Learning path recommendation based on modified variable length genetic algorithm

With the rapid advancement of information and communication technologies, e-learning has gained a considerable attention in recent years. Many researchers have attempted to develop various e-learning systems with personalized learning mechanisms for assisting learners so that they can learn more eff...

Full description

Saved in:
Bibliographic Details
Published inEducation and information technologies Vol. 23; no. 2; pp. 819 - 836
Main Authors Dwivedi, Pragya, Kant, Vibhor, Bharadwaj, Kamal K.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2018
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1360-2357
1573-7608
DOI10.1007/s10639-017-9637-7

Cover

More Information
Summary:With the rapid advancement of information and communication technologies, e-learning has gained a considerable attention in recent years. Many researchers have attempted to develop various e-learning systems with personalized learning mechanisms for assisting learners so that they can learn more efficiently. In this context, curriculum sequencing is considered as an important concern for developing more efficient personalized e-learning systems. A more effective personalized e-learning recommender system should recommend a sequence of learning materials called learning path, in an appropriate order with a starting and ending point, rather than a sequence of unordered learning materials. Further the recommended sequence should also match the learner preferences for enhancing their learning capabilities. Moreover, the length of recommended sequence cannot be fixed for each learner because these learners differ from one another in their preferences such as knowledge levels, learning styles, emotions, etc. In this paper, we present an effective learning path recommendation system (LPRS) for e-learners through a variable length genetic algorithm (VLGA) by considering learners’ learning styles and knowledge levels. Experimental results are presented to demonstrate the effectiveness of the proposed LPRS in e-learning environment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1360-2357
1573-7608
DOI:10.1007/s10639-017-9637-7