Optimized Phase-Generated Carrier Demodulation Algorithm for Membrane-Free Fabry-Pérot Acoustic Sensor with High Sensitivity
Demodulation of fiber optic Fabry–Pérot (F-P) acoustic sensors with high sensitivity and a large dynamic range continues to pose significant challenges. In this paper, we propose an advanced phase-generated carrier (PGC) demodulation algorithm, applied innovatively to membrane-free F-P acoustic sens...
Saved in:
| Published in | Micromachines (Basel) Vol. 16; no. 2; p. 196 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
08.02.2025
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2072-666X 2072-666X |
| DOI | 10.3390/mi16020196 |
Cover
| Abstract | Demodulation of fiber optic Fabry–Pérot (F-P) acoustic sensors with high sensitivity and a large dynamic range continues to pose significant challenges. In this paper, we propose an advanced phase-generated carrier (PGC) demodulation algorithm, applied innovatively to membrane-free F-P acoustic sensors operating under high sound pressure. The algorithm optimizes acoustic demodulation results by adjusting the mixing phase delay, achieving the best signal to noise and distortion ratio (SINAD) and total harmonic distortion (THD) (<1%). Additionally, by introducing the cosine component of the acoustic signal obtained directly after filtering the interference signal, into the demodulation algorithm process, the sensitivity of the sensor at high sound pressure is significantly improved. The experimental results show that the ameliorated algorithm obtains a demodulation sensitivity of 34.95 μrad/Pa and a THD of 0.87%, both of which are superior to traditional PGC demodulation algorithms under the same experimental conditions. At the same time, the minimum detectable sound pressure of 129.73 mPa/Hz1/2 was obtained, and the sound pressure tested in the experiment at a frequency of 1 kHz was as high as 3169.78 Pa (164 dB). With the proposed algorithm, the flatness of the frequency response is ±0.82 dB from 100 Hz to 33 kHz, and a dynamic range of up to 102.6 dB was obtained, making it relevant in the field of aerospace acoustic measurements. |
|---|---|
| AbstractList | Demodulation of fiber optic Fabry–Pérot (F-P) acoustic sensors with high sensitivity and a large dynamic range continues to pose significant challenges. In this paper, we propose an advanced phase-generated carrier (PGC) demodulation algorithm, applied innovatively to membrane-free F-P acoustic sensors operating under high sound pressure. The algorithm optimizes acoustic demodulation results by adjusting the mixing phase delay, achieving the best signal to noise and distortion ratio (SINAD) and total harmonic distortion (THD) (<1%). Additionally, by introducing the cosine component of the acoustic signal obtained directly after filtering the interference signal, into the demodulation algorithm process, the sensitivity of the sensor at high sound pressure is significantly improved. The experimental results show that the ameliorated algorithm obtains a demodulation sensitivity of 34.95 μ rad/Pa and a THD of 0.87%, both of which are superior to traditional PGC demodulation algorithms under the same experimental conditions. At the same time, the minimum detectable sound pressure of 129.73 mPa/Hz1/2 was obtained, and the sound pressure tested in the experiment at a frequency of 1 kHz was as high as 3169.78 Pa (164 dB). With the proposed algorithm, the flatness of the frequency response is ±0.82 dB from 100 Hz to 33 kHz, and a dynamic range of up to 102.6 dB was obtained, making it relevant in the field of aerospace acoustic measurements. Demodulation of fiber optic Fabry–Pérot (F-P) acoustic sensors with high sensitivity and a large dynamic range continues to pose significant challenges. In this paper, we propose an advanced phase-generated carrier (PGC) demodulation algorithm, applied innovatively to membrane-free F-P acoustic sensors operating under high sound pressure. The algorithm optimizes acoustic demodulation results by adjusting the mixing phase delay, achieving the best signal to noise and distortion ratio (SINAD) and total harmonic distortion (THD) (<1%). Additionally, by introducing the cosine component of the acoustic signal obtained directly after filtering the interference signal, into the demodulation algorithm process, the sensitivity of the sensor at high sound pressure is significantly improved. The experimental results show that the ameliorated algorithm obtains a demodulation sensitivity of 34.95 μrad/Pa and a THD of 0.87%, both of which are superior to traditional PGC demodulation algorithms under the same experimental conditions. At the same time, the minimum detectable sound pressure of 129.73 mPa/Hz1/2 was obtained, and the sound pressure tested in the experiment at a frequency of 1 kHz was as high as 3169.78 Pa (164 dB). With the proposed algorithm, the flatness of the frequency response is ±0.82 dB from 100 Hz to 33 kHz, and a dynamic range of up to 102.6 dB was obtained, making it relevant in the field of aerospace acoustic measurements. Demodulation of fiber optic Fabry–Pérot (F-P) acoustic sensors with high sensitivity and a large dynamic range continues to pose significant challenges. In this paper, we propose an advanced phase-generated carrier (PGC) demodulation algorithm, applied innovatively to membrane-free F-P acoustic sensors operating under high sound pressure. The algorithm optimizes acoustic demodulation results by adjusting the mixing phase delay, achieving the best signal to noise and distortion ratio (SINAD) and total harmonic distortion (THD) (<1%). Additionally, by introducing the cosine component of the acoustic signal obtained directly after filtering the interference signal, into the demodulation algorithm process, the sensitivity of the sensor at high sound pressure is significantly improved. The experimental results show that the ameliorated algorithm obtains a demodulation sensitivity of 34.95μrad/Pa and a THD of 0.87%, both of which are superior to traditional PGC demodulation algorithms under the same experimental conditions. At the same time, the minimum detectable sound pressure of 129.73mPa/Hz[sup.1/2] was obtained, and the sound pressure tested in the experiment at a frequency of 1 kHz was as high as 3169.78 Pa (164 dB). With the proposed algorithm, the flatness of the frequency response is ±0.82 dB from 100 Hz to 33 kHz, and a dynamic range of up to 102.6 dB was obtained, making it relevant in the field of aerospace acoustic measurements. Demodulation of fiber optic Fabry-Pérot (F-P) acoustic sensors with high sensitivity and a large dynamic range continues to pose significant challenges. In this paper, we propose an advanced phase-generated carrier (PGC) demodulation algorithm, applied innovatively to membrane-free F-P acoustic sensors operating under high sound pressure. The algorithm optimizes acoustic demodulation results by adjusting the mixing phase delay, achieving the best signal to noise and distortion ratio (SINAD) and total harmonic distortion (THD) (<1%). Additionally, by introducing the cosine component of the acoustic signal obtained directly after filtering the interference signal, into the demodulation algorithm process, the sensitivity of the sensor at high sound pressure is significantly improved. The experimental results show that the ameliorated algorithm obtains a demodulation sensitivity of 34.95 μrad/Pa and a THD of 0.87%, both of which are superior to traditional PGC demodulation algorithms under the same experimental conditions. At the same time, the minimum detectable sound pressure of 129.73 mPa/Hz1/2 was obtained, and the sound pressure tested in the experiment at a frequency of 1 kHz was as high as 3169.78 Pa (164 dB). With the proposed algorithm, the flatness of the frequency response is ±0.82 dB from 100 Hz to 33 kHz, and a dynamic range of up to 102.6 dB was obtained, making it relevant in the field of aerospace acoustic measurements.Demodulation of fiber optic Fabry-Pérot (F-P) acoustic sensors with high sensitivity and a large dynamic range continues to pose significant challenges. In this paper, we propose an advanced phase-generated carrier (PGC) demodulation algorithm, applied innovatively to membrane-free F-P acoustic sensors operating under high sound pressure. The algorithm optimizes acoustic demodulation results by adjusting the mixing phase delay, achieving the best signal to noise and distortion ratio (SINAD) and total harmonic distortion (THD) (<1%). Additionally, by introducing the cosine component of the acoustic signal obtained directly after filtering the interference signal, into the demodulation algorithm process, the sensitivity of the sensor at high sound pressure is significantly improved. The experimental results show that the ameliorated algorithm obtains a demodulation sensitivity of 34.95 μrad/Pa and a THD of 0.87%, both of which are superior to traditional PGC demodulation algorithms under the same experimental conditions. At the same time, the minimum detectable sound pressure of 129.73 mPa/Hz1/2 was obtained, and the sound pressure tested in the experiment at a frequency of 1 kHz was as high as 3169.78 Pa (164 dB). With the proposed algorithm, the flatness of the frequency response is ±0.82 dB from 100 Hz to 33 kHz, and a dynamic range of up to 102.6 dB was obtained, making it relevant in the field of aerospace acoustic measurements. Demodulation of fiber optic Fabry-Pérot (F-P) acoustic sensors with high sensitivity and a large dynamic range continues to pose significant challenges. In this paper, we propose an advanced phase-generated carrier (PGC) demodulation algorithm, applied innovatively to membrane-free F-P acoustic sensors operating under high sound pressure. The algorithm optimizes acoustic demodulation results by adjusting the mixing phase delay, achieving the best signal to noise and distortion ratio (SINAD) and total harmonic distortion (THD) (<1%). Additionally, by introducing the cosine component of the acoustic signal obtained directly after filtering the interference signal, into the demodulation algorithm process, the sensitivity of the sensor at high sound pressure is significantly improved. The experimental results show that the ameliorated algorithm obtains a demodulation sensitivity of 34.95 μrad/Pa and a THD of 0.87%, both of which are superior to traditional PGC demodulation algorithms under the same experimental conditions. At the same time, the minimum detectable sound pressure of 129.73 mPa/Hz1/2 was obtained, and the sound pressure tested in the experiment at a frequency of 1 kHz was as high as 3169.78 Pa (164 dB). With the proposed algorithm, the flatness of the frequency response is ±0.82 dB from 100 Hz to 33 kHz, and a dynamic range of up to 102.6 dB was obtained, making it relevant in the field of aerospace acoustic measurements. |
| Audience | Academic |
| Author | Cao, Yan Xue, Chenyang Zhao, Dongqing Zheng, Yongqiu Yang, Yang Zhao, Xinyu Zheng, Zhixuan Cui, Juan |
| AuthorAffiliation | The Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China; yangyanghcs@163.com (Y.Y.); zhaoxinyu_0803@163.com (X.Z.); cuijuan@nuc.edu.cn (J.C.); 20000127@nuc.edu.cn (D.Z.); zhengzhixuan7@163.com (Z.Z.); caoyan113334@163.com (Y.C.); xuechenyang@nuc.edu.cn (C.X.) |
| AuthorAffiliation_xml | – name: The Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China; yangyanghcs@163.com (Y.Y.); zhaoxinyu_0803@163.com (X.Z.); cuijuan@nuc.edu.cn (J.C.); 20000127@nuc.edu.cn (D.Z.); zhengzhixuan7@163.com (Z.Z.); caoyan113334@163.com (Y.C.); xuechenyang@nuc.edu.cn (C.X.) |
| Author_xml | – sequence: 1 givenname: Yang surname: Yang fullname: Yang, Yang – sequence: 2 givenname: Xinyu surname: Zhao fullname: Zhao, Xinyu – sequence: 3 givenname: Yongqiu surname: Zheng fullname: Zheng, Yongqiu – sequence: 4 givenname: Juan surname: Cui fullname: Cui, Juan – sequence: 5 givenname: Dongqing surname: Zhao fullname: Zhao, Dongqing – sequence: 6 givenname: Zhixuan surname: Zheng fullname: Zheng, Zhixuan – sequence: 7 givenname: Yan surname: Cao fullname: Cao, Yan – sequence: 8 givenname: Chenyang surname: Xue fullname: Xue, Chenyang |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40047685$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kstu1DAUhiNUREvphgdAkdggUIovie2s0Ghg2kpFrQRI7CLfMuNRYg-O02qQeCCegxfjTFNKywJb8uX48-_j336a7fngbZY9x-iY0hq97R1miCBcs0fZAUGcFIyxr3v3xvvZ0TCsERTOa2ieZPslQiVnojrIflxskuvdd2vyy5UcbHFivY0ywXwuY3Q25u9tH8zYyeSCz2fdMkSXVn3ehph_tL2K0ttiEa3NF1LFbXH562cMKZ_pMA7J6fyT9QOg17ApP3XL1U3AJXfl0vZZ9riV3WCPbvvD7Mviw-f5aXF-cXI2n50XuuQ4FYpVuOKKE4m0KgmtaSva2ghqmGGKaGIwLcvaaE4r0iKFJKUM1y3AeOcNPczOJl0T5LrZRNfLuG2CdM1NIMRlIyMk29lGCGNAX1VUyFJIowjnrSJSCF4qLjRovZm0Rr-R22vZdXeCGDW7N2n-vgnQ7yZ6M6reGm19irJ7kMLDFe9WzTJcNRiLihOBQOHVrUIM30Y7JJAftO068B0sbijmZckooSWgL_9B12GMHpzdURhTRtmOOp6opYT7Ot8GOFhDNbZ3Gn5X6yA-E6TmQjDOYcOL-3e4S_7PLwLg9QToGIYh2vZ_jvwGcQPYsg |
| Cites_doi | 10.1364/OE.415750 10.1364/OE.465040 10.1109/JSEN.2023.3244820 10.1109/JSEN.2023.3323712 10.1364/OL.460132 10.1364/OE.418736 10.1364/OL.44.005402 10.1364/AO.57.001168 10.1109/JLT.2014.2379943 10.1016/j.optlastec.2018.07.055 10.1117/12.173962 10.1364/OE.402099 10.1364/OL.43.003417 10.1364/JOSAB.396565 10.1115/1.4042929 10.1364/OE.26.004818 10.1364/OE.17.023965 10.1364/OE.497730 10.1016/j.optlastec.2013.03.019 10.1016/j.apacoust.2021.108315 10.1109/JQE.1982.1071416 10.3788/COL20100803.0266 10.1364/OE.432237 10.1016/j.yofte.2023.103249 10.1109/JLT.2021.3109673 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
| DBID | AAYXX CITATION NPM 7SP 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ L6V L7M M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/mi16020196 |
| DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2072-666X |
| ExternalDocumentID | oai_doaj_org_article_88dd93fb538a48adb277fb2a8874b78c 10.3390/mi16020196 PMC11857280 A829788677 40047685 10_3390_mi16020196 |
| Genre | Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: The 19th graduate science and technology project of North University of China grantid: 20231935 – fundername: National Natural Science Foundation of China grantid: 62322118, 62131018 – fundername: the Shanxi Postgraduate Practical Innovation Project grantid: 2023SJ210 – fundername: Shanxi Postgraduate Practical Innovation Project grantid: 2023SJ210 – fundername: National Natural Science Foundation of China grantid: 62322118; 62131018 |
| GroupedDBID | 53G 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO ITC KQ8 L6V M7S MM. MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RPM TR2 TUS NPM 7SP 7TB 8FD ABUWG AZQEC DWQXO FR3 L7M PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c471t-b65157b72a0cb42393f8f9d83d6d6b2c2d13449dc7352f0b0a33619fcb4102013 |
| IEDL.DBID | UNPAY |
| ISSN | 2072-666X |
| IngestDate | Fri Oct 03 12:44:24 EDT 2025 Sun Oct 26 03:55:31 EDT 2025 Tue Sep 30 17:07:20 EDT 2025 Thu Sep 04 19:54:50 EDT 2025 Fri Jul 25 11:54:09 EDT 2025 Mon Oct 20 16:56:11 EDT 2025 Mon Jul 21 05:59:26 EDT 2025 Thu Oct 16 04:44:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | acoustic demodulation system phase-generated carrier algorithm high sound pressure Fabry–Pérot sensor |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c471t-b65157b72a0cb42393f8f9d83d6d6b2c2d13449dc7352f0b0a33619fcb4102013 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/mi16020196 |
| PMID | 40047685 |
| PQID | 3171136364 |
| PQPubID | 2032359 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_88dd93fb538a48adb277fb2a8874b78c unpaywall_primary_10_3390_mi16020196 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11857280 proquest_miscellaneous_3174463234 proquest_journals_3171136364 gale_infotracacademiconefile_A829788677 pubmed_primary_40047685 crossref_primary_10_3390_mi16020196 |
| PublicationCentury | 2000 |
| PublicationDate | 20250208 |
| PublicationDateYYYYMMDD | 2025-02-08 |
| PublicationDate_xml | – month: 2 year: 2025 text: 20250208 day: 8 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Micromachines (Basel) |
| PublicationTitleAlternate | Micromachines (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Yuan (ref_26) 2023; 76 Mahissi (ref_3) 2023; 31 Zhao (ref_9) 2022; 30 Zhang (ref_18) 2022; 47 Wang (ref_20) 2015; 33 Dong (ref_10) 2021; 39 Wang (ref_13) 2013; 51 Chen (ref_11) 2018; 43 Zhang (ref_21) 2021; 183 Zhang (ref_12) 2009; 17 Fan (ref_4) 2020; 28 Yan (ref_25) 2018; 26 Yang (ref_17) 2021; 29 Karim (ref_19) 2021; 29 Yu (ref_24) 2019; 109 Gao (ref_16) 2018; 57 Li (ref_8) 2023; 23 Zhang (ref_15) 2023; 23 Liu (ref_5) 2019; 44 ref_22 Wang (ref_14) 2010; 8 Chen (ref_7) 2021; 29 Zhu (ref_1) 2023; 23 Jena (ref_2) 2020; 37 Dong (ref_6) 2019; 141 ref_27 Dandridge (ref_23) 1982; 18 |
| References_xml | – volume: 29 start-page: 6768 year: 2021 ident: ref_17 article-title: Wideband fiber-optic Fabry-Perot acoustic sensing scheme using high-speed absolute cavity length demodulation publication-title: Opt. Express doi: 10.1364/OE.415750 – volume: 30 start-page: 26609 year: 2022 ident: ref_9 article-title: Research on high-temperature characteristics of a miniature Fabry–Pérot cavity acoustic sensor publication-title: Opt. Express doi: 10.1364/OE.465040 – volume: 23 start-page: 6406 year: 2023 ident: ref_1 article-title: Advances in Fiber-Optic Extrinsic Fabry–Perot Interferometric Physical and Mechanical Sensors: A Review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3244820 – volume: 23 start-page: 28960 year: 2023 ident: ref_8 article-title: The Investigation of All-Sapphire Fabry–Perot Fiber Acoustic Sensor Operating Up to 800 °C publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3323712 – volume: 47 start-page: 2406 year: 2022 ident: ref_18 article-title: Four-wavelength quadrature phase demodulation technique for extrinsic Fabry–Perot interferometric sensors publication-title: Opt. Lett. doi: 10.1364/OL.460132 – volume: 29 start-page: 16447 year: 2021 ident: ref_7 article-title: Micro-fiber-optic acoustic sensor based on high-Q resonance effect using Fabry-Pérot etalon publication-title: Opt. Express doi: 10.1364/OE.418736 – volume: 23 start-page: 2923 year: 2023 ident: ref_15 article-title: A Wide Frequency Response Fabry–Pérot Acoustic Sensor Based on the Self-Stabilization System publication-title: IEEE Sens. J. – volume: 44 start-page: 5402 year: 2019 ident: ref_5 article-title: Quadrature phase-stabilized three-wavelength interrogation of a fiber-optic Fabry–Perot acoustic sensor publication-title: Opt. Lett. doi: 10.1364/OL.44.005402 – volume: 57 start-page: 1168 year: 2018 ident: ref_16 article-title: Five-step phase-shifting white-light interferometry for the measurement of fiber optic extrinsic Fabry–Perot interferometers publication-title: Appl. Opt. doi: 10.1364/AO.57.001168 – volume: 33 start-page: 2392 year: 2015 ident: ref_20 article-title: Interrogation of Extrinsic Fabry–Perot Sensors Using Path-Matched Differential Interferometry and Phase Generated Carrier Technique publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2014.2379943 – volume: 109 start-page: 8 year: 2019 ident: ref_24 article-title: High stability and low harmonic distortion PGC demodulation technique for interferometric optical fiber sensors publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2018.07.055 – ident: ref_22 doi: 10.1117/12.173962 – volume: 28 start-page: 25238 year: 2020 ident: ref_4 article-title: High sensitivity fiber-optic Michelson interferometric low-frequency acoustic sensor based on a gold diaphragm publication-title: Opt. Express doi: 10.1364/OE.402099 – volume: 43 start-page: 3417 year: 2018 ident: ref_11 article-title: Fast demodulated white-light interferometry-based fiber-optic Fabry–Perot cantilever microphone publication-title: Opt. Lett. doi: 10.1364/OL.43.003417 – ident: ref_27 – volume: 37 start-page: A147 year: 2020 ident: ref_2 article-title: Polarization-based optical fiber acoustic sensor for geological applications publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.396565 – volume: 141 start-page: 041003 year: 2019 ident: ref_6 article-title: Miniature Fiber Optic Acoustic Pressure Sensors With Air-Backed Graphene Diaphragms publication-title: ASME. J. Vib. Acoust. doi: 10.1115/1.4042929 – volume: 26 start-page: 4818 year: 2018 ident: ref_25 article-title: Precision PGC demodulation for homodyne interferometer modulated with a combined sinusoidal and triangular signal publication-title: Opt. Express doi: 10.1364/OE.26.004818 – volume: 17 start-page: 23965 year: 2009 ident: ref_12 article-title: Phase modulation with micromachined resonant mirrors for low-coherence fiber-tip pressure sensors publication-title: Opt. Express doi: 10.1364/OE.17.023965 – volume: 31 start-page: 25025 year: 2023 ident: ref_3 article-title: Diaphragms simulation, fabrication, and testing of a high temperature fiber optic F-P accelerometer based on MEMS publication-title: Opt. Express doi: 10.1364/OE.497730 – volume: 51 start-page: 43 year: 2013 ident: ref_13 article-title: Feedback-stabilized interrogation technique for optical Fabry–Perot acoustic sensor using a tunable fiber laser publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2013.03.019 – volume: 183 start-page: 108315 year: 2021 ident: ref_21 article-title: An improved phase generated carrier demodulation scheme for sinusoidal phase-modulating interferometer to detect air-solid interface acoustic waves publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2021.108315 – volume: 18 start-page: 1647 year: 1982 ident: ref_23 article-title: Homodyne demodulation scheme for fiber optic sensors using phase generated carrier publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.1982.1071416 – volume: 8 start-page: 266 year: 2010 ident: ref_14 article-title: Polymer diaphragm based sensitive fiber optic Fabry-Perot acoustic sensor publication-title: Chin. Opt. Lett. doi: 10.3788/COL20100803.0266 – volume: 29 start-page: 25011 year: 2021 ident: ref_19 article-title: Modified phase-generated carrier demodulation of fiber-optic interferometric ultrasound sensors publication-title: Opt. Express doi: 10.1364/OE.432237 – volume: 76 start-page: 103249 year: 2023 ident: ref_26 article-title: A high-stable self-referenced PGC demodulation algorithm for fiber-optic interferometric sensor publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2023.103249 – volume: 39 start-page: 7008 year: 2021 ident: ref_10 article-title: Judgment and Compensation of Deviation of the Optical Interferometric Sensor’s Operating Point From the Interferometer Quadrature Point publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2021.3109673 |
| SSID | ssj0000779007 |
| Score | 2.3255744 |
| Snippet | Demodulation of fiber optic Fabry–Pérot (F-P) acoustic sensors with high sensitivity and a large dynamic range continues to pose significant challenges. In... Demodulation of fiber optic Fabry-Pérot (F-P) acoustic sensors with high sensitivity and a large dynamic range continues to pose significant challenges. In... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 196 |
| SubjectTerms | acoustic demodulation system Acoustic measurement Acoustic properties Acoustics Algorithms Demodulation Dynamic range Equipment and supplies Fabry–Pérot sensor Fiber optics Frequency response Harmonic distortion high sound pressure Lasers Membranes Methods phase-generated carrier algorithm Sensitivity Sensors Sound pressure |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9VAFB6kG3Uhvo2tMmLBVehkZpKZLK_VSxGqBS10F-YVb-AmKTFFWvAH-Tv8Y56TpNdcBd24nZzF5Ly_yeQ7hOwD6jE5YyH2HOCqDFbFNrUmtomXKXfClgbPIY_fZ0en8t1ZejYb9YV3wkZ64FFxB1p7n4vSQmAaqY23XKnScgPBIa3SDrMv0_kMTA05GGn0mBr5SAXg-oO6SjJojRJk559VoIGo_890PKtHv9-VvHnRnJvLr2a9nhWi5V1yZ-og6WLc-T1yIzT3ye0Zr-AD8u0DJIK6ugqenqygTMUjuTQ0l_TQdDijjr4Jdeun0V10sf7cdlW_qim0sPQ41AChmxAvuxDo0tjuMj758b1re7pw7TD9i34E9AuieIpL8arIsFCNkygektPl20-HR_E0ZyF2UJr62OI4dGUVN8xZJAQUpS5zr4XPfGa54z4RUubeKejWSmaZEQJwVwnCCapUPCI7TduEJ4Ry7RV3Oi2Z0TK4PE899Cs2c2UQmbYqIi-vdV-cj3QaBcAQtFDxy0IReY1m2UggBfawAI5RTI5R_MsxIvIKjVpgoILlnJn-N4CNIuVVscCfijXS-UVk79ruxRTBXwroq3DcjchkRF5sHkPs4QcVsAGoG2UATQsuQObx6CabPWNuBCiXRkRvOdDWS20_aarVwO-dID8X1ywi-xtf-4u2nv4Pbe2SWxwnG-N9dL1HdvruIjyDdqu3z4fI-gl-ECrw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6V9AAcEG8MBS2iEier9q4fmwNCaWlUITVEQKXerH25iRTbwaRCReIH8Tv4Y8zYjpuA1Ks9h_W8Z737fQD7OPWoYRA433IcVyOnU1_HWvk6tFHMjdC5on3I00lychZ9PI_Pd2CyvgtDxyrXObFJ1LYytEd-gHWO6EdEEr1ffvOJNYr-rq4pNFRHrWDfNRBjt2CXEzLWAHYPjyfTz_2uS0DwekHa4pQKnPcPinmYYMsUEmr_RmVqAPz_T9MbderfM5S3L8uluvqhFouNAjW-D_e6zpKNWld4ADuufAh3N_AGH8GvT5ggivlPZ9l0huXLb0GnselkR6om7jr2wRWV7Si92GhxgSpYzQqGrS07dQWO1qXzx7VzbKx0feVP__yuqxUboV4I8Jl9wakYRWl3l9ERkubBvGWoeAxn4-OvRyd-x7_gGyxZK18TTXqqU64CowkoUOQyH1opbGITzQ23oYiioTUpdnF5oAMlBM5jOQqHpFLxBAZlVbpnwLi0KTcyzgMlI2eGw9hiH6MTkzuRSJ168Gat-2zZwmxkOJ6QhbJrC3lwSGbpJQgau3lQ1RdZF2mZlNbiSjVmchVJZTVP01xzhdk00qk0Hrwlo2YUwGg5o7p7CLhQgsLKRnTZWBLMnwd7a7tnXWR_z6790IPX_WuMSfrRgjZAdZMMTtmCC5R52rpJv2bKmTjixR7ILQfa-qjtN-V81uB-h4TbxWXgwX7vazdo6_nNy38BdzhxGdMJdLkHg1V96V5ig7XSr7qo-QuzMig7 priority: 102 providerName: ProQuest |
| Title | Optimized Phase-Generated Carrier Demodulation Algorithm for Membrane-Free Fabry-Pérot Acoustic Sensor with High Sensitivity |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40047685 https://www.proquest.com/docview/3171136364 https://www.proquest.com/docview/3174463234 https://pubmed.ncbi.nlm.nih.gov/PMC11857280 https://doi.org/10.3390/mi16020196 https://doaj.org/article/88dd93fb538a48adb277fb2a8874b78c |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-666X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000779007 issn: 2072-666X databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-666X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000779007 issn: 2072-666X databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-666X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000779007 issn: 2072-666X databaseCode: ADMLS dateStart: 20110901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-666X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000779007 issn: 2072-666X databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2072-666X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000779007 issn: 2072-666X databaseCode: RPM dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-666X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000779007 issn: 2072-666X databaseCode: BENPR dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-666X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000779007 issn: 2072-666X databaseCode: 8FG dateStart: 20100301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB61yQE48H4YSrRAJU4uzq4fm2MaGiqkhgiIVE7WvkwiEqcyiVAr8YP4HfwxZmwnJEGquNpjaXd2Ht-sd78BOMSqR3WCwPmWY7kaOp34OtLK120bRtwInSnahzwbxKej8P15dL4HL1d3YTb-3wssx9_MJu0YEQ3ayT404wjxdgOao8Gw-4W6xgUJ9xF_n1e8ozsfbGWakpD_37C7kXd2z0TeWOYX6vKHmk43Ek7_DvRWQ63OmXw7Wi70kbnaYXG8fi534XaNN1m3MpB7sOfy-3Brg4XwAfz8gGFjNrlylg3HmNT8iooaoSjrqYI62rG3bja3daMv1p1-nReTxXjGEPCyMzfDgjt3fr9wjvWVLi794e9fxXzBumZe9gpjn7BWRlHa82V0sKR8MKn6VjyEUf_kc-_Ur7sy-AYT2cLX1Dw90QlXgdFEHygymXWsFDa2seaG27YIw441CWK7LNCBEgKrtAyF2zR78Qga-Tx3T4BxaRNuZJQFSobOdDqRRXSjY5M5EUudePBqtYLpRUW-kWLRQspM_yrTg2Na3LUEEWaXD1D3ae1_qZTW4kg1xncVSmU1T5JMc4UxNtSJNB68JtNIya1x_Y2qbyfgQIkgK-3SFWRJ5H8eHKysJ639_XuKKIya44g49ODF-jV6Kv1-wTVAdZMM1t6CC5R5XBnbeswUSbHwizyQW2a4NantN_lkXLKBt4nNi8vAg8O1xV6jraf_J_YMbnLqdEzn0-UBNBbF0j1H-LXQLdiX_XctaB6fDIYfW-UmRqv2yT9o9zFL |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VdlFYIN4YCgyiiJVVZ2ZsjxcVSh9RSptQQSt1Z-blJlLiBDdVFSQ-iJ9gw49xr-2kCUjddWuPrfGcO_cxnjmHkE2oelQSBM63DMpV4XTs61ArXzesCJnhOlO4DtnpRu1T8eksPFshv2dnYXBb5cwnlo7ajgyukW9BnEP5ER6Jj-PvPqpG4d_VmYSGqqUV7HZJMVYf7Dh00yso4S62D_YA7_eMtfZPdtt-rTLgG3DME1-jGHisY6YCo5EOj2cyS6zkNrKRZobZBhcisSaGXCULdKA4h6ojg8YQnCGDgvfeIWuCiwSKv7Wd_e7xl_kqT4B0fkFc8aJyngRbw34jwsdQJWAhEpaCAf-HhYW4-O-ezfXLfKymV2owWAiIrQfkfp3J0mZleg_JissfkXsL_IaPyc_P4JCG_R_O0uMehEu_IrmGJJfuqgK18uieG45sLSFGm4NzGPJJb0ghlaYdN4RSPnd-q3COtpQupv7xn1_FaEKbgAMSTNOvUIVDU1xNprhlpbzQrxQxnpDTW0HiKVnNR7l7TiiTNmZGhlmgpHAmSUILeZOOTOZ4JHXskXezsU_HFa1HCuUQIpReI-SRHYRl3gKpuMsLo-I8rWd2KqW10FMNkUMJqaxmcZxppsB7Cx1L45EPCGqKDgOQM6o-9wAdReqttImHmyXSCnpkY4Z7WnuSi_Ta7j3ydn4bfAD-2AEMYLixDVT1nHFo86wyk3mf0UdDSRl6RC4Z0NJHLd_J-72SZ7yBPGFMBh7ZnNvaDaP14ubuvyHr7ZPOUXp00D18Se4y1FHG3e9yg6xOikv3CpK7iX5dzyBKvt32pP0LyPpjpw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VIvFYIN4YCgyiiJUVZ8b2jBcIhQbTUloqQaXuzLzcRErs4KaqgsQH8Qts-THutZ00Aam7bu2xNZ77Ht85h5BNqHpUEgTOtwzK1dBp4etIK193bRgxw3WucB9ybz_ePgw_HkVHa-T3_CwMtlXOfWLtqG1pcI-8A3EO6Ud4HHbyti3ioJ--nXz3kUEK_7TO6TQaFdl1szMo307e7PRB1q8YS99_3dr2W4YB34BTnvoaicCFFkwFRiMUHs9lnljJbWxjzQyzXR6GiTUC8pQ80IHiHCqOHAZDYIbsCd57hVwViOKOp9TTD4v9nQCB_ALRIKJyngSd8bAb40PID7AUA2uqgP8DwlJE_Ldb8_ppMVGzMzUaLYXC9Da51eawtNco3R2y5oq75OYSsuE98vMzuKLx8Iez9GAAgdJv4K0hvaVbqkKWPNp349K25GG0NzqGBZ4OxhSSaLrnxlDEF85PK-doqnQ18w_-_KrKKe2ZsuYfo1-g_oahuI9MsVmlvjBsuDDuk8NLkcMDsl6UhXtEKJNWMCOjPFAydCZJIgsZk45N7kBKWnjk5Xzts0kD6JFBIYQSys4l5JF3KJbFCAThri-U1XHW2nQmpbUwUw0xQ4VSWc2EyDVT4LdDLaTxyGsUaoauAiRnVHviASaKoFtZD481SwQU9MjGXO5Z60NOsnON98iLxW2wfvylAzKA5cYxUM9zxmHMw0ZNFnNG7wzFZOQRuaJAKx-1eqcYDmqE8S4ihDEZeGRzoWsXrNbji6f_nFwDU80-7ezvPiE3GBIoY9u73CDr0-rUPYWsbqqf1eZDybfLtte_FQhhQQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V9AA98KYYClqgEicXZ9ePzTEEogqpJRJECidrXyYRsVMZR6iV-EH8Dv4YM7YTkiBVXO2xtDs7j2-8u98AHGPVo3pB4HzLsVwNnU58HWnl664NI26EzhT9hzw7j0_H4YdJNNmDl6u7MBv79wLL8Tf5rBsjokE7uQH7cYR4uwP74_NR_wt1jQsS7iP-njS8ozsfbGWampD_37C7kXd2z0TeXBYX6vKHms83Es7wDgxWQ23OmXw7WVb6xFztsDheP5e7cLvFm6zfGMg92HPFfTjYYCF8AD8_YtjIZ1fOstEUk5rfUFEjFGUDVVJHO_bO5QvbNvpi_fnXRTmrpjlDwMvOXI4Fd-H8YekcGypdXvqj37_KRcX6ZlH3CmOfsFZGUfrny-hgSf1g1vSteAjj4fvPg1O_7crgG0xkla-peXqiE64Co4k-UGQy61kpbGxjzQ23XRGGPWsSxHZZoAMlBFZpGQp3afbiEXSKReEeA-PSJtzIKAuUDJ3p9SKL6EbHJnMiljrx4NVqBdOLhnwjxaKFlJn-VaYHb2lx1xJEmF0_QN2nrf-lUlqLI9UY31UoldU8STLNFcbYUCfSePCaTCMlt8b1N6q9nYADJYKstE9XkCWR_3lwtLKetPX37ymiMGqOI-LQgxfr1-iptP2Ca4DqJhmsvQUXKHPYGNt6zBRJsfCLPJBbZrg1qe03xWxas4F3ic2Ly8CD47XFXqOtJ_8n9hRucep0TOfT5RF0qnLpniH8qvTz1v_-ALn9LdY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+Phase-Generated+Carrier+Demodulation+Algorithm+for+Membrane-Free+Fabry-P%C3%A9rot+Acoustic+Sensor+with+High+Sensitivity&rft.jtitle=Micromachines+%28Basel%29&rft.au=Yang%2C+Yang&rft.au=Zhao%2C+Xinyu&rft.au=Zheng%2C+Yongqiu&rft.au=Cui%2C+Juan&rft.date=2025-02-08&rft.pub=MDPI&rft.eissn=2072-666X&rft.volume=16&rft.issue=2&rft_id=info:doi/10.3390%2Fmi16020196&rft.externalDocID=PMC11857280 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon |