2008.04.025_bib51 article-title: The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p publication-title: J. Biol. Chem. doi: 10.1074/jbc.C300269200 – volume: 25 start-page: 31 year: 2007 ident: 10.1016/j.molcel.2008.04.025_bib11 article-title: Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.11.020 – volume: 21 start-page: 1422 year: 2007 ident: 10.1016/j.molcel.2008.04.025_bib28 article-title: Infrequently transcribed long genes depend on the Set2/Rpd3S pathway for accurate transcription publication-title: Genes Dev. doi: 10.1101/gad.1539307 – volume: 26 start-page: 8710 year: 2006 ident: 10.1016/j.molcel.2008.04.025_bib15 article-title: A gene-specific requirement for FACT during transcription is related to the chromatin organization of the transcribed region publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01129-06 – volume: 20 start-page: 971 year: 2005 ident: 10.1016/j.molcel.2008.04.025_bib16 article-title: Eaf3 chromodomain interaction with methylated H3–K36 links histone deacetylation to Pol II elongation publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.11.021 – volume: 277 start-page: 28368 year: 2002 ident: 10.1016/j.molcel.2008.04.025_bib6 article-title: Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6 publication-title: J. Biol. Chem. doi: 10.1074/jbc.C200348200 – volume: 14 start-page: 2623 year: 2000 ident: 10.1016/j.molcel.2008.04.025_bib18 article-title: Spt5 and Spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster publication-title: Genes Dev. doi: 10.1101/gad.831900 – volume: 17 start-page: 2648 year: 2003 ident: 10.1016/j.molcel.2008.04.025_bib13 article-title: Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8 publication-title: Genes Dev. doi: 10.1101/gad.1144003 – volume: 25 start-page: 637 year: 2005 ident: 10.1016/j.molcel.2008.04.025_bib55 article-title: Histone H2B ubiquitylation is associated with elongating RNA polymerase II publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.2.637-651.2005 – volume: 29 start-page: 69 year: 2008 ident: 10.1016/j.molcel.2008.04.025_bib56 article-title: Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.11.002 – volume: 23 start-page: 8323 year: 2003 ident: 10.1016/j.molcel.2008.04.025_bib29 article-title: The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.22.8323-8333.2003 – volume: 301 start-page: 1094 year: 2003 ident: 10.1016/j.molcel.2008.04.025_bib39 article-title: Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo publication-title: Science doi: 10.1126/science.1085712 – volume: 27 start-page: 275 year: 2007 ident: 10.1016/j.molcel.2008.04.025_bib52 article-title: H2B ubiquitylation acts as a barrier to Ctk1 nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.01.035 – volume: 277 start-page: 491 year: 2007 ident: 10.1016/j.molcel.2008.04.025_bib31 article-title: The role of histone ubiquitylation and deubiquitylation in gene expression as determined by the analysis of an HTB1(K123R) Saccharomyces cerevisiae strain publication-title: Mol. Genet. Genomics doi: 10.1007/s00438-007-0212-6 – volume: 5 start-page: R62 year: 2004 ident: 10.1016/j.molcel.2008.04.025_bib3 article-title: Global nucleosome occupancy in yeast publication-title: Genome Biol. doi: 10.1186/gb-2004-5-9-r62 – volume: 438 start-page: 379 year: 2005 ident: 10.1016/j.molcel.2008.04.025_bib47 article-title: Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae publication-title: Nature doi: 10.1038/nature04148 – volume: 25 start-page: 6123 year: 2005 ident: 10.1016/j.molcel.2008.04.025_bib10 article-title: Ubp10/Dot4p regulates the persistence of ubiquitinated histone H2B: distinct roles in telomeric silencing and general chromatin publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.14.6123-6139.2005 – volume: 24 start-page: 10111 year: 2004 ident: 10.1016/j.molcel.2008.04.025_bib41 article-title: Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.23.10111-10117.2004 – volume: 36 start-page: 900 year: 2004 ident: 10.1016/j.molcel.2008.04.025_bib25 article-title: Evidence for nucleosome depletion at active regulatory regions genome-wide publication-title: Nat. Genet. doi: 10.1038/ng1400 – volume: 19 start-page: 1668 year: 2005 ident: 10.1016/j.molcel.2008.04.025_bib57 article-title: The human PAF complex coordinates transcription with events downstream of RNA synthesis publication-title: Genes Dev. doi: 10.1101/gad.1292105 – volume: 20 start-page: 3506 year: 2001 ident: 10.1016/j.molcel.2008.04.025_bib9 article-title: Spt16-Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding factor SPN publication-title: EMBO J. doi: 10.1093/emboj/20.13.3506 – volume: 400 start-page: 284 year: 1999 ident: 10.1016/j.molcel.2008.04.025_bib33 article-title: The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins publication-title: Nature doi: 10.1038/22350 – volume: 26 start-page: 4467 year: 2007 ident: 10.1016/j.molcel.2008.04.025_bib20 article-title: Histone chaperones regulate histone exchange during transcription publication-title: EMBO J. doi: 10.1038/sj.emboj.7601870 – volume: 11 start-page: 721 year: 2003 ident: 10.1016/j.molcel.2008.04.025_bib23 article-title: The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00091-1 – volume: 16 year: 2008 ident: 10.1016/j.molcel.2008.04.025_bib30 article-title: Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells publication-title: Nat. Cell Biol. – volume: 301 start-page: 1096 year: 2003 ident: 10.1016/j.molcel.2008.04.025_bib19 article-title: Transcription elongation factors repress transcription initiation from cryptic sites publication-title: Science doi: 10.1126/science.1087374 – volume: 20 start-page: 601 year: 2005 ident: 10.1016/j.molcel.2008.04.025_bib58 article-title: Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.09.025 – volume: 177 start-page: 101 year: 2007 ident: 10.1016/j.molcel.2008.04.025_bib7 article-title: Evidence that the localization of the elongation factor Spt16 across transcribed genes is dependent upon histone H3 integrity in Saccharomyces cerevisiae publication-title: Genetics doi: 10.1534/genetics.106.067140 – volume: 122 start-page: 517 year: 2005 ident: 10.1016/j.molcel.2008.04.025_bib36 article-title: Genome-wide map of nucleosome acetylation and methylation in yeast publication-title: Cell doi: 10.1016/j.cell.2005.06.026 – volume: 121 start-page: 725 year: 2005 ident: 10.1016/j.molcel.2008.04.025_bib53 article-title: Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase publication-title: Cell doi: 10.1016/j.cell.2005.04.030 – volume: 6 start-page: 73 year: 2004 ident: 10.1016/j.molcel.2008.04.025_bib40 article-title: Histone H3 lysine 4 methylation patterns in higher eukaryotic genes publication-title: Nat. Cell Biol. doi: 10.1038/ncb1076 – volume: 11 start-page: 267 year: 2003 ident: 10.1016/j.molcel.2008.04.025_bib50 article-title: Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter publication-title: Mol. Cell doi: 10.1016/S1097-2765(02)00802-X – volume: 315 start-page: 1405 year: 2007 ident: 10.1016/j.molcel.2008.04.025_bib5 article-title: Dynamics of replication-independent histone turnover in budding yeast publication-title: Science doi: 10.1126/science.1134053 – volume: 21 start-page: 1764 year: 2002 ident: 10.1016/j.molcel.2008.04.025_bib44 article-title: The Paf1 complex physically and functionally associates with transcription elongation factors in vivo publication-title: EMBO J. doi: 10.1093/emboj/21.7.1764 – volume: 99 start-page: 8695 year: 2002 ident: 10.1016/j.molcel.2008.04.025_bib2 article-title: Methylation of histone H3 Lys 4 in coding regions of active genes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.082249499 – volume: 38 start-page: 8961 year: 1999 ident: 10.1016/j.molcel.2008.04.025_bib49 article-title: Spt16 and Pob3 of Saccharomyces cerevisiae form an essential, abundant heterodimer that is nuclear, chromatin-associated, and copurifies with DNA polymerase alpha publication-title: Biochemistry doi: 10.1021/bi982851d – volume: 301 start-page: 1090 year: 2003 ident: 10.1016/j.molcel.2008.04.025_bib1 article-title: FACT facilitates transcription-dependent nucleosome alteration publication-title: Science doi: 10.1126/science.1085703 – volume: 128 start-page: 707 year: 2007 ident: 10.1016/j.molcel.2008.04.025_bib27 article-title: The role of chromatin during transcription publication-title: Cell doi: 10.1016/j.cell.2007.01.015 – reference: 18614040 - Mol Cell. 2008 Jul 11;31(1):2-4 |
SSID | ssj0014589 |
Score | 2.4298804 |
Snippet | The monoubiquitylation of histone H2B has been associated with transcription initiation and elongation, but its role in these processes is poorly understood.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 57 |
SubjectTerms | Cell Cycle Proteins - metabolism Chromatin - metabolism DNA Galactokinase - metabolism Histones - metabolism Kinetics Lysine - metabolism Methylation Nucleosomes - metabolism Protein Binding RNA Polymerase II - metabolism Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - metabolism Transcription Factors - metabolism Transcription, Genetic Transcriptional Elongation Factors Ubiquitination |
Title | H2B Ubiquitylation Plays a Role in Nucleosome Dynamics during Transcription Elongation |
URI | https://dx.doi.org/10.1016/j.molcel.2008.04.025 https://www.ncbi.nlm.nih.gov/pubmed/18614047 https://www.proquest.com/docview/69307088 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jIHgRfzt_5uA1rmvTpD26uTEEh6iT3kqaJTLp2mm3w_5785p2IigDryVtw3vJ976Q996H0LWm2tG-kxCpdUIo04IEAfOJIaM8CTythIYC54cRG47pfeRHDdSra2EgrbLCfovpJVpXT9qVNdvz6bT9DHenLgeGAYJkXmRwGKpKoYgv6q5vEqhfyuDBYAKj6_K5MsdrlqdSpVVGJb1xQDD79_D0F_0sw9BgF-1U_BHf2inuoYbK9tGWVZRcHaDXodvF42T6sTTs2qa54cdUrAos8FOeKjzN8AhaGOdFPlP4zurRF9hWK-IyctU4gvtpnr2V3zhE40H_pTcklXQCkZS7C8J9lVA90a7WTBpKwrjgrnCMu0LtmxNFwMzG5jrwAq4mlMEpkEIzOWWCmghp6B2hZpZn6gRhKTodSX1Do5jZ7dJPZEAnoZY6cUPDPsIW8mqLxbLqKw7yFmlcJ5C9x9bOleQljY2dW4is35rbvhobxvPaGfGP9REb6N_w5lXtu9hsHbgPEZnKl0UMKpDcoGwLHVuXfs8kYNB2iJ_--69naNtmlnDS6Zyj5uJzqS4MfVkkl-X6_AJhre02 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGEIIL4s145sA1rGvTpD3CAI3XhICh3aI0S9BQ1w62Hfj3JE0LQgIhca2SNLId-4ti-wM40kR7OvQSLLVOMKFa4CiiITZglCVRoJXQtsD5tks7PXLVD_s1aFe1MDatsvT9zqcX3rr80iyl2RwPh80H-3bqM4swLCFZ0J-DeYMGPGval_3Tz6cEEhY8eHY0tsOr-rkiyWuUp1KlZUolOfYsY_bP8ek3_FnEoYsVWC4BJDpxe1yFmsrWYMFRSr6vw1PHP0W9ZPg6M_Da5bmhu1S8T5BA93mq0DBDXdvDOJ_kI4XOHCH9BLlyRVSErsqRoPM0z56LNTagd3H-2O7gkjsBS8L8KWahSogeaF9rKg0moUwwX3hGX7EOzZUiouZkMx0FEVMDQu01kNhucspENRGTONiEepZnahuQFK2WJKHBUdQcdxkmMiKDWEud-LGBH3EDgkpiXJaNxS2_RcqrDLIX7uRccl4SbuTcAPw5a-waa_wxnlXK4N8MhBvf_8fMw0p33Jwd-yAiMpXPJtzSQDLjZhuw5VT6tZOI2r5DbOfffz2Exc7j7Q2_uexe78KSSzNhuNXag_r0bab2DZaZJgeFrX4AYBbwWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=H2B+ubiquitylation+plays+a+role+in+nucleosome+dynamics+during+transcription+elongation&rft.jtitle=Molecular+cell&rft.au=Fleming%2C+Alastair+B&rft.au=Kao%2C+Cheng-Fu&rft.au=Hillyer%2C+Cory&rft.au=Pikaart%2C+Michael&rft.date=2008-07-11&rft.eissn=1097-4164&rft.volume=31&rft.issue=1&rft.spage=57&rft_id=info:doi/10.1016%2Fj.molcel.2008.04.025&rft_id=info%3Apmid%2F18614047&rft.externalDocID=18614047 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |