Preparation of Stable Phase Change Material Emulsions for Thermal Energy Storage and Thermal Management Applications: A Review
Thermal energy storage (TES) is an important means for the conservation and efficient utilization of excessive and renewable energy. With a much higher thermal storage capacity, latent heat storage (LHS) may be more efficient than sensible heat storage. Phase change materials (PCMs) are the essentia...
Saved in:
Published in | Materials Vol. 15; no. 1; p. 121 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
24.12.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1996-1944 1996-1944 |
DOI | 10.3390/ma15010121 |
Cover
Abstract | Thermal energy storage (TES) is an important means for the conservation and efficient utilization of excessive and renewable energy. With a much higher thermal storage capacity, latent heat storage (LHS) may be more efficient than sensible heat storage. Phase change materials (PCMs) are the essential storage media for LHS. PCM emulsions have been developed for LHS in flow systems, which act as both heat transfer and thermal storage media with enhanced heat transfer, low pumping power, and high thermal storage capacity. However, two major barriers to the application of PCM emulsions are their instability and high degree of supercooling. To overcome these, various strategies have been attempted, such as the reduction of emulsion droplet size, addition of nucleating agents, and optimization of the formulation. To the best of our knowledge, however, there is still a lack of review articles on fabrication methods for PCM emulsions or their latest applications. This review was to provide an up-to-date and comprehensive summary on the effective strategies and the underlying mechanisms for the preparation of stable PCM emulsions and reduction of supercooling, especially with the organic PCMs of paraffin. It was also to share our insightful perspectives on further development and potential applications of PCM emulsions for efficient energy storage. |
---|---|
AbstractList | Thermal energy storage (TES) is an important means for the conservation and efficient utilization of excessive and renewable energy. With a much higher thermal storage capacity, latent heat storage (LHS) may be more efficient than sensible heat storage. Phase change materials (PCMs) are the essential storage media for LHS. PCM emulsions have been developed for LHS in flow systems, which act as both heat transfer and thermal storage media with enhanced heat transfer, low pumping power, and high thermal storage capacity. However, two major barriers to the application of PCM emulsions are their instability and high degree of supercooling. To overcome these, various strategies have been attempted, such as the reduction of emulsion droplet size, addition of nucleating agents, and optimization of the formulation. To the best of our knowledge, however, there is still a lack of review articles on fabrication methods for PCM emulsions or their latest applications. This review was to provide an up-to-date and comprehensive summary on the effective strategies and the underlying mechanisms for the preparation of stable PCM emulsions and reduction of supercooling, especially with the organic PCMs of paraffin. It was also to share our insightful perspectives on further development and potential applications of PCM emulsions for efficient energy storage. Thermal energy storage (TES) is an important means for the conservation and efficient utilization of excessive and renewable energy. With a much higher thermal storage capacity, latent heat storage (LHS) may be more efficient than sensible heat storage. Phase change materials (PCMs) are the essential storage media for LHS. PCM emulsions have been developed for LHS in flow systems, which act as both heat transfer and thermal storage media with enhanced heat transfer, low pumping power, and high thermal storage capacity. However, two major barriers to the application of PCM emulsions are their instability and high degree of supercooling. To overcome these, various strategies have been attempted, such as the reduction of emulsion droplet size, addition of nucleating agents, and optimization of the formulation. To the best of our knowledge, however, there is still a lack of review articles on fabrication methods for PCM emulsions or their latest applications. This review was to provide an up-to-date and comprehensive summary on the effective strategies and the underlying mechanisms for the preparation of stable PCM emulsions and reduction of supercooling, especially with the organic PCMs of paraffin. It was also to share our insightful perspectives on further development and potential applications of PCM emulsions for efficient energy storage.Thermal energy storage (TES) is an important means for the conservation and efficient utilization of excessive and renewable energy. With a much higher thermal storage capacity, latent heat storage (LHS) may be more efficient than sensible heat storage. Phase change materials (PCMs) are the essential storage media for LHS. PCM emulsions have been developed for LHS in flow systems, which act as both heat transfer and thermal storage media with enhanced heat transfer, low pumping power, and high thermal storage capacity. However, two major barriers to the application of PCM emulsions are their instability and high degree of supercooling. To overcome these, various strategies have been attempted, such as the reduction of emulsion droplet size, addition of nucleating agents, and optimization of the formulation. To the best of our knowledge, however, there is still a lack of review articles on fabrication methods for PCM emulsions or their latest applications. This review was to provide an up-to-date and comprehensive summary on the effective strategies and the underlying mechanisms for the preparation of stable PCM emulsions and reduction of supercooling, especially with the organic PCMs of paraffin. It was also to share our insightful perspectives on further development and potential applications of PCM emulsions for efficient energy storage. |
Author | Niu, Jianlei Liu, Liu Wu, Jian-Yong |
AuthorAffiliation | 2 Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; jian-lei.niu@polyu.edu.hk 1 Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; liu66.liu@connect.polyu.hk |
AuthorAffiliation_xml | – name: 2 Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; jian-lei.niu@polyu.edu.hk – name: 1 Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; liu66.liu@connect.polyu.hk |
Author_xml | – sequence: 1 givenname: Liu surname: Liu fullname: Liu, Liu – sequence: 2 givenname: Jianlei surname: Niu fullname: Niu, Jianlei – sequence: 3 givenname: Jian-Yong orcidid: 0000-0002-5392-5686 surname: Wu fullname: Wu, Jian-Yong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35009265$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1v1DAQhi1UREvphR-ALHFBSEv9kTgOB6TVqrRIraignK1ZZ7LrKrFTOynqhd-Od_tBW-GLrZln3nltz2uy44NHQt5y9knKmh32wEvGGRf8Bdnjda1mvC6KnUfnXXKQ0iXLS0quRf2K7MqSsVqoco_8OY84QITRBU9DS3-OsOyQnq8hIV2swa-QnsGI0UFHj_qpSxlMtA2RXqwx9puox7i6yZUhQqbBNw-pM_A51KMf6XwYOme3fdJnOqc_8Nrh7zfkZQtdwoO7fZ_8-np0sTiZnX4__raYn85sUYlxpizyqoCKW1FbVumlKK2uqkZpUK3Uui0brpGVsrUMRaELXmEjQbEltxaqRu6TL7e6w7TssbHZUYTODNH1EG9MAGeeZrxbm1W4NroqlBAsC3y4E4jhasI0mt4li10HHsOUjFBc17wslczo-2foZZiiz9fbUqKoOd8Ivnvs6MHK_ddkgN0CNoaUIrbGunH7ftmg6wxnZjMA5t8A5JKPz0ruVf8D_wUoVbCm |
CitedBy_id | crossref_primary_10_3390_ma16217024 crossref_primary_10_3390_pr12091844 crossref_primary_10_1007_s40997_023_00599_0 crossref_primary_10_1016_j_applthermaleng_2024_123367 crossref_primary_10_1016_j_ijrefrig_2022_05_017 crossref_primary_10_1016_j_est_2023_109136 crossref_primary_10_1016_j_ijrefrig_2024_08_015 crossref_primary_10_1021_acsomega_3c00024 crossref_primary_10_1678_rheology_51_157 crossref_primary_10_3390_en18061419 crossref_primary_10_1016_j_solmat_2025_113426 |
Cites_doi | 10.1016/j.ijrefrig.2010.07.022 10.1007/s12393-016-9151-5 10.1016/j.cis.2021.102361 10.1016/j.energy.2016.04.021 10.1016/j.csite.2021.100849 10.1016/j.colsurfa.2012.10.065 10.1016/j.solmat.2015.12.013 10.3136/fsti9596t9798.4.164 10.1016/j.cis.2019.04.001 10.1016/j.colsurfa.2019.05.007 10.1080/01932698808943980 10.1016/j.applthermaleng.2018.08.093 10.1023/A:1008706320776 10.3390/pr6040032 10.1016/j.apenergy.2017.01.012 10.1016/j.applthermaleng.2018.11.007 10.1016/j.enconman.2016.02.045 10.1016/j.cej.2018.09.013 10.1007/s00217-006-0476-9 10.1016/j.foodhyd.2007.09.006 10.1016/j.apenergy.2021.116601 10.1007/s12393-020-09239-8 10.1016/j.solener.2017.03.056 10.1016/j.enbuild.2015.03.003 10.1016/j.cis.2015.01.001 10.1016/j.enbuild.2014.10.071 10.1016/j.memsci.2014.05.059 10.1016/j.foodhyd.2015.08.021 10.1016/j.jcis.2019.01.018 10.1016/j.apenergy.2015.11.053 10.4028/www.scientific.net/KEM.61-62.513 10.1039/C2SM06903B 10.1016/j.solmat.2017.10.025 10.1002/jctb.969 10.1016/j.solmat.2021.111060 10.1016/j.apenergy.2020.114849 10.1016/j.ultsonch.2020.105193 10.1016/j.enconman.2018.01.073 10.1021/la302995a 10.1002/advs.202001274 10.1016/j.solmat.2018.11.016 10.1016/j.rser.2020.110101 10.1016/B978-0-12-804306-6.00001-5 10.1016/j.ultsonch.2010.11.016 10.1016/j.tca.2018.04.004 10.1016/j.ijrefrig.2017.08.016 10.1039/C5SM02958A 10.1016/j.ultsonch.2018.11.005 10.1021/ar400116c 10.1021/la104728r 10.1002/adem.201300575 10.1016/j.solmat.2017.06.027 10.1016/j.rser.2017.03.070 10.1016/j.ces.2019.04.011 10.1016/j.tca.2010.06.006 10.1016/j.colsurfa.2011.08.023 10.1016/j.renene.2019.11.044 10.1016/B978-1-78242-028-6.00026-0 10.1002/ceat.200406111 10.1016/j.jcis.2011.05.011 10.1016/j.colsurfa.2021.127132 10.1016/j.colsurfa.2009.12.036 10.1016/j.energy.2016.03.025 10.1016/j.tifs.2020.04.004 10.1016/j.enconman.2016.05.065 10.3390/en80910153 10.1146/annurev.food.080708.100722 10.1016/j.foodhyd.2016.06.035 10.1007/s10765-013-1454-7 10.1016/j.solmat.2019.109957 10.1016/j.ijrefrig.2016.10.008 10.1016/j.apenergy.2019.113646 10.1080/10916466.2010.525583 10.1039/C7CP07626F 10.1016/j.est.2020.101445 10.1016/j.ultsonch.2007.07.006 10.1016/j.colsurfa.2019.124101 10.1016/j.enconman.2015.09.033 10.1016/j.ijrefrig.2019.04.028 10.1016/j.ces.2013.08.030 10.1016/j.renene.2018.07.018 10.1016/j.cherd.2013.06.010 10.1039/C7CP07133G 10.1016/j.colsurfa.2014.02.058 10.1016/j.enbuild.2016.05.085 10.1016/j.apenergy.2016.11.122 10.1016/0021-9797(68)90273-7 10.3168/jds.S0022-0302(50)91958-8 10.1016/j.enbuild.2017.03.063 10.1016/j.applthermaleng.2021.116888 10.1016/j.enconman.2012.07.004 10.1016/j.cis.2020.102117 10.1016/j.solmat.2020.110820 10.1016/j.ijthermalsci.2012.12.007 10.1007/s00396-014-3185-0 10.1016/j.solmat.2021.110983 10.1016/j.ijrefrig.2020.05.013 10.1134/S0040579516060087 10.1016/0009-2509(93)80021-H 10.1016/j.csite.2021.101156 10.1016/j.energy.2020.118215 10.1080/10408398.2015.1006767 10.1002/adsc.201600425 10.1016/j.solmat.2015.12.022 10.1016/j.solmat.2019.02.021 10.1016/j.renene.2015.10.050 10.1016/j.ijrefrig.2010.09.002 10.1016/j.rser.2011.07.152 10.1016/j.solmat.2020.110768 10.1016/j.molliq.2020.114760 10.1016/j.tca.2014.12.020 10.1016/j.cocis.2012.07.003 10.1111/1541-4337.12189 10.1021/ie060575q 10.1016/j.energy.2017.07.044 10.1016/j.apenergy.2019.01.159 10.1016/j.applthermaleng.2019.113868 10.1016/j.applthermaleng.2021.116920 10.1016/j.rser.2015.09.040 10.1016/j.apenergy.2020.115808 10.1021/la9905517 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ma15010121 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | PMC8746220 35009265 10_3390_ma15010121 |
Genre | Journal Article Review |
GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM TR2 TUS GROUPED_DOAJ NPM 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c472t-6ce174a71c29c078b25c877d68a6f388f5d18e053fc0e248417ed3a60b1cca7d3 |
IEDL.DBID | 8FG |
ISSN | 1996-1944 |
IngestDate | Thu Aug 21 13:41:01 EDT 2025 Fri Sep 05 10:27:37 EDT 2025 Fri Jul 25 11:43:54 EDT 2025 Wed Feb 19 02:28:28 EST 2025 Tue Jul 01 03:42:00 EDT 2025 Thu Apr 24 23:03:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | thermal energy storage paraffin thermophysical properties emulsions phase change material thermal management |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c472t-6ce174a71c29c078b25c877d68a6f388f5d18e053fc0e248417ed3a60b1cca7d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5392-5686 |
OpenAccessLink | https://www.proquest.com/docview/2618249110?pq-origsite=%requestingapplication% |
PMID | 35009265 |
PQID | 2618249110 |
PQPubID | 2032366 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8746220 proquest_miscellaneous_2618915563 proquest_journals_2618249110 pubmed_primary_35009265 crossref_citationtrail_10_3390_ma15010121 crossref_primary_10_3390_ma15010121 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211224 |
PublicationDateYYYYMMDD | 2021-12-24 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211224 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Materials |
PublicationTitleAlternate | Materials (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Wang (ref_124) 2020; 207 Costa (ref_42) 2020; 68 Zhao (ref_90) 2019; 575 Ontiveros (ref_99) 2014; 458 Himeur (ref_117) 2021; 287 Li (ref_102) 2010; 356 Wang (ref_11) 2019; 191 McClements (ref_29) 2012; 8 Kumar (ref_66) 2007; 46 Low (ref_24) 2020; 277 Suzuki (ref_55) 1998; 4 Cabaleiro (ref_85) 2019; 159 Biedenbach (ref_121) 2019; 104 Shao (ref_75) 2016; 87 Ho (ref_82) 2021; 321 Xin (ref_104) 2013; 418 Sivapalan (ref_93) 2018; 162 Huang (ref_79) 2010; 509 Walstra (ref_47) 1993; 48 Zhang (ref_74) 2019; 238 Perazzo (ref_96) 2015; 222 Kawanami (ref_113) 2016; 117 ref_22 Ashokkumar (ref_63) 2011; 18 Zhang (ref_3) 2016; 106 Gupta (ref_37) 2016; 12 Prieto (ref_17) 2019; 254 Agresti (ref_86) 2019; 194 Eisapour (ref_129) 2020; 266 Schalbart (ref_108) 2010; 33 Puupponen (ref_106) 2015; 601 Chen (ref_14) 2021; 8 Wang (ref_92) 2016; 147 Yu (ref_103) 2012; 28 Feng (ref_127) 2021; 225 Ren (ref_110) 2019; 540 Alva (ref_5) 2017; 144 Morimoto (ref_114) 2016; 122 Zhang (ref_97) 2021; 219 Karthik (ref_31) 2017; 57 Guo (ref_39) 2020; 100 Hagelstein (ref_69) 2017; 84 Koroleva (ref_91) 2017; 51 Shabani (ref_122) 2015; 8 Dao (ref_88) 2017; 23 Rueger (ref_60) 2013; 91 Leng (ref_61) 2004; 3952 Wang (ref_73) 2018; 176 Wang (ref_76) 2017; 188 Nakashima (ref_53) 1992; 61–62 Shinoda (ref_94) 1968; 26 Vilasau (ref_68) 2011; 389 Slatter (ref_48) 1950; 33 Zhang (ref_84) 2020; 151 Fuchigami (ref_54) 2000; 19 Ibrahim (ref_19) 2021; 219 Levy (ref_43) 2021; 13 Yan (ref_44) 2017; 9 Salager (ref_98) 2000; 16 Koroleva (ref_30) 2018; 20 Zhang (ref_83) 2017; 147 Xu (ref_2) 2018; 144 Solans (ref_95) 2012; 17 ref_50 (ref_18) 2019; 130 Cao (ref_126) 2021; 191 Liu (ref_120) 2021; 26 Liu (ref_112) 2021; 223 Zhao (ref_70) 2013; 31 Cao (ref_125) 2020; 279 Yan (ref_16) 2020; 30 Khan (ref_15) 2017; 76 Su (ref_36) 2014; 47 ref_59 Delgado (ref_119) 2017; 138 Schmid (ref_33) 2010; 33 Ran (ref_7) 2020; 134 Khan (ref_21) 2016; 115 Komaiko (ref_23) 2016; 15 Ding (ref_89) 2019; 200 Barison (ref_87) 2021; 627 Gallassi (ref_58) 2019; 204 Zhang (ref_78) 2015; 17 Kim (ref_101) 2014; 40 Schalbart (ref_111) 2013; 67 Piacentini (ref_52) 2014; 468 Fischer (ref_71) 2020; 119 Hessien (ref_100) 2011; 27 Charcosset (ref_40) 2004; 79 Kano (ref_41) 2016; 358 Li (ref_62) 2018; 20 Chen (ref_115) 2017; 190 Huang (ref_13) 2019; 356 ref_64 Delgado (ref_8) 2012; 16 Youssef (ref_9) 2013; 65 Shao (ref_10) 2015; 94 Fischer (ref_80) 2017; 74 Xiang (ref_77) 2018; 664 Mei (ref_107) 2011; 361 Delgado (ref_118) 2015; 106 Cholakova (ref_35) 2019; 269 Malaki (ref_65) 2019; 52 Zhang (ref_1) 2016; 127 Peshkovsky (ref_67) 2008; 15 Fumoto (ref_109) 2014; 35 Ho (ref_81) 2021; 24 ref_32 Jafari (ref_56) 2008; 22 Yang (ref_105) 2014; 292 Qiu (ref_128) 2016; 165 Bai (ref_51) 2016; 61 Jafari (ref_49) 2007; 225 Davies (ref_25) 1957; 42 ref_38 Huang (ref_6) 2019; 147 McClements (ref_26) 2010; 1 Mura (ref_34) 2021; 289 Chandrasekar (ref_123) 2015; 86 Zhang (ref_72) 2016; 147 Schultz (ref_46) 2004; 27 Degrand (ref_27) 2016; 52 Liu (ref_57) 2013; 102 ref_45 Sagitani (ref_116) 1988; 9 Wang (ref_20) 2017; 171 Kabong (ref_28) 2020; 585 Cabeza (ref_4) 2016; 53 Fischer (ref_12) 2021; 192 |
References_xml | – volume: 33 start-page: 1605 year: 2010 ident: ref_33 article-title: Subcooling in hexadecane emulsions publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2010.07.022 – volume: 9 start-page: 143 year: 2017 ident: ref_44 article-title: Engineering Process Characterization of High-Pressure Homogenization—from Laboratory to Industrial Scale publication-title: Food Eng. Rev. doi: 10.1007/s12393-016-9151-5 – volume: 289 start-page: 102361 year: 2021 ident: ref_34 article-title: Nucleation of melt: From fundamentals to dispersed systems publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2021.102361 – volume: 23 start-page: 325 year: 2017 ident: ref_88 article-title: N-tetradecane/Water Emulsion as a Low-cost Phase Change Material for Efficient Packaging and Shipping of Vaccines publication-title: Clean Technol. – volume: 117 start-page: 562 year: 2016 ident: ref_113 article-title: Thermophysical properties and thermal characteristics of phase change emulsion for thermal energy storage media publication-title: Energy doi: 10.1016/j.energy.2016.04.021 – volume: 24 start-page: 100849 year: 2021 ident: ref_81 article-title: Thermophysical properties of water-based nano-emulsion of tricosane—An Experimental investigation publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.100849 – volume: 418 start-page: 60 year: 2013 ident: ref_104 article-title: Influence of CTAB and SDS on the properties of oil-in-water nano-emulsion with paraffin and span 20/Tween 20 publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2012.10.065 – volume: 147 start-page: 101 year: 2016 ident: ref_92 article-title: Graphite nanoparticles-dispersed paraffin/water emulsion with enhanced thermal-physical property and photo-thermal performance publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2015.12.013 – volume: 4 start-page: 164 year: 1998 ident: ref_55 article-title: Preparation of Corn Oil/Water and Water/Corn Oil Emulsions Using PTFE Membranes publication-title: Food Sci. Technol. Int. Tokyo doi: 10.3136/fsti9596t9798.4.164 – volume: 269 start-page: 7 year: 2019 ident: ref_35 article-title: Rotator phases in alkane systems: In bulk, surface layers and micro/nano-confinements publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2019.04.001 – volume: 575 start-page: 42 year: 2019 ident: ref_90 article-title: Graphene oxide Pickering phase change material emulsions with high thermal conductivity and photo-thermal performance for thermal energy management publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2019.05.007 – volume: 9 start-page: 115 year: 1988 ident: ref_116 article-title: Formation of o/w emulsions by surfactant phase emulsification and the solution behavior of nonionic surfactant system in the emulsification process publication-title: J. Dispers. Sci. Technol. doi: 10.1080/01932698808943980 – volume: 144 start-page: 721 year: 2018 ident: ref_2 article-title: Experimental investigations of heat transfer characteristics of MPCM during charging publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.08.093 – volume: 42 start-page: 426 year: 1957 ident: ref_25 article-title: A Quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent, Gas/Liquid and Liquid/Liquid Interface publication-title: Proc. Int. Congr. Surf. Act. – volume: 19 start-page: 337 year: 2000 ident: ref_54 article-title: Membrane Emulsification Using Sol-Gel Derived Macroporous Silica Glass publication-title: J. Sol-Gel Sci. Technol. doi: 10.1023/A:1008706320776 – ident: ref_59 doi: 10.3390/pr6040032 – volume: 190 start-page: 868 year: 2017 ident: ref_115 article-title: Preparation and characterization of nano-sized phase change emulsions as thermal energy storage and transport media publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.01.012 – volume: 147 start-page: 841 year: 2019 ident: ref_6 article-title: Thermal properties and applications of microencapsulated PCM for thermal energy storage: A review publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.11.007 – volume: 115 start-page: 132 year: 2016 ident: ref_21 article-title: A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.02.045 – volume: 356 start-page: 641 year: 2019 ident: ref_13 article-title: Shape-stabilized phase change materials based on porous supports for thermal energy storage applications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.013 – volume: 225 start-page: 733 year: 2007 ident: ref_49 article-title: Optimization of nano-emulsions production by microfluidization publication-title: Eur. Food Res. Technol. doi: 10.1007/s00217-006-0476-9 – volume: 22 start-page: 1191 year: 2008 ident: ref_56 article-title: Re-coalescence of emulsion droplets during high-energy emulsification publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2007.09.006 – volume: 287 start-page: 116601 year: 2021 ident: ref_117 article-title: Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116601 – volume: 13 start-page: 490 year: 2021 ident: ref_43 article-title: High-Pressure Homogenization: Principles and Applications Beyond Microbial Inactivation publication-title: Food Eng. Rev. doi: 10.1007/s12393-020-09239-8 – volume: 147 start-page: 406 year: 2017 ident: ref_83 article-title: Synthesis and characterization of a narrow size distribution nano phase change material emulsion for thermal energy storage publication-title: Sol. Energy doi: 10.1016/j.solener.2017.03.056 – volume: 94 start-page: 200 year: 2015 ident: ref_10 article-title: Review of phase change emulsions (PCMEs) and their applications in HVAC systems publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.03.003 – volume: 222 start-page: 581 year: 2015 ident: ref_96 article-title: Phase inversion emulsification: Current understanding and applications publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2015.01.001 – volume: 86 start-page: 692 year: 2015 ident: ref_123 article-title: A review on the thermal regulation techniques for non integrated flat PV modules mounted on building top publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.10.071 – ident: ref_45 – volume: 468 start-page: 410 year: 2014 ident: ref_52 article-title: Membrane emulsification technology: Twenty-five years of inventions and research through patent survey publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.05.059 – volume: 52 start-page: 848 year: 2016 ident: ref_27 article-title: New insights into the study of the destabilization of oil-in-water emulsions with dextran sulfate provided by the use of light scattering methods publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2015.08.021 – volume: 540 start-page: 177 year: 2019 ident: ref_110 article-title: Nanoemulsion formation by the phase inversion temperature method using polyoxypropylene surfactants publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.01.018 – volume: 165 start-page: 260 year: 2016 ident: ref_128 article-title: Experimental investigation of the energy performance of a novel Micro-encapsulated Phase Change Material (MPCM) slurry based PV/T system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.11.053 – volume: 61–62 start-page: 513 year: 1992 ident: ref_53 article-title: Membrane Emulsification by Microporous Glass publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.61-62.513 – volume: 8 start-page: 1719 year: 2012 ident: ref_29 article-title: Nanoemulsions versus microemulsions: Terminology, differences, and similarities publication-title: Soft Matter doi: 10.1039/C2SM06903B – volume: 176 start-page: 381 year: 2018 ident: ref_73 article-title: Preparation of phase change material emulsions with good stability and little supercooling by using a mixed polymeric emulsifier for thermal energy storage publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.10.025 – volume: 79 start-page: 209 year: 2004 ident: ref_40 article-title: The membrane emulsification process—A review publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.969 – volume: 225 start-page: 111060 year: 2021 ident: ref_127 article-title: Performance enhancement of a photovoltaic module using phase change material nanoemulsion as a novel cooling fluid publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2021.111060 – volume: 266 start-page: 114849 year: 2020 ident: ref_129 article-title: Exergy and energy analysis of wavy tubes photovoltaic-thermal systems using microencapsulated PCM nano-slurry coolant fluid publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114849 – volume: 68 start-page: 105193 year: 2020 ident: ref_42 article-title: Ultrasound-assisted electrodeposition and synthesis of alloys and composite materials: A review publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2020.105193 – volume: 162 start-page: 109 year: 2018 ident: ref_93 article-title: Paraffin wax–water nanoemulsion: A superior thermal energy storage medium providing higher rate of thermal energy storage per unit heat exchanger volume than water and paraffin wax publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.01.073 – volume: 28 start-page: 14547 year: 2012 ident: ref_103 article-title: Highly Stable Concentrated Nanoemulsions by the Phase Inversion Composition Method at Elevated Temperature publication-title: Langmuir doi: 10.1021/la302995a – volume: 8 start-page: 2001274 year: 2021 ident: ref_14 article-title: Carbon-Based Composite Phase Change Materials for Thermal Energy Storage, Transfer, and Conversion publication-title: Adv. Sci. doi: 10.1002/advs.202001274 – volume: 191 start-page: 218 year: 2019 ident: ref_11 article-title: A comprehensive review on phase change material emulsions: Fabrication, characteristics, and heat transfer performance publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2018.11.016 – volume: 134 start-page: 110101 year: 2020 ident: ref_7 article-title: Flow and heat transfer characteristics of microencapsulated phase change slurry in thermal energy systems: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110101 – ident: ref_32 doi: 10.1016/B978-0-12-804306-6.00001-5 – volume: 18 start-page: 864 year: 2011 ident: ref_63 article-title: The characterization of acoustic cavitation bubbles—An overview publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2010.11.016 – volume: 664 start-page: 16 year: 2018 ident: ref_77 article-title: Simultaneous decrease in supercooling and enhancement of thermal conductivity of paraffin emulsion in medium temperature range with graphene as additive publication-title: Thermochim. Acta doi: 10.1016/j.tca.2018.04.004 – volume: 84 start-page: 67 year: 2017 ident: ref_69 article-title: Reduction of supercooling in paraffin phase change slurry by polyvinyl alcohol publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2017.08.016 – volume: 12 start-page: 2826 year: 2016 ident: ref_37 article-title: Nanoemulsions: Formation, properties and applications publication-title: Soft Matter doi: 10.1039/C5SM02958A – volume: 52 start-page: 88 year: 2019 ident: ref_65 article-title: Ultrasonic nano-emulsification—A review publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2018.11.005 – ident: ref_50 – volume: 47 start-page: 192 year: 2014 ident: ref_36 article-title: Crystallization Features of Normal Alkanes in Confined Geometry publication-title: Acc. Chem. Res. doi: 10.1021/ar400116c – volume: 27 start-page: 2299 year: 2011 ident: ref_100 article-title: Stability and Tunability of O/W Nanoemulsions Prepared by Phase Inversion Composition publication-title: Langmuir doi: 10.1021/la104728r – volume: 17 start-page: 181 year: 2015 ident: ref_78 article-title: PCM in Water Emulsions: Supercooling Reduction Effects of Nano-Additives, Viscosity Effects of Surfactants and Stability publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201300575 – volume: 171 start-page: 60 year: 2017 ident: ref_20 article-title: Supercooling suppression and thermal behavior improvement of erythritol as phase change material for thermal energy storage publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.06.027 – volume: 76 start-page: 105 year: 2017 ident: ref_15 article-title: A review for phase change materials (PCMs) in solar absorption refrigeration systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.03.070 – volume: 204 start-page: 270 year: 2019 ident: ref_58 article-title: Numerical and experimental evaluation of droplet breakage of O/W emulsions in rotor-stator mixers publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2019.04.011 – volume: 509 start-page: 93 year: 2010 ident: ref_79 article-title: Subcooling in PCM emulsions—Part 1: Experimental publication-title: Thermochim. Acta doi: 10.1016/j.tca.2010.06.006 – volume: 40 start-page: 133 year: 2014 ident: ref_101 article-title: Stable liquid paraffin-in-water nanoemulsions prepared by phase inversion composition method publication-title: J. Soc. Cosmet. Sci. Korea – volume: 389 start-page: 222 year: 2011 ident: ref_68 article-title: Stability of oil-in-water paraffin emulsions prepared in a mixed ionic/nonionic surfactant system publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2011.08.023 – ident: ref_22 – volume: 151 start-page: 542 year: 2020 ident: ref_84 article-title: Fabrication of a novel nano phase change material emulsion with low supercooling and enhanced thermal conductivity publication-title: Renew. Energy doi: 10.1016/j.renene.2019.11.044 – ident: ref_64 doi: 10.1016/B978-1-78242-028-6.00026-0 – volume: 27 start-page: 361 year: 2004 ident: ref_46 article-title: High-Pressure Homogenization as a Process for Emulsion Formation publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.200406111 – volume: 361 start-page: 565 year: 2011 ident: ref_107 article-title: Preparation of positively charged oil/water nano-emulsions with a sub-PIT method publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2011.05.011 – volume: 627 start-page: 127132 year: 2021 ident: ref_87 article-title: Paraffin–graphene oxide hybrid nano emulsions for thermal management systems publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2021.127132 – volume: 356 start-page: 71 year: 2010 ident: ref_102 article-title: Formation and properties of paraffin wax submicron emulsions prepared by the emulsion inversion point method publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2009.12.036 – volume: 106 start-page: 63 year: 2016 ident: ref_3 article-title: Rheological and energy transport characteristics of a phase change material slurry publication-title: Energy doi: 10.1016/j.energy.2016.03.025 – volume: 100 start-page: 223 year: 2020 ident: ref_39 article-title: Modification of food macromolecules using dynamic high pressure microfluidization: A review publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2020.04.004 – volume: 122 start-page: 215 year: 2016 ident: ref_114 article-title: Thermophysical properties of phase change emulsions prepared by D-phase emulsification publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.05.065 – volume: 8 start-page: 10153 year: 2015 ident: ref_122 article-title: Theoretical Modelling Methods for Thermal Management of Batteries publication-title: Energies doi: 10.3390/en80910153 – volume: 1 start-page: 241 year: 2010 ident: ref_26 article-title: Emulsion Design to Improve the Delivery of Functional Lipophilic Components publication-title: Annu. Rev. Food Sci. Technol. doi: 10.1146/annurev.food.080708.100722 – volume: 61 start-page: 703 year: 2016 ident: ref_51 article-title: Fabrication of oil-in-water nanoemulsions by dual-channel microfluidization using natural emulsifiers: Saponins, phospholipids, proteins, and polysaccharides publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2016.06.035 – volume: 35 start-page: 1922 year: 2014 ident: ref_109 article-title: Phase Change Characteristics of a Nanoemulsion as a Latent Heat Storage Material publication-title: Int. J. Thermophys. doi: 10.1007/s10765-013-1454-7 – volume: 200 start-page: 109957 year: 2019 ident: ref_89 article-title: Novel paraffin/ethylene propylene diene monomer phase change latex with excellent stability and low viscosity publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2019.109957 – volume: 74 start-page: 240 year: 2017 ident: ref_80 article-title: Phase change dispersion properties, modeling apparent heat capacity publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2016.10.008 – volume: 254 start-page: 113646 year: 2019 ident: ref_17 article-title: Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113646 – volume: 31 start-page: 284 year: 2013 ident: ref_70 article-title: The Preparation of Wax Emulsions Stabilized by C5 Petroleum Resin publication-title: Pet. Sci. Technol. doi: 10.1080/10916466.2010.525583 – volume: 20 start-page: 10369 year: 2018 ident: ref_30 article-title: Nanoemulsions stabilized by non-ionic surfactants: Stability and degradation mechanisms publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP07626F – volume: 30 start-page: 101445 year: 2020 ident: ref_16 article-title: Energy efficiency optimization of the waste heat recovery system with embedded phase change materials in greenhouses: A thermo-economic-environmental study publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101445 – volume: 15 start-page: 618 year: 2008 ident: ref_67 article-title: Shock-wave model of acoustic cavitation publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2007.07.006 – volume: 585 start-page: 124101 year: 2020 ident: ref_28 article-title: Breakdown mechanisms of oil-in-water emulsions stabilised with Pluronic F127 and co-surfactants publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2019.124101 – volume: 106 start-page: 201 year: 2015 ident: ref_118 article-title: Experimental analysis of a low cost phase change material emulsion for its use as thermal storage system publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.09.033 – volume: 104 start-page: 76 year: 2019 ident: ref_121 article-title: Characterization of an n-octadecane PCS in a 0.5 m3 storage tank test facility publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2019.04.028 – volume: 102 start-page: 622 year: 2013 ident: ref_57 article-title: Measurement and analysis of bimodal drop size distribution in a rotor–stator homogenizer publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.08.030 – volume: 130 start-page: 902 year: 2019 ident: ref_18 article-title: High temperature corrosion behavior on molten nitrate salt-based nanofluids for CSP plants publication-title: Renew. Energy doi: 10.1016/j.renene.2018.07.018 – volume: 91 start-page: 2134 year: 2013 ident: ref_60 article-title: Dispersion of water into oil in a rotor–stator mixer. Part 2: Effect of phase fraction publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2013.06.010 – volume: 20 start-page: 86 year: 2018 ident: ref_62 article-title: A study of the effectiveness and energy efficiency of ultrasonic emulsification publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP07133G – volume: 458 start-page: 32 year: 2014 ident: ref_99 article-title: A simple method to assess the hydrophilic lipophilic balance of food and cosmetic surfactants using the phase inversion temperature of C10E4/n-octane/water emulsions publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2014.02.058 – volume: 127 start-page: 512 year: 2016 ident: ref_1 article-title: Two performance indices of TES apparatus: Comparison of MPCM slurry vs. stratified water storage tank publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.05.085 – volume: 188 start-page: 97 year: 2017 ident: ref_76 article-title: Highly stable graphite nanoparticle-dispersed phase change emulsions with little supercooling and high thermal conductivity for cold energy storage publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.11.122 – volume: 26 start-page: 70 year: 1968 ident: ref_94 article-title: The effect of temperature on the phase equilibria and the types of dispersions of the ternary system composed of water, cyclohexane, and nonionic surfactant publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(68)90273-7 – ident: ref_38 – volume: 33 start-page: 692 year: 1950 ident: ref_48 article-title: A study of the cavitation effect in the homogenization of dairy products publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(50)91958-8 – volume: 144 start-page: 276 year: 2017 ident: ref_5 article-title: Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.03.063 – volume: 191 start-page: 116888 year: 2021 ident: ref_126 article-title: A delayed cooling system coupling composite phase change material and nano phase change material emulsion publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.116888 – volume: 65 start-page: 120 year: 2013 ident: ref_9 article-title: State of the art on phase change material slurries publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2012.07.004 – volume: 277 start-page: 102117 year: 2020 ident: ref_24 article-title: Recent advances of characterization techniques for the formation, physical properties and stability of Pickering emulsion publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2020.102117 – volume: 219 start-page: 110820 year: 2021 ident: ref_97 article-title: Evaluation and manipulation of the key emulsification factors toward highly stable PCM-water nano-emulsions for thermal energy storage publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2020.110820 – volume: 67 start-page: 113 year: 2013 ident: ref_111 article-title: Comparison of paraffin nanoemulsions prepared by low-energy emulsification method for latent heat storage publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2012.12.007 – volume: 292 start-page: 1297 year: 2014 ident: ref_105 article-title: Modification of the stability of oil-in-water nano-emulsions by polymers with different structures publication-title: Colloid Polym. Sci. doi: 10.1007/s00396-014-3185-0 – volume: 223 start-page: 110983 year: 2021 ident: ref_112 article-title: Formulation of highly stable PCM nano-emulsions with reduced supercooling for thermal energy storage using surfactant mixtures publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2021.110983 – volume: 119 start-page: 410 year: 2020 ident: ref_71 article-title: Thermophysical properties of a phase change dispersion for cooling around 50 °C publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2020.05.013 – volume: 51 start-page: 125 year: 2017 ident: ref_91 article-title: Paraffin wax emulsions stabilized with polymers, surfactants, and nanoparticles publication-title: Theor. Found. Chem. Eng. doi: 10.1134/S0040579516060087 – volume: 48 start-page: 333 year: 1993 ident: ref_47 article-title: Principles of emulsion formation publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(93)80021-H – volume: 26 start-page: 101156 year: 2021 ident: ref_120 article-title: Evaluation of the energy storage performance of PCM nano-emulsion in a small tubular heat exchanger publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101156 – volume: 207 start-page: 118215 year: 2020 ident: ref_124 article-title: Experimental and simulative investigations on a phase change material nano-emulsion-based liquid cooling thermal management system for a lithium-ion battery pack publication-title: Energy doi: 10.1016/j.energy.2020.118215 – volume: 57 start-page: 1435 year: 2017 ident: ref_31 article-title: Challenges associated in stability of food grade nanoemulsions publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2015.1006767 – volume: 358 start-page: 2996 year: 2016 ident: ref_41 article-title: Rate Acceleration of Solid-Liquid Phase-Transfer Catalysis by Rotor-Stator Homogenizer publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201600425 – volume: 147 start-page: 211 year: 2016 ident: ref_72 article-title: PCM-in-water emulsion for solar thermal applications: The effects of emulsifiers and emulsification conditions on thermal performance, stability and rheology characteristics publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2015.12.022 – volume: 194 start-page: 268 year: 2019 ident: ref_86 article-title: Nano-encapsulated PCM emulsions prepared by a solvent-assisted method for solar applications publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2019.02.021 – volume: 3952 start-page: 639 year: 2004 ident: ref_61 article-title: Immiscible liquid–liquid systems publication-title: Handb. Ind. Mix. Sci. Pract. – volume: 87 start-page: 509 year: 2016 ident: ref_75 article-title: Development of a novel phase change material emulsion for cooling systems publication-title: Renew. Energy doi: 10.1016/j.renene.2015.10.050 – volume: 33 start-page: 1612 year: 2010 ident: ref_108 article-title: Formation of tetradecane nanoemulsion by low-energy emulsification methods publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2010.09.002 – volume: 16 start-page: 253 year: 2012 ident: ref_8 article-title: Review on phase change material emulsions and microencapsulated phase change material slurries: Materials, heat transfer studies and applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2011.07.152 – volume: 219 start-page: 110768 year: 2021 ident: ref_19 article-title: Molten salts in the light of corrosion mitigation strategies and embedded with nanoparticles to enhance the thermophysical properties for CSP plants publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2020.110768 – volume: 321 start-page: 114760 year: 2021 ident: ref_82 article-title: Experimental study on thermophysical properties of water-based nanoemulsion of n-eicosane PCM publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.114760 – volume: 601 start-page: 33 year: 2015 ident: ref_106 article-title: Preparation of paraffin and fatty acid phase changing nanoemulsions for heat transfer publication-title: Thermochim. Acta doi: 10.1016/j.tca.2014.12.020 – volume: 17 start-page: 246 year: 2012 ident: ref_95 article-title: Nano-emulsions: Formation by low-energy methods publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2012.07.003 – volume: 15 start-page: 331 year: 2016 ident: ref_23 article-title: Formation of Food-Grade Nanoemulsions Using Low-Energy Preparation Methods: A Review of Available Methods publication-title: Compr. Rev. Food Sci. Food Saf. doi: 10.1111/1541-4337.12189 – volume: 46 start-page: 4368 year: 2007 ident: ref_66 article-title: Mapping of Acoustic Streaming in Sonochemical Reactors publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie060575q – volume: 138 start-page: 590 year: 2017 ident: ref_119 article-title: Experimental analysis of a coiled stirred tank containing a low cost PCM emulsion as a thermal energy storage system publication-title: Energy doi: 10.1016/j.energy.2017.07.044 – volume: 238 start-page: 1407 year: 2019 ident: ref_74 article-title: Development and characterization of novel and stable silicon nanoparticles-embedded PCM-in-water emulsions for thermal energy storage publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.159 – volume: 159 start-page: 113868 year: 2019 ident: ref_85 article-title: Development of paraffinic phase change material nanoemulsions for thermal energy storage and transport in low-temperature applications publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.113868 – volume: 192 start-page: 116920 year: 2021 ident: ref_12 article-title: Phase change dispersions: A literature review on their thermo-rheological performance for cooling applications publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.116920 – volume: 53 start-page: 1059 year: 2016 ident: ref_4 article-title: Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.09.040 – volume: 279 start-page: 115808 year: 2020 ident: ref_125 article-title: Mini-channel cold plate with nano phase change material emulsion for Li-ion battery under high-rate discharge publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115808 – volume: 16 start-page: 5534 year: 2000 ident: ref_98 article-title: Partitioning of Ethoxylated Octylphenol Surfactants in Microemulsion-Oil-Water Systems: Influence of Temperature and Relation between Partitioning Coefficient and Physicochemical Formulation publication-title: Langmuir doi: 10.1021/la9905517 |
SSID | ssj0000331829 |
Score | 2.4070778 |
SecondaryResourceType | review_article |
Snippet | Thermal energy storage (TES) is an important means for the conservation and efficient utilization of excessive and renewable energy. With a much higher thermal... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 121 |
SubjectTerms | Alternative energy Emulsions Energy storage Enthalpy Heat conductivity Heat storage Heat transfer Latent heat Optimization Paraffins Phase change materials Physical properties Reagents Reduction Review Rheology Storage capacity Supercooling Surfactants Thermal energy Thermal management Thermal storage |
Title | Preparation of Stable Phase Change Material Emulsions for Thermal Energy Storage and Thermal Management Applications: A Review |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35009265 https://www.proquest.com/docview/2618249110 https://www.proquest.com/docview/2618915563 https://pubmed.ncbi.nlm.nih.gov/PMC8746220 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB4VuMABlfKoKUVb0UsPK-x9ed1LlaIEVAkUVUXKzVqv1wpSsClJrvx2Zm3HSQBxtHcsW57ZnW9mdr8B-F5IT4pWhNTi6k-FTiQ1ibKU20Rqo4TRdfX8-kZd3Yo_IzlqE27TdlvlYk2sF-q8sj5Hfo5IX2OogN7q18N_6rtG-epq20JjA7Yihr7WnxQfXHY5lpCjxbKkYSXlGN2f3xsEQJ7SKlr3Q6_A5cs9kitOZ_ARdlu0SHqNevfggys_wc4Kh-A-PA0fXcPfXZWkKgiix2ziyHCM7ok0ZwfItZnVhkb69_OJT49NCWJVgiaCyzLerc__4ZNoDihtyrwbWu6OIb2VUvdP0iNNVeEAbgf9fxdXtG2qQK2I2Ywq6zAIMXFkWWIRH2RMWh3HuULNFFzrQuaR9v0iChs6JrSIYpdzo8IsQmXHOT-EzbIq3WcgxnGdCYtzWhqMe9D32yJXHgKYXFttAvix-MWpbRnHfeOLSYqRh1dHulRHAGed7EPDs_Gm1MlCU2k716bp0jIC-NYN4yzxpQ9TumreyHgmfMUDOGoU272GS088pWQA8ZrKOwHPwL0-Ut6NayZuHQvFWHj8_md9gW3md8JEjDJxApuzx7n7ilBmlp3W9noKW7_7N8O_eHU5ip4BcC_3mw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAkbAgYPVxK84SAitoMuWdqseWqm31HEcFWmblO6uEBd-Er-RcbzJ7gLi1ms8eXnGns-e8TcAryvpSdGqmFqc_anQmaQmU5Zym0ltlDC6jZ6PD9ToWHw5kScb8Ks7C-PTKrs5sZ2oy8b6PfJtRPoalwrorT5cfKO-apSPrnYlNIJZ7Lkf33HJNn2_-wn1-4ax4c7RxxFdVBWgVqRsRpV1iMJNmliWWXSQBZNWp2mp8NMqrnUly0T7ggmVjR0TWiSpK7lRcZHg36Ylx-deg-uCc-5TCPXwc7-nE3McISwLLKicZ_H2uUHA5Sm0knW_9xeY_TMnc8XJDe_A7QU6JYNgTndhw9X34NYKZ-F9-Hl46QJfeFOTpiKIVouJI4dn6A5JOKtAxmbWGjbZOZ9P_HbclCA2JmiS6AbwanveEO9E80NpU5d90zIbhwxWQuvvyICEKMYDOL6S7n4Im3VTu8dAjOO6EBbnEGlwnYVYw1al8pDDlNpqE8Hbrotzu2A494U2JjmudLw68qU6InjVy14EXo9_Sm11msoXY3uaLy0xgpd9M45KH2oxtWvmQcYz7ysewaOg2P41XHqiKyUjSNdU3gt4xu_1lvrrWcv8rVOhGIuf_P-zXsCN0dF4P9_fPdh7CjeZz8JJGGViCzZnl3P3DGHUrHje2i6B06seLL8BfEQx1Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiF6QLwbKGAEHDhYm9jxI0gIrWiXltJqD1TqLTiOo1baJm13V4gLP6y_ruO8dhcQt17j2c1jZjyfPeNvAN4WwpOiFSG1OPvTWCeCmkRaym0itJGx0XX2_OBQ7h7FX4_F8RpcdWdhfFllNyfWE3VeWb9HPkCkr3GpgNFqULRlEePt0afzC-o7SPlMa9dOozGRfffrJy7fph_3tlHX7xgb7Xz_vEvbDgPUxorNqLQOEblRkWWJxWCZMWG1UrnExyy41oXII-2bJxQ2dCzWcaRczo0MswjfXOUc__cW3FYc_cSfUh996fd3Qo7ewpKGEZXzJBycGQRfnk4rWo2BfwHbP-szlwLe6D7ca5EqGTam9QDWXPkQNpb4Cx_B7_Gla7jDq5JUBUHkmk0cGZ9gaCTNuQVyYGa1kZOds_nEb81NCeJkguaJIQGv1mcP8ZdoiihtyrwfWlTmkOFSmv0DGZImo_EYjm7kcz-B9bIq3SYQ47jOYovziTC45kLcYYtcevhhcm21CeB994lT27Kd-6YbkxRXPV4d6UIdAbzpZc8bjo9_Sm11mkpbP5-mC6sM4HU_jB7q0y6mdNW8kfEs_JIH8LRRbH8bLjzplRQBqBWV9wKe_Xt1pDw9qVnAtYolY-Gz_z_WK7iDbpJ-2zvcfw53mS_IiRhl8Raszy7n7gUiqln2sjZdAj9u2leuAWxVNgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+Stable+Phase+Change+Material+Emulsions+for+Thermal+Energy+Storage+and+Thermal+Management+Applications%3A+A+Review&rft.jtitle=Materials&rft.au=Liu%2C+Liu&rft.au=Niu%2C+Jianlei&rft.au=Wu%2C+Jian-Yong&rft.date=2021-12-24&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=15&rft.issue=1&rft_id=info:doi/10.3390%2Fma15010121&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |