Federated Reinforcement Learning-Based Dynamic Resource Allocation and Task Scheduling in Edge for IoT Applications
Using Google cluster traces, the research presents a task offloading algorithm and a hybrid forecasting model that unites Bidirectional Long Short-Term Memory (BiLSTM) with Gated Recurrent Unit (GRU) layers along an attention mechanism. This model predicts resource usage for flexible task scheduling...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 7; p. 2197 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
30.03.2025
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s25072197 |
Cover
Abstract | Using Google cluster traces, the research presents a task offloading algorithm and a hybrid forecasting model that unites Bidirectional Long Short-Term Memory (BiLSTM) with Gated Recurrent Unit (GRU) layers along an attention mechanism. This model predicts resource usage for flexible task scheduling in Internet of Things (IoT) applications based on edge computing. The suggested algorithm improves task distribution to boost performance and reduce energy consumption. The system’s design includes collecting data, fusing and preparing it for use, training models, and performing simulations with EdgeSimPy. Experimental outcomes show that the method we suggest is better than those used in best-fit, first-fit, and worst-fit basic algorithms. It maintains power stability usage among edge servers while surpassing old-fashioned heuristic techniques. Moreover, we also propose the Deep Deterministic Policy Gradient (D4PG) based on a Federated Learning algorithm for adjusting the participation of dynamic user equipment (UE) according to resource availability and data distribution. This algorithm is compared to DQN, DDQN, Dueling DQN, and Dueling DDQN models using Non-IID EMNIST, IID EMNIST datasets, and with the Crop Prediction dataset. Results indicate that the proposed D4PG method achieves superior performance, with an accuracy of 92.86% on the Crop Prediction dataset, outperforming alternative models. On the Non-IID EMNIST dataset, the proposed approach achieves an F1-score of 0.9192, demonstrating better efficiency and fairness in model updates while preserving privacy. Similarly, on the IID EMNIST dataset, the proposed D4PG model attains an F1-score of 0.82 and an accuracy of 82%, surpassing other Reinforcement Learning-based approaches. Additionally, for edge server power consumption, the hybrid offloading algorithm reduces fluctuations compared to existing methods, ensuring more stable energy usage across edge nodes. This corroborates that the proposed method can preserve privacy by handling issues related to fairness in model updates and improving efficiency better than state-of-the-art alternatives. |
---|---|
AbstractList | Using Google cluster traces, the research presents a task offloading algorithm and a hybrid forecasting model that unites Bidirectional Long Short-Term Memory (BiLSTM) with Gated Recurrent Unit (GRU) layers along an attention mechanism. This model predicts resource usage for flexible task scheduling in Internet of Things (IoT) applications based on edge computing. The suggested algorithm improves task distribution to boost performance and reduce energy consumption. The system’s design includes collecting data, fusing and preparing it for use, training models, and performing simulations with EdgeSimPy. Experimental outcomes show that the method we suggest is better than those used in best-fit, first-fit, and worst-fit basic algorithms. It maintains power stability usage among edge servers while surpassing old-fashioned heuristic techniques. Moreover, we also propose the Deep Deterministic Policy Gradient (D4PG) based on a Federated Learning algorithm for adjusting the participation of dynamic user equipment (UE) according to resource availability and data distribution. This algorithm is compared to DQN, DDQN, Dueling DQN, and Dueling DDQN models using Non-IID EMNIST, IID EMNIST datasets, and with the Crop Prediction dataset. Results indicate that the proposed D4PG method achieves superior performance, with an accuracy of 92.86% on the Crop Prediction dataset, outperforming alternative models. On the Non-IID EMNIST dataset, the proposed approach achieves an F1-score of 0.9192, demonstrating better efficiency and fairness in model updates while preserving privacy. Similarly, on the IID EMNIST dataset, the proposed D4PG model attains an F1-score of 0.82 and an accuracy of 82%, surpassing other Reinforcement Learning-based approaches. Additionally, for edge server power consumption, the hybrid offloading algorithm reduces fluctuations compared to existing methods, ensuring more stable energy usage across edge nodes. This corroborates that the proposed method can preserve privacy by handling issues related to fairness in model updates and improving efficiency better than state-of-the-art alternatives. Using Google cluster traces, the research presents a task offloading algorithm and a hybrid forecasting model that unites Bidirectional Long Short-Term Memory (BiLSTM) with Gated Recurrent Unit (GRU) layers along an attention mechanism. This model predicts resource usage for flexible task scheduling in Internet of Things (IoT) applications based on edge computing. The suggested algorithm improves task distribution to boost performance and reduce energy consumption. The system's design includes collecting data, fusing and preparing it for use, training models, and performing simulations with EdgeSimPy. Experimental outcomes show that the method we suggest is better than those used in best-fit, first-fit, and worst-fit basic algorithms. It maintains power stability usage among edge servers while surpassing old-fashioned heuristic techniques. Moreover, we also propose the Deep Deterministic Policy Gradient (D4PG) based on a Federated Learning algorithm for adjusting the participation of dynamic user equipment (UE) according to resource availability and data distribution. This algorithm is compared to DQN, DDQN, Dueling DQN, and Dueling DDQN models using Non-IID EMNIST, IID EMNIST datasets, and with the Crop Prediction dataset. Results indicate that the proposed D4PG method achieves superior performance, with an accuracy of 92.86% on the Crop Prediction dataset, outperforming alternative models. On the Non-IID EMNIST dataset, the proposed approach achieves an F1-score of 0.9192, demonstrating better efficiency and fairness in model updates while preserving privacy. Similarly, on the IID EMNIST dataset, the proposed D4PG model attains an F1-score of 0.82 and an accuracy of 82%, surpassing other Reinforcement Learning-based approaches. Additionally, for edge server power consumption, the hybrid offloading algorithm reduces fluctuations compared to existing methods, ensuring more stable energy usage across edge nodes. This corroborates that the proposed method can preserve privacy by handling issues related to fairness in model updates and improving efficiency better than state-of-the-art alternatives.Using Google cluster traces, the research presents a task offloading algorithm and a hybrid forecasting model that unites Bidirectional Long Short-Term Memory (BiLSTM) with Gated Recurrent Unit (GRU) layers along an attention mechanism. This model predicts resource usage for flexible task scheduling in Internet of Things (IoT) applications based on edge computing. The suggested algorithm improves task distribution to boost performance and reduce energy consumption. The system's design includes collecting data, fusing and preparing it for use, training models, and performing simulations with EdgeSimPy. Experimental outcomes show that the method we suggest is better than those used in best-fit, first-fit, and worst-fit basic algorithms. It maintains power stability usage among edge servers while surpassing old-fashioned heuristic techniques. Moreover, we also propose the Deep Deterministic Policy Gradient (D4PG) based on a Federated Learning algorithm for adjusting the participation of dynamic user equipment (UE) according to resource availability and data distribution. This algorithm is compared to DQN, DDQN, Dueling DQN, and Dueling DDQN models using Non-IID EMNIST, IID EMNIST datasets, and with the Crop Prediction dataset. Results indicate that the proposed D4PG method achieves superior performance, with an accuracy of 92.86% on the Crop Prediction dataset, outperforming alternative models. On the Non-IID EMNIST dataset, the proposed approach achieves an F1-score of 0.9192, demonstrating better efficiency and fairness in model updates while preserving privacy. Similarly, on the IID EMNIST dataset, the proposed D4PG model attains an F1-score of 0.82 and an accuracy of 82%, surpassing other Reinforcement Learning-based approaches. Additionally, for edge server power consumption, the hybrid offloading algorithm reduces fluctuations compared to existing methods, ensuring more stable energy usage across edge nodes. This corroborates that the proposed method can preserve privacy by handling issues related to fairness in model updates and improving efficiency better than state-of-the-art alternatives. |
Audience | Academic |
Author | Alfarraj, Osama Al-Khasawneh, Mahmoud Ahmad Adhikari, Deepak Alblehai, Fahad Mali, Saroj Zeng, Feng Ullah, Inam |
AuthorAffiliation | 3 Department of Computer Engineering, Gachon University, Seongnam 13120, Republic of Korea 2 School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China; deepakadhikari@uestc.edu.cn 5 School of Computing, Skyline University College, University City Sharjah, Sharjah 1797, United Arab Emirates 6 Computer Science Department, Community College, King Saud University, Riyadh 11437, Saudi Arabia; oalfarraj@ksu.edu.sa (O.A.); falblehi@ksu.edu.sa (F.A.) 1 School of Computer Science and Engineering, Central South University, Changsha 410083, China; malisaroj@csu.edu.cn 4 Hourani Center for Applied Science Research Center, Al-Ahliyya Amman University, Amman 19328, Jordan; mahmoudalkhasawneh@outlook.com |
AuthorAffiliation_xml | – name: 4 Hourani Center for Applied Science Research Center, Al-Ahliyya Amman University, Amman 19328, Jordan; mahmoudalkhasawneh@outlook.com – name: 6 Computer Science Department, Community College, King Saud University, Riyadh 11437, Saudi Arabia; oalfarraj@ksu.edu.sa (O.A.); falblehi@ksu.edu.sa (F.A.) – name: 5 School of Computing, Skyline University College, University City Sharjah, Sharjah 1797, United Arab Emirates – name: 1 School of Computer Science and Engineering, Central South University, Changsha 410083, China; malisaroj@csu.edu.cn – name: 2 School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China; deepakadhikari@uestc.edu.cn – name: 3 Department of Computer Engineering, Gachon University, Seongnam 13120, Republic of Korea |
Author_xml | – sequence: 1 givenname: Saroj orcidid: 0009-0005-6044-2817 surname: Mali fullname: Mali, Saroj – sequence: 2 givenname: Feng orcidid: 0000-0002-1541-1326 surname: Zeng fullname: Zeng, Feng – sequence: 3 givenname: Deepak surname: Adhikari fullname: Adhikari, Deepak – sequence: 4 givenname: Inam orcidid: 0000-0002-5879-569X surname: Ullah fullname: Ullah, Inam – sequence: 5 givenname: Mahmoud Ahmad surname: Al-Khasawneh fullname: Al-Khasawneh, Mahmoud Ahmad – sequence: 6 givenname: Osama orcidid: 0000-0001-6111-8617 surname: Alfarraj fullname: Alfarraj, Osama – sequence: 7 givenname: Fahad surname: Alblehai fullname: Alblehai, Fahad |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40218710$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kkuP0zAUhSM0iHnAgj-AIrEBpA5-JbFXqAwzUKkSEpS15do3HRfXDnEC6r_nlgzVDAvkhS3f7x7b5_i8OIkpQlE8p-SSc0XeZlaRhlHVPCrOqGBiJhkjJ_fWp8V5zltCGOdcPilOBWFUNpScFfkGHPRmAFd-AR_b1FvYQRzKJZg--riZvTcZix_20ey8RSinEZlyHkKyZvAplia6cmXy9_KrvQU3BuwqfSyv3QZKFCwXaVXOuy74ic9Pi8etCRme3c0Xxbeb69XVp9ny88fF1Xw5s6Khw6yVVnAiawDJaVtzYqWwVc1BqopyKclaccLFGkij2tq4ChQo1QBRUkhFDL8oFpOuS2aru97vTL_XyXj9ZyP1G236wdsAWiginHSq4tYJqoxxyhFSow5rOFm3qPVm0hpjZ_a_TAhHQUr0IQV9TAHhdxPcjesdOIt-9iY8uMHDSvS3epN-akqVongsKry6U-jTjxHyoHc-WwjBREhj1pxKJWrGKUP05T_oFhOKaOyBQiMoZwfqcqI2Bp97CBoPtjgcYKz4nVqP-3PJJSWsEgQbXtx_w_Hyf78OAq8nwPYp5x7a_xjyG0WK0HQ |
Cites_doi | 10.1109/TNET.2020.3035770 10.1109/JIOT.2018.2844296 10.1109/ACCESS.2021.3055523 10.1016/j.future.2023.06.013 10.1145/2741948.2741964 10.1109/JIOT.2020.2970110 10.1016/j.compeleceng.2021.107104 10.3390/s23042243 10.1109/ACCESS.2024.3434619 10.1109/TCOMM.2019.2944169 10.1007/11550907_126 10.3390/pr11030757 10.1109/ACCESS.2020.3013005 10.1109/TII.2024.3485720 10.1007/s11277-021-09081-z 10.1016/j.iot.2020.100187 10.1145/3342195.3387517 10.1016/j.cosrev.2024.100665 10.1109/ACCESS.2021.3101397 10.1109/LANMAN52105.2021.9478811 10.3390/agronomy12102395 10.1109/JIOT.2023.3281678 10.1109/INFOCOM.2019.8737464 10.1109/ACCESS.2022.3140342 10.1109/TIFS.2020.2988575 10.1145/3579824 10.1016/j.comnet.2024.110841 10.3390/s18061731 10.1109/AFRICON46755.2019.9134049 10.1016/j.ins.2023.119849 10.1109/JIOT.2023.3315137 10.1109/JCC56315.2022.00009 10.3390/electronics12173615 10.1109/TEVC.2023.3255266 10.1016/j.adhoc.2019.102047 10.1186/s13638-019-1358-8 10.1109/TITS.2022.3224395 10.1109/IJCNN.2017.7966217 10.1016/j.inffus.2024.102732 10.1016/j.iot.2023.101030 10.20944/preprints202304.0734.v1 10.1109/FMEC57183.2022.10062622 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
DOI | 10.3390/s25072197 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_4904d8d953cd419aad9d0064892730bf 10.3390/s25072197 PMC11991064 A838102540 40218710 10_3390_s25072197 |
Genre | Journal Article |
GrantInformation_xml | – fundername: King Saud University grantid: RSP2025R102 – fundername: Korea government (Ministry of Science and ICT) grantid: IITP-2025-RS-2023-00259004 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
ID | FETCH-LOGICAL-c471t-f8c43086ee831f630c84c563e89513880b93034be079f6ad5e9e997e0984890a3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:30:22 EDT 2025 Sun Sep 07 11:00:40 EDT 2025 Tue Sep 30 17:04:12 EDT 2025 Fri Sep 05 17:38:56 EDT 2025 Fri Jul 25 20:56:55 EDT 2025 Tue Jun 10 20:58:31 EDT 2025 Tue Apr 15 01:23:26 EDT 2025 Wed Oct 01 06:37:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | internet of things edge computing federated reinforcement learning federated learning reinforcement learning |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-f8c43086ee831f630c84c563e89513880b93034be079f6ad5e9e997e0984890a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5879-569X 0009-0005-6044-2817 0000-0002-1541-1326 0000-0001-6111-8617 |
OpenAccessLink | https://doaj.org/article/4904d8d953cd419aad9d0064892730bf |
PMID | 40218710 |
PQID | 3188901322 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4904d8d953cd419aad9d0064892730bf unpaywall_primary_10_3390_s25072197 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11991064 proquest_miscellaneous_3189462312 proquest_journals_3188901322 gale_infotracacademiconefile_A838102540 pubmed_primary_40218710 crossref_primary_10_3390_s25072197 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-30 |
PublicationDateYYYYMMDD | 2025-03-30 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Liu (ref_5) 2020; 7 ref_36 ref_34 ref_33 ref_10 Ahmadzadeh (ref_11) 2022; 10 Zhao (ref_28) 2024; 21 ref_30 ref_19 ref_18 Yang (ref_41) 2019; 68 ref_16 ref_15 ref_37 Adhikari (ref_2) 2023; 11 Yang (ref_12) 2024; 28 Dimyati (ref_31) 2024; 12 Shirke (ref_25) 2022; 127 Boursianis (ref_6) 2022; 18 Idoje (ref_14) 2021; 92 Abdulqadder (ref_35) 2024; 254 Souza (ref_38) 2023; 148 Ghosh (ref_23) 2019; 2019 Alharbi (ref_17) 2021; 9 Liu (ref_29) 2023; 10 ref_21 ref_43 Mei (ref_3) 2025; 115 Castillejo (ref_8) 2024; 25 ref_20 ref_42 ref_40 Zaw (ref_24) 2021; 9 Wu (ref_13) 2024; 654 Zhang (ref_22) 2020; 8 ref_27 ref_26 Li (ref_32) 2023; 24 Zhao (ref_4) 2020; 61 Elijah (ref_7) 2018; 5 ref_9 Adhikari (ref_1) 2024; 54 Dinh (ref_39) 2020; 29 Wei (ref_44) 2020; 15 |
References_xml | – volume: 29 start-page: 398 year: 2020 ident: ref_39 article-title: Federated learning over wireless networks: Convergence analysis and resource allocation publication-title: IEEE/ACM Trans. Netw. doi: 10.1109/TNET.2020.3035770 – volume: 5 start-page: 3758 year: 2018 ident: ref_7 article-title: An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2844296 – volume: 9 start-page: 34938 year: 2021 ident: ref_24 article-title: Energy-Aware Resource Management for Federated Learning in Multi-Access Edge Computing Systems publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3055523 – volume: 148 start-page: 446 year: 2023 ident: ref_38 article-title: EdgeSimPy: Python-based modeling and simulation of edge computing resource management policies publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2023.06.013 – ident: ref_37 doi: 10.1145/2741948.2741964 – volume: 7 start-page: 3415 year: 2020 ident: ref_5 article-title: Resource Allocation With Edge Computing in IoT Networks via Machine Learning publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2970110 – volume: 92 start-page: 107104 year: 2021 ident: ref_14 article-title: Survey for smart farming technologies: Challenges and issues publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2021.107104 – ident: ref_34 doi: 10.3390/s23042243 – volume: 12 start-page: 109775 year: 2024 ident: ref_31 article-title: FeDRL-D2D: Federated Deep Reinforcement Learning- Empowered Resource Allocation Scheme for Energy Efficiency Maximization in D2D-Assisted 6G Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3434619 – volume: 68 start-page: 317 year: 2019 ident: ref_41 article-title: Scheduling policies for federated learning in wireless networks publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2019.2944169 – ident: ref_10 doi: 10.1007/11550907_126 – ident: ref_19 doi: 10.3390/pr11030757 – volume: 8 start-page: 141748 year: 2020 ident: ref_22 article-title: Overview of Edge Computing in the Agricultural Internet of Things: Key Technologies, Applications, Challenges publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3013005 – volume: 21 start-page: 2043 year: 2024 ident: ref_28 article-title: Lightweight Tensor-Enabled GRU for Trustworthy and Communication Efficient Federated Learning in Industrial IoT publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2024.3485720 – volume: 127 start-page: 2553 year: 2022 ident: ref_25 article-title: Performance Modelling and Analysis of IoT Based Edge Computing Policies publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-021-09081-z – volume: 18 start-page: 100187 year: 2022 ident: ref_6 article-title: Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in smart farming: A comprehensive review publication-title: Internet Things doi: 10.1016/j.iot.2020.100187 – ident: ref_36 doi: 10.1145/3342195.3387517 – ident: ref_42 – volume: 54 start-page: 100665 year: 2024 ident: ref_1 article-title: Recent advances in anomaly detection in Internet of Things: Status, challenges, and perspectives publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2024.100665 – volume: 9 start-page: 110480 year: 2021 ident: ref_17 article-title: Energy-Efficient Edge-Fog-Cloud Architecture for IoT-Based Smart Agriculture Environment publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3101397 – ident: ref_18 doi: 10.1109/LANMAN52105.2021.9478811 – ident: ref_16 doi: 10.3390/agronomy12102395 – volume: 10 start-page: 19102 year: 2023 ident: ref_29 article-title: Deep Reinforcement Learning for Resource Demand Prediction and Virtual Function Network Migration in Digital Twin Network publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2023.3281678 – ident: ref_40 doi: 10.1109/INFOCOM.2019.8737464 – volume: 10 start-page: 3228 year: 2022 ident: ref_11 article-title: A Deep Bidirectional LSTM-GRU Network Model for Automated Ciphertext Classification publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3140342 – volume: 15 start-page: 3454 year: 2020 ident: ref_44 article-title: Federated Learning With Differential Privacy: Algorithms and Performance Analysis publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2020.2988575 – ident: ref_27 doi: 10.1145/3579824 – volume: 254 start-page: 110841 year: 2024 ident: ref_35 article-title: DT-Block: Adaptive vertical federated reinforcement learning scheme for secure and efficient communication in 6G publication-title: Comput. Netw. doi: 10.1016/j.comnet.2024.110841 – ident: ref_20 doi: 10.3390/s18061731 – ident: ref_21 doi: 10.1109/AFRICON46755.2019.9134049 – volume: 654 start-page: 119849 year: 2024 ident: ref_13 article-title: Deep reinforcement learning-based online task offloading in mobile edge computing networks publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.119849 – volume: 11 start-page: 3676 year: 2023 ident: ref_2 article-title: A lightweight window portion-based multiple imputation for extreme missing gaps in iot systems publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2023.3315137 – ident: ref_30 doi: 10.1109/JCC56315.2022.00009 – ident: ref_26 doi: 10.3390/electronics12173615 – volume: 28 start-page: 338 year: 2024 ident: ref_12 article-title: Evolutionary Multitasking for Costly Task Offloading in Mobile-Edge Computing Networks publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2023.3255266 – ident: ref_9 doi: 10.1016/j.adhoc.2019.102047 – volume: 2019 start-page: 1 year: 2019 ident: ref_23 article-title: Data offloading in IoT environments: Modeling, analysis, and verification publication-title: EURASIP J. Wirel. Commun. Netw. doi: 10.1186/s13638-019-1358-8 – volume: 24 start-page: 3360 year: 2023 ident: ref_32 article-title: A Federated Learning-Based Edge Caching Approach for Mobile Edge Computing-Enabled Intelligent Connected Vehicles publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3224395 – ident: ref_43 doi: 10.1109/IJCNN.2017.7966217 – volume: 115 start-page: 102732 year: 2025 ident: ref_3 article-title: Blockchain-based privacy-preserving incentive scheme for internet of electric vehicle publication-title: Inf. Fusion doi: 10.1016/j.inffus.2024.102732 – volume: 61 start-page: 99 year: 2020 ident: ref_4 article-title: Edge computing and IoT data fusion: New opportunities and challenges publication-title: Inf. Fusion – volume: 25 start-page: 101030 year: 2024 ident: ref_8 article-title: Spatio-temporal semantic data management systems for IoT in agriculture 5.0: Challenges and future directions publication-title: Internet Things doi: 10.1016/j.iot.2023.101030 – ident: ref_33 doi: 10.20944/preprints202304.0734.v1 – ident: ref_15 doi: 10.1109/FMEC57183.2022.10062622 |
SSID | ssj0023338 |
Score | 2.4536898 |
Snippet | Using Google cluster traces, the research presents a task offloading algorithm and a hybrid forecasting model that unites Bidirectional Long Short-Term Memory... |
SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 2197 |
SubjectTerms | Algorithms Data mining Decision making edge computing Energy conservation Energy consumption Equipment and supplies federated learning federated reinforcement learning internet of things Privacy reinforcement learning Resource allocation Sensors Simulation methods Teaching |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hXoADgvIVaJH5kDhFdRwntY_b0lVBggNspd6sie1sK1bZit0V4t8zk2SjLKjiwnVjrex5Y795if0M8E6pUHpThFR6gyRQgkqrDHkXobRoFXrVHgr7_KU8v9CfLovL0VVfvCesswfuAnekrdTBBFvkPujMIgYbmEeNJeKVVc2rL9HYVkz1Uisn5dX5COUk6o9WRPQkddjZacQ-rUn_30vxiIv-3Cd5d9Pc4K-fuFiMSGj6EB701aOYdL1-BHdisw_3R56Cj2E1ZXsIqiCD-BpbW1TfvgEUvZPqPD0h4griQ3cVvdi-vxeTBfMa4ySwCWKGq-_iG0EaeK_6XFw34izMo6A_FB-XMzEZffl-AhfTs9npedrfrJB6IqN1WhuvcxIzMZo8q8ucgNK-KPNoqOBie5jKErXpKspjW5cYimijtcdRWkOBl5g_hb1m2cTnIKTCEpXK6txrjabAGiulCaRKo6oLm8CbbcTdTWeg4Uh4MCxugCWBE8ZiaMCe1-0PlAmuzwT3r0xI4D0j6Ti0BJfH_oAB9ZM9rtzEsJsZCWKZwMEWbNdP2ZWjxY2GxuI8gdfDY5ps_AUFm7jctG2spoIxozbPutwY-qy5WqJ6LQGzkzU7g9p90lxftYbeGe8_o5Ek8HZIsNuD9eJ_BOsl3FN8kzGfrpQHsLf-sYmHVF6tq1ftTPoNbtkhaw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nj9MwEB3BcgAOiM8lsCDzIXGKNnGcrH1CXdiyIMEButLeoontlBVVUjatEP-eGScNLQiujZU6fmPPG3v8BuCllK6wOndxYjVSgOJkXKXIWYSJQSPRynAp7OOn4vRMfTjPz4cNt25Iq9ysiWGhdq3lPfJDsj1twsHA6-X3mKtG8enqUELjKlxLJVkS3xSfvhsDrozir15NKKPQ_rAjd08BD-s7bfmgINX_94K85ZH-zJa8vm6W-PMHLhZbrmh6G24NHFJMetDvwBXf3IWbW8qC96CbskgE8UgnPvsgjmrDPqAY9FTn8TG5Lyfe9gXpxWYXX0wW7N0YLYGNEzPsvokvBKzjjPW5uGjEiZt7QS8U79uZmGydf9-Hs-nJ7M1pPNRXiC25pFVca6syCmm811laFxnBpWxeZF4T7WKRmMqQg1OVT45MXaDLvfHGHPnEaEVYYPYA9pq28Q9BJBILlDKtM6sU6hxrrKRyxlUKZZ2bCJ5vRrxc9jIaJYUfDEs5whLBMWMxNmDl6_BDezkvh4lUKpMop53JM-tUahDpT5hXaUNELKnqCF4xkiUPLcFlcbhmQP1kpatyolnTjMLiJIKDDdjlMHG78reZRfBsfExTjs9RsPHtOrQximhjSm32e9sY-6yYMxFri0DvWM3OR-0-aS6-BlnvlLPQ6EsieDEa2L8H69H_e_8YbkiuVMy3J5MD2Ftdrv0Tok-r6mmYI78A7rgZeA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7gF44PsjMJAHSDxlcxwntR8zWDWQmBC00niKHNsp06p0oq0Q_PXcJWlIhkC8Jqckvjvnd2ff_QzwSgiXWpW4kFtlMEFxIiwiQ1WEXBstjBV1U9iH0_RkJt-fJWc7sL_thent38eYjh-uEKIxSdHja7Cb0h7SCHZnpx-zL3XXkJAhAhxvGIOG8gOcqen4__zp9lDnakXk9U11aX58N4tFD24mt3837TRVJhcHm3VxYH9e4XD850juwK022GRZ4x13YcdX9-Bmj4LwPqwmxCaBAadjn3zNomrrBUPWEq_OwyPEOcfeNifXs-1yP8sWBINkVmYqx6ZmdcE-owc4Km2fs_OKHbu5Z_hA9m45ZVlvo_wBzCbH0zcnYXsQQ2gRu9ZhqayMMffxXsVRmcZoV2mTNPYK4zNikyk0IqEsPB_rMjUu8dprPfZcK6k0N_FDGFXLyj8GxoVJjRBRGVspjUpMaQohnXaFNKJMdAAvtmbLLxu-jRzzFNJg3mkwgCMyaCdAFNn1BdR33s64XGounXI6ia2TkTYGX0IBmNIYsfGiDOA1uUNOqkWbW9P2I-B3EiVWnikiP8P8mQewt_WYvJ3hqxz_hTg0yuUD2O9u49ykDRdT-eWmltES48sIZR41DtZ9s6TgCsO7ANTA9QaDGt6pzr_W_N8RlavhSAJ42Xnp35X15L-knsINQScbU7cl34PR-tvGP8Nwa108byfcL-kJJOo priority: 102 providerName: Unpaywall |
Title | Federated Reinforcement Learning-Based Dynamic Resource Allocation and Task Scheduling in Edge for IoT Applications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40218710 https://www.proquest.com/docview/3188901322 https://www.proquest.com/docview/3189462312 https://pubmed.ncbi.nlm.nih.gov/PMC11991064 https://doi.org/10.3390/s25072197 https://doaj.org/article/4904d8d953cd419aad9d0064892730bf |
UnpaywallVersion | publishedVersion |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lj9MwEB7tQ4LlgHgTWCrzkDgFEsdJ7ANCKbQsSFutllYqp8iJnbKiSpc-BPvvmUmTKAX2koNjJbFnnG8-P74BeMW5iXIZGtfLpUaCYrib-Zp2EXpKK65zXh0KOx1FJxPxZRpO96DJsVl34Oq_1I7ySU2W8ze_f169xwH_jhgnUva3K4RxJDIq3odDBCROzn0q2sUEHiAN24oK7VY_ghuCIC6m47MdVKrE-__9RXcw6u_9kzc35aW--qXn8w44De_A7TqqZMnWDe7Cni3vwa2O1uB9WA1JNgIjS8PObSWXmlczg6xWWJ25fQQ0wz5uU9SzZl6fJXPCO7If06VhY736wb6iqQ3tYZ-xi5INzMwyfCD7vBizpLMi_gAmw8H4w4lbZ1xwcwSptVvIXARIcqyVgV9EARpQ5GEUWImBGMnGZAohT2TWi1URaRNaZZWKraekkMrTwUM4KBelfQzM4zrSnPtFkAuhZagLnXFhlMmE5kWoHHjR9Hh6uRXWSJGQkIXS1kIO9MkWbQXSwq4KFstZWg-tVChPGGlUGORG-EprfAlFWlJhaOZlhQOvyZIpdS2aK9f1wQP8TtK-ShNJKmdIlD0Hjhtjp40npvjTw6YRaXfgeXsbByGtrOjSLjZVHSUwkPSxzqOtb7Tf3LiYA3LHa3YatXunvPheCX37tC8NW-LAy9bBru-sJ9e--ikccUpbTEcpvWM4WC839hnGUuusB_vxNMarHH7qwWF_MDo771XzEr1qDGHZZHSWfPsDGHEgwg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwEN4p5VA4MLwxFBCv4eSpLcuOdGCYlDaT0McB0pncXFmSQ4ZghyaZTv4Uv5Fdx04TGLj1GmsUWbva_da7-hbgLec2MTK2fmCkxgDFcj8LNVURBkorrg2vLoWdnCbdM_F5EA-24FdzF4bKKhubWBlqWxr6Rr6HuidVlRj4OPnpU9coyq42LTSWanHkFpcYsk0_9A5Qvu847xz2P3X9uquAb9AQz_xcGhEhkHdORmGeRLhIYeIkchLBBlGjZArNushc0FJ5om3slFOq5QIlBa5ARzjvDbiJcwji6m8NrgK8COO9JXtRFKlgb4rwAgMs4pNa83lVa4C_HcCaB_yzOnNnXkz04lKPx2uur3MX7tSYlbWXSnYPtlxxH26vMRk-gGmHSCkQt1r2xVVkrKb67shq_tahv4_u0rKDRaF_jAxrsgasPSZvStrBdGFZX0-_s6-oSJYq5IdsVLBDO3QMJ2S9ss_aa_n2h3B2LTv_CLaLsnBPgAVcJ5rzMI-MEFrGOtcZF1bZTGiex8qD182Op5MlbUeK4Q6JJV2JxYN9ksVqADFtVz-UF8O0PripUIGw0qo4MlaESmv8E8JxUiHwC7Lcg_ckyZS2FsVldH2tAddJzFppWxKHGobhgQe7jbDT2lBM0yu19uDV6jEeccrb6MKV82qMEghTQxzzeKkbqzULwmiIEj2QG1qz8VKbT4rRt4pGPKSqN3wTD96sFOzfm_X0_6t_CTvd_slxetw7PXoGtzh1Saabm8EubM8u5u45QrdZ9qI6LwzOr_uA_gYcX1Q8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4ti8TjgHgTWMC8xClqYjupfUCoS7fasrBC0JV6C47tlIqSlm2rVf8av46ZNO22ILjtNbESxzPj-SYz_gbgJecutSpxYWSVwQDF8TCPDVURRtpobiyvDoV9PE4PT-T7ftLfgV-rszBUVrnaE6uN2o0t_SNvoO4pXSUGGkVdFvGp3Xk7-RlSBynKtK7aaSxV5MgvzjB8m77ptlHWrzjvHPTeHYZ1h4HQ4qY8CwtlpUBQ770ScZEKnLC0SSq8QuBBNCm5xi1e5j5q6iI1LvHaa930kVYSZ2MEPvcSXG4KKaicrNk_D_YExn5LJiMhdNSYItTAYIu4pTb8X9Um4G9nsOEN_6zUvDovJ2ZxZkajDTfYuQk3avzKWkuFuwU7vrwN1zdYDe_AtEMEFYhhHfvsK2JWW_2DZDWX6yDcR9fpWHtRmh9Dy1YZBNYakWclTWGmdKxnpt_ZF1QqR9XyAzYs2YEbeIYPZN1xj7U2cu934eRCVv4e7Jbj0j8AFnGTGs7jQlgpjUpMYXIunXa5NLxIdADPVyueTZYUHhmGPiSWbC2WAPZJFusBxLpdXRifDrLaiDOpI-mU04mwTsbaGHwJYTqlEQRGeRHAa5JkRkuL4rKmPuKA8ySWrayliE8NQ_IogL2VsLN605hm5yoewLP1bTR3yuGY0o_n1RgtEbLGOOb-UjfWc5aE1xAxBqC2tGbro7bvlMNvFaV4TBVw-CUBvFgr2L8X6-H_Z_8UrqBpZh-6x0eP4Bqnhsl0iDPag93Z6dw_RhQ3y59U5sLg60Xb528aj1h3 |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7gF44PsjMJAHSDxlcxwntR8zWDWQmBC00niKHNsp06p0oq0Q_PXcJWlIhkC8Jqckvjvnd2ff_QzwSgiXWpW4kFtlMEFxIiwiQ1WEXBstjBV1U9iH0_RkJt-fJWc7sL_thent38eYjh-uEKIxSdHja7Cb0h7SCHZnpx-zL3XXkJAhAhxvGIOG8gOcqen4__zp9lDnakXk9U11aX58N4tFD24mt3837TRVJhcHm3VxYH9e4XD850juwK022GRZ4x13YcdX9-Bmj4LwPqwmxCaBAadjn3zNomrrBUPWEq_OwyPEOcfeNifXs-1yP8sWBINkVmYqx6ZmdcE-owc4Km2fs_OKHbu5Z_hA9m45ZVlvo_wBzCbH0zcnYXsQQ2gRu9ZhqayMMffxXsVRmcZoV2mTNPYK4zNikyk0IqEsPB_rMjUu8dprPfZcK6k0N_FDGFXLyj8GxoVJjRBRGVspjUpMaQohnXaFNKJMdAAvtmbLLxu-jRzzFNJg3mkwgCMyaCdAFNn1BdR33s64XGounXI6ia2TkTYGX0IBmNIYsfGiDOA1uUNOqkWbW9P2I-B3EiVWnikiP8P8mQewt_WYvJ3hqxz_hTg0yuUD2O9u49ykDRdT-eWmltES48sIZR41DtZ9s6TgCsO7ANTA9QaDGt6pzr_W_N8RlavhSAJ42Xnp35X15L-knsINQScbU7cl34PR-tvGP8Nwa108byfcL-kJJOo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Reinforcement+Learning-Based+Dynamic+Resource+Allocation+and+Task+Scheduling+in+Edge+for+IoT+Applications&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mali%2C+Saroj&rft.au=Zeng%2C+Feng&rft.au=Adhikari%2C+Deepak&rft.au=Ullah%2C+Inam&rft.date=2025-03-30&rft.eissn=1424-8220&rft.volume=25&rft.issue=7&rft_id=info:doi/10.3390%2Fs25072197&rft_id=info%3Apmid%2F40218710&rft.externalDocID=40218710 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |