Optimization of adsorption isotherm types for desiccant air-conditioning applications
The present study investigates five kinds of adsorbents for desiccant air-conditioning (DAC) applications. Each adsorbent yield distinctive water vapor adsorption isotherm that can be categorized as type-I, type-II, type-III, type-V, and type-linear on the basis of the International Union of Pure an...
Saved in:
Published in | Renewable Energy Vol. 121; pp. 441 - 450 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0960-1481 1879-0682 |
DOI | 10.1016/j.renene.2018.01.045 |
Cover
Abstract | The present study investigates five kinds of adsorbents for desiccant air-conditioning (DAC) applications. Each adsorbent yield distinctive water vapor adsorption isotherm that can be categorized as type-I, type-II, type-III, type-V, and type-linear on the basis of the International Union of Pure and Applied Chemistry (IUPAC) classification. Ideal DAC cycle is evaluated for the air-conditioning (AC) applications, and steady-state moisture cycled (MCSS) is estimated by means of adsorption isobars. Results showed that the adsorbent enabling type-linear adsorption isotherm gives maximum MCSS for industrial AC processes of matches manufacturing/drying/storage, rubber dipped goods storage and photo studio drying room. However, adsorbent enabling type-V adsorption isotherm is found the optimum adsorbent for tobacco stemming/stripping/softening and optical lenses grinding. For industrial AC process of dipped surgical articles; adsorbents enabling type-II, type-linear, and type-I adsorption isotherms are found the optimum choice at low (<68 °C), medium (68°C-87 °C), and high (>87 °C) regeneration temperatures, respectively.
•Ideal temperature and humidity zones for various air-conditioning applications.•Adsorption modeling of five adsorbents enabling distinctive adsorption isotherms.•Optimization is made for IUPAC types of water vapor adsorption isotherms.•Different types of adsorption isotherms require different regeneration temperature. |
---|---|
AbstractList | The present study investigates five kinds of adsorbents for desiccant air-conditioning (DAC) applications. Each adsorbent yield distinctive water vapor adsorption isotherm that can be categorized as type-I, type-II, type-III, type-V, and type-linear on the basis of the International Union of Pure and Applied Chemistry (IUPAC) classification. Ideal DAC cycle is evaluated for the air-conditioning (AC) applications, and steady-state moisture cycled (MCSS) is estimated by means of adsorption isobars. Results showed that the adsorbent enabling type-linear adsorption isotherm gives maximum MCSS for industrial AC processes of matches manufacturing/drying/storage, rubber dipped goods storage and photo studio drying room. However, adsorbent enabling type-V adsorption isotherm is found the optimum adsorbent for tobacco stemming/stripping/softening and optical lenses grinding. For industrial AC process of dipped surgical articles; adsorbents enabling type-II, type-linear, and type-I adsorption isotherms are found the optimum choice at low (<68 °C), medium (68°C-87 °C), and high (>87 °C) regeneration temperatures, respectively.
•Ideal temperature and humidity zones for various air-conditioning applications.•Adsorption modeling of five adsorbents enabling distinctive adsorption isotherms.•Optimization is made for IUPAC types of water vapor adsorption isotherms.•Different types of adsorption isotherms require different regeneration temperature. The present study investigates five kinds of adsorbents for desiccant air-conditioning (DAC) applications. Each adsorbent yield distinctive water vapor adsorption isotherm that can be categorized as type-I, type-II, type-III, type-V, and type-linear on the basis of the International Union of Pure and Applied Chemistry (IUPAC) classification. Ideal DAC cycle is evaluated for the air-conditioning (AC) applications, and steady-state moisture cycled (MCSS) is estimated by means of adsorption isobars. Results showed that the adsorbent enabling type-linear adsorption isotherm gives maximum MCSS for industrial AC processes of matches manufacturing/drying/storage, rubber dipped goods storage and photo studio drying room. However, adsorbent enabling type-V adsorption isotherm is found the optimum adsorbent for tobacco stemming/stripping/softening and optical lenses grinding. For industrial AC process of dipped surgical articles; adsorbents enabling type-II, type-linear, and type-I adsorption isotherms are found the optimum choice at low (<68 °C), medium (68°C-87 °C), and high (>87 °C) regeneration temperatures, respectively. |
Author | Miyazaki, Takahiko Sultan, Muhammad Koyama, Shigeru |
Author_xml | – sequence: 1 givenname: Muhammad orcidid: 0000-0002-7301-5567 surname: Sultan fullname: Sultan, Muhammad email: muhammadsultan@bzu.edu.pk organization: Department of Agricultural Engineering, Bahauddin Zakariya University, Bosan Road, Multan 60800, Pakistan – sequence: 2 givenname: Takahiko surname: Miyazaki fullname: Miyazaki, Takahiko organization: Faculty of Engineering Sciences, Kyushu University, Kasuga-koen 6-1, Kasuga-shi, Fukuoka 816-8580, Japan – sequence: 3 givenname: Shigeru surname: Koyama fullname: Koyama, Shigeru organization: Faculty of Engineering Sciences, Kyushu University, Kasuga-koen 6-1, Kasuga-shi, Fukuoka 816-8580, Japan |
BackLink | https://cir.nii.ac.jp/crid/1870583642613302912$$DView record in CiNii |
BookMark | eNqFkU1r3DAQhkVJIZu0_yAHH3Loxe7oyx89FEpo00Igl-YsZGnczOKVXEkppL--3nVPObQIRgied0Y8c8HOQgzI2BWHhgNv3--bhGE9jQDeN8AbUPoV2_G-G2poe3HGdjC0UHPV83N2kfMegOu-Uzv2cL8UOtBvWyiGKk6V9Tmm5fSiHMsjpkNVnhfM1RRT5TGTczaUylKqXQyejiiFH5VdlpncqU9-w15Pds749u99yR6-fP5-87W-u7_9dvPprnaq46VGycdxkFaqvu2wQz9a7SctJ-dhmKxF5UC3AkanvZiQKzUqLdtOiwl6Jzp5yd5tfZcUfz5hLuZA2eE824DxKRshBAfZt1Kt6IcNdSnmnHAyjsrptyVZmg0Hc3Rp9mZzaY4uDXCzulzD6kV4SXSw6fl_sestFojWcce67gR0L1slWi4liIGLFfu4Ybiq-kWYTHaEwaGnhK4YH-nfc_4Arbqeuw |
CitedBy_id | crossref_primary_10_1016_j_colsurfa_2021_126289 crossref_primary_10_1155_2022_9410266 crossref_primary_10_1016_j_rser_2019_109630 crossref_primary_10_1177_16878132221089444 crossref_primary_10_3390_su14031479 crossref_primary_10_3390_en12234565 crossref_primary_10_1016_j_chemosphere_2020_126383 crossref_primary_10_1016_j_enconman_2019_112017 crossref_primary_10_1039_C8NJ05356A crossref_primary_10_1039_D1NJ05800B crossref_primary_10_1186_s44147_022_00116_1 crossref_primary_10_1039_D3CC05091B crossref_primary_10_3390_catal12030253 crossref_primary_10_1039_D4RA01547A crossref_primary_10_1016_j_seppur_2023_124623 crossref_primary_10_1016_j_powtec_2021_06_045 crossref_primary_10_1016_j_renene_2019_02_024 crossref_primary_10_1016_j_conbuildmat_2022_129739 crossref_primary_10_3390_molecules29122923 crossref_primary_10_1016_j_mset_2023_03_005 crossref_primary_10_1016_j_colsurfa_2022_130156 crossref_primary_10_1016_j_seppur_2020_117760 crossref_primary_10_3389_feart_2022_1001287 crossref_primary_10_1016_j_jelechem_2024_118233 crossref_primary_10_1177_0957650919869503 crossref_primary_10_1007_s11356_020_09312_z crossref_primary_10_1016_j_tsep_2024_102595 crossref_primary_10_1002_aoc_6035 crossref_primary_10_1016_j_icheatmasstransfer_2021_105242 crossref_primary_10_1016_j_applthermaleng_2019_113946 crossref_primary_10_1016_j_jallcom_2021_162243 crossref_primary_10_1016_j_est_2023_107947 crossref_primary_10_1007_s41742_020_00243_8 crossref_primary_10_1016_j_apt_2022_103499 crossref_primary_10_1039_D2CP05410H crossref_primary_10_1002_ente_202301624 crossref_primary_10_1007_s10450_024_00483_6 crossref_primary_10_2139_ssrn_4196709 crossref_primary_10_1002_app_53707 crossref_primary_10_1016_j_est_2023_108991 crossref_primary_10_1016_j_buildenv_2019_01_038 crossref_primary_10_1016_j_carbon_2022_01_007 crossref_primary_10_1016_j_icheatmasstransfer_2021_105594 crossref_primary_10_3390_app11020678 crossref_primary_10_3390_en13123061 crossref_primary_10_1134_S0003683822020089 crossref_primary_10_1007_s13399_021_01706_4 crossref_primary_10_1016_j_nexres_2025_100219 crossref_primary_10_1021_jacs_4c15087 crossref_primary_10_1016_j_jclepro_2021_129256 crossref_primary_10_1177_16878132221082768 crossref_primary_10_1007_s11356_024_32501_z crossref_primary_10_1016_j_applthermaleng_2018_12_144 crossref_primary_10_3390_w15061125 crossref_primary_10_1016_j_apt_2024_104713 crossref_primary_10_1016_j_energy_2021_122957 crossref_primary_10_1016_j_jngse_2021_104124 crossref_primary_10_1016_j_seppur_2023_124776 crossref_primary_10_1016_j_fuel_2020_117215 crossref_primary_10_1016_j_icheatmasstransfer_2022_105961 crossref_primary_10_1016_j_scs_2019_101808 crossref_primary_10_1016_j_cej_2019_121911 crossref_primary_10_1016_j_ccst_2025_100386 crossref_primary_10_3390_en13215530 crossref_primary_10_1016_j_chemosphere_2023_140530 crossref_primary_10_1149_2162_8777_ad76d8 crossref_primary_10_1016_j_matpr_2021_12_227 crossref_primary_10_1016_j_seppur_2024_131070 crossref_primary_10_3390_app10030868 crossref_primary_10_1016_j_icheatmasstransfer_2023_106661 crossref_primary_10_1007_s11164_022_04738_1 crossref_primary_10_1080_00986445_2021_2018308 crossref_primary_10_1016_j_jece_2024_113456 crossref_primary_10_1016_j_applthermaleng_2024_123858 crossref_primary_10_1016_j_ijbiomac_2019_02_001 crossref_primary_10_1016_j_enconman_2021_114520 crossref_primary_10_1016_j_ijbiomac_2025_140913 crossref_primary_10_3390_en13112675 crossref_primary_10_1007_s11664_019_07550_7 crossref_primary_10_1016_j_polymertesting_2019_105947 crossref_primary_10_1021_acssuschemeng_4c03052 crossref_primary_10_1016_j_enconman_2019_02_040 crossref_primary_10_1016_j_jobe_2025_111804 crossref_primary_10_3390_app10134445 crossref_primary_10_1016_j_jcis_2021_12_132 crossref_primary_10_3390_ma16176011 crossref_primary_10_1016_j_petrol_2020_108290 crossref_primary_10_3390_en14133946 crossref_primary_10_3390_su122410582 crossref_primary_10_1039_D1NJ03157K crossref_primary_10_1002_pat_5358 crossref_primary_10_1016_j_enconman_2020_113343 crossref_primary_10_1007_s42823_020_00204_3 crossref_primary_10_1016_j_seppur_2024_130364 crossref_primary_10_3390_en14041097 crossref_primary_10_3390_en13174513 crossref_primary_10_1016_j_jpowsour_2021_229770 crossref_primary_10_1177_0263617419900849 crossref_primary_10_1016_j_energy_2024_131050 crossref_primary_10_1016_j_jhazmat_2020_122383 crossref_primary_10_1016_j_fuel_2024_132765 crossref_primary_10_1002_slct_201902736 crossref_primary_10_3390_nano14110973 crossref_primary_10_1016_j_apenergy_2022_120101 crossref_primary_10_1007_s10562_019_02736_4 crossref_primary_10_1016_j_jallcom_2024_174104 crossref_primary_10_1016_j_seta_2021_101658 crossref_primary_10_1088_1757_899X_414_1_012002 crossref_primary_10_1016_j_applthermaleng_2023_120068 crossref_primary_10_1016_j_heliyon_2023_e18825 crossref_primary_10_1177_0143624419893660 |
Cites_doi | 10.1016/j.carbon.2009.01.039 10.1021/ja500330a 10.1039/C4CS00078A 10.1351/pac198254112201 10.1016/j.solener.2003.07.036 10.1016/j.rser.2016.08.022 10.1016/j.ijrefrig.2008.07.001 10.1016/j.applthermaleng.2011.04.041 10.1016/j.applthermaleng.2016.05.192 10.1021/ja01208a049 10.1023/B:ADSO.0000024033.60103.ff 10.1016/S1387-1811(98)00075-4 10.1016/S1387-1811(00)00352-8 10.1016/j.applthermaleng.2005.12.005 10.1021/je800900a 10.1016/j.apenergy.2012.10.007 10.1016/j.apenergy.2009.08.026 10.1016/j.rser.2004.09.010 10.1016/j.ijrefrig.2006.04.001 10.1252/jcej.07WE193 10.1016/j.jfoodeng.2006.04.063 10.1007/s10450-015-9663-y 10.1007/BF00849307 10.1021/je0201267 10.1039/C6DT02640K 10.1016/S0167-2991(08)63559-4 10.1021/je800019u 10.1016/j.proeng.2015.08.417 10.1016/j.rser.2015.02.038 10.1134/S1087659615020108 10.1016/j.energy.2014.07.027 10.1007/s10450-009-9189-2 10.1016/j.renene.2015.09.015 10.1016/j.jcis.2004.08.009 10.1016/j.eswa.2007.08.098 10.1021/je0255067 10.1016/j.jcis.2008.06.002 10.1080/07373937.2013.792094 10.1021/ja01195a053 10.1016/j.egypro.2013.06.747 10.1021/je025616d 10.1016/j.egypro.2012.01.175 10.1016/0021-9797(67)90195-6 10.1351/pac198557040603 10.1016/j.enbuild.2013.02.062 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | RYH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.renene.2018.01.045 |
DatabaseName | CiNii Complete CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0682 |
EndPage | 450 |
ExternalDocumentID | 10_1016_j_renene_2018_01_045 S0960148118300454 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- AAHBH AATTM AAXKI AAYWO ABJNI ACVFH ADCNI AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIIUN AKBMS AKRWK AKYEP ANKPU APXCP RYH SSH AAYXX ABWVN ACRPL ADNMO AEGFY AFJKZ AGQPQ AIGII BNPGV CITATION 7S9 ACLOT EFKBS L.6 ~HD |
ID | FETCH-LOGICAL-c471t-e31bb93a34867e7edba5df53fcd09faae4c05620bc5d2fe144b4536752f08c273 |
IEDL.DBID | AIKHN |
ISSN | 0960-1481 |
IngestDate | Sun Sep 28 03:11:25 EDT 2025 Tue Jul 01 03:20:44 EDT 2025 Thu Apr 24 22:53:46 EDT 2025 Thu Jun 26 23:01:25 EDT 2025 Fri Feb 23 02:34:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Adsorption isotherms Desiccants Applications Optimization Air-conditioning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-e31bb93a34867e7edba5df53fcd09faae4c05620bc5d2fe144b4536752f08c273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7301-5567 0000-0002-5197-0221 |
PQID | 2221038634 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2221038634 crossref_citationtrail_10_1016_j_renene_2018_01_045 crossref_primary_10_1016_j_renene_2018_01_045 nii_cinii_1870583642613302912 elsevier_sciencedirect_doi_10_1016_j_renene_2018_01_045 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Renewable Energy |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Ruthven, Hussain, Desai (bib16) 1993; 80 Guojie, Chaoyu, Guanghai, Wu (bib2) 2012; 16 Kim, Lee, Kim, Lee, Kim, Suh, Lee (bib14) 2003; 48 ASHRAE (bib31) 2007 Nagaya, Senbongi, Li, Zheng, Murakami (bib5) 2006; 26 Serbezov (bib17) 2003; 48 Loughlin (bib54) 2009; 15 Sing, Everett, Haul, Moscou, Pierotti, Rouquerol, Siemieniewsk (bib29) 1985; 57 Shimooka, Oshima, Hidaka, Takewaki, Kakiuchi, Kodama, Kubota, Matsuda (bib43) 2007; 40 Prenger, Ling (bib34) 2001 Peng, Chen, Wu, Jiang (bib49) 2007; 80 Abd-Elrahman, Hamed, El-Emam, Awad (bib15) 2011; 31 Sing (bib28) 1982; 54 Sultan, El-Sharkawy, Miyazaki, Saha, Koyama (bib22) 2014; 01 Wang, LeVan (bib13) 2009; 54 Zheng, Ge, Wang (bib37) 2014; 74 Gorbach, Stegmaier, Eigenberger (bib53) 2004; 10 Canivet, Fateeva, Guo, Coasne, Farrusseng (bib10) 2014; 43 Puzyrev, Sobina, Adamova, Kodess, Medvedevskikh (bib35) 2015; 41 Sultan, Miyazaki, Saha, Koyama, Maisotsenko (bib42) 2015; 118 Chramsa-ard, Jindaruksa, Sirisumpunwong, Sonsaree (bib50) 2013; 34 Miyazaki, Oda, Ito, Kawasaki, Nikai (bib30) 2010 Sultan, Miyazaki, Koyama, Khan (bib55) 2017; 35 Kim, Agnihotri (bib23) 2008; 325 Jia, Dai, Wu, Wang (bib25) 2007; 30 López-Morales, López-Ortega, Ramos-Fernández, Muñoz (bib32) 2008; 35 Jänchen, Ackermann, Stach, Brösicke (bib39) 2004; 76 Xia, Chen, Kiplagat, Wang, Hu (bib12) 2008; 53 La, Dai, Li, Wang, Ge (bib8) 2010; 14 Inagaki, Fukushima (bib36) 1998; 21 Sultan, El-Sharkawy, Miyazaki, Saha, Koyama, Maruyama, Maeda, Nakamura (bib21) 2016; 106 De Boer (bib48) 1953 Smith (bib19) 1947; 69 Dubinin, Astakhov (bib45) 1971; 20 Qadir, Said, Mansour, Mezghani, Ul-Hamid (bib26) 2016; 45 Chua, Ng, Chakraborty, Oo, Othman (bib11) 2002; 47 Ascione, Bellia, Capozzoli (bib4) 2013; 103 Enteria, Yoshino, Satake, Mochida, Takaki, Yoshie, Baba (bib51) 2010; 87 Mahmood, Sultan, Miyazaki, Koyama, Maisotsenko (bib56) 2016; 66 Wang, Wu, Li, Fang, Ding, Xiao (bib41) 2013; 31 Anderson (bib47) 1946; 68 Ge, Li, Wang, Dai (bib52) 2009; 32 Oh, Saha (bib40) 2013 Sultan, Miyazaki, Saha, Koyama (bib3) 2016; 86 Do, Junpirom, Do (bib24) 2009; 47 Sultan, Miyazaki, Koyama, Saha (bib33) 2014; 04 Toribio, Bellat, Nguyen, Dupont (bib18) 2004; 280 Sultan, El-Sharkawy, Miyazaki, Saha, Koyama (bib6) 2015; 46 Akazawa, Murata, Ito, Nomura, Shigyo, Sakai, Minamida, Kabir, Yamagishi, Iida, Nakamura, Miyazaki (bib27) 2013; 529–530 Daou, Wang, Xia (bib7) 2006; 10 Guggenheim (bib46) 1966 Baniyounes, Rasul, Khan (bib1) 2013; 62 Sultan, El-Sharkawy, Miyazaki, Saha, Koyama, Maruyama, Maeda, Nakamura (bib20) 2015; 21 Moı¨se, Bellat, Méthivier (bib38) 2001; 43 Dubinin (bib44) 1967; 23 Furukawa, Gándara, Zhang, Jiang, Queen, Hudson, Yaghi (bib9) 2014; 136 Puzyrev (10.1016/j.renene.2018.01.045_bib35) 2015; 41 Oh (10.1016/j.renene.2018.01.045_bib40) 2013 La (10.1016/j.renene.2018.01.045_bib8) 2010; 14 Miyazaki (10.1016/j.renene.2018.01.045_bib30) 2010 Moı¨se (10.1016/j.renene.2018.01.045_bib38) 2001; 43 Jia (10.1016/j.renene.2018.01.045_bib25) 2007; 30 De Boer (10.1016/j.renene.2018.01.045_bib48) 1953 Baniyounes (10.1016/j.renene.2018.01.045_bib1) 2013; 62 Do (10.1016/j.renene.2018.01.045_bib24) 2009; 47 Kim (10.1016/j.renene.2018.01.045_bib14) 2003; 48 Nagaya (10.1016/j.renene.2018.01.045_bib5) 2006; 26 ASHRAE (10.1016/j.renene.2018.01.045_bib31) 2007 Ascione (10.1016/j.renene.2018.01.045_bib4) 2013; 103 Sing (10.1016/j.renene.2018.01.045_bib29) 1985; 57 Prenger (10.1016/j.renene.2018.01.045_bib34) 2001 Guojie (10.1016/j.renene.2018.01.045_bib2) 2012; 16 Wang (10.1016/j.renene.2018.01.045_bib13) 2009; 54 Sultan (10.1016/j.renene.2018.01.045_bib33) 2014; 04 Anderson (10.1016/j.renene.2018.01.045_bib47) 1946; 68 Sultan (10.1016/j.renene.2018.01.045_bib6) 2015; 46 Wang (10.1016/j.renene.2018.01.045_bib41) 2013; 31 Chua (10.1016/j.renene.2018.01.045_bib11) 2002; 47 Enteria (10.1016/j.renene.2018.01.045_bib51) 2010; 87 Xia (10.1016/j.renene.2018.01.045_bib12) 2008; 53 Gorbach (10.1016/j.renene.2018.01.045_bib53) 2004; 10 Sultan (10.1016/j.renene.2018.01.045_bib55) 2017; 35 López-Morales (10.1016/j.renene.2018.01.045_bib32) 2008; 35 Sultan (10.1016/j.renene.2018.01.045_bib3) 2016; 86 Chramsa-ard (10.1016/j.renene.2018.01.045_bib50) 2013; 34 Ge (10.1016/j.renene.2018.01.045_bib52) 2009; 32 Abd-Elrahman (10.1016/j.renene.2018.01.045_bib15) 2011; 31 Zheng (10.1016/j.renene.2018.01.045_bib37) 2014; 74 Sultan (10.1016/j.renene.2018.01.045_bib42) 2015; 118 Toribio (10.1016/j.renene.2018.01.045_bib18) 2004; 280 Peng (10.1016/j.renene.2018.01.045_bib49) 2007; 80 Shimooka (10.1016/j.renene.2018.01.045_bib43) 2007; 40 Canivet (10.1016/j.renene.2018.01.045_bib10) 2014; 43 Ruthven (10.1016/j.renene.2018.01.045_bib16) 1993; 80 Inagaki (10.1016/j.renene.2018.01.045_bib36) 1998; 21 Sultan (10.1016/j.renene.2018.01.045_bib20) 2015; 21 Sultan (10.1016/j.renene.2018.01.045_bib21) 2016; 106 Mahmood (10.1016/j.renene.2018.01.045_bib56) 2016; 66 Serbezov (10.1016/j.renene.2018.01.045_bib17) 2003; 48 Furukawa (10.1016/j.renene.2018.01.045_bib9) 2014; 136 Dubinin (10.1016/j.renene.2018.01.045_bib45) 1971; 20 Sultan (10.1016/j.renene.2018.01.045_bib22) 2014; 01 Kim (10.1016/j.renene.2018.01.045_bib23) 2008; 325 Guggenheim (10.1016/j.renene.2018.01.045_bib46) 1966 Akazawa (10.1016/j.renene.2018.01.045_bib27) 2013; 529–530 Daou (10.1016/j.renene.2018.01.045_bib7) 2006; 10 Smith (10.1016/j.renene.2018.01.045_bib19) 1947; 69 Loughlin (10.1016/j.renene.2018.01.045_bib54) 2009; 15 Sing (10.1016/j.renene.2018.01.045_bib28) 1982; 54 Jänchen (10.1016/j.renene.2018.01.045_bib39) 2004; 76 Qadir (10.1016/j.renene.2018.01.045_bib26) 2016; 45 Dubinin (10.1016/j.renene.2018.01.045_bib44) 1967; 23 |
References_xml | – year: 2001 ident: bib34 article-title: Greenhouse Condensation Control Understanding and Using Vapor Pressure Deficit (VPD), the Ohio State University Extension's FactSheet: Food, Agricultural and Biological Engineering (AEX–804–01), 1680 Madison Ave., Wooster OH 44691 – year: 1966 ident: bib46 article-title: Applications of Statistical Mechanics – volume: 280 start-page: 315 year: 2004 end-page: 321 ident: bib18 article-title: Adsorption of water vapor by poly(styrenesulfonic acid), sodium salt: isothermal and isobaric adsorption equilibria publication-title: J. Colloid Interface Sci. – volume: 15 start-page: 337 year: 2009 end-page: 353 ident: bib54 article-title: Water isotherm models for 4A (NaA) zeolite publication-title: Adsorption – volume: 43 start-page: 91 year: 2001 end-page: 101 ident: bib38 article-title: Adsorption of water vapor on X and Y zeolites exchanged with barium publication-title: Microporous Mesoporous Mater. – volume: 31 start-page: 2709 year: 2011 end-page: 2715 ident: bib15 article-title: Experimental investigation on the performance of radial flow desiccant bed using activated alumina publication-title: Appl. Therm. Eng. – volume: 32 start-page: 498 year: 2009 end-page: 508 ident: bib52 article-title: Experimental study on a two-stage rotary desiccant cooling system publication-title: Int. J. Refrig. – volume: 16 start-page: 1095 year: 2012 end-page: 1101 ident: bib2 article-title: Development of a new marine rotary desiccant airconditioning system and its energy consumption analysis publication-title: Energy Procedia. – volume: 76 start-page: 339 year: 2004 end-page: 344 ident: bib39 article-title: Studies of the water adsorption on Zeolites and modified mesoporous materials for seasonal storage of solar heat publication-title: Sol. Energy – volume: 53 start-page: 2462 year: 2008 end-page: 2465 ident: bib12 article-title: Adsorption equilibrium of water on silica gel publication-title: J. Chem. Eng. Data – volume: 62 start-page: 78 year: 2013 end-page: 86 ident: bib1 article-title: Experimental assessment of a solar desiccant cooling system for an institutional building in subtropical Queensland, Australia publication-title: Energy Build. – volume: 80 start-page: 562 year: 2007 end-page: 567 ident: bib49 article-title: Modeling of water sorption isotherm for corn starch publication-title: J. Food Eng. – volume: 23 start-page: 487 year: 1967 end-page: 499 ident: bib44 article-title: Adsorption in micropores publication-title: J. Colloid Interface Sci. – volume: 14 start-page: 130 year: 2010 end-page: 147 ident: bib8 article-title: Technical development of rotary desiccant dehumidification and air conditioning: a review, Renew. Sustain publication-title: Energy Rev. – volume: 45 start-page: 15621 year: 2016 end-page: 15633 ident: bib26 article-title: Synthesis, characterization, and water adsorption properties of a novel multi-walled carbon nanotube/MIL-100(Fe) composite publication-title: Dalton Trans. – volume: 48 start-page: 137 year: 2003 end-page: 141 ident: bib14 article-title: Adsorption equilibria of water vapor on alumina, zeolite 13X, and a zeolite x/activated carbon composite publication-title: J. Chem. Eng. Data – volume: 66 start-page: 537 year: 2016 end-page: 555 ident: bib56 article-title: Overview of the Maisotsenko cycle – a way towards dew point evaporative cooling publication-title: Renew. Sustain. Energy Rev. – volume: 01 start-page: 5 year: 2014 end-page: 11 ident: bib22 article-title: Experimental study on carbon based adsorbents for greenhouse dehumidification publication-title: Evergr. Jt. J Nov. Carbon Res Sci Green Asia Stra – year: 1953 ident: bib48 article-title: The Dynamical Character of Adsorption – volume: 118 start-page: 185 year: 2015 end-page: 192 ident: bib42 article-title: Steady-state analysis on thermally driven adsorption air-conditioning system for agricultural greenhouses publication-title: Procedia Eng – volume: 529–530 start-page: 430 year: 2013 end-page: 435 ident: bib27 article-title: Surface design and water vapor-adsorption characteristics of biomimetic composite materials derived from salmon resource publication-title: Key Eng. Mater. – year: 2007 ident: bib31 article-title: Handbook—HVAC Applications – volume: 10 start-page: 29 year: 2004 end-page: 46 ident: bib53 article-title: Measurement and modeling of water vapor adsorption on zeolite 4a—equilibria and kinetics publication-title: Adsorption – volume: 35 start-page: 1 year: 2017 end-page: 16 ident: bib55 article-title: Performance evaluation of hydrophilic organic polymer sorbents for desiccant air-conditioning applications publication-title: Adsorpt. Sci. Technol. – volume: 43 start-page: 5594 year: 2014 end-page: 5617 ident: bib10 article-title: Water adsorption in MOFs: fundamentals and applications publication-title: Chem. Soc. Rev. – volume: 21 start-page: 205 year: 2015 end-page: 215 ident: bib20 article-title: Insights of water vapor sorption onto polymer based sorbents publication-title: Adsorption – volume: 54 start-page: 2201 year: 1982 end-page: 2218 ident: bib28 article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional) publication-title: Pure Appl. Chem. – volume: 74 start-page: 280 year: 2014 end-page: 294 ident: bib37 article-title: Recent progress on desiccant materials for solid desiccant cooling systems publication-title: Energy – volume: 46 start-page: 16 year: 2015 end-page: 29 ident: bib6 article-title: An overview of solid desiccant dehumidification and air conditioning systems publication-title: Renew. Sustain. Energy Rev. – volume: 103 start-page: 416 year: 2013 end-page: 427 ident: bib4 article-title: A coupled numerical approach on museum air conditioning: energy and fluid-dynamic analysis publication-title: Appl. Energy – volume: 47 start-page: 1177 year: 2002 end-page: 1181 ident: bib11 article-title: Adsorption characteristics of silica gel + water systems publication-title: J. Chem. Eng. Data – volume: 325 start-page: 64 year: 2008 end-page: 73 ident: bib23 article-title: Application of water–activated carbon isotherm models to water adsorption isotherms of single-walled carbon nanotubes publication-title: J. Colloid Interface Sci. – volume: 10 start-page: 55 year: 2006 end-page: 77 ident: bib7 article-title: Desiccant cooling air conditioning: a review publication-title: Renew. Sustain. Energy Rev. – volume: 80 start-page: 545 year: 1993 end-page: 552 ident: bib16 article-title: Adsorption of water vapour on activated alumina publication-title: Stud. Surf. Sci. Catal. – volume: 106 start-page: 192 year: 2016 end-page: 202 ident: bib21 article-title: Water vapor sorption kinetics of polymer based sorbents: theory and experiments publication-title: Appl. Therm. Eng. – volume: 57 start-page: 603 year: 1985 end-page: 619 ident: bib29 article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) publication-title: Pure Appl. Chem. – volume: 26 start-page: 1545 year: 2006 end-page: 1551 ident: bib5 article-title: High energy efficiency desiccant assisted automobile air-conditioner and its temperature and humidity control system publication-title: Appl. Therm. Eng. – volume: 31 start-page: 1334 year: 2013 end-page: 1345 ident: bib41 article-title: An overview of adsorbents in the rotary desiccant dehumidifier for air dehumidification publication-title: Dry. Technol. – volume: 04 start-page: 1 year: 2014 end-page: 10 ident: bib33 article-title: Utilization of desiccant air-conditioning system for improvement in greenhouse productivity: a neglected area of research in Pakistan publication-title: Int. J. Environ – year: 2010 ident: bib30 article-title: The possibility of the energy cost savings by the electricity driven desiccant system with a high performance evaporative cooler publication-title: Int. Symp. Innov. Mater. Process. Energy Syst – volume: 34 start-page: 189 year: 2013 end-page: 197 ident: bib50 article-title: Performance evaluation of the desiccant bed solar dryer publication-title: Energy Procedia – volume: 21 start-page: 667 year: 1998 end-page: 672 ident: bib36 article-title: Adsorption of water vapor and hydrophobicity of ordered mesoporous silica, FSM-16 publication-title: Microporous Mesoporous Mater. – volume: 68 start-page: 686 year: 1946 end-page: 691 ident: bib47 article-title: Modifications of the brunauer, emmett and teller equation publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 3 year: 1971 end-page: 7 ident: bib45 article-title: Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents publication-title: Bull. Acad. Sci. USSR Div. Chem. Sci. – volume: 30 start-page: 345 year: 2007 end-page: 353 ident: bib25 article-title: Use of compound desiccant to develop high performance desiccant cooling system publication-title: Int. J. Refrig. – volume: 47 start-page: 1466 year: 2009 end-page: 1473 ident: bib24 article-title: A new adsorption–desorption model for water adsorption in activated carbon publication-title: Carbon – volume: 86 start-page: 785 year: 2016 end-page: 795 ident: bib3 article-title: Steady-state investigation of water vapor adsorption for thermally driven adsorption based greenhouse air-conditioning system publication-title: Renew. Energy – volume: 41 start-page: 187 year: 2015 end-page: 193 ident: bib35 article-title: Template synthesis and water vapor adsorption by micro- and mesoporous silica gels with high specific surface area publication-title: Glass Phys. Chem. – year: 2013 ident: bib40 article-title: Silica Gel/water Based Adsorption Cooling System Employing Compact Fin-tube Heat Exchanger – volume: 40 start-page: 1330 year: 2007 end-page: 1334 ident: bib43 article-title: The evaluation of direct cooling and heating desiccant device coated with FAM publication-title: J. Chem. Eng. Jpn. – volume: 35 start-page: 1506 year: 2008 end-page: 1512 ident: bib32 article-title: JAPIEST: an integral intelligent system for the diagnosis and control of tomatoes diseases and pests in hydroponic greenhouses publication-title: Expert Syst. Appl. – volume: 87 start-page: 478 year: 2010 end-page: 486 ident: bib51 article-title: Development and construction of the novel solar thermal desiccant cooling system incorporating hot water production publication-title: Appl. Energy – volume: 136 start-page: 4369 year: 2014 end-page: 4381 ident: bib9 article-title: Water adsorption in porous metal–organic frameworks and related materials publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 421 year: 2003 end-page: 425 ident: bib17 article-title: Adsorption equilibrium of water vapor on F-200 activated alumina publication-title: J. Chem. Eng. Data – volume: 69 start-page: 646 year: 1947 end-page: 651 ident: bib19 article-title: The sorption of water vapor by high polymers publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 2839 year: 2009 end-page: 2844 ident: bib13 article-title: Adsorption equilibrium of carbon dioxide and water vapor on zeolites 5A and 13X and silica gel: pure components publication-title: J. Chem. Eng. Data – volume: 47 start-page: 1466 year: 2009 ident: 10.1016/j.renene.2018.01.045_bib24 article-title: A new adsorption–desorption model for water adsorption in activated carbon publication-title: Carbon doi: 10.1016/j.carbon.2009.01.039 – volume: 14 start-page: 130 year: 2010 ident: 10.1016/j.renene.2018.01.045_bib8 article-title: Technical development of rotary desiccant dehumidification and air conditioning: a review, Renew. Sustain publication-title: Energy Rev. – volume: 136 start-page: 4369 year: 2014 ident: 10.1016/j.renene.2018.01.045_bib9 article-title: Water adsorption in porous metal–organic frameworks and related materials publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500330a – volume: 43 start-page: 5594 year: 2014 ident: 10.1016/j.renene.2018.01.045_bib10 article-title: Water adsorption in MOFs: fundamentals and applications publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00078A – volume: 54 start-page: 2201 year: 1982 ident: 10.1016/j.renene.2018.01.045_bib28 article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional) publication-title: Pure Appl. Chem. doi: 10.1351/pac198254112201 – volume: 76 start-page: 339 year: 2004 ident: 10.1016/j.renene.2018.01.045_bib39 article-title: Studies of the water adsorption on Zeolites and modified mesoporous materials for seasonal storage of solar heat publication-title: Sol. Energy doi: 10.1016/j.solener.2003.07.036 – volume: 66 start-page: 537 year: 2016 ident: 10.1016/j.renene.2018.01.045_bib56 article-title: Overview of the Maisotsenko cycle – a way towards dew point evaporative cooling publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.08.022 – volume: 32 start-page: 498 year: 2009 ident: 10.1016/j.renene.2018.01.045_bib52 article-title: Experimental study on a two-stage rotary desiccant cooling system publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2008.07.001 – volume: 31 start-page: 2709 year: 2011 ident: 10.1016/j.renene.2018.01.045_bib15 article-title: Experimental investigation on the performance of radial flow desiccant bed using activated alumina publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.04.041 – volume: 106 start-page: 192 year: 2016 ident: 10.1016/j.renene.2018.01.045_bib21 article-title: Water vapor sorption kinetics of polymer based sorbents: theory and experiments publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.05.192 – volume: 68 start-page: 686 year: 1946 ident: 10.1016/j.renene.2018.01.045_bib47 article-title: Modifications of the brunauer, emmett and teller equation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01208a049 – volume: 10 start-page: 29 year: 2004 ident: 10.1016/j.renene.2018.01.045_bib53 article-title: Measurement and modeling of water vapor adsorption on zeolite 4a—equilibria and kinetics publication-title: Adsorption doi: 10.1023/B:ADSO.0000024033.60103.ff – volume: 21 start-page: 667 year: 1998 ident: 10.1016/j.renene.2018.01.045_bib36 article-title: Adsorption of water vapor and hydrophobicity of ordered mesoporous silica, FSM-16 publication-title: Microporous Mesoporous Mater. doi: 10.1016/S1387-1811(98)00075-4 – volume: 43 start-page: 91 year: 2001 ident: 10.1016/j.renene.2018.01.045_bib38 article-title: Adsorption of water vapor on X and Y zeolites exchanged with barium publication-title: Microporous Mesoporous Mater. doi: 10.1016/S1387-1811(00)00352-8 – volume: 26 start-page: 1545 year: 2006 ident: 10.1016/j.renene.2018.01.045_bib5 article-title: High energy efficiency desiccant assisted automobile air-conditioner and its temperature and humidity control system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2005.12.005 – volume: 54 start-page: 2839 year: 2009 ident: 10.1016/j.renene.2018.01.045_bib13 article-title: Adsorption equilibrium of carbon dioxide and water vapor on zeolites 5A and 13X and silica gel: pure components publication-title: J. Chem. Eng. Data doi: 10.1021/je800900a – volume: 103 start-page: 416 year: 2013 ident: 10.1016/j.renene.2018.01.045_bib4 article-title: A coupled numerical approach on museum air conditioning: energy and fluid-dynamic analysis publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.10.007 – volume: 87 start-page: 478 year: 2010 ident: 10.1016/j.renene.2018.01.045_bib51 article-title: Development and construction of the novel solar thermal desiccant cooling system incorporating hot water production publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.08.026 – year: 1966 ident: 10.1016/j.renene.2018.01.045_bib46 – volume: 10 start-page: 55 year: 2006 ident: 10.1016/j.renene.2018.01.045_bib7 article-title: Desiccant cooling air conditioning: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2004.09.010 – volume: 30 start-page: 345 year: 2007 ident: 10.1016/j.renene.2018.01.045_bib25 article-title: Use of compound desiccant to develop high performance desiccant cooling system publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2006.04.001 – year: 2007 ident: 10.1016/j.renene.2018.01.045_bib31 – volume: 40 start-page: 1330 year: 2007 ident: 10.1016/j.renene.2018.01.045_bib43 article-title: The evaluation of direct cooling and heating desiccant device coated with FAM publication-title: J. Chem. Eng. Jpn. doi: 10.1252/jcej.07WE193 – volume: 80 start-page: 562 year: 2007 ident: 10.1016/j.renene.2018.01.045_bib49 article-title: Modeling of water sorption isotherm for corn starch publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2006.04.063 – volume: 21 start-page: 205 year: 2015 ident: 10.1016/j.renene.2018.01.045_bib20 article-title: Insights of water vapor sorption onto polymer based sorbents publication-title: Adsorption doi: 10.1007/s10450-015-9663-y – volume: 20 start-page: 3 year: 1971 ident: 10.1016/j.renene.2018.01.045_bib45 article-title: Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents publication-title: Bull. Acad. Sci. USSR Div. Chem. Sci. doi: 10.1007/BF00849307 – volume: 35 start-page: 1 year: 2017 ident: 10.1016/j.renene.2018.01.045_bib55 article-title: Performance evaluation of hydrophilic organic polymer sorbents for desiccant air-conditioning applications publication-title: Adsorpt. Sci. Technol. – volume: 48 start-page: 137 year: 2003 ident: 10.1016/j.renene.2018.01.045_bib14 article-title: Adsorption equilibria of water vapor on alumina, zeolite 13X, and a zeolite x/activated carbon composite publication-title: J. Chem. Eng. Data doi: 10.1021/je0201267 – volume: 45 start-page: 15621 year: 2016 ident: 10.1016/j.renene.2018.01.045_bib26 article-title: Synthesis, characterization, and water adsorption properties of a novel multi-walled carbon nanotube/MIL-100(Fe) composite publication-title: Dalton Trans. doi: 10.1039/C6DT02640K – volume: 529–530 start-page: 430 year: 2013 ident: 10.1016/j.renene.2018.01.045_bib27 article-title: Surface design and water vapor-adsorption characteristics of biomimetic composite materials derived from salmon resource publication-title: Key Eng. Mater. – volume: 80 start-page: 545 year: 1993 ident: 10.1016/j.renene.2018.01.045_bib16 article-title: Adsorption of water vapour on activated alumina publication-title: Stud. Surf. Sci. Catal. doi: 10.1016/S0167-2991(08)63559-4 – year: 1953 ident: 10.1016/j.renene.2018.01.045_bib48 – year: 2013 ident: 10.1016/j.renene.2018.01.045_bib40 – volume: 53 start-page: 2462 year: 2008 ident: 10.1016/j.renene.2018.01.045_bib12 article-title: Adsorption equilibrium of water on silica gel publication-title: J. Chem. Eng. Data doi: 10.1021/je800019u – volume: 118 start-page: 185 year: 2015 ident: 10.1016/j.renene.2018.01.045_bib42 article-title: Steady-state analysis on thermally driven adsorption air-conditioning system for agricultural greenhouses publication-title: Procedia Eng doi: 10.1016/j.proeng.2015.08.417 – volume: 46 start-page: 16 year: 2015 ident: 10.1016/j.renene.2018.01.045_bib6 article-title: An overview of solid desiccant dehumidification and air conditioning systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.02.038 – volume: 01 start-page: 5 year: 2014 ident: 10.1016/j.renene.2018.01.045_bib22 article-title: Experimental study on carbon based adsorbents for greenhouse dehumidification publication-title: Evergr. Jt. J Nov. Carbon Res Sci Green Asia Stra – volume: 41 start-page: 187 year: 2015 ident: 10.1016/j.renene.2018.01.045_bib35 article-title: Template synthesis and water vapor adsorption by micro- and mesoporous silica gels with high specific surface area publication-title: Glass Phys. Chem. doi: 10.1134/S1087659615020108 – volume: 74 start-page: 280 year: 2014 ident: 10.1016/j.renene.2018.01.045_bib37 article-title: Recent progress on desiccant materials for solid desiccant cooling systems publication-title: Energy doi: 10.1016/j.energy.2014.07.027 – volume: 15 start-page: 337 year: 2009 ident: 10.1016/j.renene.2018.01.045_bib54 article-title: Water isotherm models for 4A (NaA) zeolite publication-title: Adsorption doi: 10.1007/s10450-009-9189-2 – volume: 86 start-page: 785 year: 2016 ident: 10.1016/j.renene.2018.01.045_bib3 article-title: Steady-state investigation of water vapor adsorption for thermally driven adsorption based greenhouse air-conditioning system publication-title: Renew. Energy doi: 10.1016/j.renene.2015.09.015 – volume: 04 start-page: 1 year: 2014 ident: 10.1016/j.renene.2018.01.045_bib33 article-title: Utilization of desiccant air-conditioning system for improvement in greenhouse productivity: a neglected area of research in Pakistan publication-title: Int. J. Environ – volume: 280 start-page: 315 year: 2004 ident: 10.1016/j.renene.2018.01.045_bib18 article-title: Adsorption of water vapor by poly(styrenesulfonic acid), sodium salt: isothermal and isobaric adsorption equilibria publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.08.009 – volume: 35 start-page: 1506 year: 2008 ident: 10.1016/j.renene.2018.01.045_bib32 article-title: JAPIEST: an integral intelligent system for the diagnosis and control of tomatoes diseases and pests in hydroponic greenhouses publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.08.098 – year: 2010 ident: 10.1016/j.renene.2018.01.045_bib30 article-title: The possibility of the energy cost savings by the electricity driven desiccant system with a high performance evaporative cooler – volume: 47 start-page: 1177 year: 2002 ident: 10.1016/j.renene.2018.01.045_bib11 article-title: Adsorption characteristics of silica gel + water systems publication-title: J. Chem. Eng. Data doi: 10.1021/je0255067 – volume: 325 start-page: 64 year: 2008 ident: 10.1016/j.renene.2018.01.045_bib23 article-title: Application of water–activated carbon isotherm models to water adsorption isotherms of single-walled carbon nanotubes publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2008.06.002 – volume: 31 start-page: 1334 year: 2013 ident: 10.1016/j.renene.2018.01.045_bib41 article-title: An overview of adsorbents in the rotary desiccant dehumidifier for air dehumidification publication-title: Dry. Technol. doi: 10.1080/07373937.2013.792094 – volume: 69 start-page: 646 year: 1947 ident: 10.1016/j.renene.2018.01.045_bib19 article-title: The sorption of water vapor by high polymers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01195a053 – volume: 34 start-page: 189 year: 2013 ident: 10.1016/j.renene.2018.01.045_bib50 article-title: Performance evaluation of the desiccant bed solar dryer publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.06.747 – year: 2001 ident: 10.1016/j.renene.2018.01.045_bib34 – volume: 48 start-page: 421 year: 2003 ident: 10.1016/j.renene.2018.01.045_bib17 article-title: Adsorption equilibrium of water vapor on F-200 activated alumina publication-title: J. Chem. Eng. Data doi: 10.1021/je025616d – volume: 16 start-page: 1095 year: 2012 ident: 10.1016/j.renene.2018.01.045_bib2 article-title: Development of a new marine rotary desiccant airconditioning system and its energy consumption analysis publication-title: Energy Procedia. doi: 10.1016/j.egypro.2012.01.175 – volume: 23 start-page: 487 year: 1967 ident: 10.1016/j.renene.2018.01.045_bib44 article-title: Adsorption in micropores publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(67)90195-6 – volume: 57 start-page: 603 year: 1985 ident: 10.1016/j.renene.2018.01.045_bib29 article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) publication-title: Pure Appl. Chem. doi: 10.1351/pac198557040603 – volume: 62 start-page: 78 year: 2013 ident: 10.1016/j.renene.2018.01.045_bib1 article-title: Experimental assessment of a solar desiccant cooling system for an institutional building in subtropical Queensland, Australia publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.02.062 |
SSID | ssj0015874 ssib006546527 ssib006546528 ssib054718985 |
Score | 2.5695815 |
Snippet | The present study investigates five kinds of adsorbents for desiccant air-conditioning (DAC) applications. Each adsorbent yield distinctive water vapor... |
SourceID | proquest crossref nii elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 441 |
SubjectTerms | adsorbents adsorption Adsorption isotherms Air-conditioning Applications Desiccants drying grinding manufacturing Optimization renewable energy sources rubber sorption isotherms temperature tobacco water vapor |
Title | Optimization of adsorption isotherm types for desiccant air-conditioning applications |
URI | https://dx.doi.org/10.1016/j.renene.2018.01.045 https://cir.nii.ac.jp/crid/1870583642613302912 https://www.proquest.com/docview/2221038634 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS_QwEB7c9aIH8RP39YMIXuM2TdttjyLKqqgHXfAWkjSBinZld72-v92ZNhVFQfBSaElomUlnnsnMPAE4LqyIvdEFN7aMeCJGhheuSLnRxphMSwTJlNG9uc3Gk-TqMX1cgrOuF4bKKoPtb216Y63Dk2GQ5vC1qob3BL4RzCNClg2RXA-WY_T2eR-WTy-vx7cfyYQ0b8mYcTynCV0HXVPmRcSRNfFlirzh76S-pp89VK-uqm8Wu3FDF-uwFvAjO20_cQOWXL0Jq59YBbdgcodm4CX0V7KpZ7qcT2eNaWDVvOm4emG09TpniFhZ6VBRJGCmqxnH8LiswiYt-5zd3obJxfnD2ZiH0xO4RYez4E4KYwqpJXHquZErjU5Ln0qPSim81i6xBH4iY9My9g4DK5OkEuOH2Ee5RVSzA_16WrtdYMImLiYistz7JPPWCJ25rPRi5HVm8nwAspOYsoFanE64eFZdDdmTauWsSM4qEgrlPAD-Meu1pdb4ZfyoU4b6skQUWv9fZh6g7vDT6CrQQqW5zCh2lDKKCxEP4KjTqsK_i1ImunbTt7lC9EQM8plM_v357XuwQndtfdk-9BezN3eASGZhDqF38l8chvX6DgM48tg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB1BOQAHtHyJwnbXSFytxnGSJkdULSoLlANU4mbZji0FQYra8v-ZSRwEYiWkveSQ2Eo04zw_e2aeAc4KK2JvdMGNLSOeiJHhhStSbrQxJtMSSTJFdG-m2WSW_H1IH9Zg3NXCUFplwP4W0xu0DneGwZrDl6oa3hH5RjKPDFk2QnLrsJHQodY92Di_vJpM34MJad6KMWN7Th26CromzYuEI2vSyxR5o99JdU3_nqHW66r6gtjNNHTxA3YCf2Tn7Sfuwpqr92D7g6rgPsxuEQaeQ30lm3umy-V80UADq5ZNxdUzo63XJUPGykqHjiIDM10tOC6Pyyps0rKP0e0DmF38uR9PeDg9gVuccFbcSWFMIbUkTT03cqXRaelT6dEphdfaJZbIT2RsWsbe4cLKJKnE9UPso9wiqzmEXj2v3REwYRMXkxBZ7n2SeWuEzlxWejHyOjN53gfZWUzZIC1OJ1w8qS6H7FG1dlZkZxUJhXbuA3_v9dJKa3zTftQ5Q30aIgrR_5ueA_QdfhpdBSJUmsuM1o5SRnEh4j6cdl5V-HdRyETXbv66VMieSEE-k8nxf7_9N2xO7m-u1fXl9OoEtuhJm2v2E3qrxasbIKtZmV9h1L4BvNf0vg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+adsorption+isotherm+types+for+desiccant+air-conditioning+applications&rft.jtitle=Renewable+energy&rft.au=Sultan%2C+Muhammad&rft.au=Miyazaki%2C+Takahiko&rft.au=Koyama%2C+Shigeru&rft.date=2018-06-01&rft.issn=0960-1481&rft.volume=121&rft.spage=441&rft.epage=450&rft_id=info:doi/10.1016%2Fj.renene.2018.01.045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_renene_2018_01_045 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |