Perception-Based H.264/AVC Video Coding for Resource-Constrained and Low-Bit-Rate Applications

With the rapid expansion of Internet of Things (IoT) and edge computing applications, efficient video transmission under constrained bandwidth and limited computational resources has become increasingly critical. In such environments, perception-based video coding plays a vital role in maintaining a...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 14; p. 4259
Main Authors Kau, Lih-Jen, Tseng, Chin-Kun, Lee, Ming-Xian
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 08.07.2025
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s25144259

Cover

Abstract With the rapid expansion of Internet of Things (IoT) and edge computing applications, efficient video transmission under constrained bandwidth and limited computational resources has become increasingly critical. In such environments, perception-based video coding plays a vital role in maintaining acceptable visual quality while minimizing bit rate and processing overhead. Although newer video coding standards have emerged, H.264/AVC remains the dominant compression format in many deployed systems, particularly in commercial CCTV surveillance, due to its compatibility, stability, and widespread hardware support. Motivated by these practical demands, this paper proposes a perception-based video coding algorithm specifically tailored for low-bit-rate H.264/AVC applications. By targeting regions most relevant to the human visual system, the proposed method enhances perceptual quality while optimizing resource usage, making it particularly suitable for embedded systems and bandwidth-limited communication channels. In general, regions containing human faces and those exhibiting significant motion are of primary importance for human perception and should receive higher bit allocation to preserve visual quality. To this end, macroblocks (MBs) containing human faces are detected using the Viola–Jones algorithm, which leverages AdaBoost for feature selection and a cascade of classifiers for fast and accurate detection. This approach is favored over deep learning-based models due to its low computational complexity and real-time capability, making it ideal for latency- and resource-constrained IoT and edge environments. Motion-intensive macroblocks were identified by comparing their motion intensity against the average motion level of preceding reference frames. Based on these criteria, a dynamic quantization parameter (QP) adjustment strategy was applied to assign finer quantization to perceptually important regions of interest (ROIs) in low-bit-rate scenarios. The experimental results show that the proposed method achieves superior subjective visual quality and objective Peak Signal-to-Noise Ratio (PSNR) compared to the standard JM software and other state-of-the-art algorithms under the same bit rate constraints. Moreover, the approach introduces only a marginal increase in computational complexity, highlighting its efficiency. Overall, the proposed algorithm offers an effective balance between visual quality and computational performance, making it well suited for video transmission in bandwidth-constrained, resource-limited IoT and edge computing environments.
AbstractList With the rapid expansion of Internet of Things (IoT) and edge computing applications, efficient video transmission under constrained bandwidth and limited computational resources has become increasingly critical. In such environments, perception-based video coding plays a vital role in maintaining acceptable visual quality while minimizing bit rate and processing overhead. Although newer video coding standards have emerged, H.264/AVC remains the dominant compression format in many deployed systems, particularly in commercial CCTV surveillance, due to its compatibility, stability, and widespread hardware support. Motivated by these practical demands, this paper proposes a perception-based video coding algorithm specifically tailored for low-bit-rate H.264/AVC applications. By targeting regions most relevant to the human visual system, the proposed method enhances perceptual quality while optimizing resource usage, making it particularly suitable for embedded systems and bandwidth-limited communication channels. In general, regions containing human faces and those exhibiting significant motion are of primary importance for human perception and should receive higher bit allocation to preserve visual quality. To this end, macroblocks (MBs) containing human faces are detected using the Viola–Jones algorithm, which leverages AdaBoost for feature selection and a cascade of classifiers for fast and accurate detection. This approach is favored over deep learning-based models due to its low computational complexity and real-time capability, making it ideal for latency- and resource-constrained IoT and edge environments. Motion-intensive macroblocks were identified by comparing their motion intensity against the average motion level of preceding reference frames. Based on these criteria, a dynamic quantization parameter (QP) adjustment strategy was applied to assign finer quantization to perceptually important regions of interest (ROIs) in low-bit-rate scenarios. The experimental results show that the proposed method achieves superior subjective visual quality and objective Peak Signal-to-Noise Ratio (PSNR) compared to the standard JM software and other state-of-the-art algorithms under the same bit rate constraints. Moreover, the approach introduces only a marginal increase in computational complexity, highlighting its efficiency. Overall, the proposed algorithm offers an effective balance between visual quality and computational performance, making it well suited for video transmission in bandwidth-constrained, resource-limited IoT and edge computing environments.
With the rapid expansion of Internet of Things (IoT) and edge computing applications, efficient video transmission under constrained bandwidth and limited computational resources has become increasingly critical. In such environments, perception-based video coding plays a vital role in maintaining acceptable visual quality while minimizing bit rate and processing overhead. Although newer video coding standards have emerged, H.264/AVC remains the dominant compression format in many deployed systems, particularly in commercial CCTV surveillance, due to its compatibility, stability, and widespread hardware support. Motivated by these practical demands, this paper proposes a perception-based video coding algorithm specifically tailored for low-bit-rate H.264/AVC applications. By targeting regions most relevant to the human visual system, the proposed method enhances perceptual quality while optimizing resource usage, making it particularly suitable for embedded systems and bandwidth-limited communication channels. In general, regions containing human faces and those exhibiting significant motion are of primary importance for human perception and should receive higher bit allocation to preserve visual quality. To this end, macroblocks (MBs) containing human faces are detected using the Viola-Jones algorithm, which leverages AdaBoost for feature selection and a cascade of classifiers for fast and accurate detection. This approach is favored over deep learning-based models due to its low computational complexity and real-time capability, making it ideal for latency- and resource-constrained IoT and edge environments. Motion-intensive macroblocks were identified by comparing their motion intensity against the average motion level of preceding reference frames. Based on these criteria, a dynamic quantization parameter (QP) adjustment strategy was applied to assign finer quantization to perceptually important regions of interest (ROIs) in low-bit-rate scenarios. The experimental results show that the proposed method achieves superior subjective visual quality and objective Peak Signal-to-Noise Ratio (PSNR) compared to the standard JM software and other state-of-the-art algorithms under the same bit rate constraints. Moreover, the approach introduces only a marginal increase in computational complexity, highlighting its efficiency. Overall, the proposed algorithm offers an effective balance between visual quality and computational performance, making it well suited for video transmission in bandwidth-constrained, resource-limited IoT and edge computing environments.With the rapid expansion of Internet of Things (IoT) and edge computing applications, efficient video transmission under constrained bandwidth and limited computational resources has become increasingly critical. In such environments, perception-based video coding plays a vital role in maintaining acceptable visual quality while minimizing bit rate and processing overhead. Although newer video coding standards have emerged, H.264/AVC remains the dominant compression format in many deployed systems, particularly in commercial CCTV surveillance, due to its compatibility, stability, and widespread hardware support. Motivated by these practical demands, this paper proposes a perception-based video coding algorithm specifically tailored for low-bit-rate H.264/AVC applications. By targeting regions most relevant to the human visual system, the proposed method enhances perceptual quality while optimizing resource usage, making it particularly suitable for embedded systems and bandwidth-limited communication channels. In general, regions containing human faces and those exhibiting significant motion are of primary importance for human perception and should receive higher bit allocation to preserve visual quality. To this end, macroblocks (MBs) containing human faces are detected using the Viola-Jones algorithm, which leverages AdaBoost for feature selection and a cascade of classifiers for fast and accurate detection. This approach is favored over deep learning-based models due to its low computational complexity and real-time capability, making it ideal for latency- and resource-constrained IoT and edge environments. Motion-intensive macroblocks were identified by comparing their motion intensity against the average motion level of preceding reference frames. Based on these criteria, a dynamic quantization parameter (QP) adjustment strategy was applied to assign finer quantization to perceptually important regions of interest (ROIs) in low-bit-rate scenarios. The experimental results show that the proposed method achieves superior subjective visual quality and objective Peak Signal-to-Noise Ratio (PSNR) compared to the standard JM software and other state-of-the-art algorithms under the same bit rate constraints. Moreover, the approach introduces only a marginal increase in computational complexity, highlighting its efficiency. Overall, the proposed algorithm offers an effective balance between visual quality and computational performance, making it well suited for video transmission in bandwidth-constrained, resource-limited IoT and edge computing environments.
Audience Academic
Author Kau, Lih-Jen
Lee, Ming-Xian
Tseng, Chin-Kun
AuthorAffiliation 3 National Defense Medical Center, Taipei 114201, Taiwan
1 Department of Electronic Engineering, National Taipei University of Technology, Taipei 106344, Taiwan; tsengchinkun@gmail.com (C.-K.T.); jackeyjay2002@yahoo.com.tw (M.-X.L.)
2 Tri-Service General Hospital Songshan Branch, Taipei 105309, Taiwan
AuthorAffiliation_xml – name: 1 Department of Electronic Engineering, National Taipei University of Technology, Taipei 106344, Taiwan; tsengchinkun@gmail.com (C.-K.T.); jackeyjay2002@yahoo.com.tw (M.-X.L.)
– name: 3 National Defense Medical Center, Taipei 114201, Taiwan
– name: 2 Tri-Service General Hospital Songshan Branch, Taipei 105309, Taiwan
Author_xml – sequence: 1
  givenname: Lih-Jen
  orcidid: 0000-0001-8115-3751
  surname: Kau
  fullname: Kau, Lih-Jen
– sequence: 2
  givenname: Chin-Kun
  surname: Tseng
  fullname: Tseng, Chin-Kun
– sequence: 3
  givenname: Ming-Xian
  surname: Lee
  fullname: Lee, Ming-Xian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40732387$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNURD_gwB9AkbgAUrb-SmKf0HYFtNJKoAp6xJrY48WrrB3iLFX_PV62rFoOnGzNPHpn5p05LY5CDFgULymZca7IeWI1FYLV6klxQgUTlWSMHD34HxenKa0JYZxz-aw4FqTljMv2pPj-BUeDw-RjqC4goS0vZ6wR5_ObRXnjLcZyEa0Pq9LFsbzGFLcZrxYxpGkEHzIPwZbLeFtd-Km6hgnL-TD03sBOMj0vnjroE764f8-Kbx8_fF1cVsvPn64W82VlREunSiES0hrlOme71oBpJLdciMZY0nYmR7qOSyEooawBiYR34Gjrat451UngZ8XVXtdGWOth9BsY73QEr_8E4rjSME7e9Khda5mQYLBTuQJFQEGV4MTKmtq6rbPWu73WNgxwdwt9fxCkRO8M1wfDM_x-Dw_bboPWYMi-9I86eJwJ_odexV-aMqYkJTIrvLlXGOPPLaZJb3wy2PcQMG6TzosSLcnFSEZf_4Ou8z5CNnZHcdbQhopMzfbUCvK4PriYC2dPweLGm3w5zuf4XAqlqCJyN_CrhzMcmv97JRl4uwfMGFMa0f3HkN-D3cmn
Cites_doi 10.1109/TCSVT.2007.913754
10.1109/JSTSP.2012.2215006
10.1109/TCSVT.2013.2240919
10.1109/TCSVT.2003.815165
10.1016/j.neucom.2017.08.054
10.1109/TBC.2020.3028340
10.1109/FG.2017.82
10.1016/j.neucom.2019.10.087
10.1109/MSP.2003.1184336
10.1109/MWSCAS.2015.7282138
10.1109/TCSVT.2009.2022822
10.1109/ICCV.2017.522
10.1109/JPROC.2013.2262911
10.1023/B:VISI.0000013087.49260.fb
10.1109/TCSVT.2011.2133530
10.23919/APSIPA.2018.8659729
10.1109/VCIP47243.2019.8965753
10.1109/ICIP.2002.1038171
10.1109/TCSVT.2003.816505
10.1049/ipr2.12826
10.1016/j.neucom.2020.06.003
10.1109/JPROC.2004.839620
10.1109/TBC.2023.3268946
10.1109/MCAS.2004.1286980
10.1109/ACCESS.2019.2948709
10.1109/TCSVT.2011.2129890
10.1109/JPROC.2013.2265801
10.1109/ICME.2010.5583354
10.1007/11556121_63
10.1006/inco.1995.1136
10.1109/JSTSP.2011.2165199
10.1109/TBC.2012.2220414
10.1109/LSP.2016.2603342
10.1186/1687-6180-2013-112
10.1006/jcss.1997.1504
10.1109/TCSVT.2012.2199398
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s25144259
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (ProQuest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed

Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_f7d248aceb93441eae419430d851d575
10.3390/s25144259
PMC12298108
A849919085
40732387
10_3390_s25144259
Genre Journal Article
GeographicLocations New York
GeographicLocations_xml – name: New York
GrantInformation_xml – fundername: National Science and Technology Council, Taiwan
  grantid: NSTC 113-2221-E-027-082
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c471t-9ee007c9fbfdb7cac683d3446cd07bc7cabb384410126a8e03baf17f53bf9b8a3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:51:56 EDT 2025
Sun Oct 26 04:15:31 EDT 2025
Tue Sep 30 17:02:16 EDT 2025
Thu Oct 02 22:14:04 EDT 2025
Tue Oct 07 07:20:12 EDT 2025
Mon Oct 20 16:54:29 EDT 2025
Sun Aug 03 01:53:25 EDT 2025
Thu Oct 16 04:25:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords motion intensity
Region of Interest (ROI)
AdaBoost classifier
quantization parameter (QP)
H.264/AVC
face detection
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-9ee007c9fbfdb7cac683d3446cd07bc7cabb384410126a8e03baf17f53bf9b8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8115-3751
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25144259
PMID 40732387
PQID 3233261614
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_f7d248aceb93441eae419430d851d575
unpaywall_primary_10_3390_s25144259
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12298108
proquest_miscellaneous_3234704250
proquest_journals_3233261614
gale_infotracacademiconefile_A849919085
pubmed_primary_40732387
crossref_primary_10_3390_s25144259
PublicationCentury 2000
PublicationDate 2025-07-08
PublicationDateYYYYMMDD 2025-07-08
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-08
  day: 08
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Ostermann (ref_13) 2004; 4
Huang (ref_27) 2013; 2013
Zhao (ref_6) 2023; 69
Bi (ref_7) 2023; 17
ref_14
ref_36
Vetro (ref_16) 2003; 20
Lee (ref_26) 2011; 5
Viola (ref_41) 2004; 57
ref_11
ref_33
ref_10
Wu (ref_18) 2013; 101
ref_32
Zhang (ref_38) 2020; 380
Hu (ref_21) 2012; 22
Li (ref_4) 2021; 67
Sun (ref_3) 2020; 411
Luo (ref_23) 2013; 23
Freund (ref_34) 1997; 55
Ou (ref_24) 2011; 21
Yeh (ref_28) 2013; 59
Lee (ref_17) 2012; 6
ref_37
Xiong (ref_25) 2011; 21
Zhang (ref_35) 2016; 23
Freund (ref_39) 1995; 121
Liu (ref_20) 2008; 18
Viola (ref_40) 2001; Volume 1
ref_47
Lienhart (ref_42) 2002; Volume 1
ref_46
ref_45
ref_22
ref_44
ref_43
Zhu (ref_2) 2018; 275
Wiegand (ref_12) 2003; 13
Niebur (ref_19) 2013; 101
Liu (ref_8) 2019; 7
ref_1
ref_29
Chi (ref_30) 2009; 19
ref_9
Xin (ref_15) 2005; 93
ref_5
Lin (ref_31) 2003; 13
References_xml – ident: ref_9
– volume: 18
  start-page: 134
  year: 2008
  ident: ref_20
  article-title: Region-of-Interest Based Resource Allocation for Conversational Video Communication of H.264/AVC
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2007.913754
– ident: ref_32
– volume: 6
  start-page: 684
  year: 2012
  ident: ref_17
  article-title: Perceptual Video Compression: A Survey
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2012.2215006
– volume: 23
  start-page: 935
  year: 2013
  ident: ref_23
  article-title: H.264/Advanced Video Control Perceptual Optimization Coding Based on JND-Directed Coefficient Suppression
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2013.2240919
– ident: ref_47
– ident: ref_11
– volume: 13
  start-page: 560
  year: 2003
  ident: ref_12
  article-title: Overview of the H.264/AVC Video Coding Standard
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2003.815165
– volume: 275
  start-page: 511
  year: 2018
  ident: ref_2
  article-title: Spatiotemporal Visual Saliency Guided Perceptual High Efficiency Video Coding with Neural Network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.054
– volume: 67
  start-page: 159
  year: 2021
  ident: ref_4
  article-title: A Bit Allocation Method Based on Inter-View Dependency and Spatio-Temporal Correlation for Multi-View Texture Video Coding
  publication-title: IEEE Trans. Broadcast.
  doi: 10.1109/TBC.2020.3028340
– ident: ref_36
  doi: 10.1109/FG.2017.82
– volume: 380
  start-page: 180
  year: 2020
  ident: ref_38
  article-title: Feature Agglomeration Networks for Single Stage Face Detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.087
– volume: 20
  start-page: 18
  year: 2003
  ident: ref_16
  article-title: Video Transcoding Architectures and Techniques: An Overview
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2003.1184336
– ident: ref_33
  doi: 10.1109/MWSCAS.2015.7282138
– ident: ref_14
– volume: 19
  start-page: 1025
  year: 2009
  ident: ref_30
  article-title: Robust Region-of-Interest Determination Based on User Attention Model Through Visual Rhythm Analysis
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2009.2022822
– ident: ref_44
– ident: ref_37
  doi: 10.1109/ICCV.2017.522
– volume: 101
  start-page: 2025
  year: 2013
  ident: ref_18
  article-title: Perceptual Visual Signal Compression and Transmission
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2013.2262911
– volume: 57
  start-page: 137
  year: 2004
  ident: ref_41
  article-title: Robust Real-Time Face Detection
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000013087.49260.fb
– volume: 21
  start-page: 917
  year: 2011
  ident: ref_25
  article-title: Face Region Based Conversational Video Coding
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2011.2133530
– ident: ref_1
  doi: 10.23919/APSIPA.2018.8659729
– ident: ref_5
  doi: 10.1109/VCIP47243.2019.8965753
– volume: Volume 1
  start-page: 900
  year: 2002
  ident: ref_42
  article-title: An Extended Set of Haar-Like Features for Rapid Object Detection
  publication-title: Proceedings of the International Conference on Image Processing
  doi: 10.1109/ICIP.2002.1038171
– volume: 13
  start-page: 982
  year: 2003
  ident: ref_31
  article-title: Dynamic Region of Interest Transcoding for Multipoint Video Conferencing
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2003.816505
– volume: 17
  start-page: 2764
  year: 2023
  ident: ref_7
  article-title: Real-time Face Perception Based Encoding Strategy Optimization Method for UHD Videos
  publication-title: IET Image Process.
  doi: 10.1049/ipr2.12826
– volume: 411
  start-page: 393
  year: 2020
  ident: ref_3
  article-title: Content-aware Rate Control Scheme for HEVC Based on Static and Dynamic Saliency Detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.06.003
– volume: 93
  start-page: 84
  year: 2005
  ident: ref_15
  article-title: Digital Video Transcoding
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2004.839620
– ident: ref_46
– volume: 69
  start-page: 753
  year: 2023
  ident: ref_6
  article-title: A High-Performance Rate Control Algorithm in Versatile Video Coding Based on Spatial and Temporal Feature Complexity
  publication-title: IEEE Trans. Broadcast.
  doi: 10.1109/TBC.2023.3268946
– ident: ref_10
– volume: 4
  start-page: 7
  year: 2004
  ident: ref_13
  article-title: Video Coding with H.264/AVC: Tools, Performance, and Complexity
  publication-title: IEEE Circuits Syst. Mag.
  doi: 10.1109/MCAS.2004.1286980
– volume: 7
  start-page: 154959
  year: 2019
  ident: ref_8
  article-title: Perception-Based CTU Level Bit Allocation for Intra High Efficiency Video Coding
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2948709
– volume: 21
  start-page: 682
  year: 2011
  ident: ref_24
  article-title: SSIM-Based Perceptual Rate Control for Video Coding
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2011.2129890
– volume: 101
  start-page: 2058
  year: 2013
  ident: ref_19
  article-title: Visual Attention and Applications in Multimedia Technologies
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2013.2265801
– ident: ref_22
  doi: 10.1109/ICME.2010.5583354
– ident: ref_29
  doi: 10.1007/11556121_63
– volume: 121
  start-page: 256
  year: 1995
  ident: ref_39
  article-title: Boosting a Weak Learning Algorithm by Majority
  publication-title: Inf. Comput.
  doi: 10.1006/inco.1995.1136
– volume: 5
  start-page: 1322
  year: 2011
  ident: ref_26
  article-title: Subjective Quality Evaluation of Foveated Video Coding Using Audio-Visual Focus of Attention
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2011.2165199
– volume: 59
  start-page: 38
  year: 2013
  ident: ref_28
  article-title: Temporal Video Transcoding Based on Frame Complexity Analysis for Mobile Video Communication
  publication-title: IEEE Trans. Broadcast.
  doi: 10.1109/TBC.2012.2220414
– ident: ref_45
– ident: ref_43
– volume: Volume 1
  start-page: 511
  year: 2001
  ident: ref_40
  article-title: Rapid Object Detection Using a Boosted Cascade of Simple Features
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– volume: 23
  start-page: 1499
  year: 2016
  ident: ref_35
  article-title: Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2603342
– volume: 2013
  start-page: 112
  year: 2013
  ident: ref_27
  article-title: Region-of-Interest Determination and Bit-Rate Conversion for H.264 Video Transcoding
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/1687-6180-2013-112
– volume: 55
  start-page: 119
  year: 1997
  ident: ref_34
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1997.1504
– volume: 22
  start-page: 1564
  year: 2012
  ident: ref_21
  article-title: Region-Based Rate Control for H.264/AVC for Low Bit-Rate Applications
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2012.2199398
RelatedPersons Jones, Michal
RelatedPersons_xml – fullname: Jones, Michal
SSID ssj0023338
Score 2.461178
Snippet With the rapid expansion of Internet of Things (IoT) and edge computing applications, efficient video transmission under constrained bandwidth and limited...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 4259
SubjectTerms AdaBoost classifier
Algorithms
Bandwidths
Coding standards
Control algorithms
Deep learning
Edge computing
Embedded systems
Evaluation
face detection
H.264/AVC
Image coding
Internet of Things
Jones, Michal
Literature reviews
motion intensity
Quality standards
quantization parameter (QP)
Real time
Region of Interest (ROI)
Streaming services
Surveillance
Technology application
Video compression
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXoAD4k2gVOYhcTLrtb2xc9xdUa0qhBCiVU9YfoqVqqSiu6r494yTbJSlQlx6i2If7Jmxv28c5xuA91HzKpWlp8mWgkolHbWcB1p5x7h1ioXuguyXcnUqT85n56NSX_lOWCcP3BluklTgUlsfXSUQuqONcpolwwNShYBcI---TFe7ZKpPtQRmXp2OkMCkfnKFKC4xOqs99GlF-m9uxSMs-vue5N1tfWl_X9uLixEIHT-EBz17JPNu1I_gTqwfw_2RpuAT-PF1uKpCFwhRgaw-Ih2ZzM-W5GwdYkOWTcYrgmyV7A7vaa7b2VaLwP62DuRzc00X6w39hlSUzEcfuZ_C6fGn78sV7YsoUI-4s6FVjEgDfJVcCk5560stAlqy9IEp5_GNc0KjZRGpSqsjE86mqUoz4VLltBXP4KBu6vgCiJXWYoaomBT4ONM2-JAYC-hTHn2yBbzdGddcdloZBnOM7AEzeKCARTb70CHLW7cv0Ommd7r5n9ML-JCdZvIiROPgrLp_CXCcWc7KzDUmckh1NPY83PnV9KvzygiMD8wckZkU8GZoxnWVP5bYOjbbto9UeUdjBTzvwmAYMybB2KxVAXovQPYmtd9Sr3-22t1Tzis9ZbqAd0Ms_dtYL2_DWK_gHs9Fi_OZtD6Eg82vbXyNTGrjjtpF8wdckhv2
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB6V9AAcEM-yUNDykDiZbGxn13tAKIlaRQhFVUWrnliNXxCp2g1toop_z3hfJCC4rWwfvPPwfOPHNwBvneK5T1PDPKaCyUxqhpxblhudcNRZYpsLsot0fiY_XYwv9mDRvYUJ1yq7NbFeqG1lwh75UHBBSIPwify4-sFC1ahwutqV0MC2tIL9UFOM3YJ9HpixBrA_PVqcnPYpmKCMrOEXEpTsD68pukuy2nwnKtXk_X8v0Vsx6s_7k7c35Qp_3uDl5VZwOr4P91pUGU8aM3gAe658CHe3uAYfwdeT_goLm1LosvH8PcGU4eR8Fp8vraviWRXiWEwoNu429Vmo51lXkaDxWNr4c3XDpss1OyWIGk-2Dr8fw9nx0ZfZnLXFFZiheLRmuXMED0zutbc6M2hSJayg5NDYJNOGWrQWisASRbAUlUuERj_K_Fhon2uF4gkMyqp0TyFGiUjCzhIp6HOs0Brrk8SSrrkzHiN43Qm3WDUcGgXlHkEDRa-BCKZB7P2AQHtdN1RX34rWiwqfWS4VGqdzmurIoZOjwB9vCTdaAp4RvAtKK4JzknDor5o3BjTPQHNVTBQleASBFI087PRatF57Xfy2sQhe9d3kb-EQBUtXbeoxMgsrXRLBQWMG_ZwpOaZulUWgdgxk56d2e8rl95rTe8R5rkaJiuBNb0v_Ftaz_8_-OdzhoUxx2IVWhzBYX23cC8JOa_2ydYhflgsaIQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdQ9wA8jG8WGCh8SDy5cWwncZ5QWjFVCE0TotN4IfInVExJtaVM8NdzTtIoHUJC4i2Nr5Edn-_3u_jujNBrK2ju0lRjJ1OGecYVlpQanGtFqFQZMV2A7HG6WPL3Z8nZKIvfh1WCK75qjbTPwsKAYCSiCfyIQL_yaG3c2x_9tyTAvhjMKfUZfHtpAmx8gvaWxyfF5zapqP93V1CIgXcfXQKcc_-YHRhqq_X_aZNHoHQ9YPLmplrLn1fy_HyERkd3kNyOowtC-T7dNGqqf10r8fg_A72L9nuqGhadbt1DN2x1H90eFTB8gL6cDHExeAZ4aMLFFLhPVJzOw9OVsXU4rz04hkCNw-1OAfaHhLZHU4C8rEz4ob7Cs1WDPwLvDYvRjvpDtDx692m-wP2JDVgDyDU4txY4h86dckZlWupUMMPA49SGZErDHaWYAAYGsJhKYQlT0sWZS5hyuRKSPUKTqq7sAQollxLc0YxwBpeJkEYbR4gBBaJWOxmgl9sJLNddYY4SHBo_y-UwywGa-akdBHwt7fZGffG17Jdm6TJDuZDaqhy6GltpeeyL0hsgowbYbIDeeMUo_YqHlwOj6hIXoJ--dlZZCPAagVcJkDzc6k7Zm4LLklEGFBmINQ_Qi6EZFrHfmZGVrTetDM-8-SQBetyp2tBn8LihWWQBEjtKuDOo3ZZq9a0tFB5TmouYiAC9GvT17y_ryT9JPUW3qD8C2X_hFodo0lxs7DPgZY163i-93_VpMdk
  priority: 102
  providerName: Unpaywall
Title Perception-Based H.264/AVC Video Coding for Resource-Constrained and Low-Bit-Rate Applications
URI https://www.ncbi.nlm.nih.gov/pubmed/40732387
https://www.proquest.com/docview/3233261614
https://www.proquest.com/docview/3234704250
https://pubmed.ncbi.nlm.nih.gov/PMC12298108
https://www.mdpi.com/1424-8220/25/14/4259/pdf?version=1751990209
https://doaj.org/article/f7d248aceb93441eae419430d851d575
UnpaywallVersion publishedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central Full-text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7t4wAcEM8lsFThIXHybhK7sXNAKK22VAiqakVX5ULkV6BSlSzdVsv-e8ZJEzU8LlyiyB4pzsw48322MwPw2oooyeNYk1zGlDDOFJFRZEiiVRBJxQNTH5CdxOMZ-zDvz_egqbG5VeDVX6mdqyc1Wy1Pfv64eYcT_q1jnEjZT68wRjP0vWQfDjFAJa6CwyfWbiZEFGlYnVSoK94JRVXG_j-_yzuB6fdDk7c2xaW8uZbL5U5EGt2Du1so6ae17e_Dni0ewJ2dBIMP4eu0PbdCBhivjD8-QWxyml4M_YuFsaU_LF3w8hG6-s1KPnFFPKvSESgvC-N_LK_JYLEm54hL_XRnx_sRzEZnn4djsq2oQDQGoTVJrEVMoJNc5UZxLXUsqKHICLUJuNLYohQViJAwbMVS2IAqmYc871OVJ0pI-hgOirKwT8CXTEqkizxgFG_7Qhpt8iAwaODI6lx68LJRbnZZJ87IkHA4C2StBTwYOLW3Ai7XddVQrr5l26mT5dxETEhtVYJDDa20LHRJ4w2CRYNo04M3zmiZ8xFUDr5V_WMBjtPltspSgawOcY9AyePGrlnjaRlF_0AaiTDFgxdtN04yt3MiC1tuKhnG3ect8OCodoN2zMiIsVtwD0THQTov1e0pFt-rRN5hFCUiDIQHr1pf-reynv7_A57B7cjVLXbL0uIYDtarjX2OYGqterDP5xyvYvS-B4eDs8n0vFctTPSqSYRts8k0_fILJwMm9w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4a42HwgLgTGBBu4sk0sd3YeUCoLUwdKxNC29Qngm-BSlNS1lbV_hS_keOkyVoQvO0tsq3IPtfv-HIOwEsnaZoniSG5ShjhgmuiKLUkNTqiSovI1hdkD5PhMf847o634FfzFsZfq2xsYmWobWn8HnmHUYZIA_EJfzf9SXzVKH-62pTQqMXiwJ0vMWSbvd1_j_x9Reneh6PBkKyqChCDhnhOUufQL5o017nVwiiTSGYZRkXGRkIbbNGaSUQJaLoTJV3EtMpjkXeZzlMtFcP_XoGrnKEtQf0R44sAj2G8V2cvYiyNOjPEDhx1It3weVVpgL8dwJoH_PN25s6imKrzpTo9XXN9ezfhxgqzhr1ayG7Blituw_W1TIZ34Ovn9oIM6aNjtOHwDYKgTu9kEJ5MrCvDQem9ZIgYOWyODIivFlrVqMDxqrDhqFyS_mROviAADntrR-t34fhSiHwPtouycA8gVFwpjEtFxBl-dqWyxuZRZFGSqDO5CuB5Q9xsWmfoyDCy8RzIWg4E0Pdkbwf4pNpVQ3n2PVvpaJYLS7lUxukUpxo75Xjss9NbRKUWYW0Arz3TMq_6SBxcVf2CAefpk2hlPYnhIwIsiSN3G75mK5swyy4kOIBnbTdqsz-iUYUrF9UYLrwdjQK4X4tBO2cMvbFbigDkhoBsLGqzp5j8qDKGx5SmMo5kAC9aWfo3sR7-f_ZPYWd49GmUjfYPDx7BNeoLIvv9brkL2_OzhXuMKG2un1SqEcK3y9bF34OLUl4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIvE4IN4YCpiXOC2xdx3v-oBQkhKltKoqRKucMPuESJUdmkRR_xq_jlk7dhMQ3HqzdlfW7jy_8Y5nAF5bQTOXppo4mTKS8EQRSakhmVYRlYpHpk6QPUxHx8mncXe8Bb-af2F8WmVjEytDbUrtv5F3GGWINBCfJB23Sos42h1-mP4kvoOUv2lt2mnUIrJvz5cYvs3e7-0ir99QOvz4ZTAiqw4DRKNRnpPMWvSROnPKGcW11KlghmGEpE3ElcYRpZhAxIBmPJXCRkxJF3PXZcplSkiG770CVzljmU8n5OOLYI9h7FdXMsLJqDNDHJGgfmQb_q9qE_C3M1jzhn9mal5fFFN5vpSnp2tucHgbbq3wa9irBe4ObNniLtxcq2p4D74etckypI9O0oSjdwiIOr2TQXgyMbYMB6X3mCHi5bC5PiC-c2jVrwLXy8KEB-WS9Cdz8hnBcNhbu2a_D8eXQuQHsF2UhX0EoUykxBiVRwnDx66QRhsXRQalilrtZAAvG-Lm07paR45RjudA3nIggL4ne7vAF9iuBsqz7_lKX3PHDU2E1FZluNXYSpvEvlK9QYRqEOIG8NYzLfdmAImDp6r_ZsB9-oJaeU9gKIlgS-DKnYav-co-zPILaQ7gRTuNmu2va2Rhy0W1JuHepkYBPKzFoN0zhuE4LXgAYkNANg61OVNMflTVw2NKMxFHIoBXrSz9m1iP_7_753ANtTA_2DvcfwI3qO-N7D99ix3Ynp8t7FMEbHP1rNKMEL5dtir-BkcwVqE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdQ9wA8jG8WGCh8SDy5cWwncZ5QWjFVCE0TotN4IfInVExJtaVM8NdzTtIoHUJC4i2Nr5Edn-_3u_jujNBrK2ju0lRjJ1OGecYVlpQanGtFqFQZMV2A7HG6WPL3Z8nZKIvfh1WCK75qjbTPwsKAYCSiCfyIQL_yaG3c2x_9tyTAvhjMKfUZfHtpAmx8gvaWxyfF5zapqP93V1CIgXcfXQKcc_-YHRhqq_X_aZNHoHQ9YPLmplrLn1fy_HyERkd3kNyOowtC-T7dNGqqf10r8fg_A72L9nuqGhadbt1DN2x1H90eFTB8gL6cDHExeAZ4aMLFFLhPVJzOw9OVsXU4rz04hkCNw-1OAfaHhLZHU4C8rEz4ob7Cs1WDPwLvDYvRjvpDtDx692m-wP2JDVgDyDU4txY4h86dckZlWupUMMPA49SGZErDHaWYAAYGsJhKYQlT0sWZS5hyuRKSPUKTqq7sAQollxLc0YxwBpeJkEYbR4gBBaJWOxmgl9sJLNddYY4SHBo_y-UwywGa-akdBHwt7fZGffG17Jdm6TJDuZDaqhy6GltpeeyL0hsgowbYbIDeeMUo_YqHlwOj6hIXoJ--dlZZCPAagVcJkDzc6k7Zm4LLklEGFBmINQ_Qi6EZFrHfmZGVrTetDM-8-SQBetyp2tBn8LihWWQBEjtKuDOo3ZZq9a0tFB5TmouYiAC9GvT17y_ryT9JPUW3qD8C2X_hFodo0lxs7DPgZY163i-93_VpMdk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perception-Based+H.264%2FAVC+Video+Coding+for+Resource-Constrained+and+Low-Bit-Rate+Applications&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kau%2C+Lih-Jen&rft.au=Tseng%2C+Chin-Kun&rft.au=Lee%2C+Ming-Xian&rft.date=2025-07-08&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=25&rft.issue=14&rft_id=info:doi/10.3390%2Fs25144259&rft.externalDocID=PMC12298108
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon