Optimized Phase-Generated Carrier Demodulation Algorithm for Membrane-Free Fabry-Pérot Acoustic Sensor with High Sensitivity

Demodulation of fiber optic Fabry–Pérot (F-P) acoustic sensors with high sensitivity and a large dynamic range continues to pose significant challenges. In this paper, we propose an advanced phase-generated carrier (PGC) demodulation algorithm, applied innovatively to membrane-free F-P acoustic sens...

Full description

Saved in:
Bibliographic Details
Published inMicromachines (Basel) Vol. 16; no. 2; p. 196
Main Authors Yang, Yang, Zhao, Xinyu, Zheng, Yongqiu, Cui, Juan, Zhao, Dongqing, Zheng, Zhixuan, Cao, Yan, Xue, Chenyang
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 08.02.2025
MDPI
Subjects
Online AccessGet full text
ISSN2072-666X
2072-666X
DOI10.3390/mi16020196

Cover

Abstract Demodulation of fiber optic Fabry–Pérot (F-P) acoustic sensors with high sensitivity and a large dynamic range continues to pose significant challenges. In this paper, we propose an advanced phase-generated carrier (PGC) demodulation algorithm, applied innovatively to membrane-free F-P acoustic sensors operating under high sound pressure. The algorithm optimizes acoustic demodulation results by adjusting the mixing phase delay, achieving the best signal to noise and distortion ratio (SINAD) and total harmonic distortion (THD) (<1%). Additionally, by introducing the cosine component of the acoustic signal obtained directly after filtering the interference signal, into the demodulation algorithm process, the sensitivity of the sensor at high sound pressure is significantly improved. The experimental results show that the ameliorated algorithm obtains a demodulation sensitivity of 34.95 μrad/Pa and a THD of 0.87%, both of which are superior to traditional PGC demodulation algorithms under the same experimental conditions. At the same time, the minimum detectable sound pressure of 129.73 mPa/Hz1/2 was obtained, and the sound pressure tested in the experiment at a frequency of 1 kHz was as high as 3169.78 Pa (164 dB). With the proposed algorithm, the flatness of the frequency response is ±0.82 dB from 100 Hz to 33 kHz, and a dynamic range of up to 102.6 dB was obtained, making it relevant in the field of aerospace acoustic measurements.
AbstractList Demodulation of fiber optic Fabry–Pérot (F-P) acoustic sensors with high sensitivity and a large dynamic range continues to pose significant challenges. In this paper, we propose an advanced phase-generated carrier (PGC) demodulation algorithm, applied innovatively to membrane-free F-P acoustic sensors operating under high sound pressure. The algorithm optimizes acoustic demodulation results by adjusting the mixing phase delay, achieving the best signal to noise and distortion ratio (SINAD) and total harmonic distortion (THD) (<1%). Additionally, by introducing the cosine component of the acoustic signal obtained directly after filtering the interference signal, into the demodulation algorithm process, the sensitivity of the sensor at high sound pressure is significantly improved. The experimental results show that the ameliorated algorithm obtains a demodulation sensitivity of 34.95  μ rad/Pa and a THD of 0.87%, both of which are superior to traditional PGC demodulation algorithms under the same experimental conditions. At the same time, the minimum detectable sound pressure of 129.73 mPa/Hz1/2 was obtained, and the sound pressure tested in the experiment at a frequency of 1 kHz was as high as 3169.78 Pa (164 dB). With the proposed algorithm, the flatness of the frequency response is ±0.82 dB from 100 Hz to 33 kHz, and a dynamic range of up to 102.6 dB was obtained, making it relevant in the field of aerospace acoustic measurements.
Demodulation of fiber optic Fabry–Pérot (F-P) acoustic sensors with high sensitivity and a large dynamic range continues to pose significant challenges. In this paper, we propose an advanced phase-generated carrier (PGC) demodulation algorithm, applied innovatively to membrane-free F-P acoustic sensors operating under high sound pressure. The algorithm optimizes acoustic demodulation results by adjusting the mixing phase delay, achieving the best signal to noise and distortion ratio (SINAD) and total harmonic distortion (THD) (<1%). Additionally, by introducing the cosine component of the acoustic signal obtained directly after filtering the interference signal, into the demodulation algorithm process, the sensitivity of the sensor at high sound pressure is significantly improved. The experimental results show that the ameliorated algorithm obtains a demodulation sensitivity of 34.95 μrad/Pa and a THD of 0.87%, both of which are superior to traditional PGC demodulation algorithms under the same experimental conditions. At the same time, the minimum detectable sound pressure of 129.73 mPa/Hz1/2 was obtained, and the sound pressure tested in the experiment at a frequency of 1 kHz was as high as 3169.78 Pa (164 dB). With the proposed algorithm, the flatness of the frequency response is ±0.82 dB from 100 Hz to 33 kHz, and a dynamic range of up to 102.6 dB was obtained, making it relevant in the field of aerospace acoustic measurements.
Demodulation of fiber optic Fabry–Pérot (F-P) acoustic sensors with high sensitivity and a large dynamic range continues to pose significant challenges. In this paper, we propose an advanced phase-generated carrier (PGC) demodulation algorithm, applied innovatively to membrane-free F-P acoustic sensors operating under high sound pressure. The algorithm optimizes acoustic demodulation results by adjusting the mixing phase delay, achieving the best signal to noise and distortion ratio (SINAD) and total harmonic distortion (THD) (<1%). Additionally, by introducing the cosine component of the acoustic signal obtained directly after filtering the interference signal, into the demodulation algorithm process, the sensitivity of the sensor at high sound pressure is significantly improved. The experimental results show that the ameliorated algorithm obtains a demodulation sensitivity of 34.95μrad/Pa and a THD of 0.87%, both of which are superior to traditional PGC demodulation algorithms under the same experimental conditions. At the same time, the minimum detectable sound pressure of 129.73mPa/Hz[sup.1/2] was obtained, and the sound pressure tested in the experiment at a frequency of 1 kHz was as high as 3169.78 Pa (164 dB). With the proposed algorithm, the flatness of the frequency response is ±0.82 dB from 100 Hz to 33 kHz, and a dynamic range of up to 102.6 dB was obtained, making it relevant in the field of aerospace acoustic measurements.
Demodulation of fiber optic Fabry-Pérot (F-P) acoustic sensors with high sensitivity and a large dynamic range continues to pose significant challenges. In this paper, we propose an advanced phase-generated carrier (PGC) demodulation algorithm, applied innovatively to membrane-free F-P acoustic sensors operating under high sound pressure. The algorithm optimizes acoustic demodulation results by adjusting the mixing phase delay, achieving the best signal to noise and distortion ratio (SINAD) and total harmonic distortion (THD) (<1%). Additionally, by introducing the cosine component of the acoustic signal obtained directly after filtering the interference signal, into the demodulation algorithm process, the sensitivity of the sensor at high sound pressure is significantly improved. The experimental results show that the ameliorated algorithm obtains a demodulation sensitivity of 34.95 μrad/Pa and a THD of 0.87%, both of which are superior to traditional PGC demodulation algorithms under the same experimental conditions. At the same time, the minimum detectable sound pressure of 129.73 mPa/Hz1/2 was obtained, and the sound pressure tested in the experiment at a frequency of 1 kHz was as high as 3169.78 Pa (164 dB). With the proposed algorithm, the flatness of the frequency response is ±0.82 dB from 100 Hz to 33 kHz, and a dynamic range of up to 102.6 dB was obtained, making it relevant in the field of aerospace acoustic measurements.Demodulation of fiber optic Fabry-Pérot (F-P) acoustic sensors with high sensitivity and a large dynamic range continues to pose significant challenges. In this paper, we propose an advanced phase-generated carrier (PGC) demodulation algorithm, applied innovatively to membrane-free F-P acoustic sensors operating under high sound pressure. The algorithm optimizes acoustic demodulation results by adjusting the mixing phase delay, achieving the best signal to noise and distortion ratio (SINAD) and total harmonic distortion (THD) (<1%). Additionally, by introducing the cosine component of the acoustic signal obtained directly after filtering the interference signal, into the demodulation algorithm process, the sensitivity of the sensor at high sound pressure is significantly improved. The experimental results show that the ameliorated algorithm obtains a demodulation sensitivity of 34.95 μrad/Pa and a THD of 0.87%, both of which are superior to traditional PGC demodulation algorithms under the same experimental conditions. At the same time, the minimum detectable sound pressure of 129.73 mPa/Hz1/2 was obtained, and the sound pressure tested in the experiment at a frequency of 1 kHz was as high as 3169.78 Pa (164 dB). With the proposed algorithm, the flatness of the frequency response is ±0.82 dB from 100 Hz to 33 kHz, and a dynamic range of up to 102.6 dB was obtained, making it relevant in the field of aerospace acoustic measurements.
Demodulation of fiber optic Fabry-Pérot (F-P) acoustic sensors with high sensitivity and a large dynamic range continues to pose significant challenges. In this paper, we propose an advanced phase-generated carrier (PGC) demodulation algorithm, applied innovatively to membrane-free F-P acoustic sensors operating under high sound pressure. The algorithm optimizes acoustic demodulation results by adjusting the mixing phase delay, achieving the best signal to noise and distortion ratio (SINAD) and total harmonic distortion (THD) (<1%). Additionally, by introducing the cosine component of the acoustic signal obtained directly after filtering the interference signal, into the demodulation algorithm process, the sensitivity of the sensor at high sound pressure is significantly improved. The experimental results show that the ameliorated algorithm obtains a demodulation sensitivity of 34.95 μrad/Pa and a THD of 0.87%, both of which are superior to traditional PGC demodulation algorithms under the same experimental conditions. At the same time, the minimum detectable sound pressure of 129.73 mPa/Hz1/2 was obtained, and the sound pressure tested in the experiment at a frequency of 1 kHz was as high as 3169.78 Pa (164 dB). With the proposed algorithm, the flatness of the frequency response is ±0.82 dB from 100 Hz to 33 kHz, and a dynamic range of up to 102.6 dB was obtained, making it relevant in the field of aerospace acoustic measurements.
Audience Academic
Author Cao, Yan
Xue, Chenyang
Zhao, Dongqing
Zheng, Yongqiu
Yang, Yang
Zhao, Xinyu
Zheng, Zhixuan
Cui, Juan
AuthorAffiliation The Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China; yangyanghcs@163.com (Y.Y.); zhaoxinyu_0803@163.com (X.Z.); cuijuan@nuc.edu.cn (J.C.); 20000127@nuc.edu.cn (D.Z.); zhengzhixuan7@163.com (Z.Z.); caoyan113334@163.com (Y.C.); xuechenyang@nuc.edu.cn (C.X.)
AuthorAffiliation_xml – name: The Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China; yangyanghcs@163.com (Y.Y.); zhaoxinyu_0803@163.com (X.Z.); cuijuan@nuc.edu.cn (J.C.); 20000127@nuc.edu.cn (D.Z.); zhengzhixuan7@163.com (Z.Z.); caoyan113334@163.com (Y.C.); xuechenyang@nuc.edu.cn (C.X.)
Author_xml – sequence: 1
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
– sequence: 2
  givenname: Xinyu
  surname: Zhao
  fullname: Zhao, Xinyu
– sequence: 3
  givenname: Yongqiu
  surname: Zheng
  fullname: Zheng, Yongqiu
– sequence: 4
  givenname: Juan
  surname: Cui
  fullname: Cui, Juan
– sequence: 5
  givenname: Dongqing
  surname: Zhao
  fullname: Zhao, Dongqing
– sequence: 6
  givenname: Zhixuan
  surname: Zheng
  fullname: Zheng, Zhixuan
– sequence: 7
  givenname: Yan
  surname: Cao
  fullname: Cao, Yan
– sequence: 8
  givenname: Chenyang
  surname: Xue
  fullname: Xue, Chenyang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40047685$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhiNUREvphgdAkdggUIovie2s0Ghg2kpFrQRI7CLfMuNRYg-O02qQeCCegxfjTFNKywJb8uX48-_j336a7fngbZY9x-iY0hq97R1miCBcs0fZAUGcFIyxr3v3xvvZ0TCsERTOa2ieZPslQiVnojrIflxskuvdd2vyy5UcbHFivY0ywXwuY3Q25u9tH8zYyeSCz2fdMkSXVn3ehph_tL2K0ttiEa3NF1LFbXH562cMKZ_pMA7J6fyT9QOg17ApP3XL1U3AJXfl0vZZ9riV3WCPbvvD7Mviw-f5aXF-cXI2n50XuuQ4FYpVuOKKE4m0KgmtaSva2ghqmGGKaGIwLcvaaE4r0iKFJKUM1y3AeOcNPczOJl0T5LrZRNfLuG2CdM1NIMRlIyMk29lGCGNAX1VUyFJIowjnrSJSCF4qLjRovZm0Rr-R22vZdXeCGDW7N2n-vgnQ7yZ6M6reGm19irJ7kMLDFe9WzTJcNRiLihOBQOHVrUIM30Y7JJAftO068B0sbijmZckooSWgL_9B12GMHpzdURhTRtmOOp6opYT7Ot8GOFhDNbZ3Gn5X6yA-E6TmQjDOYcOL-3e4S_7PLwLg9QToGIYh2vZ_jvwGcQPYsg
Cites_doi 10.1364/OE.415750
10.1364/OE.465040
10.1109/JSEN.2023.3244820
10.1109/JSEN.2023.3323712
10.1364/OL.460132
10.1364/OE.418736
10.1364/OL.44.005402
10.1364/AO.57.001168
10.1109/JLT.2014.2379943
10.1016/j.optlastec.2018.07.055
10.1117/12.173962
10.1364/OE.402099
10.1364/OL.43.003417
10.1364/JOSAB.396565
10.1115/1.4042929
10.1364/OE.26.004818
10.1364/OE.17.023965
10.1364/OE.497730
10.1016/j.optlastec.2013.03.019
10.1016/j.apacoust.2021.108315
10.1109/JQE.1982.1071416
10.3788/COL20100803.0266
10.1364/OE.432237
10.1016/j.yofte.2023.103249
10.1109/JLT.2021.3109673
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
7SP
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
L6V
L7M
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/mi16020196
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
CrossRef


MEDLINE - Academic
PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2072-666X
ExternalDocumentID oai_doaj_org_article_88dd93fb538a48adb277fb2a8874b78c
10.3390/mi16020196
PMC11857280
A829788677
40047685
10_3390_mi16020196
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: The 19th graduate science and technology project of North University of China
  grantid: 20231935
– fundername: National Natural Science Foundation of China
  grantid: 62322118, 62131018
– fundername: the Shanxi Postgraduate Practical Innovation Project
  grantid: 2023SJ210
– fundername: Shanxi Postgraduate Practical Innovation Project
  grantid: 2023SJ210
– fundername: National Natural Science Foundation of China
  grantid: 62322118; 62131018
GroupedDBID 53G
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
L6V
M7S
MM.
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RPM
TR2
TUS
NPM
7SP
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c471t-b65157b72a0cb42393f8f9d83d6d6b2c2d13449dc7352f0b0a33619fcb4102013
IEDL.DBID UNPAY
ISSN 2072-666X
IngestDate Fri Oct 03 12:44:24 EDT 2025
Sun Oct 26 03:55:31 EDT 2025
Tue Sep 30 17:07:20 EDT 2025
Thu Sep 04 19:54:50 EDT 2025
Fri Jul 25 11:54:09 EDT 2025
Mon Oct 20 16:56:11 EDT 2025
Mon Jul 21 05:59:26 EDT 2025
Thu Oct 16 04:44:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords acoustic demodulation system
phase-generated carrier algorithm
high sound pressure
Fabry–Pérot sensor
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-b65157b72a0cb42393f8f9d83d6d6b2c2d13449dc7352f0b0a33619fcb4102013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/mi16020196
PMID 40047685
PQID 3171136364
PQPubID 2032359
ParticipantIDs doaj_primary_oai_doaj_org_article_88dd93fb538a48adb277fb2a8874b78c
unpaywall_primary_10_3390_mi16020196
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11857280
proquest_miscellaneous_3174463234
proquest_journals_3171136364
gale_infotracacademiconefile_A829788677
pubmed_primary_40047685
crossref_primary_10_3390_mi16020196
PublicationCentury 2000
PublicationDate 20250208
PublicationDateYYYYMMDD 2025-02-08
PublicationDate_xml – month: 2
  year: 2025
  text: 20250208
  day: 8
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Micromachines (Basel)
PublicationTitleAlternate Micromachines (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Yuan (ref_26) 2023; 76
Mahissi (ref_3) 2023; 31
Zhao (ref_9) 2022; 30
Zhang (ref_18) 2022; 47
Wang (ref_20) 2015; 33
Dong (ref_10) 2021; 39
Wang (ref_13) 2013; 51
Chen (ref_11) 2018; 43
Zhang (ref_21) 2021; 183
Zhang (ref_12) 2009; 17
Fan (ref_4) 2020; 28
Yan (ref_25) 2018; 26
Yang (ref_17) 2021; 29
Karim (ref_19) 2021; 29
Yu (ref_24) 2019; 109
Gao (ref_16) 2018; 57
Li (ref_8) 2023; 23
Zhang (ref_15) 2023; 23
Liu (ref_5) 2019; 44
ref_22
Wang (ref_14) 2010; 8
Chen (ref_7) 2021; 29
Zhu (ref_1) 2023; 23
Jena (ref_2) 2020; 37
Dong (ref_6) 2019; 141
ref_27
Dandridge (ref_23) 1982; 18
References_xml – volume: 29
  start-page: 6768
  year: 2021
  ident: ref_17
  article-title: Wideband fiber-optic Fabry-Perot acoustic sensing scheme using high-speed absolute cavity length demodulation
  publication-title: Opt. Express
  doi: 10.1364/OE.415750
– volume: 30
  start-page: 26609
  year: 2022
  ident: ref_9
  article-title: Research on high-temperature characteristics of a miniature Fabry–Pérot cavity acoustic sensor
  publication-title: Opt. Express
  doi: 10.1364/OE.465040
– volume: 23
  start-page: 6406
  year: 2023
  ident: ref_1
  article-title: Advances in Fiber-Optic Extrinsic Fabry–Perot Interferometric Physical and Mechanical Sensors: A Review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3244820
– volume: 23
  start-page: 28960
  year: 2023
  ident: ref_8
  article-title: The Investigation of All-Sapphire Fabry–Perot Fiber Acoustic Sensor Operating Up to 800 °C
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3323712
– volume: 47
  start-page: 2406
  year: 2022
  ident: ref_18
  article-title: Four-wavelength quadrature phase demodulation technique for extrinsic Fabry–Perot interferometric sensors
  publication-title: Opt. Lett.
  doi: 10.1364/OL.460132
– volume: 29
  start-page: 16447
  year: 2021
  ident: ref_7
  article-title: Micro-fiber-optic acoustic sensor based on high-Q resonance effect using Fabry-Pérot etalon
  publication-title: Opt. Express
  doi: 10.1364/OE.418736
– volume: 23
  start-page: 2923
  year: 2023
  ident: ref_15
  article-title: A Wide Frequency Response Fabry–Pérot Acoustic Sensor Based on the Self-Stabilization System
  publication-title: IEEE Sens. J.
– volume: 44
  start-page: 5402
  year: 2019
  ident: ref_5
  article-title: Quadrature phase-stabilized three-wavelength interrogation of a fiber-optic Fabry–Perot acoustic sensor
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.005402
– volume: 57
  start-page: 1168
  year: 2018
  ident: ref_16
  article-title: Five-step phase-shifting white-light interferometry for the measurement of fiber optic extrinsic Fabry–Perot interferometers
  publication-title: Appl. Opt.
  doi: 10.1364/AO.57.001168
– volume: 33
  start-page: 2392
  year: 2015
  ident: ref_20
  article-title: Interrogation of Extrinsic Fabry–Perot Sensors Using Path-Matched Differential Interferometry and Phase Generated Carrier Technique
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2014.2379943
– volume: 109
  start-page: 8
  year: 2019
  ident: ref_24
  article-title: High stability and low harmonic distortion PGC demodulation technique for interferometric optical fiber sensors
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2018.07.055
– ident: ref_22
  doi: 10.1117/12.173962
– volume: 28
  start-page: 25238
  year: 2020
  ident: ref_4
  article-title: High sensitivity fiber-optic Michelson interferometric low-frequency acoustic sensor based on a gold diaphragm
  publication-title: Opt. Express
  doi: 10.1364/OE.402099
– volume: 43
  start-page: 3417
  year: 2018
  ident: ref_11
  article-title: Fast demodulated white-light interferometry-based fiber-optic Fabry–Perot cantilever microphone
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.003417
– ident: ref_27
– volume: 37
  start-page: A147
  year: 2020
  ident: ref_2
  article-title: Polarization-based optical fiber acoustic sensor for geological applications
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.396565
– volume: 141
  start-page: 041003
  year: 2019
  ident: ref_6
  article-title: Miniature Fiber Optic Acoustic Pressure Sensors With Air-Backed Graphene Diaphragms
  publication-title: ASME. J. Vib. Acoust.
  doi: 10.1115/1.4042929
– volume: 26
  start-page: 4818
  year: 2018
  ident: ref_25
  article-title: Precision PGC demodulation for homodyne interferometer modulated with a combined sinusoidal and triangular signal
  publication-title: Opt. Express
  doi: 10.1364/OE.26.004818
– volume: 17
  start-page: 23965
  year: 2009
  ident: ref_12
  article-title: Phase modulation with micromachined resonant mirrors for low-coherence fiber-tip pressure sensors
  publication-title: Opt. Express
  doi: 10.1364/OE.17.023965
– volume: 31
  start-page: 25025
  year: 2023
  ident: ref_3
  article-title: Diaphragms simulation, fabrication, and testing of a high temperature fiber optic F-P accelerometer based on MEMS
  publication-title: Opt. Express
  doi: 10.1364/OE.497730
– volume: 51
  start-page: 43
  year: 2013
  ident: ref_13
  article-title: Feedback-stabilized interrogation technique for optical Fabry–Perot acoustic sensor using a tunable fiber laser
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2013.03.019
– volume: 183
  start-page: 108315
  year: 2021
  ident: ref_21
  article-title: An improved phase generated carrier demodulation scheme for sinusoidal phase-modulating interferometer to detect air-solid interface acoustic waves
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2021.108315
– volume: 18
  start-page: 1647
  year: 1982
  ident: ref_23
  article-title: Homodyne demodulation scheme for fiber optic sensors using phase generated carrier
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/JQE.1982.1071416
– volume: 8
  start-page: 266
  year: 2010
  ident: ref_14
  article-title: Polymer diaphragm based sensitive fiber optic Fabry-Perot acoustic sensor
  publication-title: Chin. Opt. Lett.
  doi: 10.3788/COL20100803.0266
– volume: 29
  start-page: 25011
  year: 2021
  ident: ref_19
  article-title: Modified phase-generated carrier demodulation of fiber-optic interferometric ultrasound sensors
  publication-title: Opt. Express
  doi: 10.1364/OE.432237
– volume: 76
  start-page: 103249
  year: 2023
  ident: ref_26
  article-title: A high-stable self-referenced PGC demodulation algorithm for fiber-optic interferometric sensor
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2023.103249
– volume: 39
  start-page: 7008
  year: 2021
  ident: ref_10
  article-title: Judgment and Compensation of Deviation of the Optical Interferometric Sensor’s Operating Point From the Interferometer Quadrature Point
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2021.3109673
SSID ssj0000779007
Score 2.3255744
Snippet Demodulation of fiber optic Fabry–Pérot (F-P) acoustic sensors with high sensitivity and a large dynamic range continues to pose significant challenges. In...
Demodulation of fiber optic Fabry-Pérot (F-P) acoustic sensors with high sensitivity and a large dynamic range continues to pose significant challenges. In...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 196
SubjectTerms acoustic demodulation system
Acoustic measurement
Acoustic properties
Acoustics
Algorithms
Demodulation
Dynamic range
Equipment and supplies
Fabry–Pérot sensor
Fiber optics
Frequency response
Harmonic distortion
high sound pressure
Lasers
Membranes
Methods
phase-generated carrier algorithm
Sensitivity
Sensors
Sound pressure
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9VAFB6kG3Uhvo2tMmLBVehkZpKZLK_VSxGqBS10F-YVb-AmKTFFWvAH-Tv8Y56TpNdcBd24nZzF5Ly_yeQ7hOwD6jE5YyH2HOCqDFbFNrUmtomXKXfClgbPIY_fZ0en8t1ZejYb9YV3wkZ64FFxB1p7n4vSQmAaqY23XKnScgPBIa3SDrMv0_kMTA05GGn0mBr5SAXg-oO6SjJojRJk559VoIGo_890PKtHv9-VvHnRnJvLr2a9nhWi5V1yZ-og6WLc-T1yIzT3ye0Zr-AD8u0DJIK6ugqenqygTMUjuTQ0l_TQdDijjr4Jdeun0V10sf7cdlW_qim0sPQ41AChmxAvuxDo0tjuMj758b1re7pw7TD9i34E9AuieIpL8arIsFCNkygektPl20-HR_E0ZyF2UJr62OI4dGUVN8xZJAQUpS5zr4XPfGa54z4RUubeKejWSmaZEQJwVwnCCapUPCI7TduEJ4Ry7RV3Oi2Z0TK4PE899Cs2c2UQmbYqIi-vdV-cj3QaBcAQtFDxy0IReY1m2UggBfawAI5RTI5R_MsxIvIKjVpgoILlnJn-N4CNIuVVscCfijXS-UVk79ruxRTBXwroq3DcjchkRF5sHkPs4QcVsAGoG2UATQsuQObx6CabPWNuBCiXRkRvOdDWS20_aarVwO-dID8X1ywi-xtf-4u2nv4Pbe2SWxwnG-N9dL1HdvruIjyDdqu3z4fI-gl-ECrw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6V9AAcEG8MBS2iEier9q4fmwNCaWlUITVEQKXerH25iRTbwaRCReIH8Tv4Y8zYjpuA1Ks9h_W8Z737fQD7OPWoYRA433IcVyOnU1_HWvk6tFHMjdC5on3I00lychZ9PI_Pd2CyvgtDxyrXObFJ1LYytEd-gHWO6EdEEr1ffvOJNYr-rq4pNFRHrWDfNRBjt2CXEzLWAHYPjyfTz_2uS0DwekHa4pQKnPcPinmYYMsUEmr_RmVqAPz_T9MbderfM5S3L8uluvqhFouNAjW-D_e6zpKNWld4ADuufAh3N_AGH8GvT5ggivlPZ9l0huXLb0GnselkR6om7jr2wRWV7Si92GhxgSpYzQqGrS07dQWO1qXzx7VzbKx0feVP__yuqxUboV4I8Jl9wakYRWl3l9ERkubBvGWoeAxn4-OvRyd-x7_gGyxZK18TTXqqU64CowkoUOQyH1opbGITzQ23oYiioTUpdnF5oAMlBM5jOQqHpFLxBAZlVbpnwLi0KTcyzgMlI2eGw9hiH6MTkzuRSJ168Gat-2zZwmxkOJ6QhbJrC3lwSGbpJQgau3lQ1RdZF2mZlNbiSjVmchVJZTVP01xzhdk00qk0Hrwlo2YUwGg5o7p7CLhQgsLKRnTZWBLMnwd7a7tnXWR_z6790IPX_WuMSfrRgjZAdZMMTtmCC5R52rpJv2bKmTjixR7ILQfa-qjtN-V81uB-h4TbxWXgwX7vazdo6_nNy38BdzhxGdMJdLkHg1V96V5ig7XSr7qo-QuzMig7
  priority: 102
  providerName: ProQuest
Title Optimized Phase-Generated Carrier Demodulation Algorithm for Membrane-Free Fabry-Pérot Acoustic Sensor with High Sensitivity
URI https://www.ncbi.nlm.nih.gov/pubmed/40047685
https://www.proquest.com/docview/3171136364
https://www.proquest.com/docview/3174463234
https://pubmed.ncbi.nlm.nih.gov/PMC11857280
https://doi.org/10.3390/mi16020196
https://doaj.org/article/88dd93fb538a48adb277fb2a8874b78c
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: ADMLS
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: RPM
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: BENPR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: 8FG
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB61yQE48H4YSrRAJU4uzq4fm2MaGiqkhgiIVE7WvkwiEqcyiVAr8YP4HfwxZmwnJEGquNpjaXd2Ht-sd78BOMSqR3WCwPmWY7kaOp34OtLK120bRtwInSnahzwbxKej8P15dL4HL1d3YTb-3wssx9_MJu0YEQ3ayT404wjxdgOao8Gw-4W6xgUJ9xF_n1e8ozsfbGWakpD_37C7kXd2z0TeWOYX6vKHmk43Ek7_DvRWQ63OmXw7Wi70kbnaYXG8fi534XaNN1m3MpB7sOfy-3Brg4XwAfz8gGFjNrlylg3HmNT8iooaoSjrqYI62rG3bja3daMv1p1-nReTxXjGEPCyMzfDgjt3fr9wjvWVLi794e9fxXzBumZe9gpjn7BWRlHa82V0sKR8MKn6VjyEUf_kc-_Ur7sy-AYT2cLX1Dw90QlXgdFEHygymXWsFDa2seaG27YIw441CWK7LNCBEgKrtAyF2zR78Qga-Tx3T4BxaRNuZJQFSobOdDqRRXSjY5M5EUudePBqtYLpRUW-kWLRQspM_yrTg2Na3LUEEWaXD1D3ae1_qZTW4kg1xncVSmU1T5JMc4UxNtSJNB68JtNIya1x_Y2qbyfgQIkgK-3SFWRJ5H8eHKysJ639_XuKKIya44g49ODF-jV6Kv1-wTVAdZMM1t6CC5R5XBnbeswUSbHwizyQW2a4NantN_lkXLKBt4nNi8vAg8O1xV6jraf_J_YMbnLqdEzn0-UBNBbF0j1H-LXQLdiX_XctaB6fDIYfW-UmRqv2yT9o9zFL
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VdlFYIN4YCgyiiJVVZ2ZsjxcVSh9RSptQQSt1Z-blJlLiBDdVFSQ-iJ9gw49xr-2kCUjddWuPrfGcO_cxnjmHkE2oelQSBM63DMpV4XTs61ArXzesCJnhOlO4DtnpRu1T8eksPFshv2dnYXBb5cwnlo7ajgyukW9BnEP5ER6Jj-PvPqpG4d_VmYSGqqUV7HZJMVYf7Dh00yso4S62D_YA7_eMtfZPdtt-rTLgG3DME1-jGHisY6YCo5EOj2cyS6zkNrKRZobZBhcisSaGXCULdKA4h6ojg8YQnCGDgvfeIWuCiwSKv7Wd_e7xl_kqT4B0fkFc8aJyngRbw34jwsdQJWAhEpaCAf-HhYW4-O-ezfXLfKymV2owWAiIrQfkfp3J0mZleg_JissfkXsL_IaPyc_P4JCG_R_O0uMehEu_IrmGJJfuqgK18uieG45sLSFGm4NzGPJJb0ghlaYdN4RSPnd-q3COtpQupv7xn1_FaEKbgAMSTNOvUIVDU1xNprhlpbzQrxQxnpDTW0HiKVnNR7l7TiiTNmZGhlmgpHAmSUILeZOOTOZ4JHXskXezsU_HFa1HCuUQIpReI-SRHYRl3gKpuMsLo-I8rWd2KqW10FMNkUMJqaxmcZxppsB7Cx1L45EPCGqKDgOQM6o-9wAdReqttImHmyXSCnpkY4Z7WnuSi_Ta7j3ydn4bfAD-2AEMYLixDVT1nHFo86wyk3mf0UdDSRl6RC4Z0NJHLd_J-72SZ7yBPGFMBh7ZnNvaDaP14ubuvyHr7ZPOUXp00D18Se4y1FHG3e9yg6xOikv3CpK7iX5dzyBKvt32pP0LyPpjpw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VIvFYIN4YCgyiiJUVZ8b2jBcIhQbTUloqQaXuzLzcRErs4KaqgsQH8Qts-THutZ00Aam7bu2xNZ77Ht85h5BNqHpUEgTOtwzK1dBp4etIK193bRgxw3WucB9ybz_ePgw_HkVHa-T3_CwMtlXOfWLtqG1pcI-8A3EO6Ud4HHbyti3ioJ--nXz3kUEK_7TO6TQaFdl1szMo307e7PRB1q8YS99_3dr2W4YB34BTnvoaicCFFkwFRiMUHs9lnljJbWxjzQyzXR6GiTUC8pQ80IHiHCqOHAZDYIbsCd57hVwViOKOp9TTD4v9nQCB_ALRIKJyngSd8bAb40PID7AUA2uqgP8DwlJE_Ldb8_ppMVGzMzUaLYXC9Da51eawtNco3R2y5oq75OYSsuE98vMzuKLx8Iez9GAAgdJv4K0hvaVbqkKWPNp349K25GG0NzqGBZ4OxhSSaLrnxlDEF85PK-doqnQ18w_-_KrKKe2ZsuYfo1-g_oahuI9MsVmlvjBsuDDuk8NLkcMDsl6UhXtEKJNWMCOjPFAydCZJIgsZk45N7kBKWnjk5Xzts0kD6JFBIYQSys4l5JF3KJbFCAThri-U1XHW2nQmpbUwUw0xQ4VSWc2EyDVT4LdDLaTxyGsUaoauAiRnVHviASaKoFtZD481SwQU9MjGXO5Z60NOsnON98iLxW2wfvylAzKA5cYxUM9zxmHMw0ZNFnNG7wzFZOQRuaJAKx-1eqcYDmqE8S4ihDEZeGRzoWsXrNbji6f_nFwDU80-7ezvPiE3GBIoY9u73CDr0-rUPYWsbqqf1eZDybfLtte_FQhhQQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V9AA98KYYClqgEicXZ9ePzTEEogqpJRJECidrXyYRsVMZR6iV-EH8Dv4YM7YTkiBVXO2xtDs7j2-8u98AHGPVo3pB4HzLsVwNnU58HWnl664NI26EzhT9hzw7j0_H4YdJNNmDl6u7MBv79wLL8Tf5rBsjokE7uQH7cYR4uwP74_NR_wt1jQsS7iP-njS8ozsfbGWampD_37C7kXd2z0TeXBYX6vKHms83Es7wDgxWQ23OmXw7WVb6xFztsDheP5e7cLvFm6zfGMg92HPFfTjYYCF8AD8_YtjIZ1fOstEUk5rfUFEjFGUDVVJHO_bO5QvbNvpi_fnXRTmrpjlDwMvOXI4Fd-H8YekcGypdXvqj37_KRcX6ZlH3CmOfsFZGUfrny-hgSf1g1vSteAjj4fvPg1O_7crgG0xkla-peXqiE64Co4k-UGQy61kpbGxjzQ23XRGGPWsSxHZZoAMlBFZpGQp3afbiEXSKReEeA-PSJtzIKAuUDJ3p9SKL6EbHJnMiljrx4NVqBdOLhnwjxaKFlJn-VaYHb2lx1xJEmF0_QN2nrf-lUlqLI9UY31UoldU8STLNFcbYUCfSePCaTCMlt8b1N6q9nYADJYKstE9XkCWR_3lwtLKetPX37ymiMGqOI-LQgxfr1-iptP2Ca4DqJhmsvQUXKHPYGNt6zBRJsfCLPJBbZrg1qe03xWxas4F3ic2Ly8CD47XFXqOtJ_8n9hRucep0TOfT5RF0qnLpniH8qvTz1v_-ALn9LdY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+Phase-Generated+Carrier+Demodulation+Algorithm+for+Membrane-Free+Fabry-P%C3%A9rot+Acoustic+Sensor+with+High+Sensitivity&rft.jtitle=Micromachines+%28Basel%29&rft.au=Yang%2C+Yang&rft.au=Zhao%2C+Xinyu&rft.au=Zheng%2C+Yongqiu&rft.au=Cui%2C+Juan&rft.date=2025-02-08&rft.pub=MDPI&rft.eissn=2072-666X&rft.volume=16&rft.issue=2&rft_id=info:doi/10.3390%2Fmi16020196&rft.externalDocID=PMC11857280
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon