A Method for Trust-Based Collaborative Smart Device Selection and Resource Allocation in the Financial Internet of Things

With the rapid development of the Financial Internet of Things (FIoT), many intelligent devices have been deployed in various business scenarios. Due to the unique characteristics of these devices, they are highly vulnerable to malicious attacks, posing significant threats to the system’s stability...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 13; p. 4082
Main Authors Wang, Bo, Wang, Jiesheng, Li, Mingchu
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 30.06.2025
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s25134082

Cover

More Information
Summary:With the rapid development of the Financial Internet of Things (FIoT), many intelligent devices have been deployed in various business scenarios. Due to the unique characteristics of these devices, they are highly vulnerable to malicious attacks, posing significant threats to the system’s stability and security. Moreover, the limited resources available in the FIoT, combined with the extensive deployment of AI algorithms, can significantly reduce overall system availability. To address the challenge of resisting malicious behaviors and attacks in the FIoT, this paper proposes a trust-based collaborative smart device selection algorithm that integrates both subjective and objective trust mechanisms with dynamic blacklists and whitelists, leveraging domain knowledge and game theory. It is essential to evaluate real-time dynamic trust levels during system execution to accurately assess device trustworthiness. A dynamic blacklist and whitelist transformation mechanism is also proposed to capture the evolving behavior of collaborative service devices and update the lists accordingly. The proposed algorithm enhances the anti-attack capabilities of smart devices in the FIoT by combining adaptive trust evaluation with blacklist and whitelist strategies. It maintains a high task success rate in both single and complex attack scenarios. Furthermore, to address the challenge of resource allocation for trusted smart devices under constrained edge resources, a coalition game-based algorithm is proposed that considers both device activity and trust levels. Experimental results demonstrate that the proposed method significantly improves task success rates and resource allocation performance compared to existing approaches.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s25134082