Hydrogen Sulfide Promotes Nodulation and Nitrogen Fixation in Soybean–Rhizobia Symbiotic System

The rhizobium–legume symbiotic system is crucial for nitrogen cycle balance in agriculture. Hydrogen sulfide (H 2 S), a gaseous signaling molecule, may regulate various physiological processes in plants. However, whether H 2 S has regulatory effect in this symbiotic system remains unknown. Herein, w...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant-microbe interactions Vol. 32; no. 8; pp. 972 - 985
Main Authors Zou, Hang, Zhang, Ni-Na, Pan, Qing, Zhang, Jian-Hua, Chen, Juan, Wei, Ge-Hong
Format Journal Article
LanguageEnglish
Published United States American Phytopathological Society 01.08.2019
Subjects
Online AccessGet full text
ISSN0894-0282
1943-7706
DOI10.1094/MPMI-01-19-0003-R

Cover

Abstract The rhizobium–legume symbiotic system is crucial for nitrogen cycle balance in agriculture. Hydrogen sulfide (H 2 S), a gaseous signaling molecule, may regulate various physiological processes in plants. However, whether H 2 S has regulatory effect in this symbiotic system remains unknown. Herein, we investigated the possible role of H 2 S in the symbiosis between soybean (Glycine max) and rhizobium (Sinorhizobium fredii). Our results demonstrated that an exogenous H 2 S donor (sodium hydrosulfide [NaHS]) treatment promoted soybean growth, nodulation, and nitrogenase (Nase) activity. Western blotting analysis revealed that the abundance of Nase component nifH was increased by NaHS treatment in nodules. Quantitative real-time polymerase chain reaction data showed that NaHS treatment upregulated the expressions of symbiosis-related genes nodA, nodC, and nodD of S. fredii. In addition, expression of soybean nodulation marker genes, including early nodulin 40 (GmENOD40), ERF required for nodulation (GmERN), nodulation signaling pathway 2b (GmNSP2b), and nodulation inception genes (GmNIN1a, GmNIN2a, and GmNIN2b), were upregulated. Moreover, the expressions of glutamate synthase (GmGOGAT), asparagine synthase (GmAS), nitrite reductase (GmNiR), ammonia transporter (GmSAT1), leghemoglobin (GmLb), and nifH involved in nitrogen metabolism were upregulated in NaHS-treated soybean roots and nodules. Together, our results suggested that H 2 S may act as a positive signaling molecule in the soybean–rhizobia symbiotic system and enhance the system’s nitrogen fixation ability.
AbstractList The rhizobium–legume symbiotic system is crucial for nitrogen cycle balance in agriculture. Hydrogen sulfide (H 2 S), a gaseous signaling molecule, may regulate various physiological processes in plants. However, whether H 2 S has regulatory effect in this symbiotic system remains unknown. Herein, we investigated the possible role of H 2 S in the symbiosis between soybean (Glycine max) and rhizobium (Sinorhizobium fredii). Our results demonstrated that an exogenous H 2 S donor (sodium hydrosulfide [NaHS]) treatment promoted soybean growth, nodulation, and nitrogenase (Nase) activity. Western blotting analysis revealed that the abundance of Nase component nifH was increased by NaHS treatment in nodules. Quantitative real-time polymerase chain reaction data showed that NaHS treatment upregulated the expressions of symbiosis-related genes nodA, nodC, and nodD of S. fredii. In addition, expression of soybean nodulation marker genes, including early nodulin 40 (GmENOD40), ERF required for nodulation (GmERN), nodulation signaling pathway 2b (GmNSP2b), and nodulation inception genes (GmNIN1a, GmNIN2a, and GmNIN2b), were upregulated. Moreover, the expressions of glutamate synthase (GmGOGAT), asparagine synthase (GmAS), nitrite reductase (GmNiR), ammonia transporter (GmSAT1), leghemoglobin (GmLb), and nifH involved in nitrogen metabolism were upregulated in NaHS-treated soybean roots and nodules. Together, our results suggested that H 2 S may act as a positive signaling molecule in the soybean–rhizobia symbiotic system and enhance the system’s nitrogen fixation ability.
The rhizobium-legume symbiotic system is crucial for nitrogen cycle balance in agriculture. Hydrogen sulfide (H2S), a gaseous signaling molecule, may regulate various physiological processes in plants. However, whether H2S has regulatory effect in this symbiotic system remains unknown. Herein, we investigated the possible role of H2S in the symbiosis between soybean (Glycine max) and rhizobium (Sinorhizobium fredii). Our results demonstrated that an exogenous H2S donor (sodium hydrosulfide [NaHS]) treatment promoted soybean growth, nodulation, and nitrogenase (Nase) activity. Western blotting analysis revealed that the abundance of Nase component nifH was increased by NaHS treatment in nodules. Quantitative real-time polymerase chain reaction data showed that NaHS treatment upregulated the expressions of symbiosis-related genes nodA, nodC, and nodD of S. fredii. In addition, expression of soybean nodulation marker genes, including early nodulin 40 (GmENOD40), ERF required for nodulation (GmERN), nodulation signaling pathway 2b (GmNSP2b), and nodulation inception genes (GmNIN1a, GmNIN2a, and GmNIN2b), were upregulated. Moreover, the expressions of glutamate synthase (GmGOGAT), asparagine synthase (GmAS), nitrite reductase (GmNiR), ammonia transporter (GmSAT1), leghemoglobin (GmLb), and nifH involved in nitrogen metabolism were upregulated in NaHS-treated soybean roots and nodules. Together, our results suggested that H2S may act as a positive signaling molecule in the soybean-rhizobia symbiotic system and enhance the system's nitrogen fixation ability.The rhizobium-legume symbiotic system is crucial for nitrogen cycle balance in agriculture. Hydrogen sulfide (H2S), a gaseous signaling molecule, may regulate various physiological processes in plants. However, whether H2S has regulatory effect in this symbiotic system remains unknown. Herein, we investigated the possible role of H2S in the symbiosis between soybean (Glycine max) and rhizobium (Sinorhizobium fredii). Our results demonstrated that an exogenous H2S donor (sodium hydrosulfide [NaHS]) treatment promoted soybean growth, nodulation, and nitrogenase (Nase) activity. Western blotting analysis revealed that the abundance of Nase component nifH was increased by NaHS treatment in nodules. Quantitative real-time polymerase chain reaction data showed that NaHS treatment upregulated the expressions of symbiosis-related genes nodA, nodC, and nodD of S. fredii. In addition, expression of soybean nodulation marker genes, including early nodulin 40 (GmENOD40), ERF required for nodulation (GmERN), nodulation signaling pathway 2b (GmNSP2b), and nodulation inception genes (GmNIN1a, GmNIN2a, and GmNIN2b), were upregulated. Moreover, the expressions of glutamate synthase (GmGOGAT), asparagine synthase (GmAS), nitrite reductase (GmNiR), ammonia transporter (GmSAT1), leghemoglobin (GmLb), and nifH involved in nitrogen metabolism were upregulated in NaHS-treated soybean roots and nodules. Together, our results suggested that H2S may act as a positive signaling molecule in the soybean-rhizobia symbiotic system and enhance the system's nitrogen fixation ability.
The rhizobium–legume symbiotic system is crucial for nitrogen cycle balance in agriculture. Hydrogen sulfide (H₂S), a gaseous signaling molecule, may regulate various physiological processes in plants. However, whether H₂S has regulatory effect in this symbiotic system remains unknown. Herein, we investigated the possible role of H₂S in the symbiosis between soybean (Glycine max) and rhizobium (Sinorhizobium fredii). Our results demonstrated that an exogenous H₂S donor (sodium hydrosulfide [NaHS]) treatment promoted soybean growth, nodulation, and nitrogenase (Nase) activity. Western blotting analysis revealed that the abundance of Nase component nifH was increased by NaHS treatment in nodules. Quantitative real-time polymerase chain reaction data showed that NaHS treatment upregulated the expressions of symbiosis-related genes nodA, nodC, and nodD of S. fredii. In addition, expression of soybean nodulation marker genes, including early nodulin 40 (GmENOD40), ERF required for nodulation (GmERN), nodulation signaling pathway 2b (GmNSP2b), and nodulation inception genes (GmNIN1a, GmNIN2a, and GmNIN2b), were upregulated. Moreover, the expressions of glutamate synthase (GmGOGAT), asparagine synthase (GmAS), nitrite reductase (GmNiR), ammonia transporter (GmSAT1), leghemoglobin (GmLb), and nifH involved in nitrogen metabolism were upregulated in NaHS-treated soybean roots and nodules. Together, our results suggested that H₂S may act as a positive signaling molecule in the soybean–rhizobia symbiotic system and enhance the system’s nitrogen fixation ability.
The rhizobium–legume symbiotic system is crucial for nitrogen cycle balance in agriculture. Hydrogen sulfide (H2S), a gaseous signaling molecule, may regulate various physiological processes in plants. However, whether H2S has regulatory effect in this symbiotic system remains unknown. Herein, we investigated the possible role of H2S in the symbiosis between soybean (Glycine max) and rhizobium (Sinorhizobium fredii). Our results demonstrated that an exogenous H2S donor (sodium hydrosulfide [NaHS]) treatment promoted soybean growth, nodulation, and nitrogenase (Nase) activity. Western blotting analysis revealed that the abundance of Nase component nifH was increased by NaHS treatment in nodules. Quantitative real-time polymerase chain reaction data showed that NaHS treatment upregulated the expressions of symbiosis-related genes nodA, nodC, and nodD of S. fredii. In addition, expression of soybean nodulation marker genes, including early nodulin 40 (GmENOD40), ERF required for nodulation (GmERN), nodulation signaling pathway 2b (GmNSP2b), and nodulation inception genes (GmNIN1a, GmNIN2a, and GmNIN2b), were upregulated. Moreover, the expressions of glutamate synthase (GmGOGAT), asparagine synthase (GmAS), nitrite reductase (GmNiR), ammonia transporter (GmSAT1), leghemoglobin (GmLb), and nifH involved in nitrogen metabolism were upregulated in NaHS-treated soybean roots and nodules. Together, our results suggested that H2S may act as a positive signaling molecule in the soybean–rhizobia symbiotic system and enhance the system's nitrogen fixation ability.
The rhizobium-legume symbiotic system is crucial for nitrogen cycle balance in agriculture. Hydrogen sulfide (H S), a gaseous signaling molecule, may regulate various physiological processes in plants. However, whether H S has regulatory effect in this symbiotic system remains unknown. Herein, we investigated the possible role of H S in the symbiosis between soybean ( ) and rhizobium ( ). Our results demonstrated that an exogenous H S donor (sodium hydrosulfide [NaHS]) treatment promoted soybean growth, nodulation, and nitrogenase (Nase) activity. Western blotting analysis revealed that the abundance of Nase component nifH was increased by NaHS treatment in nodules. Quantitative real-time polymerase chain reaction data showed that NaHS treatment upregulated the expressions of symbiosis-related genes , , and of . In addition, expression of soybean nodulation marker genes, including early nodulin 40 ( ), ERF required for nodulation ( ), nodulation signaling pathway 2b ( ), and nodulation inception genes ( , , and ), were upregulated. Moreover, the expressions of glutamate synthase ( ), asparagine synthase ( ), nitrite reductase ( ), ammonia transporter ( ), leghemoglobin ( ), and involved in nitrogen metabolism were upregulated in NaHS-treated soybean roots and nodules. Together, our results suggested that H S may act as a positive signaling molecule in the soybean-rhizobia symbiotic system and enhance the system's nitrogen fixation ability.
Author Zou, Hang
Pan, Qing
Wei, Ge-Hong
Zhang, Jian-Hua
Zhang, Ni-Na
Chen, Juan
Author_xml – sequence: 1
  givenname: Hang
  surname: Zou
  fullname: Zou, Hang
  organization: State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, PR China
– sequence: 2
  givenname: Ni-Na
  surname: Zhang
  fullname: Zhang, Ni-Na
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
– sequence: 3
  givenname: Qing
  surname: Pan
  fullname: Pan, Qing
  organization: State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, PR China
– sequence: 4
  givenname: Jian-Hua
  surname: Zhang
  fullname: Zhang, Jian-Hua
  organization: School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong, Department of Biology, Hong Kong Baptist University, Hong Kong
– sequence: 5
  givenname: Juan
  orcidid: 0000-0001-8395-3314
  surname: Chen
  fullname: Chen, Juan
  organization: State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China, State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China, School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong
– sequence: 6
  givenname: Ge-Hong
  surname: Wei
  fullname: Wei, Ge-Hong
  organization: State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31204904$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFO3TAQRa2KqjxoP6CbKlI33bjM2E4cLysEBQkoerRry3Gc1iiJqe1IfV3xD_xhv6RJH3TBAjYzo9G5V5q5e2RnDKMj5C3CRwQlDs4vz08pIEVFAYDT9QuyQiU4lRKqHbKCWgkKrGa7ZC-lawBUVVm-IrscGQgFYkXMyaaN4bsbi6up73zrissYhpBdKi5CO_Um-zAWZmyLC5-34LH_td36WRQ2jTPjn9u79Q__OzTeFFebofEheztPKbvhNXnZmT65N_d9n3w7Pvp6eELPvnw-Pfx0Rq2QmKkyXBnbdLVgrbBWWNXMBRXY1lU4b3hdQudqUKA6BlLxipXG8kqKWjUt4_vkw9b3Joafk0tZDz5Z1_dmdGFKmnEoseQg8XmUVYIhYLW4vn-EXocpjvMhMyUlV8DLxfDdPTU1g2v1TfSDiRv98OcZwC1gY0gpuu4_gqCXLPWSpQbUqPSSpV7PGvlIY33-9_kcje-fUP4FUSOjog
CitedBy_id crossref_primary_10_1093_jxb_erab465
crossref_primary_10_1186_s12870_024_05402_z
crossref_primary_10_1016_j_plaphy_2023_03_006
crossref_primary_10_1016_j_envpol_2020_114744
crossref_primary_10_1016_j_plaphy_2020_08_020
crossref_primary_10_1111_nph_18434
crossref_primary_10_1111_pce_13736
crossref_primary_10_3390_agronomy12051109
crossref_primary_10_1111_plb_13417
crossref_primary_10_1111_pce_14531
crossref_primary_10_1111_pce_14431
crossref_primary_10_1007_s11738_022_03357_y
crossref_primary_10_1093_jxb_erab008
crossref_primary_10_3390_ijms23010214
crossref_primary_10_1007_s11104_020_04465_9
crossref_primary_10_3389_fpls_2022_997037
crossref_primary_10_1111_plb_13319
crossref_primary_10_1016_j_envpol_2025_125676
crossref_primary_10_3389_fpls_2020_576078
crossref_primary_10_3390_agronomy11020403
crossref_primary_10_1093_femsec_fiz155
crossref_primary_10_1016_j_ocsci_2020_03_005
crossref_primary_10_1093_jxb_erad436
crossref_primary_10_1002_jpln_202100121
crossref_primary_10_1016_j_jare_2020_03_011
crossref_primary_10_1016_j_jplph_2024_154315
crossref_primary_10_3390_agronomy13051332
crossref_primary_10_1007_s11104_023_05997_6
crossref_primary_10_1007_s11356_024_34356_w
crossref_primary_10_3390_antiox9020145
crossref_primary_10_1264_jsme2_ME23021
crossref_primary_10_1111_pce_14643
crossref_primary_10_1016_j_plaphy_2021_09_004
crossref_primary_10_1007_s11738_022_03404_8
crossref_primary_10_1093_plphys_kiae411
crossref_primary_10_3390_ijms23031024
Cites_doi 10.1111/j.1469-8137.2011.03693.x
10.1007/BF00392794
10.1038/ncomms1009
10.1038/nrmicro2990
10.1016/j.envpol.2016.03.035
10.1038/nature01014
10.1007/s10886-014-0472-7
10.1073/pnas.1424030112
10.1111/j.1469-8137.2010.03465.x
10.1016/j.cub.2006.09.019
10.1094/MPMI-23-6-0748
10.1016/j.plaphy.2013.07.021
10.1105/tpc.15.00461
10.1126/science.1139548
10.1111/j.1582-4934.2007.00024.x
10.1093/aob/mcq028
10.1186/1471-2229-7-21
10.1111/pce.12092
10.3389/fpls.2016.01173
10.1007/s11104-012-1275-7
10.1093/jn/130.5.1081
10.1093/jxb/ert055
10.1111/j.1744-7909.2010.00899.x
10.1073/pnas.1402243111
10.1016/j.postharvbio.2011.01.006
10.1007/s11738-010-0469-y
10.1104/pp.93.4.1273
10.1104/pp.107.100305
10.1080/01904167.2016.1143495
10.1093/jxb/ert334
10.1105/tpc.11.10.1953
10.2503/jjshs1.77.38
10.1111/j.1399-3054.1987.tb04335.x
10.1016/S0981-9428(02)01415-8
10.1089/ars.2012.5136
10.1016/0003-2697(76)90527-3
10.1126/science.281.5380.1202
10.1146/annurev-pharmtox-010510-100505
10.1371/journal.pone.0062048
10.1007/978-3-642-36470-9_11
10.1007/s10534-012-9551-9
10.1093/mp/sst168
10.1111/j.1469-8137.2012.04282.x
10.1007/s00284-002-3972-6
10.1088/1748-9326/7/4/044020
10.1104/pp.105.075879
10.1023/A:1004292020902
10.1016/j.jplph.2010.06.019
10.1073/pnas.1302193110
10.1111/j.1744-7909.2009.00885.x
10.1021/ja1071866
10.1007/s11101-011-9211-7
10.1007/s00344-012-9262-z
10.1186/1471-2229-14-42
10.1016/S1360-1385(01)01889-1
10.1007/978-3-319-40713-5_12
10.2307/3869583
10.1081/PLN-100103806
10.1104/pp.114.245373
10.1105/tpc.114.131607
10.3389/fpls.2016.00454
10.1007/s00726-005-0245-2
10.1021/tx2005234
10.1089/ars.2009.2945
10.1105/tpc.112.105403
10.1073/pnas.0600912103
10.1094/MPMI-19-0970
10.1371/journal.pone.0077047
10.1111/j.1744-7909.2008.00769.x
10.1104/pp.105.1.3
10.1016/j.plantsci.2011.10.006
10.1007/BF00349189
10.1104/pp.114.256057
10.1093/jxb/err145
10.2134/agronj1973.00021962006500030022x
10.1007/s00425-010-1134-9
10.1016/j.plaphy.2013.01.003
10.1080/07352689509701924
ContentType Journal Article
Copyright Copyright American Phytopathological Society Aug 2019
Copyright_xml – notice: Copyright American Phytopathological Society Aug 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
7S9
L.6
DOI 10.1094/MPMI-01-19-0003-R
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
AGRICOLA
ProQuest Health & Medical Complete (Alumni)
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1943-7706
EndPage 985
ExternalDocumentID 31204904
10_1094_MPMI_01_19_0003_R
Genre Journal Article
GroupedDBID ---
123
29M
2WC
53G
7X2
7X7
88E
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
AAHBH
AAYJJ
AAYXX
ABDNZ
ABRJW
ABUWG
ACGFO
ACPRK
ACYGS
ADBBV
AENEX
AEUYN
AFKRA
AFRAH
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BAWUL
BBNVY
BENPR
BES
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CITATION
CS3
D1J
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYO
LK8
M0K
M1P
M7P
MVM
OK1
P2P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RPS
S0X
TR2
UKHRP
~KM
CGR
CUY
CVF
ECM
EIF
NPM
YCJ
K9.
7X8
7S9
L.6
ID FETCH-LOGICAL-c471t-9a39acbf842d4cc4c9bc4c190cde614cc3850fe80909f20793625ac367489bd23
ISSN 0894-0282
IngestDate Fri Sep 05 13:36:19 EDT 2025
Fri Sep 05 13:04:31 EDT 2025
Sun Sep 07 23:59:22 EDT 2025
Thu Apr 03 07:08:12 EDT 2025
Thu Apr 24 23:04:33 EDT 2025
Tue Jul 01 00:38:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords hydrogen sulfide
symbiosis
nitrogenase activity
molecular signaling
nodulation
nitrogen fixation
gene expression
rhizobium-legume symbiosis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c471t-9a39acbf842d4cc4c9bc4c190cde614cc3850fe80909f20793625ac367489bd23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8395-3314
OpenAccessLink https://apsjournals.apsnet.org/doi/pdf/10.1094/MPMI-01-19-0003-R
PMID 31204904
PQID 2277390351
PQPubID 37269
PageCount 14
ParticipantIDs proquest_miscellaneous_2305153071
proquest_miscellaneous_2264210162
proquest_journals_2277390351
pubmed_primary_31204904
crossref_primary_10_1094_MPMI_01_19_0003_R
crossref_citationtrail_10_1094_MPMI_01_19_0003_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: St. Paul
PublicationSubtitle MPMI
PublicationTitle Molecular plant-microbe interactions
PublicationTitleAlternate Mol Plant Microbe Interact
PublicationYear 2019
Publisher American Phytopathological Society
Publisher_xml – name: American Phytopathological Society
References b10
b54
b98
b53
b97
b12
b55
b99
b14
b58
b13
b57
b15
b59
b18
b17
b19
b2
b3
b4
b5
b7
b61
b60
b63
b62
b21
b65
b20
b64
b67
b22
b25
b24
b68
Caballero-Mellado J. (b11) 1999; 26
b27
b26
b29
b70
b72
b71
b30
b74
b73
b32
b76
b31
b75
b34
b33
b77
b36
b35
b79
b38
Bloom A. J. (b9) 1988; 1
b37
b39
b81
b80
b82
b41
b85
b40
b84
b87
b86
b89
b100
b44
b92
b91
b50
Laureano-Marín A. M. (b51) 2016; 171
b102
b94
b101
b93
b52
b103
References_xml – ident: b24
  doi: 10.1111/j.1469-8137.2011.03693.x
– ident: b50
  doi: 10.1007/BF00392794
– ident: b63
  doi: 10.1038/ncomms1009
– volume: 26
  start-page: 111
  year: 1999
  ident: b11
  publication-title: Symbiosis
– ident: b72
  doi: 10.1038/nrmicro2990
– ident: b27
  doi: 10.1016/j.envpol.2016.03.035
– ident: b87
  doi: 10.1038/nature01014
– ident: b30
  doi: 10.1007/s10886-014-0472-7
– ident: b93
  doi: 10.1073/pnas.1424030112
– ident: b34
  doi: 10.1111/j.1469-8137.2010.03465.x
– volume: 171
  start-page: 1378
  year: 2016
  ident: b51
  publication-title: Plant Physiol.
– ident: b70
  doi: 10.1016/j.cub.2006.09.019
– ident: b67
  doi: 10.1094/MPMI-23-6-0748
– ident: b82
  doi: 10.1016/j.plaphy.2013.07.021
– ident: b89
  doi: 10.1105/tpc.15.00461
– ident: b35
  doi: 10.1126/science.1139548
– ident: b85
  doi: 10.1111/j.1582-4934.2007.00024.x
– ident: b65
  doi: 10.1093/aob/mcq028
– ident: b74
  doi: 10.1186/1471-2229-7-21
– ident: b59
  doi: 10.1111/pce.12092
– ident: b15
  doi: 10.3389/fpls.2016.01173
– ident: b17
  doi: 10.1007/s11104-012-1275-7
– ident: b37
  doi: 10.1093/jn/130.5.1081
– ident: b20
  doi: 10.1093/jxb/ert055
– ident: b29
  doi: 10.1111/j.1744-7909.2010.00899.x
– ident: b53
  doi: 10.1073/pnas.1402243111
– ident: b98
  doi: 10.1016/j.postharvbio.2011.01.006
– ident: b99
  doi: 10.1007/s11738-010-0469-y
– ident: b5
  doi: 10.1104/pp.93.4.1273
– ident: b79
  doi: 10.1104/pp.107.100305
– ident: b13
  doi: 10.1080/01904167.2016.1143495
– ident: b64
  doi: 10.1093/jxb/ert334
– ident: b14
  doi: 10.1105/tpc.11.10.1953
– ident: b71
  doi: 10.2503/jjshs1.77.38
– ident: b7
  doi: 10.1111/j.1399-3054.1987.tb04335.x
– ident: b38
  doi: 10.1016/S0981-9428(02)01415-8
– ident: b75
  doi: 10.1089/ars.2012.5136
– ident: b10
  doi: 10.1016/0003-2697(76)90527-3
– ident: b44
  doi: 10.1126/science.281.5380.1202
– ident: b55
  doi: 10.1146/annurev-pharmtox-010510-100505
– ident: b25
  doi: 10.1371/journal.pone.0062048
– ident: b101
  doi: 10.1007/978-3-642-36470-9_11
– ident: b57
  doi: 10.1007/s10534-012-9551-9
– ident: b76
  doi: 10.1093/mp/sst168
– ident: b12
  doi: 10.1111/j.1469-8137.2012.04282.x
– ident: b62
  doi: 10.1007/s00284-002-3972-6
– ident: b86
  doi: 10.1088/1748-9326/7/4/044020
– ident: b102
  doi: 10.1104/pp.105.075879
– ident: b40
  doi: 10.1023/A:1004292020902
– ident: b52
  doi: 10.1016/j.jplph.2010.06.019
– ident: b60
  doi: 10.1073/pnas.1302193110
– ident: b100
  doi: 10.1111/j.1744-7909.2009.00885.x
– ident: b77
  doi: 10.1021/ja1071866
– ident: b22
  doi: 10.1007/s11101-011-9211-7
– ident: b61
  doi: 10.1007/s00344-012-9262-z
– ident: b19
  doi: 10.1186/1471-2229-14-42
– ident: b26
  doi: 10.1016/S1360-1385(01)01889-1
– volume: 1
  start-page: 55
  year: 1988
  ident: b9
  publication-title: Isi Atlas Sci. Anim. Plant Sci.
– ident: b39
  doi: 10.1007/978-3-319-40713-5_12
– ident: b54
  doi: 10.2307/3869583
– ident: b94
  doi: 10.1081/PLN-100103806
– ident: b80
  doi: 10.1104/pp.114.245373
– ident: b103
  doi: 10.1105/tpc.114.131607
– ident: b21
  doi: 10.3389/fpls.2016.00454
– ident: b3
  doi: 10.1007/s00726-005-0245-2
– ident: b33
  doi: 10.1021/tx2005234
– ident: b92
  doi: 10.1089/ars.2009.2945
– ident: b2
  doi: 10.1105/tpc.112.105403
– ident: b68
  doi: 10.1073/pnas.0600912103
– ident: b4
  doi: 10.1094/MPMI-19-0970
– ident: b81
  doi: 10.1371/journal.pone.0077047
– ident: b97
  doi: 10.1111/j.1744-7909.2008.00769.x
– ident: b41
  doi: 10.1104/pp.105.1.3
– ident: b58
  doi: 10.1016/j.plantsci.2011.10.006
– ident: b36
  doi: 10.1007/BF00349189
– ident: b73
  doi: 10.1104/pp.114.256057
– ident: b18
  doi: 10.1093/jxb/err145
– ident: b32
  doi: 10.2134/agronj1973.00021962006500030022x
– ident: b91
  doi: 10.1007/s00425-010-1134-9
– ident: b84
  doi: 10.1016/j.plaphy.2013.01.003
– ident: b31
  doi: 10.1080/07352689509701924
SSID ssj0019655
Score 2.4931014
Snippet The rhizobium–legume symbiotic system is crucial for nitrogen cycle balance in agriculture. Hydrogen sulfide (H 2 S), a gaseous signaling molecule, may...
The rhizobium-legume symbiotic system is crucial for nitrogen cycle balance in agriculture. Hydrogen sulfide (H S), a gaseous signaling molecule, may regulate...
The rhizobium–legume symbiotic system is crucial for nitrogen cycle balance in agriculture. Hydrogen sulfide (H2S), a gaseous signaling molecule, may regulate...
The rhizobium-legume symbiotic system is crucial for nitrogen cycle balance in agriculture. Hydrogen sulfide (H2S), a gaseous signaling molecule, may regulate...
The rhizobium–legume symbiotic system is crucial for nitrogen cycle balance in agriculture. Hydrogen sulfide (H₂S), a gaseous signaling molecule, may regulate...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 972
SubjectTerms Ammonia
Asparagine
Gasotransmitters - pharmacology
Gene expression
gene expression regulation
Genes
genetic markers
glutamic acid
Glycine max
Glycine max - microbiology
Hydrogen sulfide
Hydrogen Sulfide - pharmacology
leghemoglobin
Legumes
NifH gene
Nitrite reductase
Nitrogen
Nitrogen cycle
Nitrogen fixation
Nitrogen Fixation - drug effects
Nitrogen metabolism
Nitrogenase
Nitrogenation
Nodulation
Nodules
Physiological effects
Plant Root Nodulation - drug effects
Polymerase chain reaction
quantitative polymerase chain reaction
Reductases
Rhizobium
Rhizobium - physiology
Root nodules
roots
Signal transduction
Signaling
Sinorhizobium fredii
Sodium
Soybeans
Symbiosis
Symbiosis - drug effects
Western blotting
Title Hydrogen Sulfide Promotes Nodulation and Nitrogen Fixation in Soybean–Rhizobia Symbiotic System
URI https://www.ncbi.nlm.nih.gov/pubmed/31204904
https://www.proquest.com/docview/2277390351
https://www.proquest.com/docview/2264210162
https://www.proquest.com/docview/2305153071
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCFQOCMproSAjcQIFso6TjY8VotoW7apsW6niEtmOgyK1SbUkEsuvZyaOnS19CLhYUew4Ueaz_c14PEPIW1GYJOFjHWBmnIAD5Q-ElKClADUVWqbhpIszO5sn02O-fxKfDKbs7nRJoz7oX1eeK_kfqcI9kCuekv0HyfpO4QZcg3yhBAlD-Vcynq7yZQ21MPxPizI36PYPv97A3FXnfV6ubndgXja24W75Uzr3xsN6pYysggW63alSvj9cnamyxgiuNo75OnGduTS6mHe6AmUZHfmU6cJNLO3hCM_Ov9Vtt6LJflVct0vPy2DuV4IDa339Wl7RcB9wG0xbuW6WwJNQqTNL9LMXxhxm6YWpdjBlts5V186bwubvuTSfg_IJQpgdzPbQ7IFvQV-6xXpbEMn5WSfgaMxwH5MPS5t3OHRVt8kdNgGShex574vfbhJJlx7Xf7Pb_hb846V3b5J7rreLXOYaBaUjKkcPyYNew6A7Fi6PyC1TbZH7O9-XfZQVs0Xu2gykq8ckcxCiPYSogxAdIEQBQtRBiDoI0RIe-gNC1EOIWgg9Ice7n48-TYM-50aggaY0MFAjIbUqUs5yrjXXQkEBrFHnBpic1lEah4VJQxGKgmF0RVCgpY4wZ41QOYueko2qrsxzQlOM7sdjEacJGgGgozxWjKXAgcOwUHxEQvf3Mt0HpMe8KKeZdYzgGf77LBxnY4E-ElG2GJF3_pFzG43lpsbbTiRZP2h_ZIxNJpHA7fMReeOrYUrFfTJZmbrFNnj6G3QhdkObCJMjwQIJ_Tyz4vZf5ODx4tqal2RzGDPbZKNZtuYVkNtGve6A-RujhJ_P
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+Sulfide+Promotes+Nodulation+and+Nitrogen+Fixation+in+Soybean-Rhizobia+Symbiotic+System&rft.jtitle=Molecular+plant-microbe+interactions&rft.au=Zou%2C+Hang&rft.au=Zhang%2C+Ni-Na&rft.au=Pan%2C+Qing&rft.au=Zhang%2C+Jian-Hua&rft.date=2019-08-01&rft.issn=0894-0282&rft.volume=32&rft.issue=8&rft.spage=972&rft_id=info:doi/10.1094%2FMPMI-01-19-0003-R&rft_id=info%3Apmid%2F31204904&rft.externalDocID=31204904
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-0282&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-0282&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-0282&client=summon