Precipitation of aluminum nitride in a high strength maraging steel with low nitrogen content

In the present work, aluminum nitride (AlN) precipitation was investigated in a X23NiCoCrMoAl13-6-3 maraging steel with low nitrogen content (wt.% N=5.5ppm). A reliable and robust automatic method by scanning electron microscopy observations coupled with energy dispersive X-ray spectroscopy was deve...

Full description

Saved in:
Bibliographic Details
Published inMaterials characterization Vol. 98; pp. 193 - 201
Main Authors Jeanmaire, G., Dehmas, M., Redjaïmia, A., Puech, S., Fribourg, G.
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 01.12.2014
Elsevier
Subjects
Online AccessGet full text
ISSN1044-5803
1873-4189
DOI10.1016/j.matchar.2014.11.001

Cover

Abstract In the present work, aluminum nitride (AlN) precipitation was investigated in a X23NiCoCrMoAl13-6-3 maraging steel with low nitrogen content (wt.% N=5.5ppm). A reliable and robust automatic method by scanning electron microscopy observations coupled with energy dispersive X-ray spectroscopy was developed for the quantification of AlN precipitates. The first stage was to identify the solvus temperature and to develop a heat treatment able to dissolve the AlN precipitates. The experimental determination of equilibrium conditions and solvus temperature show good agreement with ThermoCalc® simulation. Then, from this AlN-free state, the cooling rate, isothermal holding time and temperature were the subject of an intensive investigation in the austenite region of this maraging steel. In spite of the high temperatures used during heat treatments, the growth kinetic of the largest AlN precipitates (>1μm) is slow. The cooling rate has a major effect on the size and the number density of AlN due to a higher driving force for nucleation at low temperatures. At last, quenching prior to isothermal annealing at high temperatures leads to fine and dense AlN precipitation, resulting from the martensite to austenite transformation. Experimental results will be discussed and compared with kinetic data obtained with the mobility database MobFe2 implemented in Dictra® software. •Slow dissolution kinetic of AlN precipitates due to both their large size and small chemical driving force•Significant effects of cooling rate prior isothermal heat treatment, holding time and temperature on AlN precipitation•Size of AlN precipitates can be reduced by quenching prior isothermal holding.•Fine precipitation of AlN related to the α→γ transformation
AbstractList In the present work, aluminum nitride (AlN) precipitation was investigated in a X23NiCoCrMoAl13-6-3 maraging steel with low nitrogen content (wt.% N = 5.5 ppm). A reliable and robust automatic method by scanning electron microscopy observations coupled with energy dispersive X-ray spectroscopy was developed for the quantification of AlN precipitates. The first stage was to identify the solvus temperature and to develop a heat treatment able to dissolve the AlN precipitates. The experimental determination of equilibrium conditions and solvus temperature show good agreement with ThermoCalce (R) simulation. Then, from this AlN-free state, the cooling rate, isothermal holding time and temperature were the subject of an intensive investigation in the austenite region of this maraging steel. In spite of the high temperatures used during heat treatments, the growth kinetic of the largest AlN precipitates (>1 mu m) is slow. The cooling rate has a major effect on the size and the number density of AlN due to a higher driving force for nucleation at low temperatures. At last, quenching prior to isothermal annealing at high temperatures leads to fine and dense AlN precipitation, resulting from the martensite to austenite transformation. Experimental results will be discussed and compared with kinetic data obtained with the mobility database MobFe2 implemented in Dicta (R) software.
In the present work, aluminum nitride (AlN) precipitation was investigated in a X23NiCoCrMoAl13-6-3 maraging steel with low nitrogen content (wt.% N=5.5ppm). A reliable and robust automatic method by scanning electron microscopy observations coupled with energy dispersive X-ray spectroscopy was developed for the quantification of AlN precipitates. The first stage was to identify the solvus temperature and to develop a heat treatment able to dissolve the AlN precipitates. The experimental determination of equilibrium conditions and solvus temperature show good agreement with ThermoCalc® simulation. Then, from this AlN-free state, the cooling rate, isothermal holding time and temperature were the subject of an intensive investigation in the austenite region of this maraging steel. In spite of the high temperatures used during heat treatments, the growth kinetic of the largest AlN precipitates (>1μm) is slow. The cooling rate has a major effect on the size and the number density of AlN due to a higher driving force for nucleation at low temperatures. At last, quenching prior to isothermal annealing at high temperatures leads to fine and dense AlN precipitation, resulting from the martensite to austenite transformation. Experimental results will be discussed and compared with kinetic data obtained with the mobility database MobFe2 implemented in Dictra® software. •Slow dissolution kinetic of AlN precipitates due to both their large size and small chemical driving force•Significant effects of cooling rate prior isothermal heat treatment, holding time and temperature on AlN precipitation•Size of AlN precipitates can be reduced by quenching prior isothermal holding.•Fine precipitation of AlN related to the α→γ transformation
In the present work, aluminum nitride (AlN) precipitation was investigated in a X23NiCoCrMoAl13-6-3 maraging steel with low nitrogen content (wt.% N = 5.5 ppm). A reliable and robust automatic method by scanning electron microscopy observations coupled with energy dispersive X-ray spectroscopy was developed for the quantification of AlN precipitates. The first stage was to identify the solvus temperature and to develop a heat treatment able to dissolve the AlN precipitates. The experimental determination of equilibrium conditions and solvus temperature show good agreement with ThermoCalc® simulation. Then, from this AlN-free state, the cooling rate, isothermal holding time and temperature were the subject of an intensive investigation in the austenite region of this maraging steel. In spite of the high temperatures used during heat treatments, the growth kinetic of the largest AlN precipitates (> 1 μm) is slow. The cooling rate has a major effect on the size and the number density of AlN due to a higher driving force for nucleation at low temperatures. At last, quenching prior to isothermal annealing at high temperatures leads to fine and dense AlN precipitation, resulting from the martensite to austenite transformation. Experimental results will be discussed and compared with kinetic data obtained with the mobility database MobFe2 implemented in Dictra® software. - Highlights: • Slow dissolution kinetic of AlN precipitates due to both their large size and small chemical driving force • Significant effects of cooling rate prior isothermal heat treatment, holding time and temperature on AlN precipitation • Size of AlN precipitates can be reduced by quenching prior isothermal holding. • Fine precipitation of AlN related to the α → γ transformation.
In the present work, aluminum nitride (AlN) precipitation was investigated in a X23NiCoCrMoAl13-6-3 maraging steel with low nitrogen content (wt.% N=5.5ppm). A reliable and robust automatic method by scanning electron microscopy observations coupled with energy dispersive X-ray spectroscopy was developed for the quantification of AlN precipitates. The first stage was to identify the solvus temperature and to develop a heat treatment able to dissolve the AlN precipitates. The experimental determination of equilibrium conditions and solvus temperature show good agreement with ThermoCalc registered simulation. Then, from this AlN-free state, the cooling rate, isothermal holding time and temperature were the subject of an intensive investigation in the austenite region of this maraging steel. In spite of the high temperatures used during heat treatments, the growth kinetic of the largest AlN precipitates (>1 mu m) is slow. The cooling rate has a major effect on the size and the number density of AlN due to a higher driving force for nucleation at low temperatures. At last, quenching prior to isothermal annealing at high temperatures leads to fine and dense AlN precipitation, resulting from the martensite to austenite transformation. Experimental results will be discussed and compared with kinetic data obtained with the mobility database MobFe2 implemented in Dictra registered software.
Author Puech, S.
Fribourg, G.
Redjaïmia, A.
Jeanmaire, G.
Dehmas, M.
Author_xml – sequence: 1
  givenname: G.
  surname: Jeanmaire
  fullname: Jeanmaire, G.
  email: guillaume.jeanmaire@univ-lorraine.fr
  organization: Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, 54011 Nancy Cedex, France
– sequence: 2
  givenname: M.
  surname: Dehmas
  fullname: Dehmas, M.
  organization: Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, 54011 Nancy Cedex, France
– sequence: 3
  givenname: A.
  surname: Redjaïmia
  fullname: Redjaïmia, A.
  organization: Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, 54011 Nancy Cedex, France
– sequence: 4
  givenname: S.
  surname: Puech
  fullname: Puech, S.
  organization: Aubert & Duval, BP1, 63770 Les Ancizes, France
– sequence: 5
  givenname: G.
  surname: Fribourg
  fullname: Fribourg, G.
  organization: Snecma Gennevilliers, 171 Boulevard de Valmy-BP 31, 92702 Colombes, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29054244$$DView record in Pascal Francis
https://hal.science/hal-01293583$$DView record in HAL
https://www.osti.gov/biblio/22403611$$D View this record in Osti.gov
BookMark eNqFkUFr3DAQhU1JoUnan1AwlEJzsKuRZcuihxJCmwQW2kN7LEKWx7YWW9pK2oT--8r1kkMv0UXi8b2Z0byL7Mw6i1n2FkgJBJqP-3JRUU_Kl5QAKwFKQuBFdg4trwoGrThLb8JYUbekepVdhLAnhDQt8PPs13eP2hxMVNE4m7shV_NxMfa45NZEb3rMjc1VPplxykP0aMc45YvyajR2TArinD-apM3u8Z_FjWhz7WxEG19nLwc1B3xzui-zn1-__Li5K3bfbu9vrneFZhxiUWs-UNWlQ5QQnaJ9w6kQpO2AtoPSQ9eLhg9VqxiKquWJST6gSDuuQfDqMnu31XUhGhm0iainNINFHSWljFQNQKKuNmpSszx4k37xRzpl5N31Tq4aASqquq0eVvbDxh68-33EEOVigsZ5VhbdMUhoGkJ4GqVJ6PsTqoJW8-CV1SY8NaCC1Iwylrh647R3IXgcnhAgcg1S7uUpSLkGKQFkCjL5Pv3n06e4oldmftb9eXNj2v-DQb-uB63G3vh1O70zz1T4C9-XvlM
CitedBy_id crossref_primary_10_1088_2053_1591_ab7d0d
crossref_primary_10_1007_s11661_019_05176_2
crossref_primary_10_1016_j_matchar_2015_06_021
crossref_primary_10_1016_j_optlastec_2019_03_040
crossref_primary_10_1002_srin_201900580
crossref_primary_10_1002_adem_202400650
crossref_primary_10_1051_metal_2018128
crossref_primary_10_1002_zamm_202400702
crossref_primary_10_2355_isijinternational_ISIJINT_2022_429
crossref_primary_10_1007_s11661_023_07100_1
crossref_primary_10_4028_www_scientific_net_DDF_405_229
crossref_primary_10_1016_j_msea_2023_145311
crossref_primary_10_1016_j_calphad_2024_102790
Cites_doi 10.1016/S1006-706X(08)60255-1
10.1007/s10853-011-5982-x
10.1002/srin.201000289
10.4028/www.scientific.net/MSF.426-432.1267
10.1179/cmq.2000.39.1.73
10.1007/s11661-000-0218-8
10.1179/msc.1970.4.1.222
10.1063/1.439184
10.1023/A:1017547318732
10.2355/isijinternational.47.945
10.2355/isijinternational.53.973
10.1016/S0921-5093(03)00080-7
10.1016/0026-0800(75)90023-3
10.1088/0965-0393/18/5/055003
10.4028/www.scientific.net/MSF.636-637.605
10.1080/01418619508236255
10.1016/S0921-5093(02)00845-6
10.1016/j.crhy.2011.12.001
ContentType Journal Article
Copyright 2014 Elsevier Inc.
2015 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: 2015 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
IQODW
7QF
7SR
8BQ
8FD
JG9
1XC
OTOTI
DOI 10.1016/j.matchar.2014.11.001
DatabaseName CrossRef
Pascal-Francis
Aluminium Industry Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Hyper Article en Ligne (HAL)
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Aluminium Industry Abstracts
Technology Research Database
METADEX
DatabaseTitleList


Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4189
EndPage 201
ExternalDocumentID 22403611
oai_HAL_hal_01293583v1
29054244
10_1016_j_matchar_2014_11_001
S1044580314003313
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HX~
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
WH7
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
7QF
7SR
8BQ
8FD
JG9
1XC
AGCQF
AALMO
ABPIF
ABPTK
OTOTI
ID FETCH-LOGICAL-c471t-5c7f2abbbb0a99ba2d6729908b128facfbd967f38a4e938799b47112e2b7c1973
IEDL.DBID .~1
ISSN 1044-5803
IngestDate Thu May 18 22:38:09 EDT 2023
Fri Sep 12 12:47:18 EDT 2025
Sat Sep 27 21:52:44 EDT 2025
Wed Apr 02 07:08:22 EDT 2025
Wed Oct 01 02:19:10 EDT 2025
Thu Apr 24 23:04:01 EDT 2025
Fri Feb 23 02:28:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Precipitation
Quantification
Maraging steel
Dissolution
Aluminum nitride
Maraging steels
Mechanical strength
Aluminium nitride
Nitrogen
High-strength steels
Language English
License CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-5c7f2abbbb0a99ba2d6729908b128facfbd967f38a4e938799b47112e2b7c1973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2413-1470
0000-0002-6865-4364
PQID 1660078796
PQPubID 23500
PageCount 9
ParticipantIDs osti_scitechconnect_22403611
hal_primary_oai_HAL_hal_01293583v1
proquest_miscellaneous_1660078796
pascalfrancis_primary_29054244
crossref_primary_10_1016_j_matchar_2014_11_001
crossref_citationtrail_10_1016_j_matchar_2014_11_001
elsevier_sciencedirect_doi_10_1016_j_matchar_2014_11_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle Materials characterization
PublicationYear 2014
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Massardier, Guetaz, Merlin, Soler (bb0055) 2003; 355
Massardier, Guetaz, Merlin, Soler (bb0025) 2003; 426–432
Radis, Schwarz, Zamberger, Kozeschnik (bb0095) 2011; 82
Burke (bb0110) 1975; 8
Perrut, Mathon, Delagnes (bb0005) 2012; 47
Geandier, Aeby-Gautier, Settefrati, Dehmas, Appolaire (bb0105) 2012; 13
Leslie, Rickett, Dotson, Walton (bb0070) 1954; 46
Massardier, Voron, Esnouf, Merlin (bb0145) 2001; 36
Leger, Guillaume (bb0035) 1980; 5
Paek, Jang, Jiang, Pak (bb0130) 2013; 53
Sabbi, Schanne (bb0075) 1992; 89
Saunders, Miodownik (bb0135) 1998
Xiang, Yue, Fan, Qiu, Zhao (bb0125) 2008; 15
Irvine, Pickering (bb0020) 1963; 201
Sidey (bb0155) 1967; 40
Kim, Kang, Park, Lee, Pak (bb0010) 2007; 47
ThermoCalc AB (bb0140)
Cheng, Hawbolt, Meadowcroft (bb0080) 2000; 39
Leapman, Rez, Mayers (bb0120) 1980; 72
Cheng, Hawbolt, Meadowcroft (bb0085) 2000; 31
Kang, Yu, Fu, Wang, Wang (bb0090) 2003; 351
Lorig, Elsea (bb0040) 1947; 55
Wilson, Gladman (bb0050) 1988; 33
Radis, Kozeschnik (bb0100) 2010; 636–637
Turkdogan (bb0045) 1989; 16
Sennour, Esnouf (bb0060) 2003; 51
Aaron, Kotler (bb0160) 1970; 4
Mayrhoffer (bb0065) 1975; 120
Egerton (bb0165) 1996; 191(54)
Biglari, Brakman, Mittemeijer (bb0150) 1995; 72
Radis, Kozeschnik (bb0015) 2010; 18
Erasmus (bb0030) 1964; 202
Kang (10.1016/j.matchar.2014.11.001_bb0090) 2003; 351
Leslie (10.1016/j.matchar.2014.11.001_bb0070) 1954; 46
Mayrhoffer (10.1016/j.matchar.2014.11.001_bb0065) 1975; 120
Egerton (10.1016/j.matchar.2014.11.001_bb0165) 1996; 191(54)
Radis (10.1016/j.matchar.2014.11.001_bb0100) 2010; 636–637
Kim (10.1016/j.matchar.2014.11.001_bb0010) 2007; 47
ThermoCalc AB (10.1016/j.matchar.2014.11.001_bb0140)
Sabbi (10.1016/j.matchar.2014.11.001_bb0075) 1992; 89
Leger (10.1016/j.matchar.2014.11.001_bb0035) 1980; 5
Radis (10.1016/j.matchar.2014.11.001_bb0095) 2011; 82
Sidey (10.1016/j.matchar.2014.11.001_bb0155) 1967; 40
Sennour (10.1016/j.matchar.2014.11.001_bb0060) 2003; 51
Aaron (10.1016/j.matchar.2014.11.001_bb0160) 1970; 4
Turkdogan (10.1016/j.matchar.2014.11.001_bb0045) 1989; 16
Cheng (10.1016/j.matchar.2014.11.001_bb0080) 2000; 39
Xiang (10.1016/j.matchar.2014.11.001_bb0125) 2008; 15
Paek (10.1016/j.matchar.2014.11.001_bb0130) 2013; 53
Perrut (10.1016/j.matchar.2014.11.001_bb0005) 2012; 47
Erasmus (10.1016/j.matchar.2014.11.001_bb0030) 1964; 202
Biglari (10.1016/j.matchar.2014.11.001_bb0150) 1995; 72
Cheng (10.1016/j.matchar.2014.11.001_bb0085) 2000; 31
Leapman (10.1016/j.matchar.2014.11.001_bb0120) 1980; 72
Massardier (10.1016/j.matchar.2014.11.001_bb0025) 2003; 426–432
Burke (10.1016/j.matchar.2014.11.001_bb0110) 1975; 8
Wilson (10.1016/j.matchar.2014.11.001_bb0050) 1988; 33
Geandier (10.1016/j.matchar.2014.11.001_bb0105) 2012; 13
Radis (10.1016/j.matchar.2014.11.001_bb0015) 2010; 18
Irvine (10.1016/j.matchar.2014.11.001_bb0020) 1963; 201
Massardier (10.1016/j.matchar.2014.11.001_bb0145) 2001; 36
Saunders (10.1016/j.matchar.2014.11.001_bb0135) 1998
Massardier (10.1016/j.matchar.2014.11.001_bb0055) 2003; 355
Lorig (10.1016/j.matchar.2014.11.001_bb0040) 1947; 55
References_xml – volume: 15
  start-page: 88
  year: 2008
  end-page: 94
  ident: bb0125
  article-title: Calculation of AIN and MnS precipitation in non-oriented electrical steel produced by CSP process
  publication-title: J. Iron Steel Res. Int.
– volume: 120
  start-page: 312
  year: 1975
  end-page: 321
  ident: bb0065
  article-title: Dissolution and separation kinetics of aluminum nitride in aluminum killed steel
  publication-title: Berg Hüttenmänn Monatsch
– volume: 55
  start-page: 160
  year: 1947
  end-page: 174
  ident: bb0040
  article-title: Occurrence of intergranular fracture in cast steels
  publication-title: Trans. AFS
– volume: 355
  start-page: 299
  year: 2003
  end-page: 310
  ident: bb0055
  article-title: Kinetic and microstructural study of aluminium nitride precipitation in a low carbon aluminium-killed steel
  publication-title: Mater. Sci. Eng. A
– volume: 53
  start-page: 973
  year: 2013
  end-page: 978
  ident: bb0130
  article-title: Thermodynamics of AIN formation in high manganese–aluminum alloyed liquid steels
  publication-title: ISIJ Int.
– volume: 4
  start-page: 222
  year: 1970
  end-page: 225
  ident: bb0160
  article-title: The effects of curvature on the dissolution kinetics of spherical precipitates
  publication-title: Metal. Sci.
– volume: 191(54)
  start-page: 349
  year: 1996
  ident: bb0165
  article-title: Electron energy-loss spectroscopy in the electron microscope
  publication-title: Transmission Electron Microscopy
– volume: 39
  start-page: 73
  year: 2000
  end-page: 86
  ident: bb0080
  article-title: Dissolution and coarsening of aluminum nitride precipitates in low carbon steel — distribution, size and morphology
  publication-title: Can. Metall. Q.
– volume: 33
  start-page: 246
  year: 1988
  end-page: 247
  ident: bb0050
  article-title: Review: aluminium nitride in steel
  publication-title: Int. Mater. Rev.
– volume: 89
  start-page: 17
  year: 1992
  end-page: 26
  ident: bb0075
  article-title: Kinetics of dissolution and precipitation of nitrides in a low carbon steel
  publication-title: Mém. Etudes Sci. Rev. Métall. (Fr.)
– volume: 72
  start-page: 1232
  year: 1980
  end-page: 1243
  ident: bb0120
  article-title: K, L, and M shell generalized oscillator strengths and ionization cross sections for fast electron collisions
  publication-title: J. Chem. Phys.
– volume: 36
  start-page: 1363
  year: 2001
  end-page: 1371
  ident: bb0145
  article-title: Identification oft he nitrides formed during the annealing of a low-carbon low aluminium steel
  publication-title: J. Mater. Sci.
– volume: 72
  start-page: 1281
  year: 1995
  end-page: 1299
  ident: bb0150
  article-title: Crystal structure and morphology of AIN precipitating on nitriding of an Fe-2
  publication-title: Philos. Mag. A
– volume: 16
  start-page: 61
  year: 1989
  end-page: 75
  ident: bb0045
  article-title: Causes and effects of nitride and carbonitride precipitation during continuous casting
  publication-title: Iron Steelmaker
– volume: 47
  start-page: 1920
  year: 2012
  end-page: 1929
  ident: bb0005
  article-title: Small-angle neutron scattering of multiphase secondary hardening steels
  publication-title: J. Mater. Sci.
– volume: 31
  start-page: 1907
  year: 2000
  end-page: 1916
  ident: bb0085
  article-title: Modelling of dissolution, growth, and coarsening of aluminum nitride in low-carbon steels
  publication-title: Met. Mater. Trans. A
– volume: 5
  start-page: 40
  year: 1980
  end-page: 46
  ident: bb0035
  article-title: Microfractographic diagnosis of the embrittlement of steel castings by aluminum
  publication-title: Int. Cast. Met. J.
– volume: 82
  start-page: 905
  year: 2011
  end-page: 910
  ident: bb0095
  article-title: AlN precipitation during isothermal annealing of ultra low carbon steel
  publication-title: Steel Res. Int.
– volume: 47
  start-page: 945
  year: 2007
  end-page: 954
  ident: bb0010
  article-title: Thermodynamics of aluminum, nitrogen and AlN formation in liquid iron
  publication-title: ISIJ Int.
– volume: 51
  start-page: 943
  year: 2003
  end-page: 957
  ident: bb0060
  article-title: Contribution of advanced microscopy techniques to nanoprecipitates characterization: case of AlN precipitation in low-carbon steel
  publication-title: Acta Metall.
– volume: 8
  start-page: 473
  year: 1975
  end-page: 488
  ident: bb0110
  article-title: Chemical extraction of refractory inclusions from iron-and nickel-base alloys
  publication-title: Metallography
– volume: 201
  start-page: 944
  year: 1963
  end-page: 959
  ident: bb0020
  article-title: Low carbon steels with ferrite–pearlite structures
  publication-title: J. Iron Steel Inst.
– volume: 636–637
  start-page: 605
  year: 2010
  end-page: 611
  ident: bb0100
  article-title: Precipitation kinetics of aluminium nitride in austenite in microalloyed HSLA steels
  publication-title: Mater. Sci. Forum
– ident: bb0140
– volume: 13
  start-page: 257
  year: 2012
  end-page: 267
  ident: bb0105
  article-title: Study of diffusive transformations by high energy X-ray diffraction
  publication-title: Compt. Rendus Phys.
– volume: 202
  start-page: 32
  year: 1964
  end-page: 41
  ident: bb0030
  article-title: Effect of aluminium additions on forgeability austenite grain coarsening temperature and impact properties of steel
  publication-title: J. Iron Steel Inst.
– year: 1998
  ident: bb0135
  article-title: Calphad: A Comprehensive Guide
– volume: 18
  start-page: 0550003
  year: 2010
  ident: bb0015
  article-title: Kinetics of AlN precipitation in microalloyed steel
  publication-title: Model. Simul. Mater. Sci. Eng.
– volume: 40
  start-page: 269
  year: 1967
  end-page: 275
  ident: bb0155
  article-title: Effects of aluminium nitride on the properties of steel
  publication-title: Iron Steel
– volume: 46
  start-page: 1470
  year: 1954
  end-page: 1499
  ident: bb0070
  article-title: Solution and precipitation of aluminum nitride in relation to the structure of low carbon steels
  publication-title: Trans. Am. Soc. Met.
– volume: 426–432
  start-page: 1267
  year: 2003
  end-page: 1272
  ident: bb0025
  article-title: Study of the role played by nitrogen on the deep-drawing properties of aluminium killed steel obtained after a continuous annealing
  publication-title: Mater. Sci. Forum
– volume: 351
  start-page: 265
  year: 2003
  end-page: 271
  ident: bb0090
  article-title: Morphology and precipitation kinetics of AlN in hot strip of low carbon steel produced by compact strip production
  publication-title: Mater. Sci. Eng. A
– volume: 15
  start-page: 88
  issue: 5
  year: 2008
  ident: 10.1016/j.matchar.2014.11.001_bb0125
  article-title: Calculation of AIN and MnS precipitation in non-oriented electrical steel produced by CSP process
  publication-title: J. Iron Steel Res. Int.
  doi: 10.1016/S1006-706X(08)60255-1
– volume: 47
  start-page: 1920
  issue: 4
  year: 2012
  ident: 10.1016/j.matchar.2014.11.001_bb0005
  article-title: Small-angle neutron scattering of multiphase secondary hardening steels
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-011-5982-x
– volume: 5
  start-page: 40
  issue: 3
  year: 1980
  ident: 10.1016/j.matchar.2014.11.001_bb0035
  article-title: Microfractographic diagnosis of the embrittlement of steel castings by aluminum
  publication-title: Int. Cast. Met. J.
– volume: 82
  start-page: 905
  issue: 8
  year: 2011
  ident: 10.1016/j.matchar.2014.11.001_bb0095
  article-title: AlN precipitation during isothermal annealing of ultra low carbon steel
  publication-title: Steel Res. Int.
  doi: 10.1002/srin.201000289
– volume: 426–432
  start-page: 1267
  year: 2003
  ident: 10.1016/j.matchar.2014.11.001_bb0025
  article-title: Study of the role played by nitrogen on the deep-drawing properties of aluminium killed steel obtained after a continuous annealing
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.426-432.1267
– ident: 10.1016/j.matchar.2014.11.001_bb0140
– volume: 39
  start-page: 73
  issue: 1
  year: 2000
  ident: 10.1016/j.matchar.2014.11.001_bb0080
  article-title: Dissolution and coarsening of aluminum nitride precipitates in low carbon steel — distribution, size and morphology
  publication-title: Can. Metall. Q.
  doi: 10.1179/cmq.2000.39.1.73
– year: 1998
  ident: 10.1016/j.matchar.2014.11.001_bb0135
– volume: 191(54)
  start-page: 349
  year: 1996
  ident: 10.1016/j.matchar.2014.11.001_bb0165
  article-title: Electron energy-loss spectroscopy in the electron microscope
– volume: 55
  start-page: 160
  year: 1947
  ident: 10.1016/j.matchar.2014.11.001_bb0040
  article-title: Occurrence of intergranular fracture in cast steels
  publication-title: Trans. AFS
– volume: 33
  start-page: 246
  issue: 5
  year: 1988
  ident: 10.1016/j.matchar.2014.11.001_bb0050
  article-title: Review: aluminium nitride in steel
  publication-title: Int. Mater. Rev.
– volume: 31
  start-page: 1907
  year: 2000
  ident: 10.1016/j.matchar.2014.11.001_bb0085
  article-title: Modelling of dissolution, growth, and coarsening of aluminum nitride in low-carbon steels
  publication-title: Met. Mater. Trans. A
  doi: 10.1007/s11661-000-0218-8
– volume: 46
  start-page: 1470
  year: 1954
  ident: 10.1016/j.matchar.2014.11.001_bb0070
  article-title: Solution and precipitation of aluminum nitride in relation to the structure of low carbon steels
  publication-title: Trans. Am. Soc. Met.
– volume: 4
  start-page: 222
  issue: 1
  year: 1970
  ident: 10.1016/j.matchar.2014.11.001_bb0160
  article-title: The effects of curvature on the dissolution kinetics of spherical precipitates
  publication-title: Metal. Sci.
  doi: 10.1179/msc.1970.4.1.222
– volume: 201
  start-page: 944
  year: 1963
  ident: 10.1016/j.matchar.2014.11.001_bb0020
  article-title: Low carbon steels with ferrite–pearlite structures
  publication-title: J. Iron Steel Inst.
– volume: 72
  start-page: 1232
  issue: 2
  year: 1980
  ident: 10.1016/j.matchar.2014.11.001_bb0120
  article-title: K, L, and M shell generalized oscillator strengths and ionization cross sections for fast electron collisions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.439184
– volume: 16
  start-page: 61
  issue: 5
  year: 1989
  ident: 10.1016/j.matchar.2014.11.001_bb0045
  article-title: Causes and effects of nitride and carbonitride precipitation during continuous casting
  publication-title: Iron Steelmaker
– volume: 36
  start-page: 1363
  year: 2001
  ident: 10.1016/j.matchar.2014.11.001_bb0145
  article-title: Identification oft he nitrides formed during the annealing of a low-carbon low aluminium steel
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1017547318732
– volume: 51
  start-page: 943
  year: 2003
  ident: 10.1016/j.matchar.2014.11.001_bb0060
  article-title: Contribution of advanced microscopy techniques to nanoprecipitates characterization: case of AlN precipitation in low-carbon steel
  publication-title: Acta Metall.
– volume: 89
  start-page: 17
  issue: 1
  year: 1992
  ident: 10.1016/j.matchar.2014.11.001_bb0075
  article-title: Kinetics of dissolution and precipitation of nitrides in a low carbon steel
  publication-title: Mém. Etudes Sci. Rev. Métall. (Fr.)
– volume: 47
  start-page: 945
  issue: 7
  year: 2007
  ident: 10.1016/j.matchar.2014.11.001_bb0010
  article-title: Thermodynamics of aluminum, nitrogen and AlN formation in liquid iron
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.47.945
– volume: 53
  start-page: 973
  issue: 6
  year: 2013
  ident: 10.1016/j.matchar.2014.11.001_bb0130
  article-title: Thermodynamics of AIN formation in high manganese–aluminum alloyed liquid steels
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.53.973
– volume: 355
  start-page: 299
  year: 2003
  ident: 10.1016/j.matchar.2014.11.001_bb0055
  article-title: Kinetic and microstructural study of aluminium nitride precipitation in a low carbon aluminium-killed steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(03)00080-7
– volume: 202
  start-page: 32
  issue: 1
  year: 1964
  ident: 10.1016/j.matchar.2014.11.001_bb0030
  article-title: Effect of aluminium additions on forgeability austenite grain coarsening temperature and impact properties of steel
  publication-title: J. Iron Steel Inst.
– volume: 120
  start-page: 312
  year: 1975
  ident: 10.1016/j.matchar.2014.11.001_bb0065
  article-title: Dissolution and separation kinetics of aluminum nitride in aluminum killed steel
  publication-title: Berg Hüttenmänn Monatsch
– volume: 8
  start-page: 473
  issue: 6
  year: 1975
  ident: 10.1016/j.matchar.2014.11.001_bb0110
  article-title: Chemical extraction of refractory inclusions from iron-and nickel-base alloys
  publication-title: Metallography
  doi: 10.1016/0026-0800(75)90023-3
– volume: 18
  start-page: 0550003
  year: 2010
  ident: 10.1016/j.matchar.2014.11.001_bb0015
  article-title: Kinetics of AlN precipitation in microalloyed steel
  publication-title: Model. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/18/5/055003
– volume: 636–637
  start-page: 605
  year: 2010
  ident: 10.1016/j.matchar.2014.11.001_bb0100
  article-title: Precipitation kinetics of aluminium nitride in austenite in microalloyed HSLA steels
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.636-637.605
– volume: 72
  start-page: 1281
  issue: 5
  year: 1995
  ident: 10.1016/j.matchar.2014.11.001_bb0150
  article-title: Crystal structure and morphology of AIN precipitating on nitriding of an Fe-2at.% Al alloy
  publication-title: Philos. Mag. A
  doi: 10.1080/01418619508236255
– volume: 40
  start-page: 269
  issue: 7
  year: 1967
  ident: 10.1016/j.matchar.2014.11.001_bb0155
  article-title: Effects of aluminium nitride on the properties of steel
  publication-title: Iron Steel
– volume: 351
  start-page: 265
  issue: 1–2
  year: 2003
  ident: 10.1016/j.matchar.2014.11.001_bb0090
  article-title: Morphology and precipitation kinetics of AlN in hot strip of low carbon steel produced by compact strip production
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(02)00845-6
– volume: 13
  start-page: 257
  issue: 3
  year: 2012
  ident: 10.1016/j.matchar.2014.11.001_bb0105
  article-title: Study of diffusive transformations by high energy X-ray diffraction
  publication-title: Compt. Rendus Phys.
  doi: 10.1016/j.crhy.2011.12.001
SSID ssj0006817
Score 2.1553898
Snippet In the present work, aluminum nitride (AlN) precipitation was investigated in a X23NiCoCrMoAl13-6-3 maraging steel with low nitrogen content (wt.% N=5.5ppm). A...
In the present work, aluminum nitride (AlN) precipitation was investigated in a X23NiCoCrMoAl13-6-3 maraging steel with low nitrogen content (wt.% N = 5.5...
SourceID osti
hal
proquest
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 193
SubjectTerms ALUMINIUM
ALUMINIUM NITRIDES
Aluminum nitride
ANNEALING
AUSTENITE
COMPARATIVE EVALUATIONS
COMPUTERIZED SIMULATION
Cross-disciplinary physics: materials science; rheology
Density
Dissolution
Engineering Sciences
Exact sciences and technology
Heat treatment
Maraging steel
MARAGING STEELS
MARTENSITE
Materials
MATERIALS SCIENCE
NITROGEN
NUCLEATION
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Physics
Precipitates
PRECIPITATION
Quantification
QUENCHING
SCANNING ELECTRON MICROSCOPY
Solidification
TEMPERATURE DEPENDENCE
X-RAY SPECTROSCOPY
Title Precipitation of aluminum nitride in a high strength maraging steel with low nitrogen content
URI https://dx.doi.org/10.1016/j.matchar.2014.11.001
https://www.proquest.com/docview/1660078796
https://hal.science/hal-01293583
https://www.osti.gov/biblio/22403611
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-4189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006817
  issn: 1044-5803
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-4189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006817
  issn: 1044-5803
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-4189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006817
  issn: 1044-5803
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-4189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006817
  issn: 1044-5803
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006817
  issn: 1044-5803
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6x7mHbA9rYphVY5SFe0zaJ48SPVTXU_UKTAImXybITG4JKUpUW3vjbd5c4ZWiTkNa3uj638Z19l_Tz9wEcOo451lkbJBbLNy5CEZixk4GlcjdLpSgaKqUfx2J2xr-eJ-dbMO3OwhCs0u_97Z7e7Na-ZeRnc7Qoy9EJ3kjwJCP6dRIka5Rrif0LY3p4_wDzEFmjukudA-r9cIpndDXEopAONxHCiw-JzNNrw_wjPz27JKBkr8aFR_hJfYNT6Frti7-28SY3Hb2GbV9Uskn7u9_Alq124MW003LbgVd_0A6-hV8_idJi4dm5We2Yxi2qrNbXDBf4siwsKyumGVEZMzpMUl2sLtm1XjaKRthi7ZzRA1w2r-8akxrDkBHqHVPYOzg7-nw6nQVeZiHIMTOtgiRPXaQNvsZaSqOjQqSUpDKDucvp3JlCitTFmeZWxug_adAujGxk0jyUafweelVd2Q_AIudyNAm1KUJeFFrbAs1S7uI8iYUe94F3k6tyf5UkhTFXHdjsSnmfKPIJ3p8Q6K4Pw43ZoiXheMog6zynHkWTwkTxlOkBenrzNcS-PZt8V9RGz-ziJItvsdM-BQKNTVS7OWGScHAqj2IR4seDRwGyGS2SWCFjQdWHT13EKIwE-o9GV7Ze36hQkGAALZLd_7-GPXhJ71rUzT70Vsu1_Yi108oMmsUxgOeTL99mx78BpVYZFw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5swED516UO3h6nrNi3rj3nTXkkCGIMfo6gVXdNo0lqpL5NlwG6pUojSZP33dwcma7VJlcaj4Qz4zndnOH8fwFfLMcZaY7zIYPrGhS-8bGSlZyjdTWIpigZK6Xwm0kv-7Sq62oJJtxeGyiqd7299euOtXcvQjeZwUZbDH7iQ4FFC8OtESEbMtds8Qp_cg-3x6Vk62zhkkTTEu3S9RwJ_NvIMbweYF9L-Jiry4gPC83T0MP8IUS9uqFayV-PcoxJKfY-jaFv6i788eROeTnbhtcsr2bh99DewZao92Jl0dG578OoR8uBb-PmdUC0WDqCb1ZZp9FJltb5jOMeXZWFYWTHNCM2Y0X6S6np1w-70siE1whZj5oy-4bJ5_dCI1GiJjArfMYq9g8uT44tJ6jmmBS_H4LTyojy2gc7wGGkpMx0UIqY4lWQYvqzObVZIEdsw0dzIEFUoM5TzAxNkce7LOHwPvaquzAdggbU5ivg6K3xeFFqbAsVibsM8CoUe9YF3g6ty95bEhjFXXb3ZrXI6UaQTXKJQ3V0fBhuxRYvD8ZxA0mlOPTEohbHiOdEvqOnNbQiAOx1PFbXRZ7swSsJfeNEBGQL1TWi7OZUlYeeUIYXCx9NHTwxk01sgMUnGnKoPnzuLUWgJ9JtGV6Ze3ytfEGcAzZOP__8On2AnvTifqunp7GwfXtKZtgjnAHqr5docYiq1yo7cVPkNILkbwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precipitation+of+aluminum+nitride+in+a+high+strength+maraging+steel+with+low+nitrogen+content&rft.jtitle=Materials+characterization&rft.au=Jeanmaire%2C+G&rft.au=Dehmas%2C+M&rft.au=Redjaimia%2C+A&rft.au=Puech%2C+S&rft.date=2014-12-01&rft.issn=1044-5803&rft.volume=98&rft.spage=193&rft.epage=201&rft_id=info:doi/10.1016%2Fj.matchar.2014.11.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1044-5803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1044-5803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1044-5803&client=summon