Federated Reinforcement Learning-Based Dynamic Resource Allocation and Task Scheduling in Edge for IoT Applications

Using Google cluster traces, the research presents a task offloading algorithm and a hybrid forecasting model that unites Bidirectional Long Short-Term Memory (BiLSTM) with Gated Recurrent Unit (GRU) layers along an attention mechanism. This model predicts resource usage for flexible task scheduling...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 7; p. 2197
Main Authors Mali, Saroj, Zeng, Feng, Adhikari, Deepak, Ullah, Inam, Al-Khasawneh, Mahmoud Ahmad, Alfarraj, Osama, Alblehai, Fahad
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 30.03.2025
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s25072197

Cover

Abstract Using Google cluster traces, the research presents a task offloading algorithm and a hybrid forecasting model that unites Bidirectional Long Short-Term Memory (BiLSTM) with Gated Recurrent Unit (GRU) layers along an attention mechanism. This model predicts resource usage for flexible task scheduling in Internet of Things (IoT) applications based on edge computing. The suggested algorithm improves task distribution to boost performance and reduce energy consumption. The system’s design includes collecting data, fusing and preparing it for use, training models, and performing simulations with EdgeSimPy. Experimental outcomes show that the method we suggest is better than those used in best-fit, first-fit, and worst-fit basic algorithms. It maintains power stability usage among edge servers while surpassing old-fashioned heuristic techniques. Moreover, we also propose the Deep Deterministic Policy Gradient (D4PG) based on a Federated Learning algorithm for adjusting the participation of dynamic user equipment (UE) according to resource availability and data distribution. This algorithm is compared to DQN, DDQN, Dueling DQN, and Dueling DDQN models using Non-IID EMNIST, IID EMNIST datasets, and with the Crop Prediction dataset. Results indicate that the proposed D4PG method achieves superior performance, with an accuracy of 92.86% on the Crop Prediction dataset, outperforming alternative models. On the Non-IID EMNIST dataset, the proposed approach achieves an F1-score of 0.9192, demonstrating better efficiency and fairness in model updates while preserving privacy. Similarly, on the IID EMNIST dataset, the proposed D4PG model attains an F1-score of 0.82 and an accuracy of 82%, surpassing other Reinforcement Learning-based approaches. Additionally, for edge server power consumption, the hybrid offloading algorithm reduces fluctuations compared to existing methods, ensuring more stable energy usage across edge nodes. This corroborates that the proposed method can preserve privacy by handling issues related to fairness in model updates and improving efficiency better than state-of-the-art alternatives.
AbstractList Using Google cluster traces, the research presents a task offloading algorithm and a hybrid forecasting model that unites Bidirectional Long Short-Term Memory (BiLSTM) with Gated Recurrent Unit (GRU) layers along an attention mechanism. This model predicts resource usage for flexible task scheduling in Internet of Things (IoT) applications based on edge computing. The suggested algorithm improves task distribution to boost performance and reduce energy consumption. The system’s design includes collecting data, fusing and preparing it for use, training models, and performing simulations with EdgeSimPy. Experimental outcomes show that the method we suggest is better than those used in best-fit, first-fit, and worst-fit basic algorithms. It maintains power stability usage among edge servers while surpassing old-fashioned heuristic techniques. Moreover, we also propose the Deep Deterministic Policy Gradient (D4PG) based on a Federated Learning algorithm for adjusting the participation of dynamic user equipment (UE) according to resource availability and data distribution. This algorithm is compared to DQN, DDQN, Dueling DQN, and Dueling DDQN models using Non-IID EMNIST, IID EMNIST datasets, and with the Crop Prediction dataset. Results indicate that the proposed D4PG method achieves superior performance, with an accuracy of 92.86% on the Crop Prediction dataset, outperforming alternative models. On the Non-IID EMNIST dataset, the proposed approach achieves an F1-score of 0.9192, demonstrating better efficiency and fairness in model updates while preserving privacy. Similarly, on the IID EMNIST dataset, the proposed D4PG model attains an F1-score of 0.82 and an accuracy of 82%, surpassing other Reinforcement Learning-based approaches. Additionally, for edge server power consumption, the hybrid offloading algorithm reduces fluctuations compared to existing methods, ensuring more stable energy usage across edge nodes. This corroborates that the proposed method can preserve privacy by handling issues related to fairness in model updates and improving efficiency better than state-of-the-art alternatives.
Using Google cluster traces, the research presents a task offloading algorithm and a hybrid forecasting model that unites Bidirectional Long Short-Term Memory (BiLSTM) with Gated Recurrent Unit (GRU) layers along an attention mechanism. This model predicts resource usage for flexible task scheduling in Internet of Things (IoT) applications based on edge computing. The suggested algorithm improves task distribution to boost performance and reduce energy consumption. The system's design includes collecting data, fusing and preparing it for use, training models, and performing simulations with EdgeSimPy. Experimental outcomes show that the method we suggest is better than those used in best-fit, first-fit, and worst-fit basic algorithms. It maintains power stability usage among edge servers while surpassing old-fashioned heuristic techniques. Moreover, we also propose the Deep Deterministic Policy Gradient (D4PG) based on a Federated Learning algorithm for adjusting the participation of dynamic user equipment (UE) according to resource availability and data distribution. This algorithm is compared to DQN, DDQN, Dueling DQN, and Dueling DDQN models using Non-IID EMNIST, IID EMNIST datasets, and with the Crop Prediction dataset. Results indicate that the proposed D4PG method achieves superior performance, with an accuracy of 92.86% on the Crop Prediction dataset, outperforming alternative models. On the Non-IID EMNIST dataset, the proposed approach achieves an F1-score of 0.9192, demonstrating better efficiency and fairness in model updates while preserving privacy. Similarly, on the IID EMNIST dataset, the proposed D4PG model attains an F1-score of 0.82 and an accuracy of 82%, surpassing other Reinforcement Learning-based approaches. Additionally, for edge server power consumption, the hybrid offloading algorithm reduces fluctuations compared to existing methods, ensuring more stable energy usage across edge nodes. This corroborates that the proposed method can preserve privacy by handling issues related to fairness in model updates and improving efficiency better than state-of-the-art alternatives.Using Google cluster traces, the research presents a task offloading algorithm and a hybrid forecasting model that unites Bidirectional Long Short-Term Memory (BiLSTM) with Gated Recurrent Unit (GRU) layers along an attention mechanism. This model predicts resource usage for flexible task scheduling in Internet of Things (IoT) applications based on edge computing. The suggested algorithm improves task distribution to boost performance and reduce energy consumption. The system's design includes collecting data, fusing and preparing it for use, training models, and performing simulations with EdgeSimPy. Experimental outcomes show that the method we suggest is better than those used in best-fit, first-fit, and worst-fit basic algorithms. It maintains power stability usage among edge servers while surpassing old-fashioned heuristic techniques. Moreover, we also propose the Deep Deterministic Policy Gradient (D4PG) based on a Federated Learning algorithm for adjusting the participation of dynamic user equipment (UE) according to resource availability and data distribution. This algorithm is compared to DQN, DDQN, Dueling DQN, and Dueling DDQN models using Non-IID EMNIST, IID EMNIST datasets, and with the Crop Prediction dataset. Results indicate that the proposed D4PG method achieves superior performance, with an accuracy of 92.86% on the Crop Prediction dataset, outperforming alternative models. On the Non-IID EMNIST dataset, the proposed approach achieves an F1-score of 0.9192, demonstrating better efficiency and fairness in model updates while preserving privacy. Similarly, on the IID EMNIST dataset, the proposed D4PG model attains an F1-score of 0.82 and an accuracy of 82%, surpassing other Reinforcement Learning-based approaches. Additionally, for edge server power consumption, the hybrid offloading algorithm reduces fluctuations compared to existing methods, ensuring more stable energy usage across edge nodes. This corroborates that the proposed method can preserve privacy by handling issues related to fairness in model updates and improving efficiency better than state-of-the-art alternatives.
Audience Academic
Author Alfarraj, Osama
Al-Khasawneh, Mahmoud Ahmad
Adhikari, Deepak
Alblehai, Fahad
Mali, Saroj
Zeng, Feng
Ullah, Inam
AuthorAffiliation 3 Department of Computer Engineering, Gachon University, Seongnam 13120, Republic of Korea
2 School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China; deepakadhikari@uestc.edu.cn
5 School of Computing, Skyline University College, University City Sharjah, Sharjah 1797, United Arab Emirates
6 Computer Science Department, Community College, King Saud University, Riyadh 11437, Saudi Arabia; oalfarraj@ksu.edu.sa (O.A.); falblehi@ksu.edu.sa (F.A.)
1 School of Computer Science and Engineering, Central South University, Changsha 410083, China; malisaroj@csu.edu.cn
4 Hourani Center for Applied Science Research Center, Al-Ahliyya Amman University, Amman 19328, Jordan; mahmoudalkhasawneh@outlook.com
AuthorAffiliation_xml – name: 4 Hourani Center for Applied Science Research Center, Al-Ahliyya Amman University, Amman 19328, Jordan; mahmoudalkhasawneh@outlook.com
– name: 6 Computer Science Department, Community College, King Saud University, Riyadh 11437, Saudi Arabia; oalfarraj@ksu.edu.sa (O.A.); falblehi@ksu.edu.sa (F.A.)
– name: 5 School of Computing, Skyline University College, University City Sharjah, Sharjah 1797, United Arab Emirates
– name: 1 School of Computer Science and Engineering, Central South University, Changsha 410083, China; malisaroj@csu.edu.cn
– name: 2 School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China; deepakadhikari@uestc.edu.cn
– name: 3 Department of Computer Engineering, Gachon University, Seongnam 13120, Republic of Korea
Author_xml – sequence: 1
  givenname: Saroj
  orcidid: 0009-0005-6044-2817
  surname: Mali
  fullname: Mali, Saroj
– sequence: 2
  givenname: Feng
  orcidid: 0000-0002-1541-1326
  surname: Zeng
  fullname: Zeng, Feng
– sequence: 3
  givenname: Deepak
  surname: Adhikari
  fullname: Adhikari, Deepak
– sequence: 4
  givenname: Inam
  orcidid: 0000-0002-5879-569X
  surname: Ullah
  fullname: Ullah, Inam
– sequence: 5
  givenname: Mahmoud Ahmad
  surname: Al-Khasawneh
  fullname: Al-Khasawneh, Mahmoud Ahmad
– sequence: 6
  givenname: Osama
  orcidid: 0000-0001-6111-8617
  surname: Alfarraj
  fullname: Alfarraj, Osama
– sequence: 7
  givenname: Fahad
  surname: Alblehai
  fullname: Alblehai, Fahad
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40218710$$D View this record in MEDLINE/PubMed
BookMark eNp9kkuP0zAUhSM0iHnAgj-AIrEBpA5-JbFXqAwzUKkSEpS15do3HRfXDnEC6r_nlgzVDAvkhS3f7x7b5_i8OIkpQlE8p-SSc0XeZlaRhlHVPCrOqGBiJhkjJ_fWp8V5zltCGOdcPilOBWFUNpScFfkGHPRmAFd-AR_b1FvYQRzKJZg--riZvTcZix_20ey8RSinEZlyHkKyZvAplia6cmXy9_KrvQU3BuwqfSyv3QZKFCwXaVXOuy74ic9Pi8etCRme3c0Xxbeb69XVp9ny88fF1Xw5s6Khw6yVVnAiawDJaVtzYqWwVc1BqopyKclaccLFGkij2tq4ChQo1QBRUkhFDL8oFpOuS2aru97vTL_XyXj9ZyP1G236wdsAWiginHSq4tYJqoxxyhFSow5rOFm3qPVm0hpjZ_a_TAhHQUr0IQV9TAHhdxPcjesdOIt-9iY8uMHDSvS3epN-akqVongsKry6U-jTjxHyoHc-WwjBREhj1pxKJWrGKUP05T_oFhOKaOyBQiMoZwfqcqI2Bp97CBoPtjgcYKz4nVqP-3PJJSWsEgQbXtx_w_Hyf78OAq8nwPYp5x7a_xjyG0WK0HQ
Cites_doi 10.1109/TNET.2020.3035770
10.1109/JIOT.2018.2844296
10.1109/ACCESS.2021.3055523
10.1016/j.future.2023.06.013
10.1145/2741948.2741964
10.1109/JIOT.2020.2970110
10.1016/j.compeleceng.2021.107104
10.3390/s23042243
10.1109/ACCESS.2024.3434619
10.1109/TCOMM.2019.2944169
10.1007/11550907_126
10.3390/pr11030757
10.1109/ACCESS.2020.3013005
10.1109/TII.2024.3485720
10.1007/s11277-021-09081-z
10.1016/j.iot.2020.100187
10.1145/3342195.3387517
10.1016/j.cosrev.2024.100665
10.1109/ACCESS.2021.3101397
10.1109/LANMAN52105.2021.9478811
10.3390/agronomy12102395
10.1109/JIOT.2023.3281678
10.1109/INFOCOM.2019.8737464
10.1109/ACCESS.2022.3140342
10.1109/TIFS.2020.2988575
10.1145/3579824
10.1016/j.comnet.2024.110841
10.3390/s18061731
10.1109/AFRICON46755.2019.9134049
10.1016/j.ins.2023.119849
10.1109/JIOT.2023.3315137
10.1109/JCC56315.2022.00009
10.3390/electronics12173615
10.1109/TEVC.2023.3255266
10.1016/j.adhoc.2019.102047
10.1186/s13638-019-1358-8
10.1109/TITS.2022.3224395
10.1109/IJCNN.2017.7966217
10.1016/j.inffus.2024.102732
10.1016/j.iot.2023.101030
10.20944/preprints202304.0734.v1
10.1109/FMEC57183.2022.10062622
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s25072197
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


PubMed
Publicly Available Content Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_4904d8d953cd419aad9d0064892730bf
10.3390/s25072197
PMC11991064
A838102540
40218710
10_3390_s25072197
Genre Journal Article
GrantInformation_xml – fundername: King Saud University
  grantid: RSP2025R102
– fundername: Korea government (Ministry of Science and ICT)
  grantid: IITP-2025-RS-2023-00259004
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c471t-f8c43086ee831f630c84c563e89513880b93034be079f6ad5e9e997e0984890a3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:30:22 EDT 2025
Sun Sep 07 11:00:40 EDT 2025
Tue Sep 30 17:04:12 EDT 2025
Fri Sep 05 17:38:56 EDT 2025
Fri Jul 25 20:56:55 EDT 2025
Tue Jun 10 20:58:31 EDT 2025
Tue Apr 15 01:23:26 EDT 2025
Wed Oct 01 06:37:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords internet of things
edge computing
federated reinforcement learning
federated learning
reinforcement learning
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-f8c43086ee831f630c84c563e89513880b93034be079f6ad5e9e997e0984890a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5879-569X
0009-0005-6044-2817
0000-0002-1541-1326
0000-0001-6111-8617
OpenAccessLink https://doaj.org/article/4904d8d953cd419aad9d0064892730bf
PMID 40218710
PQID 3188901322
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_4904d8d953cd419aad9d0064892730bf
unpaywall_primary_10_3390_s25072197
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11991064
proquest_miscellaneous_3189462312
proquest_journals_3188901322
gale_infotracacademiconefile_A838102540
pubmed_primary_40218710
crossref_primary_10_3390_s25072197
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-30
PublicationDateYYYYMMDD 2025-03-30
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-30
  day: 30
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Liu (ref_5) 2020; 7
ref_36
ref_34
ref_33
ref_10
Ahmadzadeh (ref_11) 2022; 10
Zhao (ref_28) 2024; 21
ref_30
ref_19
ref_18
Yang (ref_41) 2019; 68
ref_16
ref_15
ref_37
Adhikari (ref_2) 2023; 11
Yang (ref_12) 2024; 28
Dimyati (ref_31) 2024; 12
Shirke (ref_25) 2022; 127
Boursianis (ref_6) 2022; 18
Idoje (ref_14) 2021; 92
Abdulqadder (ref_35) 2024; 254
Souza (ref_38) 2023; 148
Ghosh (ref_23) 2019; 2019
Alharbi (ref_17) 2021; 9
Liu (ref_29) 2023; 10
ref_21
ref_43
Mei (ref_3) 2025; 115
Castillejo (ref_8) 2024; 25
ref_20
ref_42
ref_40
Zaw (ref_24) 2021; 9
Wu (ref_13) 2024; 654
Zhang (ref_22) 2020; 8
ref_27
ref_26
Li (ref_32) 2023; 24
Zhao (ref_4) 2020; 61
Elijah (ref_7) 2018; 5
ref_9
Adhikari (ref_1) 2024; 54
Dinh (ref_39) 2020; 29
Wei (ref_44) 2020; 15
References_xml – volume: 29
  start-page: 398
  year: 2020
  ident: ref_39
  article-title: Federated learning over wireless networks: Convergence analysis and resource allocation
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2020.3035770
– volume: 5
  start-page: 3758
  year: 2018
  ident: ref_7
  article-title: An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2844296
– volume: 9
  start-page: 34938
  year: 2021
  ident: ref_24
  article-title: Energy-Aware Resource Management for Federated Learning in Multi-Access Edge Computing Systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3055523
– volume: 148
  start-page: 446
  year: 2023
  ident: ref_38
  article-title: EdgeSimPy: Python-based modeling and simulation of edge computing resource management policies
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2023.06.013
– ident: ref_37
  doi: 10.1145/2741948.2741964
– volume: 7
  start-page: 3415
  year: 2020
  ident: ref_5
  article-title: Resource Allocation With Edge Computing in IoT Networks via Machine Learning
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2970110
– volume: 92
  start-page: 107104
  year: 2021
  ident: ref_14
  article-title: Survey for smart farming technologies: Challenges and issues
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2021.107104
– ident: ref_34
  doi: 10.3390/s23042243
– volume: 12
  start-page: 109775
  year: 2024
  ident: ref_31
  article-title: FeDRL-D2D: Federated Deep Reinforcement Learning- Empowered Resource Allocation Scheme for Energy Efficiency Maximization in D2D-Assisted 6G Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3434619
– volume: 68
  start-page: 317
  year: 2019
  ident: ref_41
  article-title: Scheduling policies for federated learning in wireless networks
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2019.2944169
– ident: ref_10
  doi: 10.1007/11550907_126
– ident: ref_19
  doi: 10.3390/pr11030757
– volume: 8
  start-page: 141748
  year: 2020
  ident: ref_22
  article-title: Overview of Edge Computing in the Agricultural Internet of Things: Key Technologies, Applications, Challenges
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3013005
– volume: 21
  start-page: 2043
  year: 2024
  ident: ref_28
  article-title: Lightweight Tensor-Enabled GRU for Trustworthy and Communication Efficient Federated Learning in Industrial IoT
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2024.3485720
– volume: 127
  start-page: 2553
  year: 2022
  ident: ref_25
  article-title: Performance Modelling and Analysis of IoT Based Edge Computing Policies
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-021-09081-z
– volume: 18
  start-page: 100187
  year: 2022
  ident: ref_6
  article-title: Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in smart farming: A comprehensive review
  publication-title: Internet Things
  doi: 10.1016/j.iot.2020.100187
– ident: ref_36
  doi: 10.1145/3342195.3387517
– ident: ref_42
– volume: 54
  start-page: 100665
  year: 2024
  ident: ref_1
  article-title: Recent advances in anomaly detection in Internet of Things: Status, challenges, and perspectives
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2024.100665
– volume: 9
  start-page: 110480
  year: 2021
  ident: ref_17
  article-title: Energy-Efficient Edge-Fog-Cloud Architecture for IoT-Based Smart Agriculture Environment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3101397
– ident: ref_18
  doi: 10.1109/LANMAN52105.2021.9478811
– ident: ref_16
  doi: 10.3390/agronomy12102395
– volume: 10
  start-page: 19102
  year: 2023
  ident: ref_29
  article-title: Deep Reinforcement Learning for Resource Demand Prediction and Virtual Function Network Migration in Digital Twin Network
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2023.3281678
– ident: ref_40
  doi: 10.1109/INFOCOM.2019.8737464
– volume: 10
  start-page: 3228
  year: 2022
  ident: ref_11
  article-title: A Deep Bidirectional LSTM-GRU Network Model for Automated Ciphertext Classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3140342
– volume: 15
  start-page: 3454
  year: 2020
  ident: ref_44
  article-title: Federated Learning With Differential Privacy: Algorithms and Performance Analysis
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2020.2988575
– ident: ref_27
  doi: 10.1145/3579824
– volume: 254
  start-page: 110841
  year: 2024
  ident: ref_35
  article-title: DT-Block: Adaptive vertical federated reinforcement learning scheme for secure and efficient communication in 6G
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2024.110841
– ident: ref_20
  doi: 10.3390/s18061731
– ident: ref_21
  doi: 10.1109/AFRICON46755.2019.9134049
– volume: 654
  start-page: 119849
  year: 2024
  ident: ref_13
  article-title: Deep reinforcement learning-based online task offloading in mobile edge computing networks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.119849
– volume: 11
  start-page: 3676
  year: 2023
  ident: ref_2
  article-title: A lightweight window portion-based multiple imputation for extreme missing gaps in iot systems
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2023.3315137
– ident: ref_30
  doi: 10.1109/JCC56315.2022.00009
– ident: ref_26
  doi: 10.3390/electronics12173615
– volume: 28
  start-page: 338
  year: 2024
  ident: ref_12
  article-title: Evolutionary Multitasking for Costly Task Offloading in Mobile-Edge Computing Networks
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2023.3255266
– ident: ref_9
  doi: 10.1016/j.adhoc.2019.102047
– volume: 2019
  start-page: 1
  year: 2019
  ident: ref_23
  article-title: Data offloading in IoT environments: Modeling, analysis, and verification
  publication-title: EURASIP J. Wirel. Commun. Netw.
  doi: 10.1186/s13638-019-1358-8
– volume: 24
  start-page: 3360
  year: 2023
  ident: ref_32
  article-title: A Federated Learning-Based Edge Caching Approach for Mobile Edge Computing-Enabled Intelligent Connected Vehicles
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3224395
– ident: ref_43
  doi: 10.1109/IJCNN.2017.7966217
– volume: 115
  start-page: 102732
  year: 2025
  ident: ref_3
  article-title: Blockchain-based privacy-preserving incentive scheme for internet of electric vehicle
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2024.102732
– volume: 61
  start-page: 99
  year: 2020
  ident: ref_4
  article-title: Edge computing and IoT data fusion: New opportunities and challenges
  publication-title: Inf. Fusion
– volume: 25
  start-page: 101030
  year: 2024
  ident: ref_8
  article-title: Spatio-temporal semantic data management systems for IoT in agriculture 5.0: Challenges and future directions
  publication-title: Internet Things
  doi: 10.1016/j.iot.2023.101030
– ident: ref_33
  doi: 10.20944/preprints202304.0734.v1
– ident: ref_15
  doi: 10.1109/FMEC57183.2022.10062622
SSID ssj0023338
Score 2.4536898
Snippet Using Google cluster traces, the research presents a task offloading algorithm and a hybrid forecasting model that unites Bidirectional Long Short-Term Memory...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2197
SubjectTerms Algorithms
Data mining
Decision making
edge computing
Energy conservation
Energy consumption
Equipment and supplies
federated learning
federated reinforcement learning
internet of things
Privacy
reinforcement learning
Resource allocation
Sensors
Simulation methods
Teaching
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hXoADgvIVaJH5kDhFdRwntY_b0lVBggNspd6sie1sK1bZit0V4t8zk2SjLKjiwnVjrex5Y795if0M8E6pUHpThFR6gyRQgkqrDHkXobRoFXrVHgr7_KU8v9CfLovL0VVfvCesswfuAnekrdTBBFvkPujMIgYbmEeNJeKVVc2rL9HYVkz1Uisn5dX5COUk6o9WRPQkddjZacQ-rUn_30vxiIv-3Cd5d9Pc4K-fuFiMSGj6EB701aOYdL1-BHdisw_3R56Cj2E1ZXsIqiCD-BpbW1TfvgEUvZPqPD0h4griQ3cVvdi-vxeTBfMa4ySwCWKGq-_iG0EaeK_6XFw34izMo6A_FB-XMzEZffl-AhfTs9npedrfrJB6IqN1WhuvcxIzMZo8q8ucgNK-KPNoqOBie5jKErXpKspjW5cYimijtcdRWkOBl5g_hb1m2cTnIKTCEpXK6txrjabAGiulCaRKo6oLm8CbbcTdTWeg4Uh4MCxugCWBE8ZiaMCe1-0PlAmuzwT3r0xI4D0j6Ti0BJfH_oAB9ZM9rtzEsJsZCWKZwMEWbNdP2ZWjxY2GxuI8gdfDY5ps_AUFm7jctG2spoIxozbPutwY-qy5WqJ6LQGzkzU7g9p90lxftYbeGe8_o5Ek8HZIsNuD9eJ_BOsl3FN8kzGfrpQHsLf-sYmHVF6tq1ftTPoNbtkhaw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nj9MwEB3BcgAOiM8lsCDzIXGKNnGcrH1CXdiyIMEButLeoontlBVVUjatEP-eGScNLQiujZU6fmPPG3v8BuCllK6wOndxYjVSgOJkXKXIWYSJQSPRynAp7OOn4vRMfTjPz4cNt25Iq9ysiWGhdq3lPfJDsj1twsHA6-X3mKtG8enqUELjKlxLJVkS3xSfvhsDrozir15NKKPQ_rAjd08BD-s7bfmgINX_94K85ZH-zJa8vm6W-PMHLhZbrmh6G24NHFJMetDvwBXf3IWbW8qC96CbskgE8UgnPvsgjmrDPqAY9FTn8TG5Lyfe9gXpxWYXX0wW7N0YLYGNEzPsvokvBKzjjPW5uGjEiZt7QS8U79uZmGydf9-Hs-nJ7M1pPNRXiC25pFVca6syCmm811laFxnBpWxeZF4T7WKRmMqQg1OVT45MXaDLvfHGHPnEaEVYYPYA9pq28Q9BJBILlDKtM6sU6hxrrKRyxlUKZZ2bCJ5vRrxc9jIaJYUfDEs5whLBMWMxNmDl6_BDezkvh4lUKpMop53JM-tUahDpT5hXaUNELKnqCF4xkiUPLcFlcbhmQP1kpatyolnTjMLiJIKDDdjlMHG78reZRfBsfExTjs9RsPHtOrQximhjSm32e9sY-6yYMxFri0DvWM3OR-0-aS6-BlnvlLPQ6EsieDEa2L8H69H_e_8YbkiuVMy3J5MD2Ftdrv0Tok-r6mmYI78A7rgZeA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7gF44PsjMJAHSDxlcxwntR8zWDWQmBC00niKHNsp06p0oq0Q_PXcJWlIhkC8Jqckvjvnd2ff_QzwSgiXWpW4kFtlMEFxIiwiQ1WEXBstjBV1U9iH0_RkJt-fJWc7sL_thent38eYjh-uEKIxSdHja7Cb0h7SCHZnpx-zL3XXkJAhAhxvGIOG8gOcqen4__zp9lDnakXk9U11aX58N4tFD24mt3837TRVJhcHm3VxYH9e4XD850juwK022GRZ4x13YcdX9-Bmj4LwPqwmxCaBAadjn3zNomrrBUPWEq_OwyPEOcfeNifXs-1yP8sWBINkVmYqx6ZmdcE-owc4Km2fs_OKHbu5Z_hA9m45ZVlvo_wBzCbH0zcnYXsQQ2gRu9ZhqayMMffxXsVRmcZoV2mTNPYK4zNikyk0IqEsPB_rMjUu8dprPfZcK6k0N_FDGFXLyj8GxoVJjRBRGVspjUpMaQohnXaFNKJMdAAvtmbLLxu-jRzzFNJg3mkwgCMyaCdAFNn1BdR33s64XGounXI6ia2TkTYGX0IBmNIYsfGiDOA1uUNOqkWbW9P2I-B3EiVWnikiP8P8mQewt_WYvJ3hqxz_hTg0yuUD2O9u49ykDRdT-eWmltES48sIZR41DtZ9s6TgCsO7ANTA9QaDGt6pzr_W_N8RlavhSAJ42Xnp35X15L-knsINQScbU7cl34PR-tvGP8Nwa108byfcL-kJJOo
  priority: 102
  providerName: Unpaywall
Title Federated Reinforcement Learning-Based Dynamic Resource Allocation and Task Scheduling in Edge for IoT Applications
URI https://www.ncbi.nlm.nih.gov/pubmed/40218710
https://www.proquest.com/docview/3188901322
https://www.proquest.com/docview/3189462312
https://pubmed.ncbi.nlm.nih.gov/PMC11991064
https://doi.org/10.3390/s25072197
https://doaj.org/article/4904d8d953cd419aad9d0064892730bf
UnpaywallVersion publishedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lj9MwEB7tQ4LlgHgTWCrzkDgFEsdJ7ANCKbQsSFutllYqp8iJnbKiSpc-BPvvmUmTKAX2koNjJbFnnG8-P74BeMW5iXIZGtfLpUaCYrib-Zp2EXpKK65zXh0KOx1FJxPxZRpO96DJsVl34Oq_1I7ySU2W8ze_f169xwH_jhgnUva3K4RxJDIq3odDBCROzn0q2sUEHiAN24oK7VY_ghuCIC6m47MdVKrE-__9RXcw6u_9kzc35aW--qXn8w44De_A7TqqZMnWDe7Cni3vwa2O1uB9WA1JNgIjS8PObSWXmlczg6xWWJ25fQQ0wz5uU9SzZl6fJXPCO7If06VhY736wb6iqQ3tYZ-xi5INzMwyfCD7vBizpLMi_gAmw8H4w4lbZ1xwcwSptVvIXARIcqyVgV9EARpQ5GEUWImBGMnGZAohT2TWi1URaRNaZZWKraekkMrTwUM4KBelfQzM4zrSnPtFkAuhZagLnXFhlMmE5kWoHHjR9Hh6uRXWSJGQkIXS1kIO9MkWbQXSwq4KFstZWg-tVChPGGlUGORG-EprfAlFWlJhaOZlhQOvyZIpdS2aK9f1wQP8TtK-ShNJKmdIlD0Hjhtjp40npvjTw6YRaXfgeXsbByGtrOjSLjZVHSUwkPSxzqOtb7Tf3LiYA3LHa3YatXunvPheCX37tC8NW-LAy9bBru-sJ9e--ikccUpbTEcpvWM4WC839hnGUuusB_vxNMarHH7qwWF_MDo771XzEr1qDGHZZHSWfPsDGHEgwg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwEN4p5VA4MLwxFBCv4eSpLcuOdGCYlDaT0McB0pncXFmSQ4ZghyaZTv4Uv5Fdx04TGLj1GmsUWbva_da7-hbgLec2MTK2fmCkxgDFcj8LNVURBkorrg2vLoWdnCbdM_F5EA-24FdzF4bKKhubWBlqWxr6Rr6HuidVlRj4OPnpU9coyq42LTSWanHkFpcYsk0_9A5Qvu847xz2P3X9uquAb9AQz_xcGhEhkHdORmGeRLhIYeIkchLBBlGjZArNushc0FJ5om3slFOq5QIlBa5ARzjvDbiJcwji6m8NrgK8COO9JXtRFKlgb4rwAgMs4pNa83lVa4C_HcCaB_yzOnNnXkz04lKPx2uur3MX7tSYlbWXSnYPtlxxH26vMRk-gGmHSCkQt1r2xVVkrKb67shq_tahv4_u0rKDRaF_jAxrsgasPSZvStrBdGFZX0-_s6-oSJYq5IdsVLBDO3QMJ2S9ss_aa_n2h3B2LTv_CLaLsnBPgAVcJ5rzMI-MEFrGOtcZF1bZTGiex8qD182Op5MlbUeK4Q6JJV2JxYN9ksVqADFtVz-UF8O0PripUIGw0qo4MlaESmv8E8JxUiHwC7Lcg_ckyZS2FsVldH2tAddJzFppWxKHGobhgQe7jbDT2lBM0yu19uDV6jEeccrb6MKV82qMEghTQxzzeKkbqzULwmiIEj2QG1qz8VKbT4rRt4pGPKSqN3wTD96sFOzfm_X0_6t_CTvd_slxetw7PXoGtzh1Saabm8EubM8u5u45QrdZ9qI6LwzOr_uA_gYcX1Q8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4ti8TjgHgTWMC8xClqYjupfUCoS7fasrBC0JV6C47tlIqSlm2rVf8av46ZNO22ILjtNbESxzPj-SYz_gbgJecutSpxYWSVwQDF8TCPDVURRtpobiyvDoV9PE4PT-T7ftLfgV-rszBUVrnaE6uN2o0t_SNvoO4pXSUGGkVdFvGp3Xk7-RlSBynKtK7aaSxV5MgvzjB8m77ptlHWrzjvHPTeHYZ1h4HQ4qY8CwtlpUBQ770ScZEKnLC0SSq8QuBBNCm5xi1e5j5q6iI1LvHaa930kVYSZ2MEPvcSXG4KKaicrNk_D_YExn5LJiMhdNSYItTAYIu4pTb8X9Um4G9nsOEN_6zUvDovJ2ZxZkajDTfYuQk3avzKWkuFuwU7vrwN1zdYDe_AtEMEFYhhHfvsK2JWW_2DZDWX6yDcR9fpWHtRmh9Dy1YZBNYakWclTWGmdKxnpt_ZF1QqR9XyAzYs2YEbeIYPZN1xj7U2cu934eRCVv4e7Jbj0j8AFnGTGs7jQlgpjUpMYXIunXa5NLxIdADPVyueTZYUHhmGPiSWbC2WAPZJFusBxLpdXRifDrLaiDOpI-mU04mwTsbaGHwJYTqlEQRGeRHAa5JkRkuL4rKmPuKA8ySWrayliE8NQ_IogL2VsLN605hm5yoewLP1bTR3yuGY0o_n1RgtEbLGOOb-UjfWc5aE1xAxBqC2tGbro7bvlMNvFaV4TBVw-CUBvFgr2L8X6-H_Z_8UrqBpZh-6x0eP4Bqnhsl0iDPag93Z6dw_RhQ3y59U5sLg60Xb528aj1h3
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7gF44PsjMJAHSDxlcxwntR8zWDWQmBC00niKHNsp06p0oq0Q_PXcJWlIhkC8Jqckvjvnd2ff_QzwSgiXWpW4kFtlMEFxIiwiQ1WEXBstjBV1U9iH0_RkJt-fJWc7sL_thent38eYjh-uEKIxSdHja7Cb0h7SCHZnpx-zL3XXkJAhAhxvGIOG8gOcqen4__zp9lDnakXk9U11aX58N4tFD24mt3837TRVJhcHm3VxYH9e4XD850juwK022GRZ4x13YcdX9-Bmj4LwPqwmxCaBAadjn3zNomrrBUPWEq_OwyPEOcfeNifXs-1yP8sWBINkVmYqx6ZmdcE-owc4Km2fs_OKHbu5Z_hA9m45ZVlvo_wBzCbH0zcnYXsQQ2gRu9ZhqayMMffxXsVRmcZoV2mTNPYK4zNikyk0IqEsPB_rMjUu8dprPfZcK6k0N_FDGFXLyj8GxoVJjRBRGVspjUpMaQohnXaFNKJMdAAvtmbLLxu-jRzzFNJg3mkwgCMyaCdAFNn1BdR33s64XGounXI6ia2TkTYGX0IBmNIYsfGiDOA1uUNOqkWbW9P2I-B3EiVWnikiP8P8mQewt_WYvJ3hqxz_hTg0yuUD2O9u49ykDRdT-eWmltES48sIZR41DtZ9s6TgCsO7ANTA9QaDGt6pzr_W_N8RlavhSAJ42Xnp35X15L-knsINQScbU7cl34PR-tvGP8Nwa108byfcL-kJJOo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Reinforcement+Learning-Based+Dynamic+Resource+Allocation+and+Task+Scheduling+in+Edge+for+IoT+Applications&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mali%2C+Saroj&rft.au=Zeng%2C+Feng&rft.au=Adhikari%2C+Deepak&rft.au=Ullah%2C+Inam&rft.date=2025-03-30&rft.eissn=1424-8220&rft.volume=25&rft.issue=7&rft_id=info:doi/10.3390%2Fs25072197&rft_id=info%3Apmid%2F40218710&rft.externalDocID=40218710
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon