Pavement-DETR: A High-Precision Real-Time Detection Transformer for Pavement Defect Detection
The accurate detection of road defects is crucial for enhancing the safety and efficiency of road maintenance. This study focuses on six common types of pavement defects: transverse cracks, longitudinal cracks, alligator cracking, oblique cracks, potholes, and repair marks. In real-world scenarios,...
        Saved in:
      
    
          | Published in | Sensors (Basel, Switzerland) Vol. 25; no. 8; p. 2426 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Switzerland
          MDPI AG
    
        11.04.2025
     MDPI  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1424-8220 1424-8220  | 
| DOI | 10.3390/s25082426 | 
Cover
| Abstract | The accurate detection of road defects is crucial for enhancing the safety and efficiency of road maintenance. This study focuses on six common types of pavement defects: transverse cracks, longitudinal cracks, alligator cracking, oblique cracks, potholes, and repair marks. In real-world scenarios, key challenges include effectively distinguishing between the foreground and background, as well as accurately identifying small-sized (e.g., fine cracks, dense alligator cracking, and clustered potholes) and overlapping defects (e.g., intersecting cracks or clustered damage areas where multiple defects appear close together). To address these issues, this paper proposes a Pavement-DETR model based on the Real-Time Detection Transformer (RT-DETR), aiming to optimize the overall accuracy of defect detection. To achieve this goal, three main improvements are proposed: (1) the introduction of the Channel-Spatial Shuffle (CSS) attention mechanism in the third (S3) and fourth (S4) stages of the ResNet backbone, which correspond to mid-level and high-level feature layers, enabling the model to focus more precisely on road defect features; (2) the adoption of the Conv3XC structure for feature fusion enhances the model’s ability to differentiate between the foreground and background, which is achieved through multi-level convolutions, channel expansion, and skip connections, which also contribute to improved gradient flow and training stability; (3) the proposal of a loss function combining Powerful-IoU v2 (PIoU v2) and Normalized Wasserstein Distance (NWD) weighted averaging, where PIoU v2 focuses on optimizing overlapping regions, and NWD targets small object optimization. The combined loss function enables comprehensive optimization of the bounding boxes, improving the model’s accuracy and convergence speed. Experimental results show that on the UAV-PDD2023 dataset, Pavement-DETR improves the mean average precision (mAP) by 7.7% at IoU = 0.5, increases mAP by 8.9% at IoU = 0.5–0.95, and improves F1 Score by 7%. These results demonstrate that Pavement-DETR exhibits better performance in road defect detection, making it highly significant for road maintenance work. | 
    
|---|---|
| AbstractList | The accurate detection of road defects is crucial for enhancing the safety and efficiency of road maintenance. This study focuses on six common types of pavement defects: transverse cracks, longitudinal cracks, alligator cracking, oblique cracks, potholes, and repair marks. In real-world scenarios, key challenges include effectively distinguishing between the foreground and background, as well as accurately identifying small-sized (e.g., fine cracks, dense alligator cracking, and clustered potholes) and overlapping defects (e.g., intersecting cracks or clustered damage areas where multiple defects appear close together). To address these issues, this paper proposes a Pavement-DETR model based on the Real-Time Detection Transformer (RT-DETR), aiming to optimize the overall accuracy of defect detection. To achieve this goal, three main improvements are proposed: (1) the introduction of the Channel-Spatial Shuffle (CSS) attention mechanism in the third (S3) and fourth (S4) stages of the ResNet backbone, which correspond to mid-level and high-level feature layers, enabling the model to focus more precisely on road defect features; (2) the adoption of the Conv3XC structure for feature fusion enhances the model's ability to differentiate between the foreground and background, which is achieved through multi-level convolutions, channel expansion, and skip connections, which also contribute to improved gradient flow and training stability; (3) the proposal of a loss function combining Powerful-IoU v2 (PIoU v2) and Normalized Wasserstein Distance (NWD) weighted averaging, where PIoU v2 focuses on optimizing overlapping regions, and NWD targets small object optimization. The combined loss function enables comprehensive optimization of the bounding boxes, improving the model's accuracy and convergence speed. Experimental results show that on the UAV-PDD2023 dataset, Pavement-DETR improves the mean average precision (mAP) by 7.7% at IoU = 0.5, increases mAP by 8.9% at IoU = 0.5-0.95, and improves F1 Score by 7%. These results demonstrate that Pavement-DETR exhibits better performance in road defect detection, making it highly significant for road maintenance work. The accurate detection of road defects is crucial for enhancing the safety and efficiency of road maintenance. This study focuses on six common types of pavement defects: transverse cracks, longitudinal cracks, alligator cracking, oblique cracks, potholes, and repair marks. In real-world scenarios, key challenges include effectively distinguishing between the foreground and background, as well as accurately identifying small-sized (e.g., fine cracks, dense alligator cracking, and clustered potholes) and overlapping defects (e.g., intersecting cracks or clustered damage areas where multiple defects appear close together). To address these issues, this paper proposes a Pavement-DETR model based on the Real-Time Detection Transformer (RT-DETR), aiming to optimize the overall accuracy of defect detection. To achieve this goal, three main improvements are proposed: (1) the introduction of the Channel-Spatial Shuffle (CSS) attention mechanism in the third (S3) and fourth (S4) stages of the ResNet backbone, which correspond to mid-level and high-level feature layers, enabling the model to focus more precisely on road defect features; (2) the adoption of the Conv3XC structure for feature fusion enhances the model's ability to differentiate between the foreground and background, which is achieved through multi-level convolutions, channel expansion, and skip connections, which also contribute to improved gradient flow and training stability; (3) the proposal of a loss function combining Powerful-IoU v2 (PIoU v2) and Normalized Wasserstein Distance (NWD) weighted averaging, where PIoU v2 focuses on optimizing overlapping regions, and NWD targets small object optimization. The combined loss function enables comprehensive optimization of the bounding boxes, improving the model's accuracy and convergence speed. Experimental results show that on the UAV-PDD2023 dataset, Pavement-DETR improves the mean average precision (mAP) by 7.7% at IoU = 0.5, increases mAP by 8.9% at IoU = 0.5-0.95, and improves F1 Score by 7%. These results demonstrate that Pavement-DETR exhibits better performance in road defect detection, making it highly significant for road maintenance work.The accurate detection of road defects is crucial for enhancing the safety and efficiency of road maintenance. This study focuses on six common types of pavement defects: transverse cracks, longitudinal cracks, alligator cracking, oblique cracks, potholes, and repair marks. In real-world scenarios, key challenges include effectively distinguishing between the foreground and background, as well as accurately identifying small-sized (e.g., fine cracks, dense alligator cracking, and clustered potholes) and overlapping defects (e.g., intersecting cracks or clustered damage areas where multiple defects appear close together). To address these issues, this paper proposes a Pavement-DETR model based on the Real-Time Detection Transformer (RT-DETR), aiming to optimize the overall accuracy of defect detection. To achieve this goal, three main improvements are proposed: (1) the introduction of the Channel-Spatial Shuffle (CSS) attention mechanism in the third (S3) and fourth (S4) stages of the ResNet backbone, which correspond to mid-level and high-level feature layers, enabling the model to focus more precisely on road defect features; (2) the adoption of the Conv3XC structure for feature fusion enhances the model's ability to differentiate between the foreground and background, which is achieved through multi-level convolutions, channel expansion, and skip connections, which also contribute to improved gradient flow and training stability; (3) the proposal of a loss function combining Powerful-IoU v2 (PIoU v2) and Normalized Wasserstein Distance (NWD) weighted averaging, where PIoU v2 focuses on optimizing overlapping regions, and NWD targets small object optimization. The combined loss function enables comprehensive optimization of the bounding boxes, improving the model's accuracy and convergence speed. Experimental results show that on the UAV-PDD2023 dataset, Pavement-DETR improves the mean average precision (mAP) by 7.7% at IoU = 0.5, increases mAP by 8.9% at IoU = 0.5-0.95, and improves F1 Score by 7%. These results demonstrate that Pavement-DETR exhibits better performance in road defect detection, making it highly significant for road maintenance work.  | 
    
| Audience | Academic | 
    
| Author | Zuo, Cuihua Li, Yaqin Yuan, Cao Huang, Nengxin  | 
    
| AuthorAffiliation | School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430024, China; zuocuihua@whpu.edu.cn (C.Z.); hnx30@outlook.com (N.H.); yc@whpu.edu.cn (C.Y.) | 
    
| AuthorAffiliation_xml | – name: School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430024, China; zuocuihua@whpu.edu.cn (C.Z.); hnx30@outlook.com (N.H.); yc@whpu.edu.cn (C.Y.) | 
    
| Author_xml | – sequence: 1 givenname: Cuihua surname: Zuo fullname: Zuo, Cuihua – sequence: 2 givenname: Nengxin surname: Huang fullname: Huang, Nengxin – sequence: 3 givenname: Cao orcidid: 0000-0002-8775-0626 surname: Yuan fullname: Yuan, Cao – sequence: 4 givenname: Yaqin surname: Li fullname: Li, Yaqin  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40285115$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kl1rFDEUhoNU7Ide-AdkwBsVpuZ7Mt7I0lZbKFjKeikhmznZZpmZrMlMpf_ejNOurReSi4STJ09OXnKI9vrQA0KvCT5mrMYfExVYUU7lM3RAOOWlohTvPVrvo8OUNhhTxph6gfY5pkoQIg7QjytzCx30Q3l6trz-VCyKc7--Ka8iWJ986ItrMG259B0UpzCAHabaMpo-uRA7iEWeigdHRlxG_pIv0XNn2gSv7ucj9P3L2fLkvLz89vXiZHFZWl6RoYSa03rljKuEk5IbVZNKSOcE4UoogQmzjeXckrpSDQgsCKacq6ZmrMKVdOwIXczeJpiN3kbfmXing_H6TyHEtTZx8LYFjcHlA9nBpOUEmpqDqiYjkXZlqya7Psyusd-au1-mbXdCgvWUt97lneHPM7wdVx00NocQTfukg6c7vb_R63CrCcWMkBpnw7t7Qww_R0iD7nyy0LamhzAmzUgtKsW5VBl9-w-6CWPsc7ATxSXHUtWZOp6ptcnP9b0L-WKbRwOdt_njOJ_rC8WUVISRqYM3j9-wa_7hk2Tg_QzYGFKK4P4TyG9QWce1 | 
    
| Cites_doi | 10.1109/CVPR.2018.00716 10.1007/978-3-031-72751-1_1 10.2139/ssrn.4970753 10.1109/ICCV.2015.169 10.1109/ICCV.2017.322 10.1109/CVPR52733.2024.01605 10.1109/CVPRW63382.2024.00628 10.1016/j.dib.2023.109692 10.1109/ICCV48922.2021.00363 10.1007/978-3-030-58452-8_13 10.1016/j.engappai.2024.107963 10.1111/mice.12387 10.1109/CVPR.2018.00644 10.1515/congeo-2015-0022 10.1109/JSEN.2022.3181003 10.1109/CVPR52729.2023.00721 10.1145/3424978.3425139 10.1016/j.neunet.2023.11.041 10.1007/978-3-319-46448-0_2 10.1109/CVPR.2014.81 10.1109/TPAMI.2016.2577031 10.1109/CVPR.2016.90 10.1109/ISKE47853.2019.9170456 10.1007/s11554-024-01545-2 10.3390/s23208361  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025  | 
    
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025  | 
    
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/s25082426 | 
    
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1424-8220 | 
    
| ExternalDocumentID | oai_doaj_org_article_0ef6f350536c41ed94e87051016cbc7d 10.3390/s25082426 PMC12031190 A838681310 40285115 10_3390_s25082426  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: Natural Science Foundation of Hubei Province grantid: 2024AFB382  | 
    
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c471t-e9429bfaf75f664a891756ff5148585013cdc44c1978de505102448d9337076f3 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1424-8220 | 
    
| IngestDate | Fri Oct 03 12:34:30 EDT 2025 Sun Oct 26 03:06:58 EDT 2025 Tue Sep 30 17:03:09 EDT 2025 Fri Sep 05 17:24:00 EDT 2025 Tue Oct 07 07:38:17 EDT 2025 Mon Oct 20 16:52:48 EDT 2025 Mon Jul 21 05:46:11 EDT 2025 Thu Oct 16 04:37:04 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Keywords | accuracy improvement RT-DETR pavement defect detection  | 
    
| Language | English | 
    
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c471t-e9429bfaf75f664a891756ff5148585013cdc44c1978de505102448d9337076f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-8775-0626 | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25082426 | 
    
| PMID | 40285115 | 
    
| PQID | 3194640689 | 
    
| PQPubID | 2032333 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0ef6f350536c41ed94e87051016cbc7d unpaywall_primary_10_3390_s25082426 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12031190 proquest_miscellaneous_3195784468 proquest_journals_3194640689 gale_infotracacademiconefile_A838681310 pubmed_primary_40285115 crossref_primary_10_3390_s25082426  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-04-11 | 
    
| PublicationDateYYYYMMDD | 2025-04-11 | 
    
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-11 day: 11  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland – name: Basel  | 
    
| PublicationTitle | Sensors (Basel, Switzerland) | 
    
| PublicationTitleAlternate | Sensors (Basel) | 
    
| PublicationYear | 2025 | 
    
| Publisher | MDPI AG MDPI  | 
    
| Publisher_xml | – name: MDPI AG – name: MDPI  | 
    
| References | ref_14 Liu (ref_31) 2024; 170 ref_13 ref_12 ref_11 ref_33 ref_10 ref_32 ref_30 ref_19 ref_18 ref_17 ref_16 ref_15 Slabej (ref_1) 2015; 45 ref_25 ref_23 ref_22 ref_20 Xiang (ref_24) 2022; 22 ref_3 Ren (ref_4) 2016; 39 ref_2 ref_29 ref_28 ref_27 ref_26 ref_9 ref_8 ref_5 Maeda (ref_21) 2018; 33 ref_7 ref_6  | 
    
| References_xml | – ident: ref_28 – ident: ref_29 doi: 10.1109/CVPR.2018.00716 – ident: ref_10 doi: 10.1007/978-3-031-72751-1_1 – ident: ref_27 doi: 10.2139/ssrn.4970753 – ident: ref_32 – ident: ref_3 doi: 10.1109/ICCV.2015.169 – ident: ref_5 doi: 10.1109/ICCV.2017.322 – ident: ref_18 doi: 10.1109/CVPR52733.2024.01605 – ident: ref_30 doi: 10.1109/CVPRW63382.2024.00628 – ident: ref_33 doi: 10.1016/j.dib.2023.109692 – ident: ref_11 – ident: ref_16 doi: 10.1109/ICCV48922.2021.00363 – ident: ref_13 doi: 10.1007/978-3-030-58452-8_13 – ident: ref_20 doi: 10.1016/j.engappai.2024.107963 – volume: 33 start-page: 1127 year: 2018 ident: ref_21 article-title: Road damage detection and classification using deep neural networks with smartphone images publication-title: Comput. Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12387 – ident: ref_6 doi: 10.1109/CVPR.2018.00644 – volume: 45 start-page: 237 year: 2015 ident: ref_1 article-title: Non-invasive diagnostic methods for investigating the quality of Žilina airport’s runway publication-title: Contrib. Geophys. Geod. doi: 10.1515/congeo-2015-0022 – ident: ref_14 – volume: 22 start-page: 14328 year: 2022 ident: ref_24 article-title: An improved YOLOv5 crack detection method combined with transformer publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3181003 – ident: ref_9 doi: 10.1109/CVPR52729.2023.00721 – ident: ref_23 doi: 10.1145/3424978.3425139 – ident: ref_8 – volume: 170 start-page: 276 year: 2024 ident: ref_31 article-title: Powerful-IoU: More straightforward and faster bounding box regression loss with a nonmonotonic focusing mechanism publication-title: Neural Netw. doi: 10.1016/j.neunet.2023.11.041 – ident: ref_7 doi: 10.1007/978-3-319-46448-0_2 – ident: ref_12 – ident: ref_2 doi: 10.1109/CVPR.2014.81 – volume: 39 start-page: 1137 year: 2016 ident: ref_4 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – ident: ref_19 doi: 10.1109/CVPR.2016.90 – ident: ref_15 – ident: ref_17 – ident: ref_22 doi: 10.1109/ISKE47853.2019.9170456 – ident: ref_26 doi: 10.1007/s11554-024-01545-2 – ident: ref_25 doi: 10.3390/s23208361  | 
    
| SSID | ssj0023338 | 
    
| Score | 2.4652488 | 
    
| Snippet | The accurate detection of road defects is crucial for enhancing the safety and efficiency of road maintenance. This study focuses on six common types of... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database  | 
    
| StartPage | 2426 | 
    
| SubjectTerms | Accuracy accuracy improvement Algorithms Computational linguistics Deep learning Defects Design Drones Efficiency Electric transformers Language processing Localization Maintenance and repair Natural language interfaces Neural networks pavement defect detection Roads Roads & highways RT-DETR  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9VAGP2QbqoLaX2mVokPcDU0uTOZTNxdbUsRlFJuoRsJk8kMCiUtt7mU_nvPl5f3KuLGVSAZwuR7nkNmzhC9S4KcsSqISHyohHJhJixwh7CofCHoxKqc9zt_-apPztXni-xi7agvXhPWywP3hjvAO3SQ6NNSO5X6ulAeIcaRpF3l8pqrb2KKkUwNVEuCefU6QhKk_uAGjd5wM9roPp1I_5-leK0X_b5OcnvVXNu7W3t5udaEjnfo4YAe43k_612655tH9GBNU_AxfTu1nQR4Kw6PFmcf4nnMSznE6XI4TCc-AzQUvPMjPvRttxCriRcjfPXLGJd4fAeG8HKPXyOf0Pnx0eLTiRjOUBAObacVvkDDqYINeRa0VtaAnmU6BOAk_iMIAOhqp5RLwSZrn7Fh0fBNXUiZJzks_5S2mqvGP6fYSZtULmS6lpWqkPgFuEpIbFp5D5RSR_RmtG153UtllKAY7IByckBEH9nq0wBWt-5uwOfl4PPyXz6P6D37rOQchGOcHbYSYJ6sZlXOjTTapECuEe2Pbi2H5LwpUXWUBpAxRUSvp8dIK_5XYht_terGoJaBK5uInvVRMM0ZlJtxahaR2YiPjY_afNL8-N5Jd6czFFFgsIjeTqH0d2Pt_Q9jvaD7Mz6zmPUp033aapcr_xJAqq1edTnzE4D8GUg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-69GHrw-g-660d2gfsSdS2ZFkelJKuKWWwEEIKfRlGlqVtUJwsdRj773fn2G6ysT0ZbBEruq_fWaffAbwLvYiJFYSHzhdcWh9zg7iDG_R83qvQyJTOO38eq8sr-ek6ud6BcXcWhsoqO5_YOOpybukb-TGqilQYfXR2uvjBqWsU7a52LTRM21qhPGkoxu7BbkzMWAPYPRuNJ9M-BROYka35hQQm-8e3CAA0BamtqNSQ9__tojdi1J_1k_dX1cL8-mlubjaC08U-PGxRJRuu1eAR7LjqMextcA0-gS8T01CD1_x8NJt-YENGJR58smyb7LApQkZOJ0LYuaubAq2KzTpY65YML6z7DRxCZSB3I5_C1cVo9vGSt70VuMVwVHOXYSAqvPFp4pWSRmPalijvET_RTiECQ1taKW2EWWbpEjJdBAK6zIRIw1R58QwG1bxyB8CsMGFhfaJKUcgCHUKGOYwPTVQ4h-ilDOBNt7b5Yk2hkWPqQQLIewEEcEar3g8g1uvmxnz5NW-NKEd9wjfjZISyMnJlJh26G_IqyhY2xTe9J5nlZJsoGGvaIwY4T2K5yodaaKUjRLQBHHZizVujvc3vVCyA1_1jNDfaQzGVm6-aMejjMIfWATxfa0E_Z0zFCb8mAegt_dj6U9tPqu_fGkrvKEbnitgsgLe9Kv17sV78f_Yv4UFMXYqJkTI6hEG9XLkjhE518aq1h99yQxen priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD7U7YP2wbs1WiVVwadpc5lMEt9W21IEy1J2oT5ImJnMoFjSss0i-uv9JrduKopPgeSQTGbO5TvMOd8QvQlsHDlWEBYYqxjXNmISuINJeD5rRSB56vqdP52I4wX_eJacbdBu3wuztn8fIx3fv0KIzlwYuUWbIgHcntDm4mQ2_dx0DUWcIcAFLWPQWH4UZxo6_j-d7lrUuVkReXtVXcqfP-T5-Vq4Obp33bTTVpl831vVak__usHh-M8_uU93O7DpT1vteEAbpnpIW2sUhI_oy0w2jOE1Ozicn77zp76r_GCzZXf2jn8KJMlco4h_YOqmbqvy5z3aNUsfF79_B0Rcdci15GNaHB3OPxyz7sgFphGlamZyxCdlpU0TKwSXGbK5RFgLWOU2EIEXdak51yGSz9IkzqKBD7Iyj-M0SIWNn9CkuqjMU_J1LAOlbSLKWHEFP5EjtbGBDJUxADWlR6_6BSouW2aNAhmJm6timCuP3rulGwQcGXZzAzNbdLZVQM3wZQwmFpqHpsy5gRdyzkZopVN86a1b-MKZLFZXy67zAON05FfFNIszkYUAuh7t9LpRdLZ8VcBJcQHck-Ue7Q6PYYVua0VW5mLVyMD1IbXOPNpuVWkYMzJ0B2sTj7KRko1-avyk-va1YfoOI_hcQDaPXg_6-PfJevZfUs_pTuTOMHZ8leEOTerlyrwAsKrVy860fgNHcxx0 priority: 102 providerName: Unpaywall  | 
    
| Title | Pavement-DETR: A High-Precision Real-Time Detection Transformer for Pavement Defect Detection | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40285115 https://www.proquest.com/docview/3194640689 https://www.proquest.com/docview/3195784468 https://pubmed.ncbi.nlm.nih.gov/PMC12031190 https://doi.org/10.3390/s25082426 https://doaj.org/article/0ef6f350536c41ed94e87051016cbc7d  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 25 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ri9NAEB_uAXp-EN9GzxIf4KfVPDabjSDS81oP4UopLdQPR9hsdu-Ekp65FL3_3pk0ia2PL35JIRmy23n-Jrs7A_DKs2FAVUGYZ2zGuLYBU4g7mELPZ63wFI_pvPPpSJzM-Od5NN-Btsdmw8Crv6Z21E9qVi7e_Ph2_QEN_j1lnJiyv73CMC4p1OzCPgaohDo4nPJuMSEIMQ1bFxXaJj-AG5g9EeSItqJSXbz_Txe9EaN-3z95c1VcquvvarHYCE7DO3C7QZVuf60Gd2HHFPfg1katwftwNlZ1afCKHQ-mk3du36UtHmxcNk123AlCRkYnQtxjU9UbtAp32sJaU7r447bvQBLaBvKL8gHMhoPpxxPW9FZgGsNRxUyCgSizysaRFYIriWlbJKxF_EQrhQgMda451z5mmbmJyHQRCMg8CcPYi4UNH8JesSzMY3B1qLxM20jkYcYzdAgJ5jDWU35mDLI3d-BFy9v0cl1CI8XUg2SRdrJw4Ii43hFQ1ev6xrI8TxsjSlGfcGScTCg0902ecIPuhryK0JmOcaTXJLOUtAUFo1VzxADnSVWu0r4MpZA-IloHDluxpq3OpeiNuECAIxMHnneP0dxoDUUVZrmqadDHYQ4tHXi01oJuzq0yOSC39GPrT20_Kb5e1CW9_QCdK2IzB152qvRvZj35_wGewkFAHYypWqV_CHtVuTLPEFZVWQ9243mMVzn81IP9o8FoPOnVnyh6tTnhvdlo3P_yE145JfI | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB2V8lB4QNwxFDA38bSqL2vHQUIokFYpvaiqUikvyKzXu4BUOSFxVPWn-EbOOLaTgOCtT5Hilb3ZmTlzTrw7Q_Tas2HAVUGEZ2wmpLaBUOAdQgH5rI09JTt83vnoOB6cyc-jaLRBv5qzMLytssHECqjzseb_yHfgKjJG9km6HyY_BXeN4rerTQuNhVscmMsLSLbZ-_0-7PsmCPZ2h58Gou4qIDSAuBSmCwjOrLKdyMaxVAkESxRbC-bA78hAiXSupdQ-9FVuInZapMAkh_LvQPTbEPe9RtdlCCxB_HRGS4EXQu8tqheFYdfbmYFeJJwC13Je1Rrg7wSwkgH_3J25NS8m6vJCnZ-vpL6923Sr5qxub-Fkd2jDFHfp5kolw3v05URVhcdL0d8dnr5zey5vIBEn07qFj3sKQir4vInbN2W1_atwhw1pNlMXH25zDwzhTSbLkffp7ErW-AFtFuPCPCJXh8rLtI3iPMxkBrjpQiFZT_mZMeBGuUMvm7VNJ4sCHSmEDRsgbQ3g0Ede9XYA19SuvhhPv6V1iKbwVjwZkwljLX2Td6UBmDFmxTrTHTzpLdss5ciHYbSqDzBgnlxDK-0lYRInPviyQ9uNWdMaEmbp0oEdetFeRjDzGxpVmPG8GgMEhUJPHHq48IJ2zhD6zI4jh5I1_1j7UetXih_fq4LhfgDoBvNz6FXrSv9erMf_n_1z2hoMjw7Tw_3jgyd0I-B-yFz70t-mzXI6N09B0srsWRUZLn296lD8DZhlS2I | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIcF4QHyOwADzJZ6sJnHiJEgIFbpqYzBVUyf1BQXHsQFpSkubatq_xl_HXb7aguBtT5VqK3F9d7_7XX2-A3jpWuFTVRDuGpvxQFufK-QdXCHyWStdFUR03_nzsTw4DT5OwskW_GrvwlBaZYuJFVDnU03_kfdQVQKJ3idOerZJixgNhu9mPzl1kKKT1radRq0iR-biHMO3xdvDAcr6le8P98cfDnjTYYBrBOWSmwThOLPKRqGVMlAxBi-htBZZBJ2XIT3SuQ4C7WGslZuQFBjdYZwnQkRuJK3A516Bq5EQCaUTRpNVsCcw9qsrGeGg21sg1YjJHW74v6pNwN_OYM0b_pmpeX1ZzNTFuTo7W3ODw1tws-GvrF8r3G3YMsUduLFW1fAufBmpqgh5yQf745M3rM8omYSP5k07H3aC5JTT3RM2MGWVClawcUugzZzhB2ufgVMo4WQ18x6cXsoe34ftYlqYB8C0UG6mbShzkQUZQk-C0ZJ1lZcZgzwpd-B5u7fprC7WkWKQQwJIOwE48J52vZtA9bWrL6bzb2ljrilqLr4ZFyOkDjyTJ4FBYCP8kjrTEb7pNcksJRRAwWjVXGbAdVI9rbQfi1jGHnJnB_ZasaYNPCzSlTI78KwbRsOm0xpVmOmymoNoitF67MBurQXdmjHoJ6YcOhBv6MfGj9ocKX58r4qHez7COLJAB150qvTvzXr4_9U_hWtohOmnw-OjR7DjU2tkKoPp7cF2OV-ax8jXyuxJZRgMvl62Jf4GWd1PpQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD7U7YP2wbs1WiVVwadpc5lMEt9W21IEy1J2oT5ImJnMoFjSss0i-uv9JrduKopPgeSQTGbO5TvMOd8QvQlsHDlWEBYYqxjXNmISuINJeD5rRSB56vqdP52I4wX_eJacbdBu3wuztn8fIx3fv0KIzlwYuUWbIgHcntDm4mQ2_dx0DUWcIcAFLWPQWH4UZxo6_j-d7lrUuVkReXtVXcqfP-T5-Vq4Obp33bTTVpl831vVak__usHh-M8_uU93O7DpT1vteEAbpnpIW2sUhI_oy0w2jOE1Ozicn77zp76r_GCzZXf2jn8KJMlco4h_YOqmbqvy5z3aNUsfF79_B0Rcdci15GNaHB3OPxyz7sgFphGlamZyxCdlpU0TKwSXGbK5RFgLWOU2EIEXdak51yGSz9IkzqKBD7Iyj-M0SIWNn9CkuqjMU_J1LAOlbSLKWHEFP5EjtbGBDJUxADWlR6_6BSouW2aNAhmJm6timCuP3rulGwQcGXZzAzNbdLZVQM3wZQwmFpqHpsy5gRdyzkZopVN86a1b-MKZLFZXy67zAON05FfFNIszkYUAuh7t9LpRdLZ8VcBJcQHck-Ue7Q6PYYVua0VW5mLVyMD1IbXOPNpuVWkYMzJ0B2sTj7KRko1-avyk-va1YfoOI_hcQDaPXg_6-PfJevZfUs_pTuTOMHZ8leEOTerlyrwAsKrVy860fgNHcxx0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pavement-DETR%3A+A+High-Precision+Real-Time+Detection+Transformer+for+Pavement+Defect+Detection&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zuo%2C+Cuihua&rft.au=Huang%2C+Nengxin&rft.au=Yuan%2C+Cao&rft.au=Li%2C+Yaqin&rft.date=2025-04-11&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=25&rft.issue=8&rft_id=info:doi/10.3390%2Fs25082426&rft_id=info%3Apmid%2F40285115&rft.externalDocID=PMC12031190 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |