Artificial humification of lignin architecture: Top-down and bottom-up approaches
Humic substances readily identifiable in the environment are involved in several biotic and abiotic reactions affecting carbon turnover, soil fertility, plant nutrition and stimulation, xenobiotic transformation and microbial respiration. Inspired by natural roles of humic substances, several applic...
Saved in:
Published in | Biotechnology advances Vol. 37; no. 8; p. 107416 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
01.12.2019
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0734-9750 1873-1899 1873-1899 |
DOI | 10.1016/j.biotechadv.2019.107416 |
Cover
Abstract | Humic substances readily identifiable in the environment are involved in several biotic and abiotic reactions affecting carbon turnover, soil fertility, plant nutrition and stimulation, xenobiotic transformation and microbial respiration. Inspired by natural roles of humic substances, several applications of these substances, including crop stimulants, redox mediators, anti-oxidants, human medicines, environmental remediation and fish feeding, have been developed. The annual market for humic substances has grown rapidly for these reasons and due to eco-conscious features, but there is a limited supply of natural coal-related resources such as lignite and leonardite from which humic substances are extracted in bulk. The structural similarity between humic substances and lignin suggests that lignocellulosic refinery resulting in lignin residues as a by-product could be a potential candidate for a bulk source of humic-like substances, but structural differences between the two polymeric materials indicate that additional transformation procedures allowing lignin architecture to fully mimic commercial humic substances are required. In this review, we introduce the emerging concept of artificial humification of lignin-related materials as a promising strategy for lignin valorization. First, the core structural features of humic substances and the relationship between these features and the physicochemical properties, natural functions and versatile applications of the substances are described. In particular, the mechanism by which humic substances stimulate the growth of plants and hence can improve crop productivity is highlighted. Second, top-down and bottom-up transformation pathways for scalable humification of small lignin-derived phenols, technical lignins and lignin-containing plant residues are described in detail. Finally, future directions are suggested for research and development of artificial lignin humification to achieve alternative ways of producing customized analogues of humic substances.
•Artificial humifications of lignin for versatile applications are discussed.•Top-down ways: alkaline oxidative hydrolysis, composting, vermicomposting, Fenton reaction and Mn-based oxidation.•Bottom-up ways: oxidative polymerization and sodium borohydride reduction.•Potential humification methods to be considered: ozonation, thermal degradation and fermentation with specific microbes. |
---|---|
AbstractList | Humic substances readily identifiable in the environment are involved in several biotic and abiotic reactions affecting carbon turnover, soil fertility, plant nutrition and stimulation, xenobiotic transformation and microbial respiration. Inspired by natural roles of humic substances, several applications of these substances, including crop stimulants, redox mediators, anti-oxidants, human medicines, environmental remediation and fish feeding, have been developed. The annual market for humic substances has grown rapidly for these reasons and due to eco-conscious features, but there is a limited supply of natural coal-related resources such as lignite and leonardite from which humic substances are extracted in bulk. The structural similarity between humic substances and lignin suggests that lignocellulosic refinery resulting in lignin residues as a by-product could be a potential candidate for a bulk source of humic-like substances, but structural differences between the two polymeric materials indicate that additional transformation procedures allowing lignin architecture to fully mimic commercial humic substances are required. In this review, we introduce the emerging concept of artificial humification of lignin-related materials as a promising strategy for lignin valorization. First, the core structural features of humic substances and the relationship between these features and the physicochemical properties, natural functions and versatile applications of the substances are described. In particular, the mechanism by which humic substances stimulate the growth of plants and hence can improve crop productivity is highlighted. Second, top-down and bottom-up transformation pathways for scalable humification of small lignin-derived phenols, technical lignins and lignin-containing plant residues are described in detail. Finally, future directions are suggested for research and development of artificial lignin humification to achieve alternative ways of producing customized analogues of humic substances. Humic substances readily identifiable in the environment are involved in several biotic and abiotic reactions affecting carbon turnover, soil fertility, plant nutrition and stimulation, xenobiotic transformation and microbial respiration. Inspired by natural roles of humic substances, several applications of these substances, including crop stimulants, redox mediators, anti-oxidants, human medicines, environmental remediation and fish feeding, have been developed. The annual market for humic substances has grown rapidly for these reasons and due to eco-conscious features, but there is a limited supply of natural coal-related resources such as lignite and leonardite from which humic substances are extracted in bulk. The structural similarity between humic substances and lignin suggests that lignocellulosic refinery resulting in lignin residues as a by-product could be a potential candidate for a bulk source of humic-like substances, but structural differences between the two polymeric materials indicate that additional transformation procedures allowing lignin architecture to fully mimic commercial humic substances are required. In this review, we introduce the emerging concept of artificial humification of lignin-related materials as a promising strategy for lignin valorization. First, the core structural features of humic substances and the relationship between these features and the physicochemical properties, natural functions and versatile applications of the substances are described. In particular, the mechanism by which humic substances stimulate the growth of plants and hence can improve crop productivity is highlighted. Second, top-down and bottom-up transformation pathways for scalable humification of small lignin-derived phenols, technical lignins and lignin-containing plant residues are described in detail. Finally, future directions are suggested for research and development of artificial lignin humification to achieve alternative ways of producing customized analogues of humic substances.Humic substances readily identifiable in the environment are involved in several biotic and abiotic reactions affecting carbon turnover, soil fertility, plant nutrition and stimulation, xenobiotic transformation and microbial respiration. Inspired by natural roles of humic substances, several applications of these substances, including crop stimulants, redox mediators, anti-oxidants, human medicines, environmental remediation and fish feeding, have been developed. The annual market for humic substances has grown rapidly for these reasons and due to eco-conscious features, but there is a limited supply of natural coal-related resources such as lignite and leonardite from which humic substances are extracted in bulk. The structural similarity between humic substances and lignin suggests that lignocellulosic refinery resulting in lignin residues as a by-product could be a potential candidate for a bulk source of humic-like substances, but structural differences between the two polymeric materials indicate that additional transformation procedures allowing lignin architecture to fully mimic commercial humic substances are required. In this review, we introduce the emerging concept of artificial humification of lignin-related materials as a promising strategy for lignin valorization. First, the core structural features of humic substances and the relationship between these features and the physicochemical properties, natural functions and versatile applications of the substances are described. In particular, the mechanism by which humic substances stimulate the growth of plants and hence can improve crop productivity is highlighted. Second, top-down and bottom-up transformation pathways for scalable humification of small lignin-derived phenols, technical lignins and lignin-containing plant residues are described in detail. Finally, future directions are suggested for research and development of artificial lignin humification to achieve alternative ways of producing customized analogues of humic substances. Humic substances readily identifiable in the environment are involved in several biotic and abiotic reactions affecting carbon turnover, soil fertility, plant nutrition and stimulation, xenobiotic transformation and microbial respiration. Inspired by natural roles of humic substances, several applications of these substances, including crop stimulants, redox mediators, anti-oxidants, human medicines, environmental remediation and fish feeding, have been developed. The annual market for humic substances has grown rapidly for these reasons and due to eco-conscious features, but there is a limited supply of natural coal-related resources such as lignite and leonardite from which humic substances are extracted in bulk. The structural similarity between humic substances and lignin suggests that lignocellulosic refinery resulting in lignin residues as a by-product could be a potential candidate for a bulk source of humic-like substances, but structural differences between the two polymeric materials indicate that additional transformation procedures allowing lignin architecture to fully mimic commercial humic substances are required. In this review, we introduce the emerging concept of artificial humification of lignin-related materials as a promising strategy for lignin valorization. First, the core structural features of humic substances and the relationship between these features and the physicochemical properties, natural functions and versatile applications of the substances are described. In particular, the mechanism by which humic substances stimulate the growth of plants and hence can improve crop productivity is highlighted. Second, top-down and bottom-up transformation pathways for scalable humification of small lignin-derived phenols, technical lignins and lignin-containing plant residues are described in detail. Finally, future directions are suggested for research and development of artificial lignin humification to achieve alternative ways of producing customized analogues of humic substances. •Artificial humifications of lignin for versatile applications are discussed.•Top-down ways: alkaline oxidative hydrolysis, composting, vermicomposting, Fenton reaction and Mn-based oxidation.•Bottom-up ways: oxidative polymerization and sodium borohydride reduction.•Potential humification methods to be considered: ozonation, thermal degradation and fermentation with specific microbes. |
ArticleNumber | 107416 |
Author | Yoon, Ho Young Kim, Woe-Yeon Jeon, Jong-Rok Cha, Joon-Yung Kim, Pil Joo Lee, Jeong Gu |
Author_xml | – sequence: 1 givenname: Jeong Gu surname: Lee fullname: Lee, Jeong Gu organization: Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea – sequence: 2 givenname: Ho Young surname: Yoon fullname: Yoon, Ho Young organization: Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea – sequence: 3 givenname: Joon-Yung surname: Cha fullname: Cha, Joon-Yung organization: Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea – sequence: 4 givenname: Woe-Yeon surname: Kim fullname: Kim, Woe-Yeon organization: Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea – sequence: 5 givenname: Pil Joo surname: Kim fullname: Kim, Pil Joo organization: Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea – sequence: 6 givenname: Jong-Rok orcidid: 0000-0002-5815-7815 surname: Jeon fullname: Jeon, Jong-Rok email: jrjeon@gnu.ac.kr organization: Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31323257$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV1rFDEUhoNU7Lb6F2TAG29mzUkmyYwXQi1VC4VSqNchmw83y0wyJpmK_95st1roTb3K4fCc55DznqCjEINFqAG8Bgz8w2698bFYvVXmbk0wDLUtOuAv0Ap6QVvoh-EIrbCgXTsIho_RSc47jIFhRl-hYwqUUMLECt2cpeKd116NzXaZ9qUqPoYmumb0P4IPjUp66-uysiT7sbmNc2vir9oOptnEUuLULnOj5jlFpbc2v0YvnRqzffPwnqLvXy5uz7-1V9dfL8_PrlrdCVJa2DiuuDMdw5RjRqiwCgTtWW9ZpwAGQbXR0A1Qa-PAOWVcJSnrOu7A0FP0_uCti38uNhc5-aztOKpg45IloXsr4wDPo4TDwHk9WkXfPUF3cUmhfqQKKcaEAMaVevtALZvJGjknP6n0W_69awX6A6BTzDlZ9w8BLPcRyp18jFDuI5SHCOvopyej2pf7TEpSfvwfweeDwNbr33mbZNbeBm2NTzVFaaJ_XvIHH9m8KA |
CitedBy_id | crossref_primary_10_1016_j_envint_2024_108576 crossref_primary_10_1016_j_wasman_2024_11_032 crossref_primary_10_1016_j_cej_2022_141180 crossref_primary_10_1016_j_scitotenv_2023_168232 crossref_primary_10_1186_s13068_023_02278_3 crossref_primary_10_1016_j_chemosphere_2020_127956 crossref_primary_10_1360_SSC_2023_0080 crossref_primary_10_3390_app15052463 crossref_primary_10_1038_s41545_024_00344_3 crossref_primary_10_1021_acs_biomac_1c00805 crossref_primary_10_1021_acs_jafc_0c05474 crossref_primary_10_1021_acs_jafc_3c02958 crossref_primary_10_1021_acs_est_1c08042 crossref_primary_10_1007_s42773_024_00334_1 crossref_primary_10_1016_j_rser_2022_112984 crossref_primary_10_1016_j_isci_2022_104885 crossref_primary_10_1021_acsfoodscitech_3c00234 crossref_primary_10_1016_j_jclepro_2023_140409 crossref_primary_10_3390_agronomy14091939 crossref_primary_10_1016_j_foodres_2022_112013 crossref_primary_10_3390_agronomy12061400 crossref_primary_10_1016_j_biortech_2023_129064 crossref_primary_10_1016_j_jece_2024_115156 crossref_primary_10_1061__ASCE_EE_1943_7870_0001966 crossref_primary_10_1038_s41467_023_40497_2 crossref_primary_10_1021_acs_jafc_4c04364 crossref_primary_10_1002_adsu_202100113 crossref_primary_10_1016_j_jwpe_2022_102734 crossref_primary_10_1016_j_indcrop_2025_120648 crossref_primary_10_1021_acsami_4c03224 crossref_primary_10_1016_j_biortech_2025_132388 crossref_primary_10_3390_life13051071 crossref_primary_10_1016_j_rser_2023_113771 crossref_primary_10_1016_j_molstruc_2024_138659 crossref_primary_10_1016_j_eti_2024_103953 crossref_primary_10_1039_D4GC05362A crossref_primary_10_1002_cssc_202301227 crossref_primary_10_1016_j_biortech_2021_125229 crossref_primary_10_1080_01904167_2023_2225557 crossref_primary_10_61186_flowerjournal_8_1_1 crossref_primary_10_1016_j_jenvman_2024_120152 crossref_primary_10_3390_en16145320 crossref_primary_10_3390_soilsystems6010007 crossref_primary_10_1016_j_jclepro_2023_136832 crossref_primary_10_1016_j_scitotenv_2023_166274 crossref_primary_10_1016_j_scitotenv_2020_138409 crossref_primary_10_3390_molecules26030760 crossref_primary_10_1016_j_scitotenv_2024_169871 crossref_primary_10_1021_acsestengg_2c00056 crossref_primary_10_1128_spectrum_02637_22 crossref_primary_10_1021_acsomega_9b04354 crossref_primary_10_1007_s11356_022_20060_0 crossref_primary_10_1016_j_eti_2023_103393 crossref_primary_10_1016_j_pedsph_2022_07_008 crossref_primary_10_3390_catal11010125 crossref_primary_10_1016_j_cej_2024_155521 crossref_primary_10_1016_j_ijbiomac_2025_140457 crossref_primary_10_3390_ph17101406 crossref_primary_10_3390_agronomy14050955 crossref_primary_10_1016_j_cattod_2022_08_007 crossref_primary_10_1016_j_scitotenv_2022_157536 crossref_primary_10_1007_s11356_024_34514_0 crossref_primary_10_1016_j_jafr_2024_101318 crossref_primary_10_1016_j_scitotenv_2021_150005 crossref_primary_10_1016_j_scitotenv_2024_171548 |
Cites_doi | 10.1590/1809-43921980103513 10.1038/382445a0 10.1007/s003740050337 10.1104/pp.007088 10.1016/S0169-7722(01)00182-6 10.1007/s11104-015-2780-2 10.1016/0048-9697(92)90146-J 10.1080/10643389609388488 10.1007/s00344-017-9696-4 10.1007/s00216-003-2186-5 10.1002/cssc.201403128 10.1016/j.chemosphere.2010.02.054 10.1097/00010694-200111000-00007 10.4319/lo.1989.34.1.0068 10.1097/00010694-199911000-00004 10.1021/jf904385c 10.1016/0016-7037(84)90387-9 10.1016/S0146-6380(02)00038-4 10.1021/es300039h 10.1021/acs.jafc.6b04700 10.1002/ptr.5319 10.1021/es801705f 10.1002/jpln.200700049 10.1128/AEM.64.8.3102-3105.1998 10.1016/j.coal.2009.09.002 10.3390/agronomy8050076 10.1016/S0960-8524(02)00017-2 10.1021/bm0495203 10.1016/S0141-0229(02)00011-X 10.1007/s11157-011-9258-3 10.1016/j.fsi.2017.01.008 10.2135/cropsci2004.0155 10.1021/acsomega.8b00697 10.1038/s41467-017-00407-9 10.1021/acs.est.5b02859 10.1007/BF01990359 10.1002/tox.20151 10.1016/j.geoderma.2004.12.024 10.1080/01904167.2017.1385807 10.1016/j.jhazmat.2007.05.065 10.1016/j.apsoil.2016.05.004 10.1051/agro:2000142 10.1002/adfm.201201156 10.1186/s13068-017-0735-y 10.1021/es050778q 10.1016/S0045-6535(98)00371-3 10.1126/science.1246843 10.1002/anie.201304922 10.1016/j.scitotenv.2017.03.026 10.1016/j.mrgentox.2005.10.014 10.1016/j.jenvman.2007.10.010 10.1002/(SICI)1097-0231(19990715)13:13<1278::AID-RCM649>3.0.CO;2-N 10.1016/j.scitotenv.2016.03.212 10.1016/0048-9697(89)90106-X 10.3390/molecules21020205 10.1016/j.chemosphere.2008.09.040 10.1038/nature01469 10.1016/j.gexplo.2013.01.010 10.1021/es0709932 10.1021/es800924c 10.1021/acs.est.7b04172 10.1016/j.envpol.2010.09.019 10.1016/j.pbi.2008.03.005 10.1016/S0038-0717(02)00174-8 10.1111/j.1365-2389.1972.tb01670.x 10.1023/A:1013897321852 10.1016/j.ecoleng.2012.06.011 10.1021/acssuschemeng.7b01928 10.1021/es200663h 10.1016/0016-7061(92)90022-Y 10.1016/j.hydromet.2016.07.002 10.1021/es001758l 10.1128/AEM.68.5.2445-2452.2002 10.1016/j.biortech.2006.06.007 10.1007/s10533-007-9102-6 10.1016/j.gexplo.2012.10.012 10.1021/es980272q 10.1038/srep28869 10.1126/science.1182570 10.1021/es00151a009 10.1016/0146-6380(96)00056-3 10.1111/j.1467-7652.2012.00692.x 10.1079/PNS2003275 10.1016/S0043-1354(98)00322-4 10.1021/acsomega.6b00010 10.1128/AEM.64.9.3175-3179.1998 10.1016/0146-6380(81)90012-7 10.1016/j.apsoil.2016.10.008 10.3389/fpls.2018.00263 10.1111/are.13789 10.1016/0016-7037(64)90005-5 10.1016/j.scitotenv.2018.07.334 10.1016/0048-9697(89)90114-9 10.1016/j.geoderma.2010.05.012 10.5333/KGFS.2018.38.3.175 10.1046/j.0028-646x.2001.00223.x 10.1016/j.jcis.2009.03.037 10.1080/02773818308085171 10.1038/srep20798 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. Copyright Elsevier Science Ltd. Dec 2019 |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Science Ltd. Dec 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QQ 7SE 7TA 7TB 8FD FR3 H8G JG9 7X8 7S9 L.6 |
DOI | 10.1016/j.biotechadv.2019.107416 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ceramic Abstracts Corrosion Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Copper Technical Reference Library Materials Research Database MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Copper Technical Reference Library Technology Research Database Mechanical & Transportation Engineering Abstracts Ceramic Abstracts Engineering Research Database Corrosion Abstracts Materials Business File MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Architecture |
EISSN | 1873-1899 |
ExternalDocumentID | 31323257 10_1016_j_biotechadv_2019_107416 S0734975019301168 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AAAJQ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXUO ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CJTIS CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HLW HMG HVGLF HZ~ IHE J1W KOM LUGTX LX3 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBG SDF SDG SDP SES SEW SIN SPC SPCBC SSG SSI SSU SSZ T5K WUQ XFK XPP Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7QQ 7SE 7TA 7TB 8FD EFKBS FR3 H8G JG9 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c472t-1bf6a6fd4503605237ea173858e54a11973cdc1491119df1ffadf36035446f1d3 |
IEDL.DBID | AIKHN |
ISSN | 0734-9750 1873-1899 |
IngestDate | Fri Sep 05 06:40:08 EDT 2025 Thu Sep 04 22:16:12 EDT 2025 Fri Jul 25 08:12:01 EDT 2025 Wed Feb 19 02:32:13 EST 2025 Thu Apr 24 23:07:38 EDT 2025 Tue Jul 01 03:01:19 EDT 2025 Fri Feb 23 02:25:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Humification Lignin valorization Humic substances Structure-function relationship Polymer engineering |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c472t-1bf6a6fd4503605237ea173858e54a11973cdc1491119df1ffadf36035446f1d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5815-7815 |
PMID | 31323257 |
PQID | 2330022100 |
PQPubID | 2047478 |
ParticipantIDs | proquest_miscellaneous_2305235611 proquest_miscellaneous_2261966899 proquest_journals_2330022100 pubmed_primary_31323257 crossref_primary_10_1016_j_biotechadv_2019_107416 crossref_citationtrail_10_1016_j_biotechadv_2019_107416 elsevier_sciencedirect_doi_10_1016_j_biotechadv_2019_107416 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Biotechnology advances |
PublicationTitleAlternate | Biotechnol Adv |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd |
References | Canellas, Olivares, Okorokova-Facanha, Facanha (bb0060) 2002; 130 Zhu, Zhang, Xie, Zhang, Sun, Qian, Yang (bb0560) 2017; 10 Bradley, Chapelle, Lovley (bb0045) 1998; 64 Rillig, Caldwell, Wosten, Sollins (bb0405) 2007; 85 P&S Market Research (bb0355) 2015 Savy, Mazzei, Drosos, Cozzolino, Lama, Piccolo (bb0420) 2017; 5 Blum (bb0030) 1996; 28 Monda, Cozzolino, Spaccini, Piccolo (bb0315) 2017; 590-591 Wershaw (bb0535) 1999; 164 Burges, Hurst, Walkden (bb0050) 1964; 28 Davies (bb0100) 1987 Pettit (bb0365) 2004 Ekschmitt, Liu, Vetter, Fox, Wolters (bb0115) 2005; 128 Galetakis, Pavloudakis (bb0145) 2009; 80 Cameron, Thornton, Swift, Posner (bb0055) 1972; 23 Fierro-Coronado, Angulo, Rubio-Castro, Luna-Gonzalez, Cacere-Martinez, Ruiz-Verdugo, Alvarez-Ruiz, Escamilla-Montes, Gonzalez-Ocampo, Diarte-Plata (bb0140) 2018; 48 Soler-Rovira, Madejon, Madejon, Plaza (bb0475) 2010; 79 Liu, Zhao, Jiang (bb0285) 2008; 42 Duthie, Gardner, Kyle (bb0110) 2003; 62 Sposito, Weber (bb0485) 1986; 16 Atiyeh, Lee, Edwards, Arancon, Metzger (bb0025) 2002; 84 Savy, Canellas, Vinci, Cozzolino (bb0425) 2017; 36 Newcomb, Qafoku, Grate, Bailey, De Yoreo (bb0340) 2017; 8 Gleixner, Bol, Balesdent (bb0180) 1999; 13 Rensberg (bb0400) 2015; 29 Lin, Huang, Hao (bb0280) 1999; 33 Almendros, Sanz (bb0020) 1992; 53 Hughey, Rodgers, Marshall, Qian, Robbins (bb0220) 2002; 33 Khaleda, Park, Yun, Jeon, Kim, Cha, Kim (bb0255) 2017; 40 Cazennave, Bistoni, Zwirnmann, Wunderlin, Wiegand (bb0080) 2006; 21 Guo, Hunt, Santschi, Ray (bb0190) 2001; 35 Piccolo, Conte, Tagliatesta (bb0375) 2005; 6 Tegelaar, de Leeuw, Saiz-Jimenez (bb0500) 1989; 81 Vekariya, Sonigara, Fadadu, Vaghasiya, Soni (bb0525) 2016; 1 Garcia, de Souza, Pereira, Castro, Garcia-Mina, Zonta, Lisboa, Berbara (bb0160) 2016; 6 Jeong, Cha, Choi, Jang, Lim, Kim, Seo, Jeon (bb0230) 2018; 3 Ertel, Hedges (bb0125) 1984; 48 Khan, Khan, Khan, Saba, Hussain, Jan (bb0260) 2016; 41 Scaglia, Nunes, Rezende, Tambone, Adani (bb0430) 2016; 562 Zeng, Yoo, Wang, Pan, Vermerris, Tong (bb0555) 2015; 8 Leenheer (bb0275) 1980; 10 Bollag, Loll (bb0035) 1983; 39 Scotti, Pane, Spaccino, Palese, Piccolo, Celano, Zaccardelli (bb0440) 2016; 107 Kulikova, Abroskin, Badun, Chernysheva, Korobkov, Beer, Tsvetkova, Senik, Klein, Perminova (bb0265) 2016; 6 Laird, Fleming, Wang, Horton, Karlen (bb0270) 2010; 158 Muscolo, Sidari, Nardi (bb0330) 2013; 129 Cao, Drosos, Lennheer, Mao (bb0070) 2016; 50 Cha, Kim, Choi, Jang, Khaleda, Kim, Jeon (bb0085) 2017; 65 Giannakopoulos, Drosos, Deligiannakis (bb0175) 2009; 336 Niederer, Schwarzenbach, Goss (bb0345) 2007; 41 Mouvenchery, Kucerik, Diehl, Schaumann (bb0320) 2012; 11 Alemendros, Sanz, Sobrados (bb0010) 1989; 81/82 Hong, Na, Choi, Song, Kim, Lee (bb0215) 2012; 22 Zeng, Ali, Zhang, Quyang, Qiu, Wu, Zhang (bb0550) 2011; 159 Pedersen, Vogel, Funnell (bb0360) 2005; 45 Hammel, Kapich, Jensen, Ryan (bb0205) 2002; 30 Lovley, Coates, Blunt-Harris, Philips, Woodward (bb0290) 1996; 382 Vanholme, Morreel, Ralph, Boerjan (bb0515) 2008; 11 Dobbss, Canellas, Olivares, Aguiar, Peres, Azevedo, Spaccini, Piccolo, Facanha (bb0105) 2010; 58 Alemendros, Guadalix, Gonzalez-Vila, Martin (bb0015) 1996; 24 Bollag, Myers, Minard (bb0040) 1992; 123 Savy, Cozzolino, Nebbioso, Drosos, Nuzzo, Mazzei, Piccolo (bb0415) 2016; 402 Scott, McKnight, Blunt-Harris, Kolesar, Lovley (bb0435) 1998; 32 Maji, Misra, Singh, Kalra (bb0295) 2017; 110 Malcolm, MacCarthy (bb0300) 1986; 20 Sutton, Sposito (bb0495) 2005; 39 Carder, Steward, Harvey, Ortner (bb0075) 1989; 34 Gao, He, He, Li, Zhao, Mu, Lee, Chu (bb0150) 2017; 62 Metzger (bb0310) 2010; 1 Coates, Cole, Chakraborty, O'Connor, Achenbach (bb0095) 2002; 68 Tomaszewski, Schwarzenbach, Sander (bb0505) 2011; 45 Ferrara, Loffredo, Senesi, Marcos (bb0135) 2006; 603 Muscolo, Panuccio, Sidari (bb0325) 2001; 35 Shah, Rehman, Akhtar, Alsamadany, Hamooh, Mujtaba, Daur, Al Zahrani, Alzahrani, Ali, Yang, Chung (bb0450) 2018; 13 Pizzeghello, Nicolini, Nardi (bb0390) 2001; 151 Ragauskas, Beckham, Biddy, Chandra, Chen (bb0395) 2014; 344 Nuzzo, Sanchez, Fontanie, Piccolo (bb0350) 2013; 129 Garcia, Santos, Guridi, Sperandio, Castro, Berbara (bb0155) 2012; 47 Pinton, Cesco, De Nobili, Santi, Varanini (bb0385) 1997; 26 Kaneko, Hosoya, Iiyama, Nakano (bb0235) 1983; 3 Samanidou, Papadoyannis, Vasilikiotis (bb0410) 1991; 26 Piccolo (bb0370) 2001; 166 Stevenson (bb0490) 1994 Ertani, Pizzeghello, Francioso, Tinti, Nardi (bb0120) 2016; 21 Eudes, George, Mukerjee, Kim, Pollet, Benke, Yang, Mitra, Sun, Cetinkol, Mouille, Soubigou-Taconnat, Balzergue, Singh, Holmes, Mukhopadhyay, Keasling, Simmons, Lapierre, Ralph, Loque (bb0130) 2012; 10 Spaccini, Cozzolino, Meo, Savy, Drosos, Piccolo (bb0480) 2019; 646 Canizares, Paz, Saez, Rodrigo (bb0065) 2009; 90 Shen (bb0455) 1999; 38 Wang, Mulligan (bb0530) 2009; 74 Williams, Gray (bb0540) 1974 Chefetz, Chen, Hader (bb0090) 1998; 64 Siddiqui, Meon, Ismail, Rahmani, Ali (bb0465) 2009; 1 Guo, Zhang, Shan (bb0195) 2008; 151 Aeschbacher, Graf, Schwarzenbach, Sander (bb0005) 2012; 46 Van Stempvoort, Lesage, Novakowski, Millar, Brown, Lawrence (bb0510) 2002; 54 Zavarzina, Lisov, Zavarzin, Leontievsky (bb0545) 2010 Picocolo, Spiteller (bb0380) 2003; 377 Kerner, Hohenberg, Ertl, Reckermann, Spitzy (bb0250) 2003; 422 Marschner, Brodowski, Dreves, Gleixner, Gude, Grootes, Hamer, Heim, Jandl, Ji, Kaiser, Kalbitz, Kramer, Leinweber, Rethemeyer, Schaffer, Schmidt, Schwark, Wiesenberg (bb0305) 2008; 171 Ghabbour, Davies (bb0170) 2001 Kermer, Hedrich, Bellenberg, Brett, Schrader (bb0245) 2017; 168 Vecchio, Schendorf, Blough (bb0520) 2017; 51 Sileika, Barrett, Zhang, Lau, Messersmith (bb0470) 2013; 52 Kang, Choi (bb0240) 2009; 43 Hatcher, Maciel, Dennis (bb0210) 1981; 3 Shevchenko, Bailey (bb0460) 1996; 26 Sen, Chandra (bb0445) 2007; 98 Guignard, Lemee, Ambles (bb0185) 2000; 20 Guo, Liu, Zhang, Shen, Han, Zhang, Christie, Goulding, Vitousek, Zhang (bb0200) 2010; 327 Nardi, Pizzeghello, Muscolo, Vianello (bb0335) 2002; 34 Jeon, Yoon, Shin, Jeong, Cha, Kim (bb0225) 2018; 38 Gerke (bb0165) 2018; 8 Gerke (10.1016/j.biotechadv.2019.107416_bb0165) 2018; 8 Samanidou (10.1016/j.biotechadv.2019.107416_bb0410) 1991; 26 Stevenson (10.1016/j.biotechadv.2019.107416_bb0490) 1994 Soler-Rovira (10.1016/j.biotechadv.2019.107416_bb0475) 2010; 79 Hong (10.1016/j.biotechadv.2019.107416_bb0215) 2012; 22 Davies (10.1016/j.biotechadv.2019.107416_bb0100) 1987 Jeon (10.1016/j.biotechadv.2019.107416_bb0225) 2018; 38 Eudes (10.1016/j.biotechadv.2019.107416_bb0130) 2012; 10 Kerner (10.1016/j.biotechadv.2019.107416_bb0250) 2003; 422 Lovley (10.1016/j.biotechadv.2019.107416_bb0290) 1996; 382 Ghabbour (10.1016/j.biotechadv.2019.107416_bb0170) 2001 Monda (10.1016/j.biotechadv.2019.107416_bb0315) 2017; 590-591 Shen (10.1016/j.biotechadv.2019.107416_bb0455) 1999; 38 Cameron (10.1016/j.biotechadv.2019.107416_bb0055) 1972; 23 Maji (10.1016/j.biotechadv.2019.107416_bb0295) 2017; 110 Nardi (10.1016/j.biotechadv.2019.107416_bb0335) 2002; 34 Muscolo (10.1016/j.biotechadv.2019.107416_bb0330) 2013; 129 Van Stempvoort (10.1016/j.biotechadv.2019.107416_bb0510) 2002; 54 Lin (10.1016/j.biotechadv.2019.107416_bb0280) 1999; 33 Vecchio (10.1016/j.biotechadv.2019.107416_bb0520) 2017; 51 Rillig (10.1016/j.biotechadv.2019.107416_bb0405) 2007; 85 Carder (10.1016/j.biotechadv.2019.107416_bb0075) 1989; 34 Guignard (10.1016/j.biotechadv.2019.107416_bb0185) 2000; 20 Bollag (10.1016/j.biotechadv.2019.107416_bb0040) 1992; 123 Scott (10.1016/j.biotechadv.2019.107416_bb0435) 1998; 32 Savy (10.1016/j.biotechadv.2019.107416_bb0415) 2016; 402 Vanholme (10.1016/j.biotechadv.2019.107416_bb0515) 2008; 11 Marschner (10.1016/j.biotechadv.2019.107416_bb0305) 2008; 171 Rensberg (10.1016/j.biotechadv.2019.107416_bb0400) 2015; 29 Mouvenchery (10.1016/j.biotechadv.2019.107416_bb0320) 2012; 11 Laird (10.1016/j.biotechadv.2019.107416_bb0270) 2010; 158 Garcia (10.1016/j.biotechadv.2019.107416_bb0155) 2012; 47 Metzger (10.1016/j.biotechadv.2019.107416_bb0310) 2010; 1 Newcomb (10.1016/j.biotechadv.2019.107416_bb0340) 2017; 8 Bollag (10.1016/j.biotechadv.2019.107416_bb0035) 1983; 39 Zavarzina (10.1016/j.biotechadv.2019.107416_bb0545) 2010 Aeschbacher (10.1016/j.biotechadv.2019.107416_bb0005) 2012; 46 Kaneko (10.1016/j.biotechadv.2019.107416_bb0235) 1983; 3 Kulikova (10.1016/j.biotechadv.2019.107416_bb0265) 2016; 6 Malcolm (10.1016/j.biotechadv.2019.107416_bb0300) 1986; 20 Ekschmitt (10.1016/j.biotechadv.2019.107416_bb0115) 2005; 128 Khaleda (10.1016/j.biotechadv.2019.107416_bb0255) 2017; 40 P&S Market Research (10.1016/j.biotechadv.2019.107416_bb0355) 2015 Piccolo (10.1016/j.biotechadv.2019.107416_bb0375) 2005; 6 Canellas (10.1016/j.biotechadv.2019.107416_bb0060) 2002; 130 Pedersen (10.1016/j.biotechadv.2019.107416_bb0360) 2005; 45 Pizzeghello (10.1016/j.biotechadv.2019.107416_bb0390) 2001; 151 Almendros (10.1016/j.biotechadv.2019.107416_bb0020) 1992; 53 Guo (10.1016/j.biotechadv.2019.107416_bb0200) 2010; 327 Ertani (10.1016/j.biotechadv.2019.107416_bb0120) 2016; 21 Hughey (10.1016/j.biotechadv.2019.107416_bb0220) 2002; 33 Liu (10.1016/j.biotechadv.2019.107416_bb0285) 2008; 42 Picocolo (10.1016/j.biotechadv.2019.107416_bb0380) 2003; 377 Alemendros (10.1016/j.biotechadv.2019.107416_bb0015) 1996; 24 Canizares (10.1016/j.biotechadv.2019.107416_bb0065) 2009; 90 Vekariya (10.1016/j.biotechadv.2019.107416_bb0525) 2016; 1 Sutton (10.1016/j.biotechadv.2019.107416_bb0495) 2005; 39 Alemendros (10.1016/j.biotechadv.2019.107416_bb0010) 1989; 81/82 Scotti (10.1016/j.biotechadv.2019.107416_bb0440) 2016; 107 Garcia (10.1016/j.biotechadv.2019.107416_bb0160) 2016; 6 Cha (10.1016/j.biotechadv.2019.107416_bb0085) 2017; 65 Muscolo (10.1016/j.biotechadv.2019.107416_bb0325) 2001; 35 Giannakopoulos (10.1016/j.biotechadv.2019.107416_bb0175) 2009; 336 Sposito (10.1016/j.biotechadv.2019.107416_bb0485) 1986; 16 Wang (10.1016/j.biotechadv.2019.107416_bb0530) 2009; 74 Spaccini (10.1016/j.biotechadv.2019.107416_bb0480) 2019; 646 Wershaw (10.1016/j.biotechadv.2019.107416_bb0535) 1999; 164 Hatcher (10.1016/j.biotechadv.2019.107416_bb0210) 1981; 3 Ertel (10.1016/j.biotechadv.2019.107416_bb0125) 1984; 48 Kermer (10.1016/j.biotechadv.2019.107416_bb0245) 2017; 168 Gleixner (10.1016/j.biotechadv.2019.107416_bb0180) 1999; 13 Shah (10.1016/j.biotechadv.2019.107416_bb0450) 2018; 13 Scaglia (10.1016/j.biotechadv.2019.107416_bb0430) 2016; 562 Tomaszewski (10.1016/j.biotechadv.2019.107416_bb0505) 2011; 45 Cao (10.1016/j.biotechadv.2019.107416_bb0070) 2016; 50 Hammel (10.1016/j.biotechadv.2019.107416_bb0205) 2002; 30 Fierro-Coronado (10.1016/j.biotechadv.2019.107416_bb0140) 2018; 48 Zeng (10.1016/j.biotechadv.2019.107416_bb0550) 2011; 159 Savy (10.1016/j.biotechadv.2019.107416_bb0420) 2017; 5 Gao (10.1016/j.biotechadv.2019.107416_bb0150) 2017; 62 Kang (10.1016/j.biotechadv.2019.107416_bb0240) 2009; 43 Burges (10.1016/j.biotechadv.2019.107416_bb0050) 1964; 28 Sileika (10.1016/j.biotechadv.2019.107416_bb0470) 2013; 52 Pettit (10.1016/j.biotechadv.2019.107416_bb0365) Guo (10.1016/j.biotechadv.2019.107416_bb0195) 2008; 151 Ferrara (10.1016/j.biotechadv.2019.107416_bb0135) 2006; 603 Bradley (10.1016/j.biotechadv.2019.107416_bb0045) 1998; 64 Pinton (10.1016/j.biotechadv.2019.107416_bb0385) 1997; 26 Khan (10.1016/j.biotechadv.2019.107416_bb0260) 2016; 41 Guo (10.1016/j.biotechadv.2019.107416_bb0190) 2001; 35 Shevchenko (10.1016/j.biotechadv.2019.107416_bb0460) 1996; 26 Duthie (10.1016/j.biotechadv.2019.107416_bb0110) 2003; 62 Chefetz (10.1016/j.biotechadv.2019.107416_bb0090) 1998; 64 Jeong (10.1016/j.biotechadv.2019.107416_bb0230) 2018; 3 Dobbss (10.1016/j.biotechadv.2019.107416_bb0105) 2010; 58 Leenheer (10.1016/j.biotechadv.2019.107416_bb0275) 1980; 10 Ragauskas (10.1016/j.biotechadv.2019.107416_bb0395) 2014; 344 Nuzzo (10.1016/j.biotechadv.2019.107416_bb0350) 2013; 129 Zeng (10.1016/j.biotechadv.2019.107416_bb0555) 2015; 8 Galetakis (10.1016/j.biotechadv.2019.107416_bb0145) 2009; 80 Savy (10.1016/j.biotechadv.2019.107416_bb0425) 2017; 36 Coates (10.1016/j.biotechadv.2019.107416_bb0095) 2002; 68 Siddiqui (10.1016/j.biotechadv.2019.107416_bb0465) 2009; 1 Cazennave (10.1016/j.biotechadv.2019.107416_bb0080) 2006; 21 Zhu (10.1016/j.biotechadv.2019.107416_bb0560) 2017; 10 Blum (10.1016/j.biotechadv.2019.107416_bb0030) 1996; 28 Piccolo (10.1016/j.biotechadv.2019.107416_bb0370) 2001; 166 Williams (10.1016/j.biotechadv.2019.107416_bb0540) 1974 Niederer (10.1016/j.biotechadv.2019.107416_bb0345) 2007; 41 Sen (10.1016/j.biotechadv.2019.107416_bb0445) 2007; 98 Tegelaar (10.1016/j.biotechadv.2019.107416_bb0500) 1989; 81 Atiyeh (10.1016/j.biotechadv.2019.107416_bb0025) 2002; 84 |
References_xml | – volume: 40 start-page: 966 year: 2017 end-page: 975 ident: bb0255 article-title: Humic acid confers HIGH-AFFINITY K publication-title: Mol. Cells – volume: 110 start-page: 97 year: 2017 end-page: 108 ident: bb0295 article-title: Humic acid rich vermicompost promotes plant growth by improving microbial community structure of soil as well as root nodulation and mycorrhizal colonization in the roots of publication-title: Appl. Soil Ecol. – volume: 377 start-page: 1047 year: 2003 end-page: 1059 ident: bb0380 article-title: Electrospray ionization mass spectrometry of terrestrial humic substances and their size fractions publication-title: Anal. Bioanal. Chem. – volume: 13 start-page: 263 year: 2018 ident: bb0450 article-title: Humic substances: determining potential regulatory processes in plants publication-title: Front. Plant Sci. – volume: 171 start-page: 91 year: 2008 end-page: 110 ident: bb0305 article-title: How relevant is recalcitrance for the stabilization of organic matter in soils? publication-title: J. Plant Nutr. Soil Sci. – volume: 64 start-page: 3102 year: 1998 end-page: 3105 ident: bb0045 article-title: Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene publication-title: Appl. Environ. Microbiol. – volume: 48 start-page: 3218 year: 2018 end-page: 3227 ident: bb0140 article-title: Dietary fulvic acid effects on survival and expression of immune-related genes in publication-title: Aquac. Res. – volume: 50 start-page: 1663 year: 2016 end-page: 1669 ident: bb0070 article-title: Secondary structures in a freeze-fried lignite humic acid fraction caused by hydrogen-bonding of acidic protons with aromatic rings publication-title: Environ. Sci. Technol. – volume: 33 start-page: 743 year: 2002 end-page: 759 ident: bb0220 article-title: Identification of acidic NSO compounds in crude oils of different geochemical origins by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry publication-title: Org. Geochem. – volume: 32 start-page: 2984 year: 1998 end-page: 2989 ident: bb0435 article-title: Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms publication-title: Environ. Sci. Technol. – volume: 81/82 start-page: 91 year: 1989 end-page: 98 ident: bb0010 article-title: Characterization of synthetic carbohydrate-derived humic-like polymers publication-title: Sci. Total Environ. – volume: 29 start-page: 791 year: 2015 end-page: 795 ident: bb0400 article-title: The anti-inflammatory properties of humic substances: a mini review publication-title: Phytother. Res. – volume: 562 start-page: 289 year: 2016 end-page: 295 ident: bb0430 article-title: Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost publication-title: Sci. Total Environ. – volume: 43 start-page: 878 year: 2009 end-page: 883 ident: bb0240 article-title: Oxidative degradation of organic compounds using zero-valent iron in the presence of natural organic matter serving as an electron shuttle publication-title: Environ. Sci. Technol. – volume: 1 start-page: 22 year: 2010 end-page: 34 ident: bb0310 article-title: Humic and fulvic acids: the black gold of agriculture? publication-title: New AG Int. – year: 1987 ident: bb0100 article-title: Plant Hormones and their Roles of Plant Growth and Development – volume: 6 start-page: 20798 year: 2016 ident: bb0160 article-title: Structure-property-function relationship in humic substances to explain the biological activity in plants publication-title: Sci. Rep. – volume: 30 start-page: 445 year: 2002 end-page: 453 ident: bb0205 article-title: Reactive oxygen species as agents of wood decay by fungi publication-title: Enzym. Microb. Technol. – volume: 28 start-page: 259 year: 1996 end-page: 267 ident: bb0030 article-title: Allelopathic interactions involving phenolic acids publication-title: J. Nematol. – volume: 28 start-page: 1547 year: 1964 end-page: 1552 ident: bb0050 article-title: The phenolic constituents of humic acid and their relation to the lignin of the plant cover publication-title: Geochim. Cosmochim. Acta – volume: 38 start-page: 1505 year: 1999 end-page: 1515 ident: bb0455 article-title: Sorption of natural dissolved organic matter on soil publication-title: Chemosphere – volume: 52 start-page: 10766 year: 2013 end-page: 10770 ident: bb0470 article-title: Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine publication-title: Angew. Chem. Int. Ed. – volume: 344 start-page: 1246843 year: 2014 ident: bb0395 article-title: Lignin valorization: improving lignin processing in the biorefinery publication-title: Science – start-page: 611 year: 1974 end-page: 632 ident: bb0540 article-title: Decomposition of litter on the soil surface publication-title: Biology of Plant Litter Decomposition – volume: 336 start-page: 59 year: 2009 end-page: 66 ident: bb0175 article-title: A humic-acid-like polycondensate produced with no use of catalyst publication-title: J. Colloid Interface Sci. – volume: 34 start-page: 1527 year: 2002 end-page: 1536 ident: bb0335 article-title: Physiological effects of humic substances on higher plants publication-title: Soil Biol. Biochem. – volume: 54 start-page: 249 year: 2002 end-page: 276 ident: bb0510 article-title: Humic acid enhanced remediation of an emplaced diesel source in groundwater. 1. Laboratory-based pilot scale test publication-title: J. Contam. Hydrol. – year: 2004 ident: bb0365 article-title: Organic matter, humus, humate, humic acid, fulvic acid, and humin: their importance in soil fertility and plant health – volume: 16 start-page: 193 year: 1986 end-page: 229 ident: bb0485 article-title: Sorption of trace metals by humic materials in soils and natural waters publication-title: Crit. Rev. Environ. Sci. Technol. – year: 1994 ident: bb0490 article-title: Humus Chemistry, Genesis, Composition, Reactions – volume: 45 start-page: 6003 year: 2011 end-page: 6010 ident: bb0505 article-title: Protein encapsulation by humic substances publication-title: Environ. Sci. Technol. – volume: 6 start-page: 28869 year: 2016 ident: bb0265 article-title: Label distribution in tissues of wheat seedlings cultivated with tritium-labeled leonardite humic acid publication-title: Sci. Rep. – volume: 85 start-page: 25 year: 2007 end-page: 44 ident: bb0405 article-title: Role of proteins in soil carbon and nitrogen storage: controls in persistence publication-title: Biogeochemistry – volume: 26 start-page: 95 year: 1996 end-page: 153 ident: bb0460 article-title: Life after death: lignin-humic relationship reexamined publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 382 start-page: 445 year: 1996 end-page: 448 ident: bb0290 article-title: Humic substances as electron acceptors for microbial respiration publication-title: Nature – volume: 41 start-page: 6711 year: 2007 end-page: 6717 ident: bb0345 article-title: Elucidating differences in the sorption properties of 10 humic and fulvic acids for polar and nonpolar organic chemicals publication-title: Environ. Sci. Tehcnol. – volume: 62 start-page: 47 year: 2017 end-page: 56 ident: bb0150 article-title: Effects of fulvic acid on growth performance and intestinal health of juvenile loach publication-title: Fish Shellfish Immunol. – volume: 42 start-page: 6949 year: 2008 end-page: 6954 ident: bb0285 article-title: Coating Fe publication-title: Environ. Sci. Technol. – volume: 11 start-page: 278 year: 2008 end-page: 285 ident: bb0515 article-title: Lignin engineering publication-title: Curr. Opin. Plant Biol. – volume: 166 start-page: 810 year: 2001 end-page: 832 ident: bb0370 article-title: The supramolecular structure of humic substances publication-title: Soil Sci. – volume: 38 start-page: 175 year: 2018 end-page: 179 ident: bb0225 article-title: Structure and action mechanism of humic substances for plant stimulations publication-title: J. Kor. Grassl. Forage Sci. – volume: 402 start-page: 221 year: 2016 end-page: 233 ident: bb0415 article-title: Humic-like bioactivity on emergence and early growth of maize ( publication-title: Plant Soil – volume: 26 start-page: 23 year: 1997 end-page: 27 ident: bb0385 article-title: Water- and pyrophosphate-extractable humic substances fractions as a source of iron for Fe-deficient cucumber plants publication-title: Biol. Fertil. Soils – volume: 8 start-page: 861 year: 2015 end-page: 871 ident: bb0555 article-title: Biomimetic Fenton-catalyzed lignin depolymerization to high-value aromatics and dicarboxylic acids publication-title: ChemSusChem – volume: 34 start-page: 68 year: 1989 end-page: 81 ident: bb0075 article-title: Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll publication-title: Limnol. Oceanogr. – volume: 84 start-page: 7 year: 2002 end-page: 14 ident: bb0025 article-title: The influence of humic acids derived from earthworm-processed organic wastes on plant growth publication-title: Bioresour. Technol. – volume: 21 start-page: 22 year: 2006 end-page: 32 ident: bb0080 article-title: Attenuating effects of natural organic matter on microcystin toxicity in zebra fish ( publication-title: Environ. Toxicol. – volume: 1 start-page: 14 year: 2016 end-page: 18 ident: bb0525 article-title: Humic acid as a sensitizer in highly stable dye solar cells: energy from an abundant natural polymer soil component publication-title: ACS Omega – volume: 10 start-page: 513 year: 1980 end-page: 526 ident: bb0275 article-title: Origin and nature of humic substances in the waters of the Amazon River basin publication-title: Acta Amaz – volume: 129 start-page: 57 year: 2013 end-page: 63 ident: bb0330 article-title: Humic substance: relationship between structure and activity. Deeper information suggests univocal findings publication-title: J. Geochem. Explor. – volume: 21 start-page: 205 year: 2016 ident: bb0120 article-title: Biological activity of vegetable extracts containing phenols on plant metabolism publication-title: Molecules – volume: 39 start-page: 1221 year: 1983 end-page: 1231 ident: bb0035 article-title: Incorporation of xenobiotics into soil humus publication-title: Experientia – volume: 590-591 start-page: 40 year: 2017 end-page: 49 ident: bb0315 article-title: Molecular characteristics of water-extractable organic matter from different composted biomasses and their effect on seed germination and early growth of maize publication-title: Sci. Total Environ. – volume: 41 start-page: 453 year: 2016 end-page: 460 ident: bb0260 article-title: Effect of humic acid on growth and crop nutrient status of wheat on two different soils publication-title: J. Plant Nutr. – volume: 51 start-page: 13624 year: 2017 end-page: 13632 ident: bb0520 article-title: Contribution of quinones and ketones/aldehydes to the optical properties of humic substances (HS) and chromophoric dissolved organic matter (CDOM) publication-title: Environ. Sci. Technol. – volume: 151 start-page: 134 year: 2008 end-page: 142 ident: bb0195 article-title: Adsorption of metal ions on lignin publication-title: J. Hazard. Mater. – volume: 13 start-page: 1278 year: 1999 end-page: 1283 ident: bb0180 article-title: Molecular insight into soil carbon turnover publication-title: Rapid Commun. Mass Spec. – volume: 35 start-page: 31 year: 2001 end-page: 35 ident: bb0325 article-title: The effect of phenols on respiratory enzymes in seed germination publication-title: Plant Growth Regul. – volume: 35 start-page: 885 year: 2001 end-page: 893 ident: bb0190 article-title: Effect of dissolved organic matter on the uptake of trace metals by American oysters publication-title: Environ. Sci. Technol. – volume: 23 start-page: 394 year: 1972 end-page: 408 ident: bb0055 article-title: Molecular weight and shape of humic acid from sedimentation and diffusion measurements on fractionated extracts publication-title: J. Soil Sci. – volume: 48 start-page: 2065 year: 1984 end-page: 2074 ident: bb0125 article-title: The lignin component of humic substances: distribution among soil and sedimentrary humic, fulvic, and base-insoluble fractions publication-title: Geochim. Cosmochim. Acta – volume: 123 start-page: 205 year: 1992 end-page: 217 ident: bb0040 article-title: Biological and chemical interactions of pesticides with soil organic matter publication-title: Sci. Total Environ. – volume: 80 start-page: 145 year: 2009 end-page: 156 ident: bb0145 article-title: The effect of lignite quality variation on the efficiency of on-line ash analyzers publication-title: Int. J. Coal Geol. – volume: 81 start-page: 1 year: 1989 end-page: 17 ident: bb0500 article-title: Possible origin of aliphatic moieties in humic substances publication-title: Sci. Total Environ. – volume: 62 start-page: 599 year: 2003 end-page: 603 ident: bb0110 article-title: Plant polyphenols: are they the new magic bullet? publication-title: Proc. Nutr. Soc. – volume: 20 start-page: 904 year: 1986 end-page: 911 ident: bb0300 article-title: Limitations in the use of commercial humic acids in water and soil research publication-title: Environ. Sci. Technol. – volume: 36 start-page: 995 year: 2017 end-page: 1001 ident: bb0425 article-title: Humic-like water-soluble lignins from giant reed ( publication-title: J. Plant Growth Regul. – year: 2015 ident: bb0355 article-title: Global humic acid market size, share, development, growth, and demand forecast to 2020 − Industry insights by application (Foliar, Soil, Seed), crop type (Row crop, Fruits and Vegetables, Turf and Ornamentals, Others) – volume: 24 start-page: 651 year: 1996 end-page: 659 ident: bb0015 article-title: Preservation of aliphatic macromolecules in soil humins publication-title: Org. Geochem. – volume: 422 start-page: 150 year: 2003 end-page: 154 ident: bb0250 article-title: Self-organization of dissolved organic matter to micelle-like microparticles in river water publication-title: Nature – volume: 90 start-page: 410 year: 2009 end-page: 420 ident: bb0065 article-title: Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes publication-title: J. Environ. Manag. – volume: 20 start-page: 465 year: 2000 end-page: 475 ident: bb0185 article-title: Structural characterization of humic substances from an acidic peat using thermochemolysis techniques publication-title: Agronomie – volume: 33 start-page: 1252 year: 1999 end-page: 1264 ident: bb0280 article-title: Ultrafiltration processes for removing humic substances: effect of molecular weight fractions and PAC treatment publication-title: Water Res. – volume: 26 start-page: 1055 year: 1991 end-page: 1068 ident: bb0410 article-title: Mobilization of heavy metals from river sediments of Northern Greece by humic substances publication-title: J. Environ. Sci. Health – start-page: 207 year: 2010 end-page: 228 ident: bb0545 article-title: Fungal oxidoreductases and humification in forest soils publication-title: Soil Enzymology – volume: 168 start-page: 141 year: 2017 end-page: 152 ident: bb0245 article-title: Lignite ash: waste material or potential resource—investigation of metal recovery and utilization options publication-title: Hydrometallurgy – volume: 68 start-page: 2445 year: 2002 end-page: 2452 ident: bb0095 article-title: Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration publication-title: Appl. Environ. Microbiol. – volume: 98 start-page: 1680 year: 2007 end-page: 1683 ident: bb0445 article-title: Chemolytic and solid-state spectroscopic evaluation of organic matter transformation during vermicomposting of sugar industry wastes publication-title: Bioresour. Technol. – volume: 65 start-page: 1167 year: 2017 end-page: 1177 ident: bb0085 article-title: Fungal laccase-catalyzed oxidation of naturally occurring phenols for enhanced germination and salt tolerance of publication-title: J. Agric. Food Chem. – volume: 64 start-page: 3175 year: 1998 end-page: 3179 ident: bb0090 article-title: Purification and characterization of laccase from publication-title: Appl. Environ. Microbiol. – volume: 129 start-page: 1 year: 2013 end-page: 5 ident: bb0350 article-title: Conformational changes of dissolved humic and fulvic superstructures with progressive iron complexation publication-title: J. Geochem. Explor. – volume: 11 start-page: 41 year: 2012 end-page: 54 ident: bb0320 article-title: Cation-mediated cross-linking in natural organic matter: a review publication-title: Rev. Environ. Sci. Biotechnol. – volume: 1 start-page: 448 year: 2009 end-page: 452 ident: bb0465 article-title: In vitro fungicidal activity of humic acid fraction from oil palm compost publication-title: Int. J. Agric. Biol. – year: 2001 ident: bb0170 article-title: Humic Substances: Structures, Models and Functions – volume: 79 start-page: 844 year: 2010 end-page: 849 ident: bb0475 article-title: remediation of metal-contaminated soils with organic amendments: role of humic acids in copper bioavailability publication-title: Chemosphere – volume: 646 start-page: 792 year: 2019 end-page: 800 ident: bb0480 article-title: Bioactivity of humic substances and water extracts from compost made by ligno-cellulose wastes from biorefinery publication-title: Sci. Total Environ. – volume: 8 start-page: 76 year: 2018 ident: bb0165 article-title: Concepts and misconceptions of humic substances as the stable part of soil organic matter: a review publication-title: Agronomy – volume: 5 start-page: 9023 year: 2017 end-page: 9031 ident: bb0420 article-title: Molecular characterization of extracts from biorefinery wastes and evaluation of their plant biostimulation publication-title: ACS Sustain. Chem. Eng. – volume: 3 start-page: 7441 year: 2018 end-page: 7453 ident: bb0230 article-title: One-pot transformation of technical lignins into humic-like plant stimulants through Fenton-based advanced oxidation: accelerating natural fungus-driven humification publication-title: ACS Omega – volume: 8 start-page: 396 year: 2017 ident: bb0340 article-title: Developing a molecular picture of soil organic matter-mineral interactions by quantifying organo-mineral binding publication-title: Nat. Commun. – volume: 151 start-page: 647 year: 2001 end-page: 657 ident: bb0390 article-title: Hormone-like activity of humic substances in publication-title: New Phytol. – volume: 130 start-page: 1951 year: 2002 end-page: 1957 ident: bb0060 article-title: Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H publication-title: Plant Physiol. – volume: 47 start-page: 203 year: 2012 end-page: 208 ident: bb0155 article-title: Vermicompost humic acids as an ecological pathway to protect rice plant against oxidative stress publication-title: Ecol. Eng. – volume: 3 start-page: 399 year: 1983 end-page: 411 ident: bb0235 article-title: Degradation of lignin with ozone: reactivity of lignin model compounds toward ozone publication-title: J. Wood Chem. Technol. – volume: 327 start-page: 1008 year: 2010 end-page: 1010 ident: bb0200 article-title: Significant acidification in major Chinese croplands publication-title: Science – volume: 164 start-page: 803 year: 1999 end-page: 811 ident: bb0535 article-title: Molecular aggregation of humic substances publication-title: Soil Sci. – volume: 53 start-page: 79 year: 1992 end-page: 95 ident: bb0020 article-title: A structural study of alkyl polymers in soil after perborate degradation of humin publication-title: Geoderma – volume: 22 start-page: 4711 year: 2012 end-page: 4717 ident: bb0215 article-title: Non-covalent self assembly and covalent polymerization co-contribute polydopamine formation publication-title: Adv. Funct. Mater. – volume: 6 start-page: 351 year: 2005 end-page: 358 ident: bb0375 article-title: Increased conformational rigidity of humic substances by oxidative biomimetic catalysis publication-title: Biomacromolecules – volume: 603 start-page: 27 year: 2006 end-page: 32 ident: bb0135 article-title: Humic acids reduce the genotoxicity of mitomycin C in the human lymphoblastoid cell line TK6 publication-title: Mutat. Res. – volume: 39 start-page: 9009 year: 2005 end-page: 9015 ident: bb0495 article-title: Molecular structure in soil humic substances: the new view publication-title: Environ. Sci. Technol. – volume: 128 start-page: 167 year: 2005 end-page: 176 ident: bb0115 article-title: Strategies used by soil biota to overcome soil organic stability – why is dead organic matter left over in soil? publication-title: Geoderma – volume: 74 start-page: 274 year: 2009 end-page: 279 ident: bb0530 article-title: Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid publication-title: Chemosphere – volume: 3 start-page: 43 year: 1981 end-page: 48 ident: bb0210 article-title: Aliphatic structures of humic acids: a clue to their origin publication-title: Org. Geochem. – volume: 46 start-page: 4916 year: 2012 end-page: 4925 ident: bb0005 article-title: Antioxidant properties of humic substances publication-title: Envriron. Sci. Technol. – volume: 158 start-page: 436 year: 2010 end-page: 442 ident: bb0270 article-title: Biochar impact on nutrient leaching from a Midwestern agricultural soil publication-title: Geoderma – volume: 107 start-page: 13 year: 2016 end-page: 23 ident: bb0440 article-title: On-farm compost: a useful tool to improve soil quality under intensive farming systems publication-title: Appl. Soil Ecol. – volume: 159 start-page: 84 year: 2011 end-page: 91 ident: bb0550 article-title: The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants publication-title: Environ. Pollut. – volume: 58 start-page: 3681 year: 2010 end-page: 3688 ident: bb0105 article-title: Bioactivity of chemically transformed humic matter from vermicompost on plant root growth publication-title: J. Agric. Food Chem. – volume: 45 start-page: 812 year: 2005 end-page: 819 ident: bb0360 article-title: Impact of reduced lignin on plant fitness publication-title: Crop Sci. – volume: 10 start-page: 44 year: 2017 ident: bb0560 article-title: Biodegradation of alkaline lignin by publication-title: Biotechnol. Biofuels – volume: 10 start-page: 609 year: 2012 end-page: 620 ident: bb0130 article-title: Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification publication-title: Plant Biotechnol. J. – volume: 10 start-page: 513 year: 1980 ident: 10.1016/j.biotechadv.2019.107416_bb0275 article-title: Origin and nature of humic substances in the waters of the Amazon River basin publication-title: Acta Amaz doi: 10.1590/1809-43921980103513 – volume: 382 start-page: 445 year: 1996 ident: 10.1016/j.biotechadv.2019.107416_bb0290 article-title: Humic substances as electron acceptors for microbial respiration publication-title: Nature doi: 10.1038/382445a0 – volume: 26 start-page: 23 year: 1997 ident: 10.1016/j.biotechadv.2019.107416_bb0385 article-title: Water- and pyrophosphate-extractable humic substances fractions as a source of iron for Fe-deficient cucumber plants publication-title: Biol. Fertil. Soils doi: 10.1007/s003740050337 – volume: 130 start-page: 1951 year: 2002 ident: 10.1016/j.biotechadv.2019.107416_bb0060 article-title: Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots publication-title: Plant Physiol. doi: 10.1104/pp.007088 – volume: 54 start-page: 249 year: 2002 ident: 10.1016/j.biotechadv.2019.107416_bb0510 article-title: Humic acid enhanced remediation of an emplaced diesel source in groundwater. 1. Laboratory-based pilot scale test publication-title: J. Contam. Hydrol. doi: 10.1016/S0169-7722(01)00182-6 – start-page: 611 year: 1974 ident: 10.1016/j.biotechadv.2019.107416_bb0540 article-title: Decomposition of litter on the soil surface – volume: 402 start-page: 221 year: 2016 ident: 10.1016/j.biotechadv.2019.107416_bb0415 article-title: Humic-like bioactivity on emergence and early growth of maize (Zea may L.) of water-soluble lignins isolated from biomass for energy publication-title: Plant Soil doi: 10.1007/s11104-015-2780-2 – volume: 123 start-page: 205 year: 1992 ident: 10.1016/j.biotechadv.2019.107416_bb0040 article-title: Biological and chemical interactions of pesticides with soil organic matter publication-title: Sci. Total Environ. doi: 10.1016/0048-9697(92)90146-J – volume: 26 start-page: 95 year: 1996 ident: 10.1016/j.biotechadv.2019.107416_bb0460 article-title: Life after death: lignin-humic relationship reexamined publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389609388488 – volume: 36 start-page: 995 year: 2017 ident: 10.1016/j.biotechadv.2019.107416_bb0425 article-title: Humic-like water-soluble lignins from giant reed (Arundo donax L.) display hormone-like activity on plant growth publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-017-9696-4 – volume: 377 start-page: 1047 year: 2003 ident: 10.1016/j.biotechadv.2019.107416_bb0380 article-title: Electrospray ionization mass spectrometry of terrestrial humic substances and their size fractions publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-003-2186-5 – volume: 8 start-page: 861 year: 2015 ident: 10.1016/j.biotechadv.2019.107416_bb0555 article-title: Biomimetic Fenton-catalyzed lignin depolymerization to high-value aromatics and dicarboxylic acids publication-title: ChemSusChem doi: 10.1002/cssc.201403128 – volume: 79 start-page: 844 year: 2010 ident: 10.1016/j.biotechadv.2019.107416_bb0475 article-title: In situ remediation of metal-contaminated soils with organic amendments: role of humic acids in copper bioavailability publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.02.054 – volume: 166 start-page: 810 year: 2001 ident: 10.1016/j.biotechadv.2019.107416_bb0370 article-title: The supramolecular structure of humic substances publication-title: Soil Sci. doi: 10.1097/00010694-200111000-00007 – volume: 34 start-page: 68 year: 1989 ident: 10.1016/j.biotechadv.2019.107416_bb0075 article-title: Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1989.34.1.0068 – volume: 164 start-page: 803 year: 1999 ident: 10.1016/j.biotechadv.2019.107416_bb0535 article-title: Molecular aggregation of humic substances publication-title: Soil Sci. doi: 10.1097/00010694-199911000-00004 – year: 2015 ident: 10.1016/j.biotechadv.2019.107416_bb0355 – volume: 58 start-page: 3681 year: 2010 ident: 10.1016/j.biotechadv.2019.107416_bb0105 article-title: Bioactivity of chemically transformed humic matter from vermicompost on plant root growth publication-title: J. Agric. Food Chem. doi: 10.1021/jf904385c – volume: 48 start-page: 2065 year: 1984 ident: 10.1016/j.biotechadv.2019.107416_bb0125 article-title: The lignin component of humic substances: distribution among soil and sedimentrary humic, fulvic, and base-insoluble fractions publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(84)90387-9 – volume: 33 start-page: 743 year: 2002 ident: 10.1016/j.biotechadv.2019.107416_bb0220 article-title: Identification of acidic NSO compounds in crude oils of different geochemical origins by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry publication-title: Org. Geochem. doi: 10.1016/S0146-6380(02)00038-4 – volume: 46 start-page: 4916 year: 2012 ident: 10.1016/j.biotechadv.2019.107416_bb0005 article-title: Antioxidant properties of humic substances publication-title: Envriron. Sci. Technol. doi: 10.1021/es300039h – volume: 65 start-page: 1167 year: 2017 ident: 10.1016/j.biotechadv.2019.107416_bb0085 article-title: Fungal laccase-catalyzed oxidation of naturally occurring phenols for enhanced germination and salt tolerance of Arabidopsis thaliana: a green route for synthesizing humic-like fertilizers publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.6b04700 – volume: 29 start-page: 791 year: 2015 ident: 10.1016/j.biotechadv.2019.107416_bb0400 article-title: The anti-inflammatory properties of humic substances: a mini review publication-title: Phytother. Res. doi: 10.1002/ptr.5319 – volume: 43 start-page: 878 year: 2009 ident: 10.1016/j.biotechadv.2019.107416_bb0240 article-title: Oxidative degradation of organic compounds using zero-valent iron in the presence of natural organic matter serving as an electron shuttle publication-title: Environ. Sci. Technol. doi: 10.1021/es801705f – volume: 40 start-page: 966 issue: 12 year: 2017 ident: 10.1016/j.biotechadv.2019.107416_bb0255 article-title: Humic acid confers HIGH-AFFINITY K+ TRANSPORTER 1-mediated salinity stress tolerance in Arabidopsis publication-title: Mol. Cells – volume: 171 start-page: 91 year: 2008 ident: 10.1016/j.biotechadv.2019.107416_bb0305 article-title: How relevant is recalcitrance for the stabilization of organic matter in soils? publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.200700049 – volume: 64 start-page: 3102 issue: 8 year: 1998 ident: 10.1016/j.biotechadv.2019.107416_bb0045 article-title: Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.64.8.3102-3105.1998 – volume: 80 start-page: 145 year: 2009 ident: 10.1016/j.biotechadv.2019.107416_bb0145 article-title: The effect of lignite quality variation on the efficiency of on-line ash analyzers publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2009.09.002 – volume: 8 start-page: 76 year: 2018 ident: 10.1016/j.biotechadv.2019.107416_bb0165 article-title: Concepts and misconceptions of humic substances as the stable part of soil organic matter: a review publication-title: Agronomy doi: 10.3390/agronomy8050076 – volume: 84 start-page: 7 year: 2002 ident: 10.1016/j.biotechadv.2019.107416_bb0025 article-title: The influence of humic acids derived from earthworm-processed organic wastes on plant growth publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(02)00017-2 – volume: 6 start-page: 351 year: 2005 ident: 10.1016/j.biotechadv.2019.107416_bb0375 article-title: Increased conformational rigidity of humic substances by oxidative biomimetic catalysis publication-title: Biomacromolecules doi: 10.1021/bm0495203 – volume: 30 start-page: 445 year: 2002 ident: 10.1016/j.biotechadv.2019.107416_bb0205 article-title: Reactive oxygen species as agents of wood decay by fungi publication-title: Enzym. Microb. Technol. doi: 10.1016/S0141-0229(02)00011-X – volume: 11 start-page: 41 year: 2012 ident: 10.1016/j.biotechadv.2019.107416_bb0320 article-title: Cation-mediated cross-linking in natural organic matter: a review publication-title: Rev. Environ. Sci. Biotechnol. doi: 10.1007/s11157-011-9258-3 – volume: 62 start-page: 47 year: 2017 ident: 10.1016/j.biotechadv.2019.107416_bb0150 article-title: Effects of fulvic acid on growth performance and intestinal health of juvenile loach Pramisgurnus dabryanus (Sauvage) publication-title: Fish Shellfish Immunol. doi: 10.1016/j.fsi.2017.01.008 – volume: 45 start-page: 812 year: 2005 ident: 10.1016/j.biotechadv.2019.107416_bb0360 article-title: Impact of reduced lignin on plant fitness publication-title: Crop Sci. doi: 10.2135/cropsci2004.0155 – volume: 3 start-page: 7441 year: 2018 ident: 10.1016/j.biotechadv.2019.107416_bb0230 article-title: One-pot transformation of technical lignins into humic-like plant stimulants through Fenton-based advanced oxidation: accelerating natural fungus-driven humification publication-title: ACS Omega doi: 10.1021/acsomega.8b00697 – volume: 8 start-page: 396 year: 2017 ident: 10.1016/j.biotechadv.2019.107416_bb0340 article-title: Developing a molecular picture of soil organic matter-mineral interactions by quantifying organo-mineral binding publication-title: Nat. Commun. doi: 10.1038/s41467-017-00407-9 – volume: 50 start-page: 1663 year: 2016 ident: 10.1016/j.biotechadv.2019.107416_bb0070 article-title: Secondary structures in a freeze-fried lignite humic acid fraction caused by hydrogen-bonding of acidic protons with aromatic rings publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b02859 – volume: 39 start-page: 1221 year: 1983 ident: 10.1016/j.biotechadv.2019.107416_bb0035 article-title: Incorporation of xenobiotics into soil humus publication-title: Experientia doi: 10.1007/BF01990359 – volume: 21 start-page: 22 year: 2006 ident: 10.1016/j.biotechadv.2019.107416_bb0080 article-title: Attenuating effects of natural organic matter on microcystin toxicity in zebra fish (Danio rerio) embryos – benefits and costs of microcystin detoxification publication-title: Environ. Toxicol. doi: 10.1002/tox.20151 – volume: 128 start-page: 167 year: 2005 ident: 10.1016/j.biotechadv.2019.107416_bb0115 article-title: Strategies used by soil biota to overcome soil organic stability – why is dead organic matter left over in soil? publication-title: Geoderma doi: 10.1016/j.geoderma.2004.12.024 – volume: 41 start-page: 453 year: 2016 ident: 10.1016/j.biotechadv.2019.107416_bb0260 article-title: Effect of humic acid on growth and crop nutrient status of wheat on two different soils publication-title: J. Plant Nutr. doi: 10.1080/01904167.2017.1385807 – volume: 151 start-page: 134 year: 2008 ident: 10.1016/j.biotechadv.2019.107416_bb0195 article-title: Adsorption of metal ions on lignin publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.05.065 – volume: 107 start-page: 13 year: 2016 ident: 10.1016/j.biotechadv.2019.107416_bb0440 article-title: On-farm compost: a useful tool to improve soil quality under intensive farming systems publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2016.05.004 – volume: 20 start-page: 465 year: 2000 ident: 10.1016/j.biotechadv.2019.107416_bb0185 article-title: Structural characterization of humic substances from an acidic peat using thermochemolysis techniques publication-title: Agronomie doi: 10.1051/agro:2000142 – volume: 1 start-page: 448 year: 2009 ident: 10.1016/j.biotechadv.2019.107416_bb0465 article-title: In vitro fungicidal activity of humic acid fraction from oil palm compost publication-title: Int. J. Agric. Biol. – volume: 22 start-page: 4711 year: 2012 ident: 10.1016/j.biotechadv.2019.107416_bb0215 article-title: Non-covalent self assembly and covalent polymerization co-contribute polydopamine formation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201201156 – volume: 10 start-page: 44 year: 2017 ident: 10.1016/j.biotechadv.2019.107416_bb0560 article-title: Biodegradation of alkaline lignin by Bacillus ligniniphilus L1 publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-017-0735-y – volume: 1 start-page: 22 year: 2010 ident: 10.1016/j.biotechadv.2019.107416_bb0310 article-title: Humic and fulvic acids: the black gold of agriculture? publication-title: New AG Int. – volume: 39 start-page: 9009 year: 2005 ident: 10.1016/j.biotechadv.2019.107416_bb0495 article-title: Molecular structure in soil humic substances: the new view publication-title: Environ. Sci. Technol. doi: 10.1021/es050778q – volume: 38 start-page: 1505 year: 1999 ident: 10.1016/j.biotechadv.2019.107416_bb0455 article-title: Sorption of natural dissolved organic matter on soil publication-title: Chemosphere doi: 10.1016/S0045-6535(98)00371-3 – volume: 344 start-page: 1246843 year: 2014 ident: 10.1016/j.biotechadv.2019.107416_bb0395 article-title: Lignin valorization: improving lignin processing in the biorefinery publication-title: Science doi: 10.1126/science.1246843 – volume: 52 start-page: 10766 year: 2013 ident: 10.1016/j.biotechadv.2019.107416_bb0470 article-title: Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201304922 – volume: 590-591 start-page: 40 year: 2017 ident: 10.1016/j.biotechadv.2019.107416_bb0315 article-title: Molecular characteristics of water-extractable organic matter from different composted biomasses and their effect on seed germination and early growth of maize publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.03.026 – volume: 603 start-page: 27 year: 2006 ident: 10.1016/j.biotechadv.2019.107416_bb0135 article-title: Humic acids reduce the genotoxicity of mitomycin C in the human lymphoblastoid cell line TK6 publication-title: Mutat. Res. doi: 10.1016/j.mrgentox.2005.10.014 – volume: 90 start-page: 410 year: 2009 ident: 10.1016/j.biotechadv.2019.107416_bb0065 article-title: Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2007.10.010 – volume: 13 start-page: 1278 year: 1999 ident: 10.1016/j.biotechadv.2019.107416_bb0180 article-title: Molecular insight into soil carbon turnover publication-title: Rapid Commun. Mass Spec. doi: 10.1002/(SICI)1097-0231(19990715)13:13<1278::AID-RCM649>3.0.CO;2-N – volume: 562 start-page: 289 year: 2016 ident: 10.1016/j.biotechadv.2019.107416_bb0430 article-title: Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.03.212 – volume: 81 start-page: 1 year: 1989 ident: 10.1016/j.biotechadv.2019.107416_bb0500 article-title: Possible origin of aliphatic moieties in humic substances publication-title: Sci. Total Environ. doi: 10.1016/0048-9697(89)90106-X – ident: 10.1016/j.biotechadv.2019.107416_bb0365 – volume: 21 start-page: 205 year: 2016 ident: 10.1016/j.biotechadv.2019.107416_bb0120 article-title: Biological activity of vegetable extracts containing phenols on plant metabolism publication-title: Molecules doi: 10.3390/molecules21020205 – volume: 16 start-page: 193 year: 1986 ident: 10.1016/j.biotechadv.2019.107416_bb0485 article-title: Sorption of trace metals by humic materials in soils and natural waters publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 28 start-page: 259 year: 1996 ident: 10.1016/j.biotechadv.2019.107416_bb0030 article-title: Allelopathic interactions involving phenolic acids publication-title: J. Nematol. – volume: 26 start-page: 1055 year: 1991 ident: 10.1016/j.biotechadv.2019.107416_bb0410 article-title: Mobilization of heavy metals from river sediments of Northern Greece by humic substances publication-title: J. Environ. Sci. Health – volume: 74 start-page: 274 year: 2009 ident: 10.1016/j.biotechadv.2019.107416_bb0530 article-title: Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.09.040 – volume: 422 start-page: 150 year: 2003 ident: 10.1016/j.biotechadv.2019.107416_bb0250 article-title: Self-organization of dissolved organic matter to micelle-like microparticles in river water publication-title: Nature doi: 10.1038/nature01469 – volume: 129 start-page: 1 year: 2013 ident: 10.1016/j.biotechadv.2019.107416_bb0350 article-title: Conformational changes of dissolved humic and fulvic superstructures with progressive iron complexation publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2013.01.010 – volume: 41 start-page: 6711 year: 2007 ident: 10.1016/j.biotechadv.2019.107416_bb0345 article-title: Elucidating differences in the sorption properties of 10 humic and fulvic acids for polar and nonpolar organic chemicals publication-title: Environ. Sci. Tehcnol. doi: 10.1021/es0709932 – volume: 42 start-page: 6949 year: 2008 ident: 10.1016/j.biotechadv.2019.107416_bb0285 article-title: Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water publication-title: Environ. Sci. Technol. doi: 10.1021/es800924c – volume: 51 start-page: 13624 year: 2017 ident: 10.1016/j.biotechadv.2019.107416_bb0520 article-title: Contribution of quinones and ketones/aldehydes to the optical properties of humic substances (HS) and chromophoric dissolved organic matter (CDOM) publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b04172 – volume: 159 start-page: 84 year: 2011 ident: 10.1016/j.biotechadv.2019.107416_bb0550 article-title: The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2010.09.019 – volume: 11 start-page: 278 year: 2008 ident: 10.1016/j.biotechadv.2019.107416_bb0515 article-title: Lignin engineering publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2008.03.005 – volume: 34 start-page: 1527 year: 2002 ident: 10.1016/j.biotechadv.2019.107416_bb0335 article-title: Physiological effects of humic substances on higher plants publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(02)00174-8 – volume: 23 start-page: 394 year: 1972 ident: 10.1016/j.biotechadv.2019.107416_bb0055 article-title: Molecular weight and shape of humic acid from sedimentation and diffusion measurements on fractionated extracts publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1972.tb01670.x – volume: 35 start-page: 31 year: 2001 ident: 10.1016/j.biotechadv.2019.107416_bb0325 article-title: The effect of phenols on respiratory enzymes in seed germination publication-title: Plant Growth Regul. doi: 10.1023/A:1013897321852 – volume: 47 start-page: 203 year: 2012 ident: 10.1016/j.biotechadv.2019.107416_bb0155 article-title: Vermicompost humic acids as an ecological pathway to protect rice plant against oxidative stress publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2012.06.011 – volume: 5 start-page: 9023 year: 2017 ident: 10.1016/j.biotechadv.2019.107416_bb0420 article-title: Molecular characterization of extracts from biorefinery wastes and evaluation of their plant biostimulation publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b01928 – volume: 45 start-page: 6003 year: 2011 ident: 10.1016/j.biotechadv.2019.107416_bb0505 article-title: Protein encapsulation by humic substances publication-title: Environ. Sci. Technol. doi: 10.1021/es200663h – year: 1994 ident: 10.1016/j.biotechadv.2019.107416_bb0490 – year: 1987 ident: 10.1016/j.biotechadv.2019.107416_bb0100 – volume: 53 start-page: 79 year: 1992 ident: 10.1016/j.biotechadv.2019.107416_bb0020 article-title: A structural study of alkyl polymers in soil after perborate degradation of humin publication-title: Geoderma doi: 10.1016/0016-7061(92)90022-Y – volume: 168 start-page: 141 year: 2017 ident: 10.1016/j.biotechadv.2019.107416_bb0245 article-title: Lignite ash: waste material or potential resource—investigation of metal recovery and utilization options publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2016.07.002 – volume: 35 start-page: 885 year: 2001 ident: 10.1016/j.biotechadv.2019.107416_bb0190 article-title: Effect of dissolved organic matter on the uptake of trace metals by American oysters publication-title: Environ. Sci. Technol. doi: 10.1021/es001758l – volume: 68 start-page: 2445 issue: 5 year: 2002 ident: 10.1016/j.biotechadv.2019.107416_bb0095 article-title: Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.68.5.2445-2452.2002 – volume: 98 start-page: 1680 year: 2007 ident: 10.1016/j.biotechadv.2019.107416_bb0445 article-title: Chemolytic and solid-state spectroscopic evaluation of organic matter transformation during vermicomposting of sugar industry wastes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2006.06.007 – volume: 85 start-page: 25 year: 2007 ident: 10.1016/j.biotechadv.2019.107416_bb0405 article-title: Role of proteins in soil carbon and nitrogen storage: controls in persistence publication-title: Biogeochemistry doi: 10.1007/s10533-007-9102-6 – volume: 129 start-page: 57 year: 2013 ident: 10.1016/j.biotechadv.2019.107416_bb0330 article-title: Humic substance: relationship between structure and activity. Deeper information suggests univocal findings publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2012.10.012 – volume: 32 start-page: 2984 year: 1998 ident: 10.1016/j.biotechadv.2019.107416_bb0435 article-title: Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms publication-title: Environ. Sci. Technol. doi: 10.1021/es980272q – volume: 6 start-page: 28869 year: 2016 ident: 10.1016/j.biotechadv.2019.107416_bb0265 article-title: Label distribution in tissues of wheat seedlings cultivated with tritium-labeled leonardite humic acid publication-title: Sci. Rep. doi: 10.1038/srep28869 – volume: 327 start-page: 1008 year: 2010 ident: 10.1016/j.biotechadv.2019.107416_bb0200 article-title: Significant acidification in major Chinese croplands publication-title: Science doi: 10.1126/science.1182570 – volume: 20 start-page: 904 year: 1986 ident: 10.1016/j.biotechadv.2019.107416_bb0300 article-title: Limitations in the use of commercial humic acids in water and soil research publication-title: Environ. Sci. Technol. doi: 10.1021/es00151a009 – volume: 24 start-page: 651 year: 1996 ident: 10.1016/j.biotechadv.2019.107416_bb0015 article-title: Preservation of aliphatic macromolecules in soil humins publication-title: Org. Geochem. doi: 10.1016/0146-6380(96)00056-3 – start-page: 207 year: 2010 ident: 10.1016/j.biotechadv.2019.107416_bb0545 article-title: Fungal oxidoreductases and humification in forest soils – volume: 10 start-page: 609 year: 2012 ident: 10.1016/j.biotechadv.2019.107416_bb0130 article-title: Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification publication-title: Plant Biotechnol. J. doi: 10.1111/j.1467-7652.2012.00692.x – volume: 62 start-page: 599 year: 2003 ident: 10.1016/j.biotechadv.2019.107416_bb0110 article-title: Plant polyphenols: are they the new magic bullet? publication-title: Proc. Nutr. Soc. doi: 10.1079/PNS2003275 – volume: 33 start-page: 1252 year: 1999 ident: 10.1016/j.biotechadv.2019.107416_bb0280 article-title: Ultrafiltration processes for removing humic substances: effect of molecular weight fractions and PAC treatment publication-title: Water Res. doi: 10.1016/S0043-1354(98)00322-4 – volume: 1 start-page: 14 year: 2016 ident: 10.1016/j.biotechadv.2019.107416_bb0525 article-title: Humic acid as a sensitizer in highly stable dye solar cells: energy from an abundant natural polymer soil component publication-title: ACS Omega doi: 10.1021/acsomega.6b00010 – volume: 64 start-page: 3175 issue: 9 year: 1998 ident: 10.1016/j.biotechadv.2019.107416_bb0090 article-title: Purification and characterization of laccase from Chaetomium thermophilium and its role in humification publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.64.9.3175-3179.1998 – volume: 3 start-page: 43 year: 1981 ident: 10.1016/j.biotechadv.2019.107416_bb0210 article-title: Aliphatic structures of humic acids: a clue to their origin publication-title: Org. Geochem. doi: 10.1016/0146-6380(81)90012-7 – volume: 110 start-page: 97 year: 2017 ident: 10.1016/j.biotechadv.2019.107416_bb0295 article-title: Humic acid rich vermicompost promotes plant growth by improving microbial community structure of soil as well as root nodulation and mycorrhizal colonization in the roots of Pisum sativum publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2016.10.008 – volume: 13 start-page: 263 year: 2018 ident: 10.1016/j.biotechadv.2019.107416_bb0450 article-title: Humic substances: determining potential regulatory processes in plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00263 – volume: 48 start-page: 3218 year: 2018 ident: 10.1016/j.biotechadv.2019.107416_bb0140 article-title: Dietary fulvic acid effects on survival and expression of immune-related genes in Litopenaeus vannamei challenged with Vibrio parahaemolyticus publication-title: Aquac. Res. doi: 10.1111/are.13789 – volume: 28 start-page: 1547 year: 1964 ident: 10.1016/j.biotechadv.2019.107416_bb0050 article-title: The phenolic constituents of humic acid and their relation to the lignin of the plant cover publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(64)90005-5 – volume: 646 start-page: 792 year: 2019 ident: 10.1016/j.biotechadv.2019.107416_bb0480 article-title: Bioactivity of humic substances and water extracts from compost made by ligno-cellulose wastes from biorefinery publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.334 – volume: 81/82 start-page: 91 year: 1989 ident: 10.1016/j.biotechadv.2019.107416_bb0010 article-title: Characterization of synthetic carbohydrate-derived humic-like polymers publication-title: Sci. Total Environ. doi: 10.1016/0048-9697(89)90114-9 – volume: 158 start-page: 436 year: 2010 ident: 10.1016/j.biotechadv.2019.107416_bb0270 article-title: Biochar impact on nutrient leaching from a Midwestern agricultural soil publication-title: Geoderma doi: 10.1016/j.geoderma.2010.05.012 – volume: 38 start-page: 175 year: 2018 ident: 10.1016/j.biotechadv.2019.107416_bb0225 article-title: Structure and action mechanism of humic substances for plant stimulations publication-title: J. Kor. Grassl. Forage Sci. doi: 10.5333/KGFS.2018.38.3.175 – volume: 151 start-page: 647 year: 2001 ident: 10.1016/j.biotechadv.2019.107416_bb0390 article-title: Hormone-like activity of humic substances in Fagus sylvaticae forests publication-title: New Phytol. doi: 10.1046/j.0028-646x.2001.00223.x – year: 2001 ident: 10.1016/j.biotechadv.2019.107416_bb0170 – volume: 336 start-page: 59 year: 2009 ident: 10.1016/j.biotechadv.2019.107416_bb0175 article-title: A humic-acid-like polycondensate produced with no use of catalyst publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2009.03.037 – volume: 3 start-page: 399 year: 1983 ident: 10.1016/j.biotechadv.2019.107416_bb0235 article-title: Degradation of lignin with ozone: reactivity of lignin model compounds toward ozone publication-title: J. Wood Chem. Technol. doi: 10.1080/02773818308085171 – volume: 6 start-page: 20798 year: 2016 ident: 10.1016/j.biotechadv.2019.107416_bb0160 article-title: Structure-property-function relationship in humic substances to explain the biological activity in plants publication-title: Sci. Rep. doi: 10.1038/srep20798 |
SSID | ssj0015053 |
Score | 2.5523958 |
SecondaryResourceType | review_article |
Snippet | Humic substances readily identifiable in the environment are involved in several biotic and abiotic reactions affecting carbon turnover, soil fertility, plant... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 107416 |
SubjectTerms | Addition polymerization Animals Antioxidants Architecture carbon Cellulose fish feeding humans Humic Substances Humification Lignin Lignin - chemistry Lignin valorization Lignite Lignocellulose markets Microorganisms Nutrition organic fertilizers Oxidizing agents Phenols physicochemical properties plant growth plant nutrition plant residues Polymer engineering R&D Refineries remediation Research & development research and development Residues Soil Soil fertility Stimulants Structure-function relationship Transformations xenobiotics |
Title | Artificial humification of lignin architecture: Top-down and bottom-up approaches |
URI | https://dx.doi.org/10.1016/j.biotechadv.2019.107416 https://www.ncbi.nlm.nih.gov/pubmed/31323257 https://www.proquest.com/docview/2330022100 https://www.proquest.com/docview/2261966899 https://www.proquest.com/docview/2305235611 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_0hFIfitXWnl-k4Ot6l0v2qz6JVK4tCqUKvoVkk-iK3Tv0ro_9253ZZE_7YBF8248JZCfJzG92Jr8A7JvCGe-cTApd-USaokp0WlCZmDDlyJlyaGjv8OlZNr6Q3y_TyyU47vbCUFlltP3BprfWOj4ZRG0OpnU9-IWTU5bo8BCCUDahWIaVkSiztAcrR99-jM8WyQR08oGNU8iEGsSCnlDmZWqiQ7jW9g_VeZUHvMUoz3mp51Bo641O1uBdhJHsKPT0PSy5Zh1Wn5ALrsOb05g234CfJBeoItj1_DddtgPCJp7d1ldN3bCnCYUv7HwyTSzG50w3ltFhY2hJ51PWEZC7-w9wcfL1_HicxLMUkkrmo1nCjc905q1M0WXRr-Dcad4y2bhUasolispWGC6h7Sut595r61FSpBgvem7FR-g1k8Z9AmYy4tB3pcurXBpir7GWsrdlimBA8KwPeac7VUWicTrv4lZ1FWU36lHrirSugtb7wBctp4Fs4wVtDrvhUf9MHIU-4QWtd7oRVXHx3quREARt-HDYh8-L17jsKJeiGzeZowxFnlmG0ep_ZAQpGgEq78NmmC2LzyLGTIHmcutV3d-Gt3QXymt2oDe7m7tdBEkzswfLB3_5XlwKD6c-EEA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5RkPo4IEpLGx6tK_W6JI69LzhVqChtCVLVIHGz7LUNi-gmKkmP_e3MrL0pPVAhcVtlx9Lu2J75JvPtZ4CPpnDGOyeTQlc-kaaoEp0WRBMTphw6Uw4MfTs8Ps1GZ_LreXq-AkfdtzBEq4yxP8T0NlrHX_rRm_1ZXfd_4OKUJSY8hCDUTSiewJpMRU68vv0_S54HAp4gRYnWCZlHOk8geZmaxBAutf1NLK9yn7cI5b4cdR8GbXPR8QasRxDJPoXnfAkrrtmEF3ekBTfh6Tg2zV_Bd7ILQhHscvGTLtvpYFPPruuLpm7Y3XbCAZtMZ4nF6pzpxjI6agzj6GLGOvlxd_Mazo4_T45GSTxJIalkPpwn3PhMZ97KFBMW_RGcO81bHRuXSk2dRFHZCosljHyl9dx7bT1aihSrRc-t2ILVZtq4t8BMRgr6rnR5lUtD2jXWUu-2TBEKCJ71IO98p6ooM06nXVyrjk92pf56XZHXVfB6D_hy5CxIbTxgzGE3PeqfZaMwIzxg9G43oypu3Rs1FIKADR8MevBheRs3HXVSdOOmC7ShujPLsFb9j40gRyM85T14E1bL8rVIL1NgsNx-1OO_h2ejyfhEnXw5_bYDz-lOINrswur818LtIVyam3ftdrgF9RQRCw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+humification+of+lignin+architecture%3A+Top-down+and+bottom-up+approaches&rft.jtitle=Biotechnology+advances&rft.au=Lee%2C+Jeong+Gu&rft.au=Yoon%2C+Ho+Young&rft.au=Cha%2C+Joon-Yung&rft.au=Kim%2C+Woe-Yeon&rft.date=2019-12-01&rft.issn=1873-1899&rft.eissn=1873-1899&rft.volume=37&rft.issue=8&rft.spage=107416&rft_id=info:doi/10.1016%2Fj.biotechadv.2019.107416&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-9750&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-9750&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-9750&client=summon |