An automated behavioral box to assess forelimb function in rats
•We develop a low-cost automated behavioral box to measure forelimb function in rats.•We illustrate camera-based automated detection of behavioral outcomes.•We demonstrate the ability to easily vary task structure and practice schedules.•Our automated setup is able to monitor deficits after unilater...
Saved in:
Published in | Journal of neuroscience methods Vol. 246; pp. 30 - 37 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.05.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0165-0270 1872-678X |
DOI | 10.1016/j.jneumeth.2015.03.008 |
Cover
Abstract | •We develop a low-cost automated behavioral box to measure forelimb function in rats.•We illustrate camera-based automated detection of behavioral outcomes.•We demonstrate the ability to easily vary task structure and practice schedules.•Our automated setup is able to monitor deficits after unilateral ischemic stroke.•We show compatibility with modern chronic electrophysiological approaches.
Rodent forelimb reaching behaviors are commonly assessed using a single-pellet reach-to-grasp task. While the task is widely recognized as a very sensitive measure of distal limb function, it is also known to be very labor-intensive, both for initial training and the daily assessment of function.
Using components developed by open-source electronics platforms, we have designed and tested a low-cost automated behavioral box to measure forelimb function in rats. Our apparatus, made primarily of acrylic, was equipped with multiple sensors to control the duration and difficulty of the task, detect reach outcomes, and dispense pellets. Our control software, developed in MATLAB, was also used to control a camera in order to capture and process video during reaches. Importantly, such processing could monitor task performance in near real-time.
We further demonstrate that the automated apparatus can be used to expedite skill acquisition, thereby increasing throughput as well as facilitating studies of early versus late motor learning. The setup is also readily compatible with chronic electrophysiological monitoring.
Compared to a previous version of this task, our setup provides a more efficient method to train and test rodents for studies of motor learning and recovery of function after stroke. The unbiased delivery of behavioral cues and outcomes also facilitates electrophysiological studies.
In summary, our automated behavioral box will allow high-throughput and efficient monitoring of rat forelimb function in both healthy and injured animals. |
---|---|
AbstractList | BACKGROUNDRodent forelimb reaching behaviors are commonly assessed using a single-pellet reach-to-grasp task. While the task is widely recognized as a very sensitive measure of distal limb function, it is also known to be very labor-intensive, both for initial training and the daily assessment of function.NEW METHODUsing components developed by open-source electronics platforms, we have designed and tested a low-cost automated behavioral box to measure forelimb function in rats. Our apparatus, made primarily of acrylic, was equipped with multiple sensors to control the duration and difficulty of the task, detect reach outcomes, and dispense pellets. Our control software, developed in MATLAB, was also used to control a camera in order to capture and process video during reaches. Importantly, such processing could monitor task performance in near real-time.RESULTSWe further demonstrate that the automated apparatus can be used to expedite skill acquisition, thereby increasing throughput as well as facilitating studies of early versus late motor learning. The setup is also readily compatible with chronic electrophysiological monitoring.COMPARISON WITH EXISTING METHODSCompared to a previous version of this task, our setup provides a more efficient method to train and test rodents for studies of motor learning and recovery of function after stroke. The unbiased delivery of behavioral cues and outcomes also facilitates electrophysiological studies.CONCLUSIONSIn summary, our automated behavioral box will allow high-throughput and efficient monitoring of rat forelimb function in both healthy and injured animals. •We develop a low-cost automated behavioral box to measure forelimb function in rats.•We illustrate camera-based automated detection of behavioral outcomes.•We demonstrate the ability to easily vary task structure and practice schedules.•Our automated setup is able to monitor deficits after unilateral ischemic stroke.•We show compatibility with modern chronic electrophysiological approaches. Rodent forelimb reaching behaviors are commonly assessed using a single-pellet reach-to-grasp task. While the task is widely recognized as a very sensitive measure of distal limb function, it is also known to be very labor-intensive, both for initial training and the daily assessment of function. Using components developed by open-source electronics platforms, we have designed and tested a low-cost automated behavioral box to measure forelimb function in rats. Our apparatus, made primarily of acrylic, was equipped with multiple sensors to control the duration and difficulty of the task, detect reach outcomes, and dispense pellets. Our control software, developed in MATLAB, was also used to control a camera in order to capture and process video during reaches. Importantly, such processing could monitor task performance in near real-time. We further demonstrate that the automated apparatus can be used to expedite skill acquisition, thereby increasing throughput as well as facilitating studies of early versus late motor learning. The setup is also readily compatible with chronic electrophysiological monitoring. Compared to a previous version of this task, our setup provides a more efficient method to train and test rodents for studies of motor learning and recovery of function after stroke. The unbiased delivery of behavioral cues and outcomes also facilitates electrophysiological studies. In summary, our automated behavioral box will allow high-throughput and efficient monitoring of rat forelimb function in both healthy and injured animals. Rodent forelimb reaching behaviors are commonly assessed using a single-pellet reach-to-grasp task. While the task is widely recognized as a very sensitive measure of distal limb function, it is also known to be very labor-intensive, both for initial training and the daily assessment of function. Using components developed by open-source electronics platforms, we have designed and tested a low-cost automated behavioral box to measure forelimb function in rats. Our apparatus, made primarily of acrylic, was equipped with multiple sensors to control the duration and difficulty of the task, detect reach outcomes, and dispense pellets. Our control software, developed in MATLAB, was also used to control a camera in order to capture and process video during reaches. Importantly, such processing could monitor task performance in near real-time. We further demonstrate that the automated apparatus can be used to expedite skill acquisition, thereby increasing throughput as well as facilitating studies of early versus late motor learning. The setup is also readily compatible with chronic electrophysiological monitoring. Compared to a previous version of this task, our setup provides a more efficient method to train and test rodents for studies of motor learning and recovery of function after stroke. The unbiased delivery of behavioral cues and outcomes also facilitates electrophysiological studies. In summary, our automated behavioral box will allow high-throughput and efficient monitoring of rat forelimb function in both healthy and injured animals. |
Author | Ganguly, Karunesh Wong, Chelsea C. Ramanathan, Dhakshin S. Won, Seok Joon Gulati, Tanuj |
AuthorAffiliation | 1 Neurology & Rehabilitation Service, San Francisco VA Medical Center 4 Department of Psychiatry, University of California, San Francisco 2 Department of Neurology, University of California, San Francisco 3 Psychiatry Service, San Francisco VA Medical Center |
AuthorAffiliation_xml | – name: 4 Department of Psychiatry, University of California, San Francisco – name: 3 Psychiatry Service, San Francisco VA Medical Center – name: 1 Neurology & Rehabilitation Service, San Francisco VA Medical Center – name: 2 Department of Neurology, University of California, San Francisco |
Author_xml | – sequence: 1 givenname: Chelsea C. surname: Wong fullname: Wong, Chelsea C. organization: Neurology & Rehabilitation Service, San Francisco VA Medical Center, San Francisco, CA, United States – sequence: 2 givenname: Dhakshin S. surname: Ramanathan fullname: Ramanathan, Dhakshin S. organization: Neurology & Rehabilitation Service, San Francisco VA Medical Center, San Francisco, CA, United States – sequence: 3 givenname: Tanuj surname: Gulati fullname: Gulati, Tanuj organization: Neurology & Rehabilitation Service, San Francisco VA Medical Center, San Francisco, CA, United States – sequence: 4 givenname: Seok Joon surname: Won fullname: Won, Seok Joon organization: Neurology & Rehabilitation Service, San Francisco VA Medical Center, San Francisco, CA, United States – sequence: 5 givenname: Karunesh surname: Ganguly fullname: Ganguly, Karunesh email: karunesh.ganguly@ucsf.edu organization: Neurology & Rehabilitation Service, San Francisco VA Medical Center, San Francisco, CA, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25769277$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1v1DAQtVAR3Rb-QpUjl4Sxk9iOhICq4kuqxAUkbpbtTFivErvYzqr8e7zaLgIuPY008z5G712QMx88EnJFoaFA-atds_O4Lpi3DQPaN9A2APIJ2VApWM2F_H5GNgXY18AEnJOLlHYA0A3An5Fz1gs-MCE25O21r_Saw6IzjpXBrd67EPVcmXBf5VDplDClagoRZ7eYalq9zS74yvkq6pyek6eTnhO-eJiX5NuH919vPtW3Xz5-vrm-rW0naK4HJtkgraTWIAPLrIFpNLosGdfctP1gLdO8g5FJI-3QT2BG01E5SsMYtu0leXPUvVvNgqNFn8uX6i66RcdfKmin_r14t1U_wl71nWDQ8SLw8kEghp8rpqwWlyzOs_YY1qQoF20rGOu7Ar362-uPySm1Anh9BNgYUoo4KeuyPsRSrN2sKKhDSWqnTiWpQ0kKWlVKKnT-H_3k8Cjx3ZGIJem9w6iSdegtji6izWoM7jGJ35MXsbs |
CitedBy_id | crossref_primary_10_1016_j_bbr_2017_08_033 crossref_primary_10_1016_j_celrep_2021_109370 crossref_primary_10_1016_j_cub_2024_03_023 crossref_primary_10_1186_s12891_024_07624_6 crossref_primary_10_7554_eLife_64303 crossref_primary_10_1038_s41593_019_0407_2 crossref_primary_10_1016_j_celrep_2022_110426 crossref_primary_10_1016_j_jneumeth_2016_03_007 crossref_primary_10_1016_j_jiec_2023_10_042 crossref_primary_10_1038_s41591_018_0058_y crossref_primary_10_1371_journal_pone_0141254 crossref_primary_10_1523_ENEURO_0153_21_2021 crossref_primary_10_1016_j_jneumeth_2024_110271 crossref_primary_10_1038_s41586_022_05533_z crossref_primary_10_1038_s41467_020_17902_1 crossref_primary_10_1523_JNEUROSCI_5007_14_2015 crossref_primary_10_1016_j_celrep_2023_112834 crossref_primary_10_1371_journal_pone_0219034 crossref_primary_10_1523_JNEUROSCI_0621_24_2024 crossref_primary_10_3390_s23010288 crossref_primary_10_1016_j_celrep_2018_02_042 crossref_primary_10_1038_s41467_022_30069_1 crossref_primary_10_1111_ajt_14007 crossref_primary_10_1016_j_bbr_2017_07_039 crossref_primary_10_1038_s41467_023_43081_w crossref_primary_10_1177_1545968319855034 crossref_primary_10_1152_jn_00115_2017 crossref_primary_10_1523_ENEURO_0011_23_2023 crossref_primary_10_1016_j_jneumeth_2023_109798 crossref_primary_10_1016_j_jneumeth_2019_108404 crossref_primary_10_1523_ENEURO_0150_23_2024 crossref_primary_10_3389_fnbeh_2017_00255 crossref_primary_10_1016_j_jneumeth_2015_10_004 crossref_primary_10_1016_j_bbr_2017_11_031 crossref_primary_10_1016_j_jneumeth_2017_06_002 crossref_primary_10_1371_journal_pbio_1002263 crossref_primary_10_1523_ENEURO_0242_20_2020 |
Cites_doi | 10.1016/j.neuroscience.2004.10.010 10.1038/678 10.1016/0166-4328(90)90053-H 10.1016/j.jneumeth.2012.11.007 10.1038/nature08389 10.1002/ana.410170513 10.1016/S0166-4328(97)00157-5 10.1371/journal.pbio.1000153 10.1152/jn.1998.80.6.3321 10.1073/pnas.0601065103 10.1038/nn.3759 10.1093/brain/109.5.805 10.1016/j.neuron.2011.10.017 10.1109/TNSRE.2005.857687 10.1523/JNEUROSCI.0230-09.2009 10.1016/0165-0270(91)90048-5 10.1016/0006-8993(72)90665-8 10.1038/nature10844 10.1016/S0896-6273(03)00288-5 10.1016/j.cub.2004.06.053 10.1093/ilar.48.4.374 10.1038/nature13235 10.1523/JNEUROSCI.23-02-00579.2003 10.1016/j.bbr.2007.12.026 10.1016/j.jneumeth.2010.07.040 10.1016/j.neulet.2013.01.043 10.1038/nn.2797 10.1093/brain/awm245 10.1126/science.290.5491.533 10.1016/j.expneurol.2006.05.003 10.1088/1741-2560/8/4/045005 10.1155/2011/310737 |
ContentType | Journal Article |
Copyright | 2015 Published by Elsevier B.V. |
Copyright_xml | – notice: 2015 – notice: Published by Elsevier B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.jneumeth.2015.03.008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-678X |
EndPage | 37 |
ExternalDocumentID | PMC5472046 25769277 10_1016_j_jneumeth_2015_03_008 S0165027015000904 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R25 MH060482 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPCBC SSN SSZ T5K ~G- .55 .GJ 29L 53G AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- SEW SNS SSH WUQ X7M ZGI CGR CUY CVF ECM EFKBS EIF NPM 7X8 ACLOT ~HD 5PM |
ID | FETCH-LOGICAL-c471t-928298c81cbe20c2cb0fdba82926a6b359cc2a640d28b8c95f0bdb418d8b22e33 |
IEDL.DBID | .~1 |
ISSN | 0165-0270 |
IngestDate | Thu Aug 21 18:13:36 EDT 2025 Sat Sep 27 17:50:35 EDT 2025 Mon Jul 21 05:55:28 EDT 2025 Tue Jul 01 02:57:03 EDT 2025 Thu Apr 24 22:53:07 EDT 2025 Fri Feb 23 02:33:24 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrophysiology Reach Motor learning |
Language | English |
License | Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-928298c81cbe20c2cb0fdba82926a6b359cc2a640d28b8c95f0bdb418d8b22e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1016/j.jneumeth.2015.03.008 |
PMID | 25769277 |
PQID | 1673372254 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5472046 proquest_miscellaneous_1673372254 pubmed_primary_25769277 crossref_citationtrail_10_1016_j_jneumeth_2015_03_008 crossref_primary_10_1016_j_jneumeth_2015_03_008 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2015_03_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-05-15 |
PublicationDateYYYYMMDD | 2015-05-15 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of neuroscience methods |
PublicationTitleAlternate | J Neurosci Methods |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hays, Khodaparast, Sloan, Hulsey, Pantoja, Ruiz (bib0060) 2013; 212 Peters, Chen, Komiyama (bib0095) 2014; 510 Weishaupt, Vavrek, Fouad (bib0145) 2013; 539 Fu, Yu, Lu, Zuo (bib0030) 2012; 483 Hsu, Jones (bib0065) 2006; 201 Montoya, Campbell-Hope, Pemberton, Dunnett (bib0090) 1991; 36 Whishaw, Alaverdashvili, Kolb (bib0150) 2008; 192 Hyland (bib0070) 1998; 94 Xu, Yu, Perlik, Tobin, Zweig, Tennant, Jones, Zuo (bib0165) 2009; 462 Ramanathan, Tuszynski, Conner (bib0105) 2009; 29 Costa, Cohen, Nicolelis (bib0020) 2004; 14 Gulati, Ramanathan, Wong, Ganguly (bib0055) 2014; 17 Vergara-Aragon, Gonzalez, Whishaw (bib0135) 2003; 23 Shmuelof, Krakauer (bib0120) 2011; 72 Francis, Song (bib0025) 2011; 2011 Castro (bib0005) 1972; 37 Girgis, Merrett, Kirkland, Metz, Verge, Fouad (bib0050) 2007; 130 Klein, Dunnett (bib0085) 2012 Rioult-Pedotti, Friedman, Hess, Donoghue (bib0115) 1998; 1 Kleim, Barbay, Nudo (bib0075) 1998; 80 Ramanathan, Conner, Tuszynski (bib0100) 2006; 103 Slutzky, Jordan, Bauman, Miller (bib0125) 2010; 192 Gharbawie, Gonzalez, Williams, Kleim, Whishaw (bib0045) 2005; 130 Whishaw, O’Connor, Dunnett (bib0155) 1986; 109 Watson, Dietrich, Busto, Wachtel, Ginsberg (bib0140) 1985; 17 Conner, Culberson, Packowski, Chiba, Tuszynski (bib0015) 2003; 38 Kleim, Boychuk, Adkins (bib0080) 2007; 48 Whishaw, Pellis (bib0160) 1990; 41 Suner, Fellows, Vargas-Irwin, Nakata, Donoghue (bib0130) 2005; 13 Ganguly, Carmena (bib0035) 2009; 7 Rioult-Pedotti, Friedman, Donoghue (bib0110) 2000; 290 Chestek, Gilja, Nuyujukian, Foster, Fan, Kaufman (bib0010) 2011; 8 Ganguly, Dimitrov, Wallis, Carmena (bib0040) 2011; 14 Rioult-Pedotti (10.1016/j.jneumeth.2015.03.008_bib0110) 2000; 290 Hsu (10.1016/j.jneumeth.2015.03.008_bib0065) 2006; 201 Shmuelof (10.1016/j.jneumeth.2015.03.008_bib0120) 2011; 72 Montoya (10.1016/j.jneumeth.2015.03.008_bib0090) 1991; 36 Ganguly (10.1016/j.jneumeth.2015.03.008_bib0040) 2011; 14 Ramanathan (10.1016/j.jneumeth.2015.03.008_bib0105) 2009; 29 Chestek (10.1016/j.jneumeth.2015.03.008_bib0010) 2011; 8 Slutzky (10.1016/j.jneumeth.2015.03.008_bib0125) 2010; 192 Whishaw (10.1016/j.jneumeth.2015.03.008_bib0150) 2008; 192 Ganguly (10.1016/j.jneumeth.2015.03.008_bib0035) 2009; 7 Suner (10.1016/j.jneumeth.2015.03.008_bib0130) 2005; 13 Conner (10.1016/j.jneumeth.2015.03.008_bib0015) 2003; 38 Vergara-Aragon (10.1016/j.jneumeth.2015.03.008_bib0135) 2003; 23 Whishaw (10.1016/j.jneumeth.2015.03.008_bib0160) 1990; 41 Hays (10.1016/j.jneumeth.2015.03.008_bib0060) 2013; 212 Rioult-Pedotti (10.1016/j.jneumeth.2015.03.008_bib0115) 1998; 1 Costa (10.1016/j.jneumeth.2015.03.008_bib0020) 2004; 14 Xu (10.1016/j.jneumeth.2015.03.008_bib0165) 2009; 462 Francis (10.1016/j.jneumeth.2015.03.008_bib0025) 2011; 2011 Girgis (10.1016/j.jneumeth.2015.03.008_bib0050) 2007; 130 Watson (10.1016/j.jneumeth.2015.03.008_bib0140) 1985; 17 Hyland (10.1016/j.jneumeth.2015.03.008_bib0070) 1998; 94 Kleim (10.1016/j.jneumeth.2015.03.008_bib0080) 2007; 48 Whishaw (10.1016/j.jneumeth.2015.03.008_bib0155) 1986; 109 Klein (10.1016/j.jneumeth.2015.03.008_bib0085) 2012 Weishaupt (10.1016/j.jneumeth.2015.03.008_bib0145) 2013; 539 Gulati (10.1016/j.jneumeth.2015.03.008_bib0055) 2014; 17 Gharbawie (10.1016/j.jneumeth.2015.03.008_bib0045) 2005; 130 Peters (10.1016/j.jneumeth.2015.03.008_bib0095) 2014; 510 Ramanathan (10.1016/j.jneumeth.2015.03.008_bib0100) 2006; 103 Fu (10.1016/j.jneumeth.2015.03.008_bib0030) 2012; 483 Castro (10.1016/j.jneumeth.2015.03.008_bib0005) 1972; 37 Kleim (10.1016/j.jneumeth.2015.03.008_bib0075) 1998; 80 18282620 - Behav Brain Res. 2008 Sep 1;192(1):124-36 21949908 - Neural Plast. 2011;2011:310737 15242609 - Curr Biol. 2004 Jul 13;14(13):1124-34 16837575 - Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11370-5 9862925 - J Neurophysiol. 1998 Dec;80(6):3321-5 23042502 - Curr Protoc Neurosci. 2012 Jan;Chapter 8:Unit8.28 17712223 - ILAR J. 2007;48(4):374-84 12533618 - J Neurosci. 2003 Jan 15;23(2):579-86 19420265 - J Neurosci. 2009 May 6;29(18):5992-6000 19946267 - Nature. 2009 Dec 17;462(7275):915-9 24997761 - Nat Neurosci. 2014 Aug;17(8):1107-13 10195148 - Nat Neurosci. 1998 Jul;1(3):230-4 15590144 - Neuroscience. 2005;130(3):601-10 23384567 - Neurosci Lett. 2013 Feb 28;539:77-81 11039938 - Science. 2000 Oct 20;290(5491):533-6 5061111 - Brain Res. 1972 Feb 25;37(2):173-85 20691727 - J Neurosci Methods. 2010 Oct 15;192(2):228-32 9722277 - Behav Brain Res. 1998 Aug;94(2):255-69 12797965 - Neuron. 2003 Jun 5;38(5):819-29 24805237 - Nature. 2014 Jun 12;510(7504):263-7 19621062 - PLoS Biol. 2009 Jul;7(7):e1000153 17928316 - Brain. 2007 Nov;130(Pt 11):2993-3003 16797536 - Exp Neurol. 2006 Oct;201(2):479-94 22343892 - Nature. 2012 Feb 19;483(7387):92-5 21499255 - Nat Neurosci. 2011 May;14(5):662-7 16425835 - IEEE Trans Neural Syst Rehabil Eng. 2005 Dec;13(4):524-41 3779371 - Brain. 1986 Oct;109 ( Pt 5):805-43 4004172 - Ann Neurol. 1985 May;17(5):497-504 2062117 - J Neurosci Methods. 1991 Feb;36(2-3):219-28 21775782 - J Neural Eng. 2011 Aug;8(4):045005 23183016 - J Neurosci Methods. 2013 Jan 30;212(2):329-37 2073355 - Behav Brain Res. 1990 Dec 7;41(1):49-59 22078506 - Neuron. 2011 Nov 3;72(3):469-76 |
References_xml | – volume: 483 start-page: 92 year: 2012 end-page: 95 ident: bib0030 article-title: Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo publication-title: Nature – volume: 14 start-page: 662 year: 2011 end-page: 667 ident: bib0040 article-title: Reversible large-scale modification of cortical networks during neuroprosthetic control publication-title: Nat Neurosci – volume: 48 start-page: 374 year: 2007 end-page: 384 ident: bib0080 article-title: Rat models of upper extremity impairment in stroke publication-title: ILAR J – volume: 2011 start-page: 310737 year: 2011 ident: bib0025 article-title: Neuroplasticity of the sensorimotor cortex during learning publication-title: Neural Plast – volume: 8 start-page: 045005 year: 2011 ident: bib0010 article-title: Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex publication-title: J Neural Eng – volume: 36 start-page: 219 year: 1991 end-page: 228 ident: bib0090 article-title: The “staircase test”: a measure of independent forelimb reaching and grasping abilities in rats publication-title: J Neurosci Methods – volume: 462 start-page: 915 year: 2009 end-page: 919 ident: bib0165 article-title: Rapid formation and selective stabilization of synapses for enduring motor memories publication-title: Nature – volume: 109 start-page: 805 year: 1986 end-page: 843 ident: bib0155 article-title: The contributions of motor cortex, nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat publication-title: Brain – volume: 192 start-page: 124 year: 2008 end-page: 136 ident: bib0150 article-title: The problem of relating plasticity and skilled reaching after motor cortex stroke in the rat publication-title: Behav Brain Res – volume: 14 start-page: 1124 year: 2004 end-page: 1134 ident: bib0020 article-title: Differential corticostriatal plasticity during fast and slow motor skill learning in mice publication-title: Curr Biol – volume: 94 start-page: 255 year: 1998 end-page: 269 ident: bib0070 article-title: Neural activity related to reaching and grasping in rostral and caudal regions of rat motor cortex publication-title: Behav Brain Res – volume: 7 start-page: e1000153 year: 2009 ident: bib0035 article-title: Emergence of a stable cortical map for neuroprosthetic control publication-title: PLoS Biol – volume: 201 start-page: 479 year: 2006 end-page: 494 ident: bib0065 article-title: Contralesional neural plasticity and functional changes in the less-affected forelimb after large and small cortical infarcts in rats publication-title: Exp Neurol – volume: 23 start-page: 579 year: 2003 end-page: 586 ident: bib0135 article-title: A novel skilled-reaching impairment in paw supination on the “good” side of the hemi-Parkinson rat improved with rehabilitation publication-title: J Neurosci – volume: 38 start-page: 819 year: 2003 end-page: 829 ident: bib0015 article-title: Lesions of the Basal forebrain cholinergic system impair task acquisition and abolish cortical plasticity associated with motor skill learning publication-title: Neuron – volume: 1 start-page: 230 year: 1998 end-page: 234 ident: bib0115 article-title: Strengthening of horizontal cortical connections following skill learning publication-title: Nat Neurosci – volume: 130 start-page: 2993 year: 2007 end-page: 3003 ident: bib0050 article-title: Reaching training in rats with spinal cord injury promotes plasticity and task specific recovery publication-title: Brain – volume: 80 start-page: 3321 year: 1998 end-page: 3325 ident: bib0075 article-title: Functional reorganization of the rat motor cortex following motor skill learning publication-title: J Neurophysiol – volume: 212 start-page: 329 year: 2013 end-page: 337 ident: bib0060 article-title: The isometric pull task: a novel automated method for quantifying forelimb force generation in rats publication-title: J Neurosci Methods – volume: 510 start-page: 263 year: 2014 end-page: 267 ident: bib0095 article-title: Emergence of reproducible spatiotemporal activity during motor learning publication-title: Nature – volume: 192 start-page: 228 year: 2010 end-page: 232 ident: bib0125 article-title: A new rodent behavioral paradigm for studying forelimb movement publication-title: J Neurosci Methods – volume: 41 start-page: 49 year: 1990 end-page: 59 ident: bib0160 article-title: The structure of skilled forelimb reaching in the rat: a proximally driven movement with a single distal rotatory component publication-title: Behav Brain Res – volume: 37 start-page: 173 year: 1972 end-page: 185 ident: bib0005 article-title: The effects of cortical ablations on digital usage in the rat publication-title: Brain Res – start-page: 8.28.1 year: 2012 end-page: 8.28.15 ident: bib0085 article-title: Analysis of skilled forelimb movement in rats: the single pellet reaching test and staircase test publication-title: Curr Protoc Neurosci – volume: 103 start-page: 11370 year: 2006 end-page: 11375 ident: bib0100 article-title: A form of motor cortical plasticity that correlates with recovery of function after brain injury publication-title: Proc Natl Acad Sci USA – volume: 17 start-page: 1107 year: 2014 end-page: 1113 ident: bib0055 article-title: Reactivation of emergent task-related ensembles during slow-wave sleep after neuroprosthetic learning publication-title: Nat Neurosci – volume: 29 start-page: 5992 year: 2009 end-page: 6000 ident: bib0105 article-title: The basal forebrain cholinergic system is required specifically for behaviorally mediated cortical map plasticity publication-title: J Neurosci – volume: 13 start-page: 524 year: 2005 end-page: 541 ident: bib0130 article-title: Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex publication-title: IEEE Trans Neural Syst Rehabil – volume: 72 start-page: 469 year: 2011 end-page: 476 ident: bib0120 article-title: Are we ready for a natural history of motor learning? publication-title: Neuron – volume: 130 start-page: 601 year: 2005 end-page: 610 ident: bib0045 article-title: Middle cerebral artery (MCA) stroke produces dysfunction in adjacent motor cortex as detected by intracortical microstimulation in rats publication-title: Neuroscience – volume: 17 start-page: 497 year: 1985 end-page: 504 ident: bib0140 article-title: Induction of reproducible brain infarction by photochemically initiated thrombosis publication-title: Ann Neurol – volume: 539 start-page: 77 year: 2013 end-page: 81 ident: bib0145 article-title: Training following unilateral cervical spinal cord injury in rats affects the contralesional forelimb publication-title: Neurosci Lett – volume: 290 start-page: 533 year: 2000 end-page: 536 ident: bib0110 article-title: Learning-induced LTP in neocortex publication-title: Science – volume: 130 start-page: 601 year: 2005 ident: 10.1016/j.jneumeth.2015.03.008_bib0045 article-title: Middle cerebral artery (MCA) stroke produces dysfunction in adjacent motor cortex as detected by intracortical microstimulation in rats publication-title: Neuroscience doi: 10.1016/j.neuroscience.2004.10.010 – volume: 1 start-page: 230 year: 1998 ident: 10.1016/j.jneumeth.2015.03.008_bib0115 article-title: Strengthening of horizontal cortical connections following skill learning publication-title: Nat Neurosci doi: 10.1038/678 – volume: 41 start-page: 49 year: 1990 ident: 10.1016/j.jneumeth.2015.03.008_bib0160 article-title: The structure of skilled forelimb reaching in the rat: a proximally driven movement with a single distal rotatory component publication-title: Behav Brain Res doi: 10.1016/0166-4328(90)90053-H – volume: 212 start-page: 329 year: 2013 ident: 10.1016/j.jneumeth.2015.03.008_bib0060 article-title: The isometric pull task: a novel automated method for quantifying forelimb force generation in rats publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2012.11.007 – volume: 462 start-page: 915 year: 2009 ident: 10.1016/j.jneumeth.2015.03.008_bib0165 article-title: Rapid formation and selective stabilization of synapses for enduring motor memories publication-title: Nature doi: 10.1038/nature08389 – volume: 17 start-page: 497 year: 1985 ident: 10.1016/j.jneumeth.2015.03.008_bib0140 article-title: Induction of reproducible brain infarction by photochemically initiated thrombosis publication-title: Ann Neurol doi: 10.1002/ana.410170513 – volume: 94 start-page: 255 year: 1998 ident: 10.1016/j.jneumeth.2015.03.008_bib0070 article-title: Neural activity related to reaching and grasping in rostral and caudal regions of rat motor cortex publication-title: Behav Brain Res doi: 10.1016/S0166-4328(97)00157-5 – volume: 7 start-page: e1000153 year: 2009 ident: 10.1016/j.jneumeth.2015.03.008_bib0035 article-title: Emergence of a stable cortical map for neuroprosthetic control publication-title: PLoS Biol doi: 10.1371/journal.pbio.1000153 – volume: 80 start-page: 3321 year: 1998 ident: 10.1016/j.jneumeth.2015.03.008_bib0075 article-title: Functional reorganization of the rat motor cortex following motor skill learning publication-title: J Neurophysiol doi: 10.1152/jn.1998.80.6.3321 – volume: 103 start-page: 11370 year: 2006 ident: 10.1016/j.jneumeth.2015.03.008_bib0100 article-title: A form of motor cortical plasticity that correlates with recovery of function after brain injury publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0601065103 – volume: 17 start-page: 1107 year: 2014 ident: 10.1016/j.jneumeth.2015.03.008_bib0055 article-title: Reactivation of emergent task-related ensembles during slow-wave sleep after neuroprosthetic learning publication-title: Nat Neurosci doi: 10.1038/nn.3759 – volume: 109 start-page: 805 issue: Pt 5 year: 1986 ident: 10.1016/j.jneumeth.2015.03.008_bib0155 article-title: The contributions of motor cortex, nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat publication-title: Brain doi: 10.1093/brain/109.5.805 – volume: 72 start-page: 469 year: 2011 ident: 10.1016/j.jneumeth.2015.03.008_bib0120 article-title: Are we ready for a natural history of motor learning? publication-title: Neuron doi: 10.1016/j.neuron.2011.10.017 – volume: 13 start-page: 524 year: 2005 ident: 10.1016/j.jneumeth.2015.03.008_bib0130 article-title: Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex publication-title: IEEE Trans Neural Syst Rehabil doi: 10.1109/TNSRE.2005.857687 – volume: 29 start-page: 5992 year: 2009 ident: 10.1016/j.jneumeth.2015.03.008_bib0105 article-title: The basal forebrain cholinergic system is required specifically for behaviorally mediated cortical map plasticity publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0230-09.2009 – volume: 36 start-page: 219 year: 1991 ident: 10.1016/j.jneumeth.2015.03.008_bib0090 article-title: The “staircase test”: a measure of independent forelimb reaching and grasping abilities in rats publication-title: J Neurosci Methods doi: 10.1016/0165-0270(91)90048-5 – volume: 37 start-page: 173 year: 1972 ident: 10.1016/j.jneumeth.2015.03.008_bib0005 article-title: The effects of cortical ablations on digital usage in the rat publication-title: Brain Res doi: 10.1016/0006-8993(72)90665-8 – start-page: 8.28.1 year: 2012 ident: 10.1016/j.jneumeth.2015.03.008_bib0085 article-title: Analysis of skilled forelimb movement in rats: the single pellet reaching test and staircase test publication-title: Curr Protoc Neurosci – volume: 483 start-page: 92 year: 2012 ident: 10.1016/j.jneumeth.2015.03.008_bib0030 article-title: Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo publication-title: Nature doi: 10.1038/nature10844 – volume: 38 start-page: 819 year: 2003 ident: 10.1016/j.jneumeth.2015.03.008_bib0015 article-title: Lesions of the Basal forebrain cholinergic system impair task acquisition and abolish cortical plasticity associated with motor skill learning publication-title: Neuron doi: 10.1016/S0896-6273(03)00288-5 – volume: 14 start-page: 1124 year: 2004 ident: 10.1016/j.jneumeth.2015.03.008_bib0020 article-title: Differential corticostriatal plasticity during fast and slow motor skill learning in mice publication-title: Curr Biol doi: 10.1016/j.cub.2004.06.053 – volume: 48 start-page: 374 year: 2007 ident: 10.1016/j.jneumeth.2015.03.008_bib0080 article-title: Rat models of upper extremity impairment in stroke publication-title: ILAR J doi: 10.1093/ilar.48.4.374 – volume: 510 start-page: 263 year: 2014 ident: 10.1016/j.jneumeth.2015.03.008_bib0095 article-title: Emergence of reproducible spatiotemporal activity during motor learning publication-title: Nature doi: 10.1038/nature13235 – volume: 23 start-page: 579 year: 2003 ident: 10.1016/j.jneumeth.2015.03.008_bib0135 article-title: A novel skilled-reaching impairment in paw supination on the “good” side of the hemi-Parkinson rat improved with rehabilitation publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-02-00579.2003 – volume: 192 start-page: 124 year: 2008 ident: 10.1016/j.jneumeth.2015.03.008_bib0150 article-title: The problem of relating plasticity and skilled reaching after motor cortex stroke in the rat publication-title: Behav Brain Res doi: 10.1016/j.bbr.2007.12.026 – volume: 192 start-page: 228 year: 2010 ident: 10.1016/j.jneumeth.2015.03.008_bib0125 article-title: A new rodent behavioral paradigm for studying forelimb movement publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2010.07.040 – volume: 539 start-page: 77 year: 2013 ident: 10.1016/j.jneumeth.2015.03.008_bib0145 article-title: Training following unilateral cervical spinal cord injury in rats affects the contralesional forelimb publication-title: Neurosci Lett doi: 10.1016/j.neulet.2013.01.043 – volume: 14 start-page: 662 year: 2011 ident: 10.1016/j.jneumeth.2015.03.008_bib0040 article-title: Reversible large-scale modification of cortical networks during neuroprosthetic control publication-title: Nat Neurosci doi: 10.1038/nn.2797 – volume: 130 start-page: 2993 year: 2007 ident: 10.1016/j.jneumeth.2015.03.008_bib0050 article-title: Reaching training in rats with spinal cord injury promotes plasticity and task specific recovery publication-title: Brain doi: 10.1093/brain/awm245 – volume: 290 start-page: 533 year: 2000 ident: 10.1016/j.jneumeth.2015.03.008_bib0110 article-title: Learning-induced LTP in neocortex publication-title: Science doi: 10.1126/science.290.5491.533 – volume: 201 start-page: 479 year: 2006 ident: 10.1016/j.jneumeth.2015.03.008_bib0065 article-title: Contralesional neural plasticity and functional changes in the less-affected forelimb after large and small cortical infarcts in rats publication-title: Exp Neurol doi: 10.1016/j.expneurol.2006.05.003 – volume: 8 start-page: 045005 year: 2011 ident: 10.1016/j.jneumeth.2015.03.008_bib0010 article-title: Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex publication-title: J Neural Eng doi: 10.1088/1741-2560/8/4/045005 – volume: 2011 start-page: 310737 year: 2011 ident: 10.1016/j.jneumeth.2015.03.008_bib0025 article-title: Neuroplasticity of the sensorimotor cortex during learning publication-title: Neural Plast doi: 10.1155/2011/310737 – reference: 10195148 - Nat Neurosci. 1998 Jul;1(3):230-4 – reference: 9862925 - J Neurophysiol. 1998 Dec;80(6):3321-5 – reference: 21949908 - Neural Plast. 2011;2011:310737 – reference: 22343892 - Nature. 2012 Feb 19;483(7387):92-5 – reference: 23042502 - Curr Protoc Neurosci. 2012 Jan;Chapter 8:Unit8.28 – reference: 21499255 - Nat Neurosci. 2011 May;14(5):662-7 – reference: 2073355 - Behav Brain Res. 1990 Dec 7;41(1):49-59 – reference: 21775782 - J Neural Eng. 2011 Aug;8(4):045005 – reference: 17928316 - Brain. 2007 Nov;130(Pt 11):2993-3003 – reference: 22078506 - Neuron. 2011 Nov 3;72(3):469-76 – reference: 19621062 - PLoS Biol. 2009 Jul;7(7):e1000153 – reference: 12533618 - J Neurosci. 2003 Jan 15;23(2):579-86 – reference: 4004172 - Ann Neurol. 1985 May;17(5):497-504 – reference: 23183016 - J Neurosci Methods. 2013 Jan 30;212(2):329-37 – reference: 15590144 - Neuroscience. 2005;130(3):601-10 – reference: 16797536 - Exp Neurol. 2006 Oct;201(2):479-94 – reference: 5061111 - Brain Res. 1972 Feb 25;37(2):173-85 – reference: 16837575 - Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11370-5 – reference: 3779371 - Brain. 1986 Oct;109 ( Pt 5):805-43 – reference: 24997761 - Nat Neurosci. 2014 Aug;17(8):1107-13 – reference: 18282620 - Behav Brain Res. 2008 Sep 1;192(1):124-36 – reference: 12797965 - Neuron. 2003 Jun 5;38(5):819-29 – reference: 20691727 - J Neurosci Methods. 2010 Oct 15;192(2):228-32 – reference: 17712223 - ILAR J. 2007;48(4):374-84 – reference: 19946267 - Nature. 2009 Dec 17;462(7275):915-9 – reference: 9722277 - Behav Brain Res. 1998 Aug;94(2):255-69 – reference: 16425835 - IEEE Trans Neural Syst Rehabil Eng. 2005 Dec;13(4):524-41 – reference: 11039938 - Science. 2000 Oct 20;290(5491):533-6 – reference: 15242609 - Curr Biol. 2004 Jul 13;14(13):1124-34 – reference: 23384567 - Neurosci Lett. 2013 Feb 28;539:77-81 – reference: 19420265 - J Neurosci. 2009 May 6;29(18):5992-6000 – reference: 24805237 - Nature. 2014 Jun 12;510(7504):263-7 – reference: 2062117 - J Neurosci Methods. 1991 Feb;36(2-3):219-28 |
SSID | ssj0004906 |
Score | 2.3350396 |
Snippet | •We develop a low-cost automated behavioral box to measure forelimb function in rats.•We illustrate camera-based automated detection of behavioral outcomes.•We... Rodent forelimb reaching behaviors are commonly assessed using a single-pellet reach-to-grasp task. While the task is widely recognized as a very sensitive... BACKGROUNDRodent forelimb reaching behaviors are commonly assessed using a single-pellet reach-to-grasp task. While the task is widely recognized as a very... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 30 |
SubjectTerms | Analysis of Variance Animals Behavior, Animal - physiology Conditioning, Operant Electrophysiology Feeding Behavior - physiology Forelimb - physiology Male Motor Cortex - physiology Motor learning Pattern Recognition, Automated Psychomotor Performance - physiology Rats Rats, Long-Evans Reach |
Title | An automated behavioral box to assess forelimb function in rats |
URI | https://dx.doi.org/10.1016/j.jneumeth.2015.03.008 https://www.ncbi.nlm.nih.gov/pubmed/25769277 https://www.proquest.com/docview/1673372254 https://pubmed.ncbi.nlm.nih.gov/PMC5472046 |
Volume | 246 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC5EQfYi62PX8UUL4i1Op9Odx0kGUUZFLyp4a_oVNsPYIzoDu5f97XZlktFRxIPHJN3QVFXXI_VVFcCBUtyWmuNFKl3EnU2jwmYmskUpstIa4SzWO19dp_07fnEv7hfgpK2FQVhlo_unOr3W1s2bbkPN7mNVdW-wECcEVRiyB0eh7gmK3b-CTB_9f4V58KKer4mLMV9J31QJD44G3k1wUjNCvETT7PQzA_XRAX2Po3xjmM5-wkrjUZLe9NCrsOD8Gqz3fIimH_6RQ1JjPOuf52uwfNWk0tfhuOeJmoQ1wdm05LVan-jRXzIeEVVng0nwad2wetAEDSAykVSeBKl53oC7s9Pbk37UTFOITDBA46jAnGlu8thox6hhRtPSahVeslSlOhGFMUylnFqW69wUoqTaah7nNteMuST5BYt-5N0mwqGCl6WMoc4xrqlRJmXMxkZR5WJbxh0QLQmlaVqN48SLoWwxZQPZkl4i6SVNZCB9B7qzfY_TZhtf7ihaDsk5sZHBIny5d79lqQx3ChMlyrvR5FnGaZYkWdB0vAO_pyyenQcDtIJlWQeyOebPFmC_7vkvvvpT9-0WHCcCpVvfOPM2_MAnhC_EYgcWx08Ttxu8orHeq8V-D5Z655f96xfb3RBZ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6hILVcqhZamj6NhLht4_Xa-zhVESoKheQCSNwsv1ZsBA4qidT--3o23kBAFYde_ZCsGXsenm9mAPaV4rbWHB9S7RLubJ5UtjCJrWpR1NYIZzHfeTzJRxf856W43IDDLhcGYZVR9i9leiut48ggUnNw2zSDM0zECU4VuuzBUMCaoJtcBJncg83h8clocp8eWbUtNnE9hizpg0Th6bepdwts1owoLxHrnf5LRz21QR9DKR_opqPX8CoalWS4PPcb2HB-G3aGPjjUN3_IAWlhnu3_-Ta8GMdo-g58H3qiFmFNsDctuU_YJ3r2m8xnRLUBYRLMWnfd3GiCOhD5SBpPwsW5ewsXRz_OD0dJbKiQmKCD5kmFYdPSlKnRjlHDjKa11SoMslzlOhOVMUzlnFpW6tJUoqbaap6WttSMuSx7Bz0_8-49IqKCoaWMoc4xrqlRJmfMpkZR5VJbp30QHQmlidXGsenFtexgZVPZkV4i6SXNZCB9HwarfbfLehvP7qg6Dsm1myODUnh2717HUhmeFcZKlHezxZ1M8yLLiiDseB92lyxenQd9tIoVRR-KNeavFmDJ7vUZ31y1pbsFx6ZA-Yf_OPNXeDk6H5_K0-PJyUfYwhlEM6TiE_TmvxbuczCS5vpLfAR_AQvNEwQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+automated+behavioral+box+to+assess+forelimb+function+in+rats&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Wong%2C+Chelsea+C.&rft.au=Ramanathan%2C+Dhakshin+S.&rft.au=Gulati%2C+Tanuj&rft.au=Won%2C+Seok+Joon&rft.date=2015-05-15&rft.issn=0165-0270&rft.eissn=1872-678X&rft.volume=246&rft.spage=30&rft.epage=37&rft_id=info:doi/10.1016%2Fj.jneumeth.2015.03.008&rft_id=info%3Apmid%2F25769277&rft.externalDocID=PMC5472046 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |