Perception-Based H.264/AVC Video Coding for Resource-Constrained and Low-Bit-Rate Applications
With the rapid expansion of Internet of Things (IoT) and edge computing applications, efficient video transmission under constrained bandwidth and limited computational resources has become increasingly critical. In such environments, perception-based video coding plays a vital role in maintaining a...
        Saved in:
      
    
          | Published in | Sensors (Basel, Switzerland) Vol. 25; no. 14; p. 4259 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Switzerland
          MDPI AG
    
        08.07.2025
     MDPI  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1424-8220 1424-8220  | 
| DOI | 10.3390/s25144259 | 
Cover
| Abstract | With the rapid expansion of Internet of Things (IoT) and edge computing applications, efficient video transmission under constrained bandwidth and limited computational resources has become increasingly critical. In such environments, perception-based video coding plays a vital role in maintaining acceptable visual quality while minimizing bit rate and processing overhead. Although newer video coding standards have emerged, H.264/AVC remains the dominant compression format in many deployed systems, particularly in commercial CCTV surveillance, due to its compatibility, stability, and widespread hardware support. Motivated by these practical demands, this paper proposes a perception-based video coding algorithm specifically tailored for low-bit-rate H.264/AVC applications. By targeting regions most relevant to the human visual system, the proposed method enhances perceptual quality while optimizing resource usage, making it particularly suitable for embedded systems and bandwidth-limited communication channels. In general, regions containing human faces and those exhibiting significant motion are of primary importance for human perception and should receive higher bit allocation to preserve visual quality. To this end, macroblocks (MBs) containing human faces are detected using the Viola–Jones algorithm, which leverages AdaBoost for feature selection and a cascade of classifiers for fast and accurate detection. This approach is favored over deep learning-based models due to its low computational complexity and real-time capability, making it ideal for latency- and resource-constrained IoT and edge environments. Motion-intensive macroblocks were identified by comparing their motion intensity against the average motion level of preceding reference frames. Based on these criteria, a dynamic quantization parameter (QP) adjustment strategy was applied to assign finer quantization to perceptually important regions of interest (ROIs) in low-bit-rate scenarios. The experimental results show that the proposed method achieves superior subjective visual quality and objective Peak Signal-to-Noise Ratio (PSNR) compared to the standard JM software and other state-of-the-art algorithms under the same bit rate constraints. Moreover, the approach introduces only a marginal increase in computational complexity, highlighting its efficiency. Overall, the proposed algorithm offers an effective balance between visual quality and computational performance, making it well suited for video transmission in bandwidth-constrained, resource-limited IoT and edge computing environments. | 
    
|---|---|
| AbstractList | With the rapid expansion of Internet of Things (IoT) and edge computing applications, efficient video transmission under constrained bandwidth and limited computational resources has become increasingly critical. In such environments, perception-based video coding plays a vital role in maintaining acceptable visual quality while minimizing bit rate and processing overhead. Although newer video coding standards have emerged, H.264/AVC remains the dominant compression format in many deployed systems, particularly in commercial CCTV surveillance, due to its compatibility, stability, and widespread hardware support. Motivated by these practical demands, this paper proposes a perception-based video coding algorithm specifically tailored for low-bit-rate H.264/AVC applications. By targeting regions most relevant to the human visual system, the proposed method enhances perceptual quality while optimizing resource usage, making it particularly suitable for embedded systems and bandwidth-limited communication channels. In general, regions containing human faces and those exhibiting significant motion are of primary importance for human perception and should receive higher bit allocation to preserve visual quality. To this end, macroblocks (MBs) containing human faces are detected using the Viola–Jones algorithm, which leverages AdaBoost for feature selection and a cascade of classifiers for fast and accurate detection. This approach is favored over deep learning-based models due to its low computational complexity and real-time capability, making it ideal for latency- and resource-constrained IoT and edge environments. Motion-intensive macroblocks were identified by comparing their motion intensity against the average motion level of preceding reference frames. Based on these criteria, a dynamic quantization parameter (QP) adjustment strategy was applied to assign finer quantization to perceptually important regions of interest (ROIs) in low-bit-rate scenarios. The experimental results show that the proposed method achieves superior subjective visual quality and objective Peak Signal-to-Noise Ratio (PSNR) compared to the standard JM software and other state-of-the-art algorithms under the same bit rate constraints. Moreover, the approach introduces only a marginal increase in computational complexity, highlighting its efficiency. Overall, the proposed algorithm offers an effective balance between visual quality and computational performance, making it well suited for video transmission in bandwidth-constrained, resource-limited IoT and edge computing environments. With the rapid expansion of Internet of Things (IoT) and edge computing applications, efficient video transmission under constrained bandwidth and limited computational resources has become increasingly critical. In such environments, perception-based video coding plays a vital role in maintaining acceptable visual quality while minimizing bit rate and processing overhead. Although newer video coding standards have emerged, H.264/AVC remains the dominant compression format in many deployed systems, particularly in commercial CCTV surveillance, due to its compatibility, stability, and widespread hardware support. Motivated by these practical demands, this paper proposes a perception-based video coding algorithm specifically tailored for low-bit-rate H.264/AVC applications. By targeting regions most relevant to the human visual system, the proposed method enhances perceptual quality while optimizing resource usage, making it particularly suitable for embedded systems and bandwidth-limited communication channels. In general, regions containing human faces and those exhibiting significant motion are of primary importance for human perception and should receive higher bit allocation to preserve visual quality. To this end, macroblocks (MBs) containing human faces are detected using the Viola-Jones algorithm, which leverages AdaBoost for feature selection and a cascade of classifiers for fast and accurate detection. This approach is favored over deep learning-based models due to its low computational complexity and real-time capability, making it ideal for latency- and resource-constrained IoT and edge environments. Motion-intensive macroblocks were identified by comparing their motion intensity against the average motion level of preceding reference frames. Based on these criteria, a dynamic quantization parameter (QP) adjustment strategy was applied to assign finer quantization to perceptually important regions of interest (ROIs) in low-bit-rate scenarios. The experimental results show that the proposed method achieves superior subjective visual quality and objective Peak Signal-to-Noise Ratio (PSNR) compared to the standard JM software and other state-of-the-art algorithms under the same bit rate constraints. Moreover, the approach introduces only a marginal increase in computational complexity, highlighting its efficiency. Overall, the proposed algorithm offers an effective balance between visual quality and computational performance, making it well suited for video transmission in bandwidth-constrained, resource-limited IoT and edge computing environments.With the rapid expansion of Internet of Things (IoT) and edge computing applications, efficient video transmission under constrained bandwidth and limited computational resources has become increasingly critical. In such environments, perception-based video coding plays a vital role in maintaining acceptable visual quality while minimizing bit rate and processing overhead. Although newer video coding standards have emerged, H.264/AVC remains the dominant compression format in many deployed systems, particularly in commercial CCTV surveillance, due to its compatibility, stability, and widespread hardware support. Motivated by these practical demands, this paper proposes a perception-based video coding algorithm specifically tailored for low-bit-rate H.264/AVC applications. By targeting regions most relevant to the human visual system, the proposed method enhances perceptual quality while optimizing resource usage, making it particularly suitable for embedded systems and bandwidth-limited communication channels. In general, regions containing human faces and those exhibiting significant motion are of primary importance for human perception and should receive higher bit allocation to preserve visual quality. To this end, macroblocks (MBs) containing human faces are detected using the Viola-Jones algorithm, which leverages AdaBoost for feature selection and a cascade of classifiers for fast and accurate detection. This approach is favored over deep learning-based models due to its low computational complexity and real-time capability, making it ideal for latency- and resource-constrained IoT and edge environments. Motion-intensive macroblocks were identified by comparing their motion intensity against the average motion level of preceding reference frames. Based on these criteria, a dynamic quantization parameter (QP) adjustment strategy was applied to assign finer quantization to perceptually important regions of interest (ROIs) in low-bit-rate scenarios. The experimental results show that the proposed method achieves superior subjective visual quality and objective Peak Signal-to-Noise Ratio (PSNR) compared to the standard JM software and other state-of-the-art algorithms under the same bit rate constraints. Moreover, the approach introduces only a marginal increase in computational complexity, highlighting its efficiency. Overall, the proposed algorithm offers an effective balance between visual quality and computational performance, making it well suited for video transmission in bandwidth-constrained, resource-limited IoT and edge computing environments.  | 
    
| Audience | Academic | 
    
| Author | Kau, Lih-Jen Lee, Ming-Xian Tseng, Chin-Kun  | 
    
| AuthorAffiliation | 3 National Defense Medical Center, Taipei 114201, Taiwan 1 Department of Electronic Engineering, National Taipei University of Technology, Taipei 106344, Taiwan; tsengchinkun@gmail.com (C.-K.T.); jackeyjay2002@yahoo.com.tw (M.-X.L.) 2 Tri-Service General Hospital Songshan Branch, Taipei 105309, Taiwan  | 
    
| AuthorAffiliation_xml | – name: 1 Department of Electronic Engineering, National Taipei University of Technology, Taipei 106344, Taiwan; tsengchinkun@gmail.com (C.-K.T.); jackeyjay2002@yahoo.com.tw (M.-X.L.) – name: 3 National Defense Medical Center, Taipei 114201, Taiwan – name: 2 Tri-Service General Hospital Songshan Branch, Taipei 105309, Taiwan  | 
    
| Author_xml | – sequence: 1 givenname: Lih-Jen orcidid: 0000-0001-8115-3751 surname: Kau fullname: Kau, Lih-Jen – sequence: 2 givenname: Chin-Kun surname: Tseng fullname: Tseng, Chin-Kun – sequence: 3 givenname: Ming-Xian surname: Lee fullname: Lee, Ming-Xian  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40732387$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kk1v1DAQhiNURD_gwB9AkbgAUrb-SmKf0HYFtNJKoAp6xJrY48WrrB3iLFX_PV62rFoOnGzNPHpn5p05LY5CDFgULymZca7IeWI1FYLV6klxQgUTlWSMHD34HxenKa0JYZxz-aw4FqTljMv2pPj-BUeDw-RjqC4goS0vZ6wR5_ObRXnjLcZyEa0Pq9LFsbzGFLcZrxYxpGkEHzIPwZbLeFtd-Km6hgnL-TD03sBOMj0vnjroE764f8-Kbx8_fF1cVsvPn64W82VlREunSiES0hrlOme71oBpJLdciMZY0nYmR7qOSyEooawBiYR34Gjrat451UngZ8XVXtdGWOth9BsY73QEr_8E4rjSME7e9Khda5mQYLBTuQJFQEGV4MTKmtq6rbPWu73WNgxwdwt9fxCkRO8M1wfDM_x-Dw_bboPWYMi-9I86eJwJ_odexV-aMqYkJTIrvLlXGOPPLaZJb3wy2PcQMG6TzosSLcnFSEZf_4Ou8z5CNnZHcdbQhopMzfbUCvK4PriYC2dPweLGm3w5zuf4XAqlqCJyN_CrhzMcmv97JRl4uwfMGFMa0f3HkN-D3cmn | 
    
| Cites_doi | 10.1109/TCSVT.2007.913754 10.1109/JSTSP.2012.2215006 10.1109/TCSVT.2013.2240919 10.1109/TCSVT.2003.815165 10.1016/j.neucom.2017.08.054 10.1109/TBC.2020.3028340 10.1109/FG.2017.82 10.1016/j.neucom.2019.10.087 10.1109/MSP.2003.1184336 10.1109/MWSCAS.2015.7282138 10.1109/TCSVT.2009.2022822 10.1109/ICCV.2017.522 10.1109/JPROC.2013.2262911 10.1023/B:VISI.0000013087.49260.fb 10.1109/TCSVT.2011.2133530 10.23919/APSIPA.2018.8659729 10.1109/VCIP47243.2019.8965753 10.1109/ICIP.2002.1038171 10.1109/TCSVT.2003.816505 10.1049/ipr2.12826 10.1016/j.neucom.2020.06.003 10.1109/JPROC.2004.839620 10.1109/TBC.2023.3268946 10.1109/MCAS.2004.1286980 10.1109/ACCESS.2019.2948709 10.1109/TCSVT.2011.2129890 10.1109/JPROC.2013.2265801 10.1109/ICME.2010.5583354 10.1007/11556121_63 10.1006/inco.1995.1136 10.1109/JSTSP.2011.2165199 10.1109/TBC.2012.2220414 10.1109/LSP.2016.2603342 10.1186/1687-6180-2013-112 10.1006/jcss.1997.1504 10.1109/TCSVT.2012.2199398  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025  | 
    
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025  | 
    
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/s25144259 | 
    
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database (ProQuest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1424-8220 | 
    
| ExternalDocumentID | oai_doaj_org_article_f7d248aceb93441eae419430d851d575 10.3390/s25144259 PMC12298108 A849919085 40732387 10_3390_s25144259  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | New York | 
    
| GeographicLocations_xml | – name: New York | 
    
| GrantInformation_xml | – fundername: National Science and Technology Council, Taiwan grantid: NSTC 113-2221-E-027-082  | 
    
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c471t-9ee007c9fbfdb7cac683d3446cd07bc7cabb384410126a8e03baf17f53bf9b8a3 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1424-8220 | 
    
| IngestDate | Fri Oct 03 12:51:56 EDT 2025 Sun Oct 26 04:15:31 EDT 2025 Tue Sep 30 17:02:16 EDT 2025 Thu Oct 02 22:14:04 EDT 2025 Tue Oct 07 07:20:12 EDT 2025 Mon Oct 20 16:54:29 EDT 2025 Sun Aug 03 01:53:25 EDT 2025 Thu Oct 16 04:25:48 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 14 | 
    
| Keywords | motion intensity Region of Interest (ROI) AdaBoost classifier quantization parameter (QP) H.264/AVC face detection  | 
    
| Language | English | 
    
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c471t-9ee007c9fbfdb7cac683d3446cd07bc7cabb384410126a8e03baf17f53bf9b8a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-8115-3751 | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25144259 | 
    
| PMID | 40732387 | 
    
| PQID | 3233261614 | 
    
| PQPubID | 2032333 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f7d248aceb93441eae419430d851d575 unpaywall_primary_10_3390_s25144259 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12298108 proquest_miscellaneous_3234704250 proquest_journals_3233261614 gale_infotracacademiconefile_A849919085 pubmed_primary_40732387 crossref_primary_10_3390_s25144259  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-07-08 | 
    
| PublicationDateYYYYMMDD | 2025-07-08 | 
    
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-08 day: 08  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland – name: Basel  | 
    
| PublicationTitle | Sensors (Basel, Switzerland) | 
    
| PublicationTitleAlternate | Sensors (Basel) | 
    
| PublicationYear | 2025 | 
    
| Publisher | MDPI AG MDPI  | 
    
| Publisher_xml | – name: MDPI AG – name: MDPI  | 
    
| References | Ostermann (ref_13) 2004; 4 Huang (ref_27) 2013; 2013 Zhao (ref_6) 2023; 69 Bi (ref_7) 2023; 17 ref_14 ref_36 Vetro (ref_16) 2003; 20 Lee (ref_26) 2011; 5 Viola (ref_41) 2004; 57 ref_11 ref_33 ref_10 Wu (ref_18) 2013; 101 ref_32 Zhang (ref_38) 2020; 380 Hu (ref_21) 2012; 22 Li (ref_4) 2021; 67 Sun (ref_3) 2020; 411 Luo (ref_23) 2013; 23 Freund (ref_34) 1997; 55 Ou (ref_24) 2011; 21 Yeh (ref_28) 2013; 59 Lee (ref_17) 2012; 6 ref_37 Xiong (ref_25) 2011; 21 Zhang (ref_35) 2016; 23 Freund (ref_39) 1995; 121 Liu (ref_20) 2008; 18 Viola (ref_40) 2001; Volume 1 ref_47 Lienhart (ref_42) 2002; Volume 1 ref_46 ref_45 ref_22 ref_44 ref_43 Zhu (ref_2) 2018; 275 Wiegand (ref_12) 2003; 13 Niebur (ref_19) 2013; 101 Liu (ref_8) 2019; 7 ref_1 ref_29 Chi (ref_30) 2009; 19 ref_9 Xin (ref_15) 2005; 93 ref_5 Lin (ref_31) 2003; 13  | 
    
| References_xml | – ident: ref_9 – volume: 18 start-page: 134 year: 2008 ident: ref_20 article-title: Region-of-Interest Based Resource Allocation for Conversational Video Communication of H.264/AVC publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2007.913754 – ident: ref_32 – volume: 6 start-page: 684 year: 2012 ident: ref_17 article-title: Perceptual Video Compression: A Survey publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2012.2215006 – volume: 23 start-page: 935 year: 2013 ident: ref_23 article-title: H.264/Advanced Video Control Perceptual Optimization Coding Based on JND-Directed Coefficient Suppression publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2013.2240919 – ident: ref_47 – ident: ref_11 – volume: 13 start-page: 560 year: 2003 ident: ref_12 article-title: Overview of the H.264/AVC Video Coding Standard publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2003.815165 – volume: 275 start-page: 511 year: 2018 ident: ref_2 article-title: Spatiotemporal Visual Saliency Guided Perceptual High Efficiency Video Coding with Neural Network publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.08.054 – volume: 67 start-page: 159 year: 2021 ident: ref_4 article-title: A Bit Allocation Method Based on Inter-View Dependency and Spatio-Temporal Correlation for Multi-View Texture Video Coding publication-title: IEEE Trans. Broadcast. doi: 10.1109/TBC.2020.3028340 – ident: ref_36 doi: 10.1109/FG.2017.82 – volume: 380 start-page: 180 year: 2020 ident: ref_38 article-title: Feature Agglomeration Networks for Single Stage Face Detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.087 – volume: 20 start-page: 18 year: 2003 ident: ref_16 article-title: Video Transcoding Architectures and Techniques: An Overview publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2003.1184336 – ident: ref_33 doi: 10.1109/MWSCAS.2015.7282138 – ident: ref_14 – volume: 19 start-page: 1025 year: 2009 ident: ref_30 article-title: Robust Region-of-Interest Determination Based on User Attention Model Through Visual Rhythm Analysis publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2009.2022822 – ident: ref_44 – ident: ref_37 doi: 10.1109/ICCV.2017.522 – volume: 101 start-page: 2025 year: 2013 ident: ref_18 article-title: Perceptual Visual Signal Compression and Transmission publication-title: Proc. IEEE doi: 10.1109/JPROC.2013.2262911 – volume: 57 start-page: 137 year: 2004 ident: ref_41 article-title: Robust Real-Time Face Detection publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000013087.49260.fb – volume: 21 start-page: 917 year: 2011 ident: ref_25 article-title: Face Region Based Conversational Video Coding publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2011.2133530 – ident: ref_1 doi: 10.23919/APSIPA.2018.8659729 – ident: ref_5 doi: 10.1109/VCIP47243.2019.8965753 – volume: Volume 1 start-page: 900 year: 2002 ident: ref_42 article-title: An Extended Set of Haar-Like Features for Rapid Object Detection publication-title: Proceedings of the International Conference on Image Processing doi: 10.1109/ICIP.2002.1038171 – volume: 13 start-page: 982 year: 2003 ident: ref_31 article-title: Dynamic Region of Interest Transcoding for Multipoint Video Conferencing publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2003.816505 – volume: 17 start-page: 2764 year: 2023 ident: ref_7 article-title: Real-time Face Perception Based Encoding Strategy Optimization Method for UHD Videos publication-title: IET Image Process. doi: 10.1049/ipr2.12826 – volume: 411 start-page: 393 year: 2020 ident: ref_3 article-title: Content-aware Rate Control Scheme for HEVC Based on Static and Dynamic Saliency Detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.06.003 – volume: 93 start-page: 84 year: 2005 ident: ref_15 article-title: Digital Video Transcoding publication-title: Proc. IEEE doi: 10.1109/JPROC.2004.839620 – ident: ref_46 – volume: 69 start-page: 753 year: 2023 ident: ref_6 article-title: A High-Performance Rate Control Algorithm in Versatile Video Coding Based on Spatial and Temporal Feature Complexity publication-title: IEEE Trans. Broadcast. doi: 10.1109/TBC.2023.3268946 – ident: ref_10 – volume: 4 start-page: 7 year: 2004 ident: ref_13 article-title: Video Coding with H.264/AVC: Tools, Performance, and Complexity publication-title: IEEE Circuits Syst. Mag. doi: 10.1109/MCAS.2004.1286980 – volume: 7 start-page: 154959 year: 2019 ident: ref_8 article-title: Perception-Based CTU Level Bit Allocation for Intra High Efficiency Video Coding publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2948709 – volume: 21 start-page: 682 year: 2011 ident: ref_24 article-title: SSIM-Based Perceptual Rate Control for Video Coding publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2011.2129890 – volume: 101 start-page: 2058 year: 2013 ident: ref_19 article-title: Visual Attention and Applications in Multimedia Technologies publication-title: Proc. IEEE doi: 10.1109/JPROC.2013.2265801 – ident: ref_22 doi: 10.1109/ICME.2010.5583354 – ident: ref_29 doi: 10.1007/11556121_63 – volume: 121 start-page: 256 year: 1995 ident: ref_39 article-title: Boosting a Weak Learning Algorithm by Majority publication-title: Inf. Comput. doi: 10.1006/inco.1995.1136 – volume: 5 start-page: 1322 year: 2011 ident: ref_26 article-title: Subjective Quality Evaluation of Foveated Video Coding Using Audio-Visual Focus of Attention publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2011.2165199 – volume: 59 start-page: 38 year: 2013 ident: ref_28 article-title: Temporal Video Transcoding Based on Frame Complexity Analysis for Mobile Video Communication publication-title: IEEE Trans. Broadcast. doi: 10.1109/TBC.2012.2220414 – ident: ref_45 – ident: ref_43 – volume: Volume 1 start-page: 511 year: 2001 ident: ref_40 article-title: Rapid Object Detection Using a Boosted Cascade of Simple Features publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition – volume: 23 start-page: 1499 year: 2016 ident: ref_35 article-title: Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2016.2603342 – volume: 2013 start-page: 112 year: 2013 ident: ref_27 article-title: Region-of-Interest Determination and Bit-Rate Conversion for H.264 Video Transcoding publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/1687-6180-2013-112 – volume: 55 start-page: 119 year: 1997 ident: ref_34 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.1997.1504 – volume: 22 start-page: 1564 year: 2012 ident: ref_21 article-title: Region-Based Rate Control for H.264/AVC for Low Bit-Rate Applications publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2012.2199398  | 
    
| RelatedPersons | Jones, Michal | 
    
| RelatedPersons_xml | – fullname: Jones, Michal | 
    
| SSID | ssj0023338 | 
    
| Score | 2.461178 | 
    
| Snippet | With the rapid expansion of Internet of Things (IoT) and edge computing applications, efficient video transmission under constrained bandwidth and limited... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database  | 
    
| StartPage | 4259 | 
    
| SubjectTerms | AdaBoost classifier Algorithms Bandwidths Coding standards Control algorithms Deep learning Edge computing Embedded systems Evaluation face detection H.264/AVC Image coding Internet of Things Jones, Michal Literature reviews motion intensity Quality standards quantization parameter (QP) Real time Region of Interest (ROI) Streaming services Surveillance Technology application Video compression  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXoAD4k2gVOYhcTLrtb2xc9xdUa0qhBCiVU9YfoqVqqSiu6r494yTbJSlQlx6i2If7Jmxv28c5xuA91HzKpWlp8mWgkolHbWcB1p5x7h1ioXuguyXcnUqT85n56NSX_lOWCcP3BluklTgUlsfXSUQuqONcpolwwNShYBcI---TFe7ZKpPtQRmXp2OkMCkfnKFKC4xOqs99GlF-m9uxSMs-vue5N1tfWl_X9uLixEIHT-EBz17JPNu1I_gTqwfw_2RpuAT-PF1uKpCFwhRgaw-Ih2ZzM-W5GwdYkOWTcYrgmyV7A7vaa7b2VaLwP62DuRzc00X6w39hlSUzEcfuZ_C6fGn78sV7YsoUI-4s6FVjEgDfJVcCk5560stAlqy9IEp5_GNc0KjZRGpSqsjE86mqUoz4VLltBXP4KBu6vgCiJXWYoaomBT4ONM2-JAYC-hTHn2yBbzdGddcdloZBnOM7AEzeKCARTb70CHLW7cv0Ommd7r5n9ML-JCdZvIiROPgrLp_CXCcWc7KzDUmckh1NPY83PnV9KvzygiMD8wckZkU8GZoxnWVP5bYOjbbto9UeUdjBTzvwmAYMybB2KxVAXovQPYmtd9Sr3-22t1Tzis9ZbqAd0Ms_dtYL2_DWK_gHs9Fi_OZtD6Eg82vbXyNTGrjjtpF8wdckhv2 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB6V9AAcEM-yUNDykDiZbGxn13tAKIlaRQhFVUWrnliNXxCp2g1toop_z3hfJCC4rWwfvPPwfOPHNwBvneK5T1PDPKaCyUxqhpxblhudcNRZYpsLsot0fiY_XYwv9mDRvYUJ1yq7NbFeqG1lwh75UHBBSIPwify4-sFC1ahwutqV0MC2tIL9UFOM3YJ9HpixBrA_PVqcnPYpmKCMrOEXEpTsD68pukuy2nwnKtXk_X8v0Vsx6s_7k7c35Qp_3uDl5VZwOr4P91pUGU8aM3gAe658CHe3uAYfwdeT_goLm1LosvH8PcGU4eR8Fp8vraviWRXiWEwoNu429Vmo51lXkaDxWNr4c3XDpss1OyWIGk-2Dr8fw9nx0ZfZnLXFFZiheLRmuXMED0zutbc6M2hSJayg5NDYJNOGWrQWisASRbAUlUuERj_K_Fhon2uF4gkMyqp0TyFGiUjCzhIp6HOs0Brrk8SSrrkzHiN43Qm3WDUcGgXlHkEDRa-BCKZB7P2AQHtdN1RX34rWiwqfWS4VGqdzmurIoZOjwB9vCTdaAp4RvAtKK4JzknDor5o3BjTPQHNVTBQleASBFI087PRatF57Xfy2sQhe9d3kb-EQBUtXbeoxMgsrXRLBQWMG_ZwpOaZulUWgdgxk56d2e8rl95rTe8R5rkaJiuBNb0v_Ftaz_8_-OdzhoUxx2IVWhzBYX23cC8JOa_2ydYhflgsaIQ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdQ9wA8jG8WGCh8SDy5cWwncZ5QWjFVCE0TotN4IfInVExJtaVM8NdzTtIoHUJC4i2Nr5Edn-_3u_jujNBrK2ju0lRjJ1OGecYVlpQanGtFqFQZMV2A7HG6WPL3Z8nZKIvfh1WCK75qjbTPwsKAYCSiCfyIQL_yaG3c2x_9tyTAvhjMKfUZfHtpAmx8gvaWxyfF5zapqP93V1CIgXcfXQKcc_-YHRhqq_X_aZNHoHQ9YPLmplrLn1fy_HyERkd3kNyOowtC-T7dNGqqf10r8fg_A72L9nuqGhadbt1DN2x1H90eFTB8gL6cDHExeAZ4aMLFFLhPVJzOw9OVsXU4rz04hkCNw-1OAfaHhLZHU4C8rEz4ob7Cs1WDPwLvDYvRjvpDtDx692m-wP2JDVgDyDU4txY4h86dckZlWupUMMPA49SGZErDHaWYAAYGsJhKYQlT0sWZS5hyuRKSPUKTqq7sAQollxLc0YxwBpeJkEYbR4gBBaJWOxmgl9sJLNddYY4SHBo_y-UwywGa-akdBHwt7fZGffG17Jdm6TJDuZDaqhy6GltpeeyL0hsgowbYbIDeeMUo_YqHlwOj6hIXoJ--dlZZCPAagVcJkDzc6k7Zm4LLklEGFBmINQ_Qi6EZFrHfmZGVrTetDM-8-SQBetyp2tBn8LihWWQBEjtKuDOo3ZZq9a0tFB5TmouYiAC9GvT17y_ryT9JPUW3qD8C2X_hFodo0lxs7DPgZY163i-93_VpMdk priority: 102 providerName: Unpaywall  | 
    
| Title | Perception-Based H.264/AVC Video Coding for Resource-Constrained and Low-Bit-Rate Applications | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40732387 https://www.proquest.com/docview/3233261614 https://www.proquest.com/docview/3234704250 https://pubmed.ncbi.nlm.nih.gov/PMC12298108 https://www.mdpi.com/1424-8220/25/14/4259/pdf?version=1751990209 https://doaj.org/article/f7d248aceb93441eae419430d851d575  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 25 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central Full-text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7t4wAcEM8lsFThIXHybhK7sXNAKK22VAiqakVX5ULkV6BSlSzdVsv-e8ZJEzU8LlyiyB4pzsw48322MwPw2oooyeNYk1zGlDDOFJFRZEiiVRBJxQNTH5CdxOMZ-zDvz_egqbG5VeDVX6mdqyc1Wy1Pfv64eYcT_q1jnEjZT68wRjP0vWQfDjFAJa6CwyfWbiZEFGlYnVSoK94JRVXG_j-_yzuB6fdDk7c2xaW8uZbL5U5EGt2Du1so6ae17e_Dni0ewJ2dBIMP4eu0PbdCBhivjD8-QWxyml4M_YuFsaU_LF3w8hG6-s1KPnFFPKvSESgvC-N_LK_JYLEm54hL_XRnx_sRzEZnn4djsq2oQDQGoTVJrEVMoJNc5UZxLXUsqKHICLUJuNLYohQViJAwbMVS2IAqmYc871OVJ0pI-hgOirKwT8CXTEqkizxgFG_7Qhpt8iAwaODI6lx68LJRbnZZJ87IkHA4C2StBTwYOLW3Ai7XddVQrr5l26mT5dxETEhtVYJDDa20LHRJ4w2CRYNo04M3zmiZ8xFUDr5V_WMBjtPltspSgawOcY9AyePGrlnjaRlF_0AaiTDFgxdtN04yt3MiC1tuKhnG3ect8OCodoN2zMiIsVtwD0THQTov1e0pFt-rRN5hFCUiDIQHr1pf-reynv7_A57B7cjVLXbL0uIYDtarjX2OYGqterDP5xyvYvS-B4eDs8n0vFctTPSqSYRts8k0_fILJwMm9w | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4a42HwgLgTGBBu4sk0sd3YeUCoLUwdKxNC29Qngm-BSlNS1lbV_hS_keOkyVoQvO0tsq3IPtfv-HIOwEsnaZoniSG5ShjhgmuiKLUkNTqiSovI1hdkD5PhMf847o634FfzFsZfq2xsYmWobWn8HnmHUYZIA_EJfzf9SXzVKH-62pTQqMXiwJ0vMWSbvd1_j_x9Reneh6PBkKyqChCDhnhOUufQL5o017nVwiiTSGYZRkXGRkIbbNGaSUQJaLoTJV3EtMpjkXeZzlMtFcP_XoGrnKEtQf0R44sAj2G8V2cvYiyNOjPEDhx1It3weVVpgL8dwJoH_PN25s6imKrzpTo9XXN9ezfhxgqzhr1ayG7Blituw_W1TIZ34Ovn9oIM6aNjtOHwDYKgTu9kEJ5MrCvDQem9ZIgYOWyODIivFlrVqMDxqrDhqFyS_mROviAADntrR-t34fhSiHwPtouycA8gVFwpjEtFxBl-dqWyxuZRZFGSqDO5CuB5Q9xsWmfoyDCy8RzIWg4E0Pdkbwf4pNpVQ3n2PVvpaJYLS7lUxukUpxo75Xjss9NbRKUWYW0Arz3TMq_6SBxcVf2CAefpk2hlPYnhIwIsiSN3G75mK5swyy4kOIBnbTdqsz-iUYUrF9UYLrwdjQK4X4tBO2cMvbFbigDkhoBsLGqzp5j8qDKGx5SmMo5kAC9aWfo3sR7-f_ZPYWd49GmUjfYPDx7BNeoLIvv9brkL2_OzhXuMKG2un1SqEcK3y9bF34OLUl4 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIvE4IN4YCpiXOC2xdx3v-oBQkhKltKoqRKucMPuESJUdmkRR_xq_jlk7dhMQ3HqzdlfW7jy_8Y5nAF5bQTOXppo4mTKS8EQRSakhmVYRlYpHpk6QPUxHx8mncXe8Bb-af2F8WmVjEytDbUrtv5F3GGWINBCfJB23Sos42h1-mP4kvoOUv2lt2mnUIrJvz5cYvs3e7-0ir99QOvz4ZTAiqw4DRKNRnpPMWvSROnPKGcW11KlghmGEpE3ElcYRpZhAxIBmPJXCRkxJF3PXZcplSkiG770CVzljmU8n5OOLYI9h7FdXMsLJqDNDHJGgfmQb_q9qE_C3M1jzhn9mal5fFFN5vpSnp2tucHgbbq3wa9irBe4ObNniLtxcq2p4D74etckypI9O0oSjdwiIOr2TQXgyMbYMB6X3mCHi5bC5PiC-c2jVrwLXy8KEB-WS9Cdz8hnBcNhbu2a_D8eXQuQHsF2UhX0EoUykxBiVRwnDx66QRhsXRQalilrtZAAvG-Lm07paR45RjudA3nIggL4ne7vAF9iuBsqz7_lKX3PHDU2E1FZluNXYSpvEvlK9QYRqEOIG8NYzLfdmAImDp6r_ZsB9-oJaeU9gKIlgS-DKnYav-co-zPILaQ7gRTuNmu2va2Rhy0W1JuHepkYBPKzFoN0zhuE4LXgAYkNANg61OVNMflTVw2NKMxFHIoBXrSz9m1iP_7_753ANtTA_2DvcfwI3qO-N7D99ix3Ynp8t7FMEbHP1rNKMEL5dtir-BkcwVqE | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdQ9wA8jG8WGCh8SDy5cWwncZ5QWjFVCE0TotN4IfInVExJtaVM8NdzTtIoHUJC4i2Nr5Edn-_3u_jujNBrK2ju0lRjJ1OGecYVlpQanGtFqFQZMV2A7HG6WPL3Z8nZKIvfh1WCK75qjbTPwsKAYCSiCfyIQL_yaG3c2x_9tyTAvhjMKfUZfHtpAmx8gvaWxyfF5zapqP93V1CIgXcfXQKcc_-YHRhqq_X_aZNHoHQ9YPLmplrLn1fy_HyERkd3kNyOowtC-T7dNGqqf10r8fg_A72L9nuqGhadbt1DN2x1H90eFTB8gL6cDHExeAZ4aMLFFLhPVJzOw9OVsXU4rz04hkCNw-1OAfaHhLZHU4C8rEz4ob7Cs1WDPwLvDYvRjvpDtDx692m-wP2JDVgDyDU4txY4h86dckZlWupUMMPA49SGZErDHaWYAAYGsJhKYQlT0sWZS5hyuRKSPUKTqq7sAQollxLc0YxwBpeJkEYbR4gBBaJWOxmgl9sJLNddYY4SHBo_y-UwywGa-akdBHwt7fZGffG17Jdm6TJDuZDaqhy6GltpeeyL0hsgowbYbIDeeMUo_YqHlwOj6hIXoJ--dlZZCPAagVcJkDzc6k7Zm4LLklEGFBmINQ_Qi6EZFrHfmZGVrTetDM-8-SQBetyp2tBn8LihWWQBEjtKuDOo3ZZq9a0tFB5TmouYiAC9GvT17y_ryT9JPUW3qD8C2X_hFodo0lxs7DPgZY163i-93_VpMdk | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perception-Based+H.264%2FAVC+Video+Coding+for+Resource-Constrained+and+Low-Bit-Rate+Applications&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kau%2C+Lih-Jen&rft.au=Tseng%2C+Chin-Kun&rft.au=Lee%2C+Ming-Xian&rft.date=2025-07-08&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=25&rft.issue=14&rft_id=info:doi/10.3390%2Fs25144259&rft.externalDocID=PMC12298108 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |