Pulmonary artery pressure limits exercise capacity at high altitude
Altitude exposure is associated with decreased exercise capacity and increased pulmonary vascular resistance (PVR). Echocardiographic measurements of pulmonary haemodynamics and a cardiopulmonary exercise test were performed in 13 healthy subjects at sea level, in normoxia and during acute hypoxic b...
Saved in:
Published in | The European respiratory journal Vol. 36; no. 5; pp. 1049 - 1055 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Leeds
Maney
01.11.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0903-1936 1399-3003 1399-3003 |
DOI | 10.1183/09031936.00024410 |
Cover
Abstract | Altitude exposure is associated with decreased exercise capacity and increased pulmonary vascular resistance (PVR).
Echocardiographic measurements of pulmonary haemodynamics and a cardiopulmonary exercise test were performed in 13 healthy subjects at sea level, in normoxia and during acute hypoxic breathing (1 h, 12% oxygen in nitrogen), and in 22 healthy subjects after acclimatisation to an altitude of 5,050 m. The measurements were obtained after randomisation, double-blinded to the intake of placebo or the endothelin A receptor blocker sitaxsentan (100 mg·day −1 for 7 days). Blood and urine were sampled for renal function measurements.
Normobaric as well as hypobaric hypoxia increased PVR and decreased maximum workload and oxygen uptake ( V ′ O 2 ,max ). Sitaxsentan decreased PVR in acute and chronic hypoxia (both p<0.001), and partly restored V ′ O 2 ,max , by 30 % in acute hypoxia (p<0.001) and 10% in chronic hypoxia (p<0.05). Sitaxsentan-induced changes in PVR and V ′ O 2 ,max were correlated (p = 0.01). Hypoxia decreased glomerular filtration rate and free water clearance, and increased fractional sodium excretion. These indices of renal function were unaffected by sitaxsentan intake.
Selective endothelin A receptor blockade with sitaxsentan improves mild pulmonary hypertension and restores exercise capacity without adverse effects on renal function in hypoxic normal subjects. |
---|---|
AbstractList | Altitude exposure is associated with decreased exercise capacity and increased pulmonary vascular resistance (PVR). Echocardiographic measurements of pulmonary haemodynamics and a cardiopulmonary exercise test were performed in 13 healthy subjects at sea level, in normoxia and during acute hypoxic breathing (1 h, 12% oxygen in nitrogen), and in 22 healthy subjects after acclimatisation to an altitude of 5,050 m. The measurements were obtained after randomisation, double-blinded to the intake of placebo or the endothelin A receptor blocker sitaxsentan (100 mg·day(-1) for 7 days). Blood and urine were sampled for renal function measurements. Normobaric as well as hypobaric hypoxia increased PVR and decreased maximum workload and oxygen uptake (V'(O(2),max)). Sitaxsentan decreased PVR in acute and chronic hypoxia (both p<0.001), and partly restored V'(O(2),max), by 30 % in acute hypoxia (p<0.001) and 10% in chronic hypoxia (p<0.05). Sitaxsentan-induced changes in PVR and V'(O(2),max) were correlated (p = 0.01). Hypoxia decreased glomerular filtration rate and free water clearance, and increased fractional sodium excretion. These indices of renal function were unaffected by sitaxsentan intake. Selective endothelin A receptor blockade with sitaxsentan improves mild pulmonary hypertension and restores exercise capacity without adverse effects on renal function in hypoxic normal subjects.Altitude exposure is associated with decreased exercise capacity and increased pulmonary vascular resistance (PVR). Echocardiographic measurements of pulmonary haemodynamics and a cardiopulmonary exercise test were performed in 13 healthy subjects at sea level, in normoxia and during acute hypoxic breathing (1 h, 12% oxygen in nitrogen), and in 22 healthy subjects after acclimatisation to an altitude of 5,050 m. The measurements were obtained after randomisation, double-blinded to the intake of placebo or the endothelin A receptor blocker sitaxsentan (100 mg·day(-1) for 7 days). Blood and urine were sampled for renal function measurements. Normobaric as well as hypobaric hypoxia increased PVR and decreased maximum workload and oxygen uptake (V'(O(2),max)). Sitaxsentan decreased PVR in acute and chronic hypoxia (both p<0.001), and partly restored V'(O(2),max), by 30 % in acute hypoxia (p<0.001) and 10% in chronic hypoxia (p<0.05). Sitaxsentan-induced changes in PVR and V'(O(2),max) were correlated (p = 0.01). Hypoxia decreased glomerular filtration rate and free water clearance, and increased fractional sodium excretion. These indices of renal function were unaffected by sitaxsentan intake. Selective endothelin A receptor blockade with sitaxsentan improves mild pulmonary hypertension and restores exercise capacity without adverse effects on renal function in hypoxic normal subjects. Altitude exposure is associated with decreased exercise capacity and increased pulmonary vascular resistance (PVR). Echocardiographic measurements of pulmonary haemodynamics and a cardiopulmonary exercise test were performed in 13 healthy subjects at sea level, in normoxia and during acute hypoxic breathing (1 h, 12% oxygen in nitrogen), and in 22 healthy subjects after acclimatisation to an altitude of 5,050 m. The measurements were obtained after randomisation, double-blinded to the intake of placebo or the endothelin A receptor blocker sitaxsentan (100 mg.day-1 for 7 days). Blood and urine were sampled for renal function measurements. Normobaric as well as hypobaric hypoxia increased PVR and decreased maximum workload and oxygen uptake (V'O2,max). Sitaxsentan decreased PVR in acute and chronic hypoxia (both p<0.001), and partly restored V'O2,max, by 30 % in acute hypoxia (p<0.001) and 10% in chronic hypoxia (p<0.05). Sitaxsentan-induced changes in PVR and V'O2,max were correlated (p = 0.01). Hypoxia decreased glomerular filtration rate and free water clearance, and increased fractional sodium excretion. These indices of renal function were unaffected by sitaxsentan intake. Selective endothelin A receptor blockade with sitaxsentan improves mild pulmonary hypertension and restores exercise capacity without adverse effects on renal function in hypoxic normal subjects. Altitude exposure is associated with decreased exercise capacity and increased pulmonary vascular resistance (PVR). Echocardiographic measurements of pulmonary haemodynamics and a cardiopulmonary exercise test were performed in 13 healthy subjects at sea level, in normoxia and during acute hypoxic breathing (1 h, 12% oxygen in nitrogen), and in 22 healthy subjects after acclimatisation to an altitude of 5,050 m. The measurements were obtained after randomisation, double-blinded to the intake of placebo or the endothelin A receptor blocker sitaxsentan (100 mg·day(-1) for 7 days). Blood and urine were sampled for renal function measurements. Normobaric as well as hypobaric hypoxia increased PVR and decreased maximum workload and oxygen uptake (V'(O(2),max)). Sitaxsentan decreased PVR in acute and chronic hypoxia (both p<0.001), and partly restored V'(O(2),max), by 30 % in acute hypoxia (p<0.001) and 10% in chronic hypoxia (p<0.05). Sitaxsentan-induced changes in PVR and V'(O(2),max) were correlated (p = 0.01). Hypoxia decreased glomerular filtration rate and free water clearance, and increased fractional sodium excretion. These indices of renal function were unaffected by sitaxsentan intake. Selective endothelin A receptor blockade with sitaxsentan improves mild pulmonary hypertension and restores exercise capacity without adverse effects on renal function in hypoxic normal subjects. Altitude exposure is associated with decreased exercise capacity and increased pulmonary vascular resistance (PVR). Echocardiographic measurements of pulmonary haemodynamics and a cardiopulmonary exercise test were performed in 13 healthy subjects at sea level, in normoxia and during acute hypoxic breathing (1 h, 12% oxygen in nitrogen), and in 22 healthy subjects after acclimatisation to an altitude of 5,050 m. The measurements were obtained after randomisation, double-blinded to the intake of placebo or the endothelin A receptor blocker sitaxsentan (100 mg·day −1 for 7 days). Blood and urine were sampled for renal function measurements. Normobaric as well as hypobaric hypoxia increased PVR and decreased maximum workload and oxygen uptake ( V ′ O 2 ,max ). Sitaxsentan decreased PVR in acute and chronic hypoxia (both p<0.001), and partly restored V ′ O 2 ,max , by 30 % in acute hypoxia (p<0.001) and 10% in chronic hypoxia (p<0.05). Sitaxsentan-induced changes in PVR and V ′ O 2 ,max were correlated (p = 0.01). Hypoxia decreased glomerular filtration rate and free water clearance, and increased fractional sodium excretion. These indices of renal function were unaffected by sitaxsentan intake. Selective endothelin A receptor blockade with sitaxsentan improves mild pulmonary hypertension and restores exercise capacity without adverse effects on renal function in hypoxic normal subjects. |
Author | Neupane, S. Huez, S. Lamotte, M. Retailleau, K. Faoro, V. Naeije, R. Abramowicz, D. |
Author_xml | – sequence: 1 givenname: R. surname: Naeije fullname: Naeije, R. – sequence: 2 givenname: S. surname: Huez fullname: Huez, S. – sequence: 3 givenname: M. surname: Lamotte fullname: Lamotte, M. – sequence: 4 givenname: K. surname: Retailleau fullname: Retailleau, K. – sequence: 5 givenname: S. surname: Neupane fullname: Neupane, S. – sequence: 6 givenname: D. surname: Abramowicz fullname: Abramowicz, D. – sequence: 7 givenname: V. surname: Faoro fullname: Faoro, V. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23352315$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20378601$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0T1PHDEQBmALEcEd8ANoom1QqiUzHu9XiU6EREJKiqRezXnnwNF-HLZXgn8fn7gjUgpSTeHnHUvvLNXxOI2i1CXCNWJNn6EBwobKawDQxiAcqQVS0-QEQMdqsXvPd-BULUP4DYClITxRpxqoqkvAhVr9mPthGtm_ZOyjpLH1EsLsJevd4GLI5Fm8dUEyy1u2LiYYs0f38JhxH12cOzlXHzbcB7nYzzP168vtz9XX_P773bfVzX1uTYUxt7gpjFCHYsAg17ojJCpLEV6XbAu77oCJLWuoxDQl6krY1JiA7hoWOlOfXvdu_fQ0S4jt4IKVvudRpjm0TWGKmkgX_5VVqUFjUddJftzLeT1I1269G1IZ7aGhBK72gIPlfuN5TG38dUSFJtx9ia_O-ikEL5s3gtDurtUertUerpUy1T-Z1C9HN43Rs-vfSf4BbCSWnw |
CitedBy_id | crossref_primary_10_1016_j_ijcard_2014_12_044 crossref_primary_10_1089_ham_2010_11303 crossref_primary_10_1113_JP275278 crossref_primary_10_1016_j_isci_2025_112112 crossref_primary_10_1111_echo_12088 crossref_primary_10_1002_cpt_860 crossref_primary_10_1089_ham_2011_1059 crossref_primary_10_1113_expphysiol_2012_069112 crossref_primary_10_1152_japplphysiol_01622_2011 crossref_primary_10_14814_phy2_15944 crossref_primary_10_3389_fmed_2022_835481 crossref_primary_10_1378_chest_14_1755 crossref_primary_10_1016_j_tmaid_2021_102166 crossref_primary_10_3389_fcvm_2023_1129144 crossref_primary_10_1139_cjpp_2016_0635 crossref_primary_10_1089_ham_2010_1061 crossref_primary_10_1002_14651858_CD004434_pub6 crossref_primary_10_1016_j_lfs_2015_11_020 crossref_primary_10_1113_JP277301 crossref_primary_10_1002_14651858_CD004434_pub5 crossref_primary_10_2147_RMHP_S478383 crossref_primary_10_3390_ijerph18041692 crossref_primary_10_1152_japplphysiol_00233_2014 crossref_primary_10_1177_1535370216657614 crossref_primary_10_1016_j_chest_2020_09_004 crossref_primary_10_1152_japplphysiol_00186_2017 crossref_primary_10_4235_agmr_24_0010 crossref_primary_10_1152_japplphysiol_00394_2016 crossref_primary_10_15360_1813_9779_2021_3_32_41 crossref_primary_10_1113_JP281724 crossref_primary_10_1378_chest_11_2845 crossref_primary_10_1016_j_echo_2024_12_007 crossref_primary_10_1016_j_resp_2011_09_001 crossref_primary_10_3389_fphys_2015_00288 crossref_primary_10_1249_MSS_0000000000001320 crossref_primary_10_1371_journal_pone_0152868 crossref_primary_10_3390_ijerph120911781 crossref_primary_10_1007_s00421_015_3299_1 crossref_primary_10_1007_s10554_020_01769_w crossref_primary_10_1038_s41598_022_18995_y crossref_primary_10_1371_journal_pone_0099309 crossref_primary_10_1016_j_jcmg_2017_03_022 crossref_primary_10_1111_apha_12749 crossref_primary_10_1152_japplphysiol_00444_2020 crossref_primary_10_3389_fphys_2021_786954 crossref_primary_10_1152_japplphysiol_00670_2011 crossref_primary_10_1007_s00484_020_01889_x crossref_primary_10_1089_ham_2020_0196 crossref_primary_10_1152_physiol_00007_2015 crossref_primary_10_1186_2046_7648_2_1 crossref_primary_10_3390_ijerph17103501 crossref_primary_10_1016_j_rmr_2017_01_013 crossref_primary_10_1089_ham_2012_1009 crossref_primary_10_1113_expphysiol_2014_082503 crossref_primary_10_14814_phy2_14164 crossref_primary_10_1007_s12020_018_1529_0 crossref_primary_10_1038_s41569_023_00924_9 crossref_primary_10_1016_j_chest_2020_01_037 crossref_primary_10_1089_ham_2011_1075 crossref_primary_10_1139_apnm_2014_0080 crossref_primary_10_1152_japplphysiol_00640_2015 crossref_primary_10_1089_ham_2013_1137 crossref_primary_10_1136_bjsports_2022_106211 crossref_primary_10_1080_14656566_2018_1528228 crossref_primary_10_1089_ham_2012_1124 crossref_primary_10_1152_japplphysiol_00236_2013 crossref_primary_10_1016_j_cardfail_2012_11_005 crossref_primary_10_3390_app14073091 crossref_primary_10_1007_s00109_018_1673_2 crossref_primary_10_1152_japplphysiol_01455_2012 crossref_primary_10_3390_s20113302 crossref_primary_10_1007_s00392_013_0654_2 crossref_primary_10_3233_CH_190671 crossref_primary_10_1089_ham_2013_1045 crossref_primary_10_1016_j_jacasi_2022_09_014 crossref_primary_10_1016_j_resp_2017_05_010 crossref_primary_10_1161_JAHA_120_018123 crossref_primary_10_1016_j_freeradbiomed_2013_05_024 crossref_primary_10_3389_fphys_2020_00703 crossref_primary_10_3389_fphys_2021_587241 crossref_primary_10_1089_ham_2011_0011 crossref_primary_10_1016_j_apunts_2015_11_001 crossref_primary_10_1089_ham_2011_1060 crossref_primary_10_3390_ijms24021698 crossref_primary_10_1089_ham_2012_1073 crossref_primary_10_1152_japplphysiol_00995_2014 crossref_primary_10_1249_MSS_0000000000000336 |
Cites_doi | 10.1378/chest.126.4.1313 10.1378/chest.06-1775 10.1164/rccm.200604-547OC 10.1152/japplphysiol.00409.2001 10.1016/S0894-7317(96)90476-9 10.1089/ham.2007.1058 10.7326/0003-4819-141-3-200408030-00005 10.1164/rccm.200808-1348OC 10.1161/CIRCULATIONAHA.105.605527 10.1161/01.CIR.70.4.657 10.1016/S0002-9149(99)00877-2 10.1517/14656566.8.1.95 10.1161/01.CIR.91.2.359 10.1126/science.1079368 10.1152/ajpendo.00332.2003 10.1111/j.1365-2362.2009.02121.x 10.3171/JNS.2008.109.12.1134 10.1210/jc.83.2.570 10.1152/ajpheart.00893.2008 10.1152/jappl.1995.79.6.2122 10.1111/j.1440-1681.1996.tb02834.x 10.1016/j.amjcard.2009.02.006 10.1161/01.CIR.76.3.539 10.1016/S0034-5687(99)00101-2 10.1152/japplphysiol.00527.2004 10.1378/chest.08-2222 10.1152/jappl.1994.77.3.1451 10.1152/ajpregu.00156.2002 10.1164/rccm.200406-804OC 10.1016/j.ejcb.2004.12.030 10.1007/s00421-003-0902-7 10.1152/ajpheart.2000.279.4.H2013 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS |
Copyright_xml | – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7TS |
DOI | 10.1183/09031936.00024410 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Physical Education Index |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Physical Education Index |
DatabaseTitleList | MEDLINE - Academic Physical Education Index MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1399-3003 |
EndPage | 1055 |
ExternalDocumentID | 20378601 23352315 10_1183_09031936_00024410 |
Genre | Clinical Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .55 .GJ 18M 1OC 2WC 31~ 3O- 53G 5GY 5RE 5VS 8-1 AAFWJ AAYXX AAZMJ ABCQX ABJNI ABOCM ABSQV ACEMG ACGFO ACPRK ACXQS ADBBV ADDZX ADMOG ADYFA AENEX AFFNX AFHIN AFZJQ AIZTS AJAOE ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CAG CITATION COF CS3 DIK E3Z EBS EJD F5P F9R GX1 H13 INIJC J5H KQ8 L7B LH4 LW6 OK1 P2P PQQKQ R0Z RHI TER TR2 W8F WOQ X7M ZE2 ZGI ZXP ~02 AADJU IQODW CGR CUY CVF ECM EIF NPM 7X8 7TS |
ID | FETCH-LOGICAL-c471t-c1f54e3d1e4041a82d313366eeab6ac5cbd0a3aca207e496127ea4816ee2d9ae3 |
ISSN | 0903-1936 1399-3003 |
IngestDate | Fri Sep 05 05:13:44 EDT 2025 Fri Sep 05 13:34:51 EDT 2025 Thu Apr 03 07:01:13 EDT 2025 Wed Apr 02 07:27:02 EDT 2025 Thu Apr 24 23:05:29 EDT 2025 Mon Sep 08 01:39:58 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Physical exercise High altitude Oxygen Renal function Lung maximal oxygen uptake Sitaxentan Pulmonary artery Uptake Vascular resistance Capacity Hypoxia Blood pressure Limit pulmonary vascular resistance Pneumology |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c471t-c1f54e3d1e4041a82d313366eeab6ac5cbd0a3aca207e496127ea4816ee2d9ae3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://erj.ersjournals.com/content/erj/36/5/1049.full.pdf |
PMID | 20378601 |
PQID | 762021588 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_954583325 proquest_miscellaneous_762021588 pubmed_primary_20378601 pascalfrancis_primary_23352315 crossref_primary_10_1183_09031936_00024410 crossref_citationtrail_10_1183_09031936_00024410 |
PublicationCentury | 2000 |
PublicationDate | 2010-11-01 |
PublicationDateYYYYMMDD | 2010-11-01 |
PublicationDate_xml | – month: 11 year: 2010 text: 2010-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Leeds |
PublicationPlace_xml | – name: Leeds – name: England |
PublicationTitle | The European respiratory journal |
PublicationTitleAlternate | Eur Respir J |
PublicationYear | 2010 |
Publisher | Maney |
Publisher_xml | – name: Maney |
References | 2024102020153989000_36.5.1049.25 2024102020153989000_36.5.1049.26 2024102020153989000_36.5.1049.20 Li (2024102020153989000_36.5.1049.22) 1994; 77 Fulco (2024102020153989000_36.5.1049.1) 1998; 69 Kohan (2024102020153989000_36.5.1049.35) 1996; 23 2024102020153989000_36.5.1049.3 2024102020153989000_36.5.1049.4 2024102020153989000_36.5.1049.5 2024102020153989000_36.5.1049.6 2024102020153989000_36.5.1049.7 Allemann (2024102020153989000_36.5.1049.37) 2000; 279 2024102020153989000_36.5.1049.8 2024102020153989000_36.5.1049.9 2024102020153989000_36.5.1049.16 2024102020153989000_36.5.1049.38 2024102020153989000_36.5.1049.17 2024102020153989000_36.5.1049.39 2024102020153989000_36.5.1049.18 2024102020153989000_36.5.1049.19 2024102020153989000_36.5.1049.12 2024102020153989000_36.5.1049.34 2024102020153989000_36.5.1049.13 2024102020153989000_36.5.1049.14 2024102020153989000_36.5.1049.36 2024102020153989000_36.5.1049.15 2024102020153989000_36.5.1049.30 2024102020153989000_36.5.1049.31 2024102020153989000_36.5.1049.10 2024102020153989000_36.5.1049.32 2024102020153989000_36.5.1049.11 DiCarlo (2024102020153989000_36.5.1049.24) 1995; 269 2024102020153989000_36.5.1049.33 Li (2024102020153989000_36.5.1049.21) 1994; 266 Calbet (2024102020153989000_36.5.1049.2) 2003; 284 Chen (2024102020153989000_36.5.1049.23) 1995; 79 2024102020153989000_36.5.1049.27 2024102020153989000_36.5.1049.28 2024102020153989000_36.5.1049.29 |
References_xml | – ident: 2024102020153989000_36.5.1049.15 doi: 10.1378/chest.126.4.1313 – ident: 2024102020153989000_36.5.1049.27 doi: 10.1378/chest.06-1775 – ident: 2024102020153989000_36.5.1049.25 doi: 10.1164/rccm.200604-547OC – ident: 2024102020153989000_36.5.1049.11 doi: 10.1152/japplphysiol.00409.2001 – ident: 2024102020153989000_36.5.1049.17 doi: 10.1016/S0894-7317(96)90476-9 – ident: 2024102020153989000_36.5.1049.7 doi: 10.1089/ham.2007.1058 – ident: 2024102020153989000_36.5.1049.4 doi: 10.7326/0003-4819-141-3-200408030-00005 – ident: 2024102020153989000_36.5.1049.5 doi: 10.1164/rccm.200808-1348OC – ident: 2024102020153989000_36.5.1049.18 – ident: 2024102020153989000_36.5.1049.10 doi: 10.1161/CIRCULATIONAHA.105.605527 – ident: 2024102020153989000_36.5.1049.14 doi: 10.1161/01.CIR.70.4.657 – ident: 2024102020153989000_36.5.1049.16 doi: 10.1016/S0002-9149(99)00877-2 – ident: 2024102020153989000_36.5.1049.9 doi: 10.1517/14656566.8.1.95 – ident: 2024102020153989000_36.5.1049.20 doi: 10.1161/01.CIR.91.2.359 – ident: 2024102020153989000_36.5.1049.12 – ident: 2024102020153989000_36.5.1049.29 doi: 10.1126/science.1079368 – ident: 2024102020153989000_36.5.1049.32 doi: 10.1152/ajpendo.00332.2003 – ident: 2024102020153989000_36.5.1049.36 doi: 10.1111/j.1365-2362.2009.02121.x – ident: 2024102020153989000_36.5.1049.39 doi: 10.3171/JNS.2008.109.12.1134 – ident: 2024102020153989000_36.5.1049.33 doi: 10.1210/jc.83.2.570 – volume: 69 start-page: 793 year: 1998 ident: 2024102020153989000_36.5.1049.1 article-title: Maximal and submaximal exercise performance at altitude publication-title: Aviat Space Environ Med – ident: 2024102020153989000_36.5.1049.30 doi: 10.1152/ajpheart.00893.2008 – volume: 79 start-page: 2122 year: 1995 ident: 2024102020153989000_36.5.1049.23 article-title: Endothelin-receptor antagonist bosentan prevents and reverses hypoxic pulmonary hypertension in rats publication-title: J Appl Physiol doi: 10.1152/jappl.1995.79.6.2122 – volume: 23 start-page: 337 year: 1996 ident: 2024102020153989000_36.5.1049.35 article-title: Endothelins, renal tubule synthesis and actions publication-title: Clin Exp Pharmacol Physiol doi: 10.1111/j.1440-1681.1996.tb02834.x – ident: 2024102020153989000_36.5.1049.26 doi: 10.1016/j.amjcard.2009.02.006 – ident: 2024102020153989000_36.5.1049.31 – ident: 2024102020153989000_36.5.1049.13 doi: 10.1161/01.CIR.76.3.539 – ident: 2024102020153989000_36.5.1049.19 – ident: 2024102020153989000_36.5.1049.3 doi: 10.1016/S0034-5687(99)00101-2 – ident: 2024102020153989000_36.5.1049.34 doi: 10.1152/japplphysiol.00527.2004 – volume: 266 start-page: L553 year: 1994 ident: 2024102020153989000_36.5.1049.21 article-title: Increased endothelin receptor gene expression in hypoxic rat lung publication-title: Am J Physiol – ident: 2024102020153989000_36.5.1049.8 doi: 10.1378/chest.08-2222 – volume: 77 start-page: 1451 year: 1994 ident: 2024102020153989000_36.5.1049.22 article-title: Enhanced endothelin-1 and endothelin receptor gene expression in chronic hypoxia publication-title: J Appl Physiol doi: 10.1152/jappl.1994.77.3.1451 – volume: 284 start-page: R304 year: 2003 ident: 2024102020153989000_36.5.1049.2 article-title: Why is V′O2,max after altitude acclimatization still reduced despite normalization of arterial O2 content? publication-title: Am J Physiol Regul Integr Comp Physiol doi: 10.1152/ajpregu.00156.2002 – volume: 269 start-page: L690 year: 1995 ident: 2024102020153989000_36.5.1049.24 article-title: ETA-receptor antagonist prevents and reverses chronic hypoxia-induced pulmonary hypertension in rat publication-title: Am J Physiol – ident: 2024102020153989000_36.5.1049.6 doi: 10.1164/rccm.200406-804OC – ident: 2024102020153989000_36.5.1049.38 doi: 10.1016/j.ejcb.2004.12.030 – ident: 2024102020153989000_36.5.1049.28 doi: 10.1007/s00421-003-0902-7 – volume: 279 start-page: H2013 year: 2000 ident: 2024102020153989000_36.5.1049.37 article-title: Echographic and invasive measurements of pulmonary artery pressure correlate closely at high altitude publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.2000.279.4.H2013 |
SSID | ssj0016431 |
Score | 2.3433988 |
Snippet | Altitude exposure is associated with decreased exercise capacity and increased pulmonary vascular resistance (PVR).
Echocardiographic measurements of pulmonary... Altitude exposure is associated with decreased exercise capacity and increased pulmonary vascular resistance (PVR). Echocardiographic measurements of pulmonary... |
SourceID | proquest pubmed pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1049 |
SubjectTerms | Acute Disease Adult Altitude Biological and medical sciences Blood Pressure - physiology Chronic Disease Endothelin A Receptor Antagonists Exercise - physiology Female Humans Hypertension, Pulmonary - drug therapy Hypertension, Pulmonary - physiopathology Hypoxia - physiopathology Isoxazoles - administration & dosage Kidney - drug effects Kidney - physiology Male Medical sciences Middle Aged Oxygen Consumption - physiology Pneumology Pulmonary Artery - drug effects Pulmonary Artery - physiology Pulmonary Gas Exchange - drug effects Pulmonary Gas Exchange - physiology Thiophenes - administration & dosage Vascular Resistance - drug effects Vascular Resistance - physiology Young Adult |
Title | Pulmonary artery pressure limits exercise capacity at high altitude |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20378601 https://www.proquest.com/docview/762021588 https://www.proquest.com/docview/954583325 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbB2Mwyu7LuhU97GnBm2TJt8dSWsLIugsJ5M0cywp0hLQ09kP763eOJdsxTXd7McboYnQ-HX06F4mx97jmZQloujQDp5sutA6AoiykDZMS1Z8GF-V7Fk_m-vMiWvTX3DXZJVXx0dzszCv5H6niN5QrZcn-g2S7RvEDvqN88YkSxudfyfhbvcK-KO6ticy8HjdRreQSWFHe0qa7UGlscE00RLihGtMJxWOgvNu6HAQCEWQ66_zVlg9--2fIcAz2_KcdRBtOameJ7qjlFBADlR3YW3804aorC3VvX_UGBwre6AwOTkeifAMlhNNLdsc3r1jdySYeQNGWlsQtYLZbfaeq8SZRapUiLxEyCO3DXgdHZZ99zU_n02k-O1nM7rMHYYLEiTzy33sXElItt9v2f-Zd2tjFp1sdDEjJ40vY4PxYuotN7t55NAxk9oTt-60DP3I4eMru2fUz9vCLD454zo47OHAHB97CgTs48BYOvIUDh4oTHHgLhxdsfnoyO54E_o6MwCCtqAIjl5G2qpRWCy0hDUsllYpja6GIwUSmKAUoMBCKxOoM-WxiQacSC4RlBla9ZHvri7V9zbgqTWqkRkabIbVJRbZUVEQYrIK82I6YaAcpN_4AebrHZJU3G8lU5e245u24jtiHrsqlOz3ld4UPByPf1QgpL1DJaMR4K4oclSB5tmBtL-pNjis6cdc0vbtIRh5ipUJs5ZWTYt--UEkaC_nmz-0fsEf9lHjL9qqr2r5DVloVhw36fgHTI4gI |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pulmonary+artery+pressure+limits+exercise+capacity+at+high+altitude&rft.jtitle=The+European+respiratory+journal&rft.au=Naeije%2C+R&rft.au=Huez%2C+S&rft.au=Lamotte%2C+M&rft.au=Retailleau%2C+K&rft.date=2010-11-01&rft.issn=1399-3003&rft.eissn=1399-3003&rft.volume=36&rft.issue=5&rft.spage=1049&rft_id=info:doi/10.1183%2F09031936.00024410&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0903-1936&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0903-1936&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0903-1936&client=summon |