Pavement-DETR: A High-Precision Real-Time Detection Transformer for Pavement Defect Detection

The accurate detection of road defects is crucial for enhancing the safety and efficiency of road maintenance. This study focuses on six common types of pavement defects: transverse cracks, longitudinal cracks, alligator cracking, oblique cracks, potholes, and repair marks. In real-world scenarios,...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 8; p. 2426
Main Authors Zuo, Cuihua, Huang, Nengxin, Yuan, Cao, Li, Yaqin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 11.04.2025
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s25082426

Cover

Abstract The accurate detection of road defects is crucial for enhancing the safety and efficiency of road maintenance. This study focuses on six common types of pavement defects: transverse cracks, longitudinal cracks, alligator cracking, oblique cracks, potholes, and repair marks. In real-world scenarios, key challenges include effectively distinguishing between the foreground and background, as well as accurately identifying small-sized (e.g., fine cracks, dense alligator cracking, and clustered potholes) and overlapping defects (e.g., intersecting cracks or clustered damage areas where multiple defects appear close together). To address these issues, this paper proposes a Pavement-DETR model based on the Real-Time Detection Transformer (RT-DETR), aiming to optimize the overall accuracy of defect detection. To achieve this goal, three main improvements are proposed: (1) the introduction of the Channel-Spatial Shuffle (CSS) attention mechanism in the third (S3) and fourth (S4) stages of the ResNet backbone, which correspond to mid-level and high-level feature layers, enabling the model to focus more precisely on road defect features; (2) the adoption of the Conv3XC structure for feature fusion enhances the model’s ability to differentiate between the foreground and background, which is achieved through multi-level convolutions, channel expansion, and skip connections, which also contribute to improved gradient flow and training stability; (3) the proposal of a loss function combining Powerful-IoU v2 (PIoU v2) and Normalized Wasserstein Distance (NWD) weighted averaging, where PIoU v2 focuses on optimizing overlapping regions, and NWD targets small object optimization. The combined loss function enables comprehensive optimization of the bounding boxes, improving the model’s accuracy and convergence speed. Experimental results show that on the UAV-PDD2023 dataset, Pavement-DETR improves the mean average precision (mAP) by 7.7% at IoU = 0.5, increases mAP by 8.9% at IoU = 0.5–0.95, and improves F1 Score by 7%. These results demonstrate that Pavement-DETR exhibits better performance in road defect detection, making it highly significant for road maintenance work.
AbstractList The accurate detection of road defects is crucial for enhancing the safety and efficiency of road maintenance. This study focuses on six common types of pavement defects: transverse cracks, longitudinal cracks, alligator cracking, oblique cracks, potholes, and repair marks. In real-world scenarios, key challenges include effectively distinguishing between the foreground and background, as well as accurately identifying small-sized (e.g., fine cracks, dense alligator cracking, and clustered potholes) and overlapping defects (e.g., intersecting cracks or clustered damage areas where multiple defects appear close together). To address these issues, this paper proposes a Pavement-DETR model based on the Real-Time Detection Transformer (RT-DETR), aiming to optimize the overall accuracy of defect detection. To achieve this goal, three main improvements are proposed: (1) the introduction of the Channel-Spatial Shuffle (CSS) attention mechanism in the third (S3) and fourth (S4) stages of the ResNet backbone, which correspond to mid-level and high-level feature layers, enabling the model to focus more precisely on road defect features; (2) the adoption of the Conv3XC structure for feature fusion enhances the model's ability to differentiate between the foreground and background, which is achieved through multi-level convolutions, channel expansion, and skip connections, which also contribute to improved gradient flow and training stability; (3) the proposal of a loss function combining Powerful-IoU v2 (PIoU v2) and Normalized Wasserstein Distance (NWD) weighted averaging, where PIoU v2 focuses on optimizing overlapping regions, and NWD targets small object optimization. The combined loss function enables comprehensive optimization of the bounding boxes, improving the model's accuracy and convergence speed. Experimental results show that on the UAV-PDD2023 dataset, Pavement-DETR improves the mean average precision (mAP) by 7.7% at IoU = 0.5, increases mAP by 8.9% at IoU = 0.5-0.95, and improves F1 Score by 7%. These results demonstrate that Pavement-DETR exhibits better performance in road defect detection, making it highly significant for road maintenance work.
The accurate detection of road defects is crucial for enhancing the safety and efficiency of road maintenance. This study focuses on six common types of pavement defects: transverse cracks, longitudinal cracks, alligator cracking, oblique cracks, potholes, and repair marks. In real-world scenarios, key challenges include effectively distinguishing between the foreground and background, as well as accurately identifying small-sized (e.g., fine cracks, dense alligator cracking, and clustered potholes) and overlapping defects (e.g., intersecting cracks or clustered damage areas where multiple defects appear close together). To address these issues, this paper proposes a Pavement-DETR model based on the Real-Time Detection Transformer (RT-DETR), aiming to optimize the overall accuracy of defect detection. To achieve this goal, three main improvements are proposed: (1) the introduction of the Channel-Spatial Shuffle (CSS) attention mechanism in the third (S3) and fourth (S4) stages of the ResNet backbone, which correspond to mid-level and high-level feature layers, enabling the model to focus more precisely on road defect features; (2) the adoption of the Conv3XC structure for feature fusion enhances the model's ability to differentiate between the foreground and background, which is achieved through multi-level convolutions, channel expansion, and skip connections, which also contribute to improved gradient flow and training stability; (3) the proposal of a loss function combining Powerful-IoU v2 (PIoU v2) and Normalized Wasserstein Distance (NWD) weighted averaging, where PIoU v2 focuses on optimizing overlapping regions, and NWD targets small object optimization. The combined loss function enables comprehensive optimization of the bounding boxes, improving the model's accuracy and convergence speed. Experimental results show that on the UAV-PDD2023 dataset, Pavement-DETR improves the mean average precision (mAP) by 7.7% at IoU = 0.5, increases mAP by 8.9% at IoU = 0.5-0.95, and improves F1 Score by 7%. These results demonstrate that Pavement-DETR exhibits better performance in road defect detection, making it highly significant for road maintenance work.The accurate detection of road defects is crucial for enhancing the safety and efficiency of road maintenance. This study focuses on six common types of pavement defects: transverse cracks, longitudinal cracks, alligator cracking, oblique cracks, potholes, and repair marks. In real-world scenarios, key challenges include effectively distinguishing between the foreground and background, as well as accurately identifying small-sized (e.g., fine cracks, dense alligator cracking, and clustered potholes) and overlapping defects (e.g., intersecting cracks or clustered damage areas where multiple defects appear close together). To address these issues, this paper proposes a Pavement-DETR model based on the Real-Time Detection Transformer (RT-DETR), aiming to optimize the overall accuracy of defect detection. To achieve this goal, three main improvements are proposed: (1) the introduction of the Channel-Spatial Shuffle (CSS) attention mechanism in the third (S3) and fourth (S4) stages of the ResNet backbone, which correspond to mid-level and high-level feature layers, enabling the model to focus more precisely on road defect features; (2) the adoption of the Conv3XC structure for feature fusion enhances the model's ability to differentiate between the foreground and background, which is achieved through multi-level convolutions, channel expansion, and skip connections, which also contribute to improved gradient flow and training stability; (3) the proposal of a loss function combining Powerful-IoU v2 (PIoU v2) and Normalized Wasserstein Distance (NWD) weighted averaging, where PIoU v2 focuses on optimizing overlapping regions, and NWD targets small object optimization. The combined loss function enables comprehensive optimization of the bounding boxes, improving the model's accuracy and convergence speed. Experimental results show that on the UAV-PDD2023 dataset, Pavement-DETR improves the mean average precision (mAP) by 7.7% at IoU = 0.5, increases mAP by 8.9% at IoU = 0.5-0.95, and improves F1 Score by 7%. These results demonstrate that Pavement-DETR exhibits better performance in road defect detection, making it highly significant for road maintenance work.
Audience Academic
Author Zuo, Cuihua
Li, Yaqin
Yuan, Cao
Huang, Nengxin
AuthorAffiliation School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430024, China; zuocuihua@whpu.edu.cn (C.Z.); hnx30@outlook.com (N.H.); yc@whpu.edu.cn (C.Y.)
AuthorAffiliation_xml – name: School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430024, China; zuocuihua@whpu.edu.cn (C.Z.); hnx30@outlook.com (N.H.); yc@whpu.edu.cn (C.Y.)
Author_xml – sequence: 1
  givenname: Cuihua
  surname: Zuo
  fullname: Zuo, Cuihua
– sequence: 2
  givenname: Nengxin
  surname: Huang
  fullname: Huang, Nengxin
– sequence: 3
  givenname: Cao
  orcidid: 0000-0002-8775-0626
  surname: Yuan
  fullname: Yuan, Cao
– sequence: 4
  givenname: Yaqin
  surname: Li
  fullname: Li, Yaqin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40285115$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1rFDEUhoNU7Ide-AdkwBsVpuZ7Mt7I0lZbKFjKeikhmznZZpmZrMlMpf_ejNOurReSi4STJ09OXnKI9vrQA0KvCT5mrMYfExVYUU7lM3RAOOWlohTvPVrvo8OUNhhTxph6gfY5pkoQIg7QjytzCx30Q3l6trz-VCyKc7--Ka8iWJ986ItrMG259B0UpzCAHabaMpo-uRA7iEWeigdHRlxG_pIv0XNn2gSv7ucj9P3L2fLkvLz89vXiZHFZWl6RoYSa03rljKuEk5IbVZNKSOcE4UoogQmzjeXckrpSDQgsCKacq6ZmrMKVdOwIXczeJpiN3kbfmXing_H6TyHEtTZx8LYFjcHlA9nBpOUEmpqDqiYjkXZlqya7Psyusd-au1-mbXdCgvWUt97lneHPM7wdVx00NocQTfukg6c7vb_R63CrCcWMkBpnw7t7Qww_R0iD7nyy0LamhzAmzUgtKsW5VBl9-w-6CWPsc7ATxSXHUtWZOp6ptcnP9b0L-WKbRwOdt_njOJ_rC8WUVISRqYM3j9-wa_7hk2Tg_QzYGFKK4P4TyG9QWce1
Cites_doi 10.1109/CVPR.2018.00716
10.1007/978-3-031-72751-1_1
10.2139/ssrn.4970753
10.1109/ICCV.2015.169
10.1109/ICCV.2017.322
10.1109/CVPR52733.2024.01605
10.1109/CVPRW63382.2024.00628
10.1016/j.dib.2023.109692
10.1109/ICCV48922.2021.00363
10.1007/978-3-030-58452-8_13
10.1016/j.engappai.2024.107963
10.1111/mice.12387
10.1109/CVPR.2018.00644
10.1515/congeo-2015-0022
10.1109/JSEN.2022.3181003
10.1109/CVPR52729.2023.00721
10.1145/3424978.3425139
10.1016/j.neunet.2023.11.041
10.1007/978-3-319-46448-0_2
10.1109/CVPR.2014.81
10.1109/TPAMI.2016.2577031
10.1109/CVPR.2016.90
10.1109/ISKE47853.2019.9170456
10.1007/s11554-024-01545-2
10.3390/s23208361
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s25082426
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef


MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_0ef6f350536c41ed94e87051016cbc7d
10.3390/s25082426
PMC12031190
A838681310
40285115
10_3390_s25082426
Genre Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Hubei Province
  grantid: 2024AFB382
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c471t-e9429bfaf75f664a891756ff5148585013cdc44c1978de505102448d9337076f3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:34:30 EDT 2025
Sun Oct 26 03:06:58 EDT 2025
Tue Sep 30 17:03:09 EDT 2025
Fri Sep 05 17:24:00 EDT 2025
Tue Oct 07 07:38:17 EDT 2025
Mon Oct 20 16:52:48 EDT 2025
Mon Jul 21 05:46:11 EDT 2025
Thu Oct 16 04:37:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords accuracy improvement
RT-DETR
pavement defect detection
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-e9429bfaf75f664a891756ff5148585013cdc44c1978de505102448d9337076f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8775-0626
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25082426
PMID 40285115
PQID 3194640689
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_0ef6f350536c41ed94e87051016cbc7d
unpaywall_primary_10_3390_s25082426
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12031190
proquest_miscellaneous_3195784468
proquest_journals_3194640689
gale_infotracacademiconefile_A838681310
pubmed_primary_40285115
crossref_primary_10_3390_s25082426
PublicationCentury 2000
PublicationDate 2025-04-11
PublicationDateYYYYMMDD 2025-04-11
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-11
  day: 11
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_14
Liu (ref_31) 2024; 170
ref_13
ref_12
ref_11
ref_33
ref_10
ref_32
ref_30
ref_19
ref_18
ref_17
ref_16
ref_15
Slabej (ref_1) 2015; 45
ref_25
ref_23
ref_22
ref_20
Xiang (ref_24) 2022; 22
ref_3
Ren (ref_4) 2016; 39
ref_2
ref_29
ref_28
ref_27
ref_26
ref_9
ref_8
ref_5
Maeda (ref_21) 2018; 33
ref_7
ref_6
References_xml – ident: ref_28
– ident: ref_29
  doi: 10.1109/CVPR.2018.00716
– ident: ref_10
  doi: 10.1007/978-3-031-72751-1_1
– ident: ref_27
  doi: 10.2139/ssrn.4970753
– ident: ref_32
– ident: ref_3
  doi: 10.1109/ICCV.2015.169
– ident: ref_5
  doi: 10.1109/ICCV.2017.322
– ident: ref_18
  doi: 10.1109/CVPR52733.2024.01605
– ident: ref_30
  doi: 10.1109/CVPRW63382.2024.00628
– ident: ref_33
  doi: 10.1016/j.dib.2023.109692
– ident: ref_11
– ident: ref_16
  doi: 10.1109/ICCV48922.2021.00363
– ident: ref_13
  doi: 10.1007/978-3-030-58452-8_13
– ident: ref_20
  doi: 10.1016/j.engappai.2024.107963
– volume: 33
  start-page: 1127
  year: 2018
  ident: ref_21
  article-title: Road damage detection and classification using deep neural networks with smartphone images
  publication-title: Comput. Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12387
– ident: ref_6
  doi: 10.1109/CVPR.2018.00644
– volume: 45
  start-page: 237
  year: 2015
  ident: ref_1
  article-title: Non-invasive diagnostic methods for investigating the quality of Žilina airport’s runway
  publication-title: Contrib. Geophys. Geod.
  doi: 10.1515/congeo-2015-0022
– ident: ref_14
– volume: 22
  start-page: 14328
  year: 2022
  ident: ref_24
  article-title: An improved YOLOv5 crack detection method combined with transformer
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3181003
– ident: ref_9
  doi: 10.1109/CVPR52729.2023.00721
– ident: ref_23
  doi: 10.1145/3424978.3425139
– ident: ref_8
– volume: 170
  start-page: 276
  year: 2024
  ident: ref_31
  article-title: Powerful-IoU: More straightforward and faster bounding box regression loss with a nonmonotonic focusing mechanism
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2023.11.041
– ident: ref_7
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_12
– ident: ref_2
  doi: 10.1109/CVPR.2014.81
– volume: 39
  start-page: 1137
  year: 2016
  ident: ref_4
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref_19
  doi: 10.1109/CVPR.2016.90
– ident: ref_15
– ident: ref_17
– ident: ref_22
  doi: 10.1109/ISKE47853.2019.9170456
– ident: ref_26
  doi: 10.1007/s11554-024-01545-2
– ident: ref_25
  doi: 10.3390/s23208361
SSID ssj0023338
Score 2.4652488
Snippet The accurate detection of road defects is crucial for enhancing the safety and efficiency of road maintenance. This study focuses on six common types of...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2426
SubjectTerms Accuracy
accuracy improvement
Algorithms
Computational linguistics
Deep learning
Defects
Design
Drones
Efficiency
Electric transformers
Language processing
Localization
Maintenance and repair
Natural language interfaces
Neural networks
pavement defect detection
Roads
Roads & highways
RT-DETR
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9VAGP2QbqoLaX2mVokPcDU0uTOZTNxdbUsRlFJuoRsJk8kMCiUtt7mU_nvPl5f3KuLGVSAZwuR7nkNmzhC9S4KcsSqISHyohHJhJixwh7CofCHoxKqc9zt_-apPztXni-xi7agvXhPWywP3hjvAO3SQ6NNSO5X6ulAeIcaRpF3l8pqrb2KKkUwNVEuCefU6QhKk_uAGjd5wM9roPp1I_5-leK0X_b5OcnvVXNu7W3t5udaEjnfo4YAe43k_612655tH9GBNU_AxfTu1nQR4Kw6PFmcf4nnMSznE6XI4TCc-AzQUvPMjPvRttxCriRcjfPXLGJd4fAeG8HKPXyOf0Pnx0eLTiRjOUBAObacVvkDDqYINeRa0VtaAnmU6BOAk_iMIAOhqp5RLwSZrn7Fh0fBNXUiZJzks_5S2mqvGP6fYSZtULmS6lpWqkPgFuEpIbFp5D5RSR_RmtG153UtllKAY7IByckBEH9nq0wBWt-5uwOfl4PPyXz6P6D37rOQchGOcHbYSYJ6sZlXOjTTapECuEe2Pbi2H5LwpUXWUBpAxRUSvp8dIK_5XYht_terGoJaBK5uInvVRMM0ZlJtxahaR2YiPjY_afNL8-N5Jd6czFFFgsIjeTqH0d2Pt_Q9jvaD7Mz6zmPUp033aapcr_xJAqq1edTnzE4D8GUg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-69GHrw-g-660d2gfsSdS2ZFkelJKuKWWwEEIKfRlGlqVtUJwsdRj773fn2G6ysT0ZbBEruq_fWaffAbwLvYiJFYSHzhdcWh9zg7iDG_R83qvQyJTOO38eq8sr-ek6ud6BcXcWhsoqO5_YOOpybukb-TGqilQYfXR2uvjBqWsU7a52LTRM21qhPGkoxu7BbkzMWAPYPRuNJ9M-BROYka35hQQm-8e3CAA0BamtqNSQ9__tojdi1J_1k_dX1cL8-mlubjaC08U-PGxRJRuu1eAR7LjqMextcA0-gS8T01CD1_x8NJt-YENGJR58smyb7LApQkZOJ0LYuaubAq2KzTpY65YML6z7DRxCZSB3I5_C1cVo9vGSt70VuMVwVHOXYSAqvPFp4pWSRmPalijvET_RTiECQ1taKW2EWWbpEjJdBAK6zIRIw1R58QwG1bxyB8CsMGFhfaJKUcgCHUKGOYwPTVQ4h-ilDOBNt7b5Yk2hkWPqQQLIewEEcEar3g8g1uvmxnz5NW-NKEd9wjfjZISyMnJlJh26G_IqyhY2xTe9J5nlZJsoGGvaIwY4T2K5yodaaKUjRLQBHHZizVujvc3vVCyA1_1jNDfaQzGVm6-aMejjMIfWATxfa0E_Z0zFCb8mAegt_dj6U9tPqu_fGkrvKEbnitgsgLe9Kv17sV78f_Yv4UFMXYqJkTI6hEG9XLkjhE518aq1h99yQxen
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD7U7YP2wbs1WiVVwadpc5lMEt9W21IEy1J2oT5ImJnMoFjSss0i-uv9JrduKopPgeSQTGbO5TvMOd8QvQlsHDlWEBYYqxjXNmISuINJeD5rRSB56vqdP52I4wX_eJacbdBu3wuztn8fIx3fv0KIzlwYuUWbIgHcntDm4mQ2_dx0DUWcIcAFLWPQWH4UZxo6_j-d7lrUuVkReXtVXcqfP-T5-Vq4Obp33bTTVpl831vVak__usHh-M8_uU93O7DpT1vteEAbpnpIW2sUhI_oy0w2jOE1Ozicn77zp76r_GCzZXf2jn8KJMlco4h_YOqmbqvy5z3aNUsfF79_B0Rcdci15GNaHB3OPxyz7sgFphGlamZyxCdlpU0TKwSXGbK5RFgLWOU2EIEXdak51yGSz9IkzqKBD7Iyj-M0SIWNn9CkuqjMU_J1LAOlbSLKWHEFP5EjtbGBDJUxADWlR6_6BSouW2aNAhmJm6timCuP3rulGwQcGXZzAzNbdLZVQM3wZQwmFpqHpsy5gRdyzkZopVN86a1b-MKZLFZXy67zAON05FfFNIszkYUAuh7t9LpRdLZ8VcBJcQHck-Ue7Q6PYYVua0VW5mLVyMD1IbXOPNpuVWkYMzJ0B2sTj7KRko1-avyk-va1YfoOI_hcQDaPXg_6-PfJevZfUs_pTuTOMHZ8leEOTerlyrwAsKrVy860fgNHcxx0
  priority: 102
  providerName: Unpaywall
Title Pavement-DETR: A High-Precision Real-Time Detection Transformer for Pavement Defect Detection
URI https://www.ncbi.nlm.nih.gov/pubmed/40285115
https://www.proquest.com/docview/3194640689
https://www.proquest.com/docview/3195784468
https://pubmed.ncbi.nlm.nih.gov/PMC12031190
https://doi.org/10.3390/s25082426
https://doaj.org/article/0ef6f350536c41ed94e87051016cbc7d
UnpaywallVersion publishedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ri9NAEB_uAXp-EN9GzxIf4KfVPDabjSDS81oP4UopLdQPR9hsdu-Ekp65FL3_3pk0ia2PL35JIRmy23n-Jrs7A_DKs2FAVUGYZ2zGuLYBU4g7mELPZ63wFI_pvPPpSJzM-Od5NN-Btsdmw8Crv6Z21E9qVi7e_Ph2_QEN_j1lnJiyv73CMC4p1OzCPgaohDo4nPJuMSEIMQ1bFxXaJj-AG5g9EeSItqJSXbz_Txe9EaN-3z95c1VcquvvarHYCE7DO3C7QZVuf60Gd2HHFPfg1katwftwNlZ1afCKHQ-mk3du36UtHmxcNk123AlCRkYnQtxjU9UbtAp32sJaU7r447bvQBLaBvKL8gHMhoPpxxPW9FZgGsNRxUyCgSizysaRFYIriWlbJKxF_EQrhQgMda451z5mmbmJyHQRCMg8CcPYi4UNH8JesSzMY3B1qLxM20jkYcYzdAgJ5jDWU35mDLI3d-BFy9v0cl1CI8XUg2SRdrJw4Ii43hFQ1ev6xrI8TxsjSlGfcGScTCg0902ecIPuhryK0JmOcaTXJLOUtAUFo1VzxADnSVWu0r4MpZA-IloHDluxpq3OpeiNuECAIxMHnneP0dxoDUUVZrmqadDHYQ4tHXi01oJuzq0yOSC39GPrT20_Kb5e1CW9_QCdK2IzB152qvRvZj35_wGewkFAHYypWqV_CHtVuTLPEFZVWQ9243mMVzn81IP9o8FoPOnVnyh6tTnhvdlo3P_yE145JfI
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB2V8lB4QNwxFDA38bSqL2vHQUIokFYpvaiqUikvyKzXu4BUOSFxVPWn-EbOOLaTgOCtT5Hilb3ZmTlzTrw7Q_Tas2HAVUGEZ2wmpLaBUOAdQgH5rI09JTt83vnoOB6cyc-jaLRBv5qzMLytssHECqjzseb_yHfgKjJG9km6HyY_BXeN4rerTQuNhVscmMsLSLbZ-_0-7PsmCPZ2h58Gou4qIDSAuBSmCwjOrLKdyMaxVAkESxRbC-bA78hAiXSupdQ-9FVuInZapMAkh_LvQPTbEPe9RtdlCCxB_HRGS4EXQu8tqheFYdfbmYFeJJwC13Je1Rrg7wSwkgH_3J25NS8m6vJCnZ-vpL6923Sr5qxub-Fkd2jDFHfp5kolw3v05URVhcdL0d8dnr5zey5vIBEn07qFj3sKQir4vInbN2W1_atwhw1pNlMXH25zDwzhTSbLkffp7ErW-AFtFuPCPCJXh8rLtI3iPMxkBrjpQiFZT_mZMeBGuUMvm7VNJ4sCHSmEDRsgbQ3g0Ede9XYA19SuvhhPv6V1iKbwVjwZkwljLX2Td6UBmDFmxTrTHTzpLdss5ciHYbSqDzBgnlxDK-0lYRInPviyQ9uNWdMaEmbp0oEdetFeRjDzGxpVmPG8GgMEhUJPHHq48IJ2zhD6zI4jh5I1_1j7UetXih_fq4LhfgDoBvNz6FXrSv9erMf_n_1z2hoMjw7Tw_3jgyd0I-B-yFz70t-mzXI6N09B0srsWRUZLn296lD8DZhlS2I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIcF4QHyOwADzJZ6sJnHiJEgIFbpqYzBVUyf1BQXHsQFpSkubatq_xl_HXb7aguBtT5VqK3F9d7_7XX2-A3jpWuFTVRDuGpvxQFufK-QdXCHyWStdFUR03_nzsTw4DT5OwskW_GrvwlBaZYuJFVDnU03_kfdQVQKJ3idOerZJixgNhu9mPzl1kKKT1radRq0iR-biHMO3xdvDAcr6le8P98cfDnjTYYBrBOWSmwThOLPKRqGVMlAxBi-htBZZBJ2XIT3SuQ4C7WGslZuQFBjdYZwnQkRuJK3A516Bq5EQCaUTRpNVsCcw9qsrGeGg21sg1YjJHW74v6pNwN_OYM0b_pmpeX1ZzNTFuTo7W3ODw1tws-GvrF8r3G3YMsUduLFW1fAufBmpqgh5yQf745M3rM8omYSP5k07H3aC5JTT3RM2MGWVClawcUugzZzhB2ufgVMo4WQ18x6cXsoe34ftYlqYB8C0UG6mbShzkQUZQk-C0ZJ1lZcZgzwpd-B5u7fprC7WkWKQQwJIOwE48J52vZtA9bWrL6bzb2ljrilqLr4ZFyOkDjyTJ4FBYCP8kjrTEb7pNcksJRRAwWjVXGbAdVI9rbQfi1jGHnJnB_ZasaYNPCzSlTI78KwbRsOm0xpVmOmymoNoitF67MBurQXdmjHoJ6YcOhBv6MfGj9ocKX58r4qHez7COLJAB150qvTvzXr4_9U_hWtohOmnw-OjR7DjU2tkKoPp7cF2OV-ax8jXyuxJZRgMvl62Jf4GWd1PpQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD7U7YP2wbs1WiVVwadpc5lMEt9W21IEy1J2oT5ImJnMoFjSss0i-uv9JrduKopPgeSQTGbO5TvMOd8QvQlsHDlWEBYYqxjXNmISuINJeD5rRSB56vqdP52I4wX_eJacbdBu3wuztn8fIx3fv0KIzlwYuUWbIgHcntDm4mQ2_dx0DUWcIcAFLWPQWH4UZxo6_j-d7lrUuVkReXtVXcqfP-T5-Vq4Obp33bTTVpl831vVak__usHh-M8_uU93O7DpT1vteEAbpnpIW2sUhI_oy0w2jOE1Ozicn77zp76r_GCzZXf2jn8KJMlco4h_YOqmbqvy5z3aNUsfF79_B0Rcdci15GNaHB3OPxyz7sgFphGlamZyxCdlpU0TKwSXGbK5RFgLWOU2EIEXdak51yGSz9IkzqKBD7Iyj-M0SIWNn9CkuqjMU_J1LAOlbSLKWHEFP5EjtbGBDJUxADWlR6_6BSouW2aNAhmJm6timCuP3rulGwQcGXZzAzNbdLZVQM3wZQwmFpqHpsy5gRdyzkZopVN86a1b-MKZLFZXy67zAON05FfFNIszkYUAuh7t9LpRdLZ8VcBJcQHck-Ue7Q6PYYVua0VW5mLVyMD1IbXOPNpuVWkYMzJ0B2sTj7KRko1-avyk-va1YfoOI_hcQDaPXg_6-PfJevZfUs_pTuTOMHZ8leEOTerlyrwAsKrVy860fgNHcxx0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pavement-DETR%3A+A+High-Precision+Real-Time+Detection+Transformer+for+Pavement+Defect+Detection&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zuo%2C+Cuihua&rft.au=Huang%2C+Nengxin&rft.au=Yuan%2C+Cao&rft.au=Li%2C+Yaqin&rft.date=2025-04-11&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=25&rft.issue=8&rft_id=info:doi/10.3390%2Fs25082426&rft_id=info%3Apmid%2F40285115&rft.externalDocID=PMC12031190
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon