Deep learning to decode sites of RNA translation in normal and cancerous tissues

The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Accurate delineation of RNA translation variation represents a significant challenge due to the complexity of the process and technical limitations. Here, we introduce RiboT...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 16; no. 1; pp. 1275 - 10
Main Authors Clauwaert, Jim, McVey, Zahra, Gupta, Ramneek, Yannuzzi, Ian, Basrur, Venkatesha, Nesvizhskii, Alexey I., Menschaert, Gerben, Prensner, John R.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.02.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-025-56543-0

Cover

Abstract The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Accurate delineation of RNA translation variation represents a significant challenge due to the complexity of the process and technical limitations. Here, we introduce RiboTIE, a transformer model-based approach designed to enhance the analysis of ribosome profiling data. Unlike existing methods, RiboTIE leverages raw ribosome profiling counts directly to robustly detect translated open reading frames (ORFs) with high precision and sensitivity, evaluated on a diverse set of datasets. We demonstrate that RiboTIE successfully recapitulates known findings and provides novel insights into the regulation of RNA translation in both normal brain and medulloblastoma cancer samples. Our results suggest that RiboTIE is a versatile tool that can significantly improve the accuracy and depth of Ribo-Seq data analysis, thereby advancing our understanding of protein synthesis and its implications in disease. RNA translation is a core cell process that is deregulated in cancer. Here, the authors show that a machine learning approach, RiboTIE, can reconstruct RNA translation in cancer and non-cancer cells. In medulloblastoma, a brain cancer, RiboTIE enables discovery of subtype-specific microproteins.
AbstractList The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Accurate delineation of RNA translation variation represents a significant challenge due to the complexity of the process and technical limitations. Here, we introduce RiboTIE, a transformer model-based approach designed to enhance the analysis of ribosome profiling data. Unlike existing methods, RiboTIE leverages raw ribosome profiling counts directly to robustly detect translated open reading frames (ORFs) with high precision and sensitivity, evaluated on a diverse set of datasets. We demonstrate that RiboTIE successfully recapitulates known findings and provides novel insights into the regulation of RNA translation in both normal brain and medulloblastoma cancer samples. Our results suggest that RiboTIE is a versatile tool that can significantly improve the accuracy and depth of Ribo-Seq data analysis, thereby advancing our understanding of protein synthesis and its implications in disease.
Abstract The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Accurate delineation of RNA translation variation represents a significant challenge due to the complexity of the process and technical limitations. Here, we introduce RiboTIE, a transformer model-based approach designed to enhance the analysis of ribosome profiling data. Unlike existing methods, RiboTIE leverages raw ribosome profiling counts directly to robustly detect translated open reading frames (ORFs) with high precision and sensitivity, evaluated on a diverse set of datasets. We demonstrate that RiboTIE successfully recapitulates known findings and provides novel insights into the regulation of RNA translation in both normal brain and medulloblastoma cancer samples. Our results suggest that RiboTIE is a versatile tool that can significantly improve the accuracy and depth of Ribo-Seq data analysis, thereby advancing our understanding of protein synthesis and its implications in disease.
The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Accurate delineation of RNA translation variation represents a significant challenge due to the complexity of the process and technical limitations. Here, we introduce RiboTIE, a transformer model-based approach designed to enhance the analysis of ribosome profiling data. Unlike existing methods, RiboTIE leverages raw ribosome profiling counts directly to robustly detect translated open reading frames (ORFs) with high precision and sensitivity, evaluated on a diverse set of datasets. We demonstrate that RiboTIE successfully recapitulates known findings and provides novel insights into the regulation of RNA translation in both normal brain and medulloblastoma cancer samples. Our results suggest that RiboTIE is a versatile tool that can significantly improve the accuracy and depth of Ribo-Seq data analysis, thereby advancing our understanding of protein synthesis and its implications in disease. RNA translation is a core cell process that is deregulated in cancer. Here, the authors show that a machine learning approach, RiboTIE, can reconstruct RNA translation in cancer and non-cancer cells. In medulloblastoma, a brain cancer, RiboTIE enables discovery of subtype-specific microproteins.
The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Accurate delineation of RNA translation variation represents a significant challenge due to the complexity of the process and technical limitations. Here, we introduce RiboTIE, a transformer model-based approach designed to enhance the analysis of ribosome profiling data. Unlike existing methods, RiboTIE leverages raw ribosome profiling counts directly to robustly detect translated open reading frames (ORFs) with high precision and sensitivity, evaluated on a diverse set of datasets. We demonstrate that RiboTIE successfully recapitulates known findings and provides novel insights into the regulation of RNA translation in both normal brain and medulloblastoma cancer samples. Our results suggest that RiboTIE is a versatile tool that can significantly improve the accuracy and depth of Ribo-Seq data analysis, thereby advancing our understanding of protein synthesis and its implications in disease.RNA translation is a core cell process that is deregulated in cancer. Here, the authors show that a machine learning approach, RiboTIE, can reconstruct RNA translation in cancer and non-cancer cells. In medulloblastoma, a brain cancer, RiboTIE enables discovery of subtype-specific microproteins.
The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Accurate delineation of RNA translation variation represents a significant challenge due to the complexity of the process and technical limitations. Here, we introduce RiboTIE, a transformer model-based approach designed to enhance the analysis of ribosome profiling data. Unlike existing methods, RiboTIE leverages raw ribosome profiling counts directly to robustly detect translated open reading frames (ORFs) with high precision and sensitivity, evaluated on a diverse set of datasets. We demonstrate that RiboTIE successfully recapitulates known findings and provides novel insights into the regulation of RNA translation in both normal brain and medulloblastoma cancer samples. Our results suggest that RiboTIE is a versatile tool that can significantly improve the accuracy and depth of Ribo-Seq data analysis, thereby advancing our understanding of protein synthesis and its implications in disease.The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Accurate delineation of RNA translation variation represents a significant challenge due to the complexity of the process and technical limitations. Here, we introduce RiboTIE, a transformer model-based approach designed to enhance the analysis of ribosome profiling data. Unlike existing methods, RiboTIE leverages raw ribosome profiling counts directly to robustly detect translated open reading frames (ORFs) with high precision and sensitivity, evaluated on a diverse set of datasets. We demonstrate that RiboTIE successfully recapitulates known findings and provides novel insights into the regulation of RNA translation in both normal brain and medulloblastoma cancer samples. Our results suggest that RiboTIE is a versatile tool that can significantly improve the accuracy and depth of Ribo-Seq data analysis, thereby advancing our understanding of protein synthesis and its implications in disease.
ArticleNumber 1275
Author McVey, Zahra
Yannuzzi, Ian
Nesvizhskii, Alexey I.
Menschaert, Gerben
Prensner, John R.
Gupta, Ramneek
Clauwaert, Jim
Basrur, Venkatesha
Author_xml – sequence: 1
  givenname: Jim
  orcidid: 0000-0002-5876-1406
  surname: Clauwaert
  fullname: Clauwaert, Jim
  email: clauwaer@umich.edu
  organization: Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Chad Carr Pediatric Brain Tumor Center, University of Michigan, Department of Biological Chemistry, University of Michigan
– sequence: 2
  givenname: Zahra
  surname: McVey
  fullname: McVey, Zahra
  organization: Novo Nordisk Research Centre Oxford, Novo Nordisk Ltd
– sequence: 3
  givenname: Ramneek
  orcidid: 0000-0001-6841-6676
  surname: Gupta
  fullname: Gupta, Ramneek
  organization: Novo Nordisk Research Centre Oxford, Novo Nordisk Ltd
– sequence: 4
  givenname: Ian
  surname: Yannuzzi
  fullname: Yannuzzi, Ian
  organization: Cancer Program, Broad Institute of MIT and Harvard
– sequence: 5
  givenname: Venkatesha
  surname: Basrur
  fullname: Basrur, Venkatesha
  organization: Department of Pathology, University of Michigan
– sequence: 6
  givenname: Alexey I.
  surname: Nesvizhskii
  fullname: Nesvizhskii, Alexey I.
  organization: Department of Pathology, University of Michigan, Department of Computational Medicine and Bioinformatics, University of Michigan
– sequence: 7
  givenname: Gerben
  orcidid: 0000-0002-7575-2085
  surname: Menschaert
  fullname: Menschaert, Gerben
  email: gerben.menschaert@ugent.be
  organization: Department of Data Analysis and Mathematical Modelling, Ghent University
– sequence: 8
  givenname: John R.
  orcidid: 0000-0002-7024-636X
  surname: Prensner
  fullname: Prensner, John R.
  email: prensner@umich.edu
  organization: Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Chad Carr Pediatric Brain Tumor Center, University of Michigan, Department of Biological Chemistry, University of Michigan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39894899$$D View this record in MEDLINE/PubMed
BookMark eNp9kktrVDEUx4NUbK39Ai4k4MbN1bwfKyn1VSgqouuQSc4dM9xJxuSO4Lc3M9Nq20WzySH5nx__83iKjnLJgNBzSl5Tws2bJqhQeiBMDlJJwQfyCJ0wIuhANeNHt-JjdNbaivTDLTVCPEHH3BorjLUn6Os7gA2ewNec8hLPBUcIJQJuaYaGy4i_fT7Hc_W5TX5OJeOUcS517Sfsc8TB5wC1bBueU2tbaM_Q49FPDc6u71P048P77xefhqsvHy8vzq-GIDSdB0EjhxBj4H6kgmvQSqgYTWTBaquiJ7wXKIXkHCRjdjRMcMkDV17zBRB-ii4P3Fj8ym1qWvv6xxWf3P6h1KXzdU5hAkck8x04RtBakB7CwoSoOBAlo9W8s94eWJvtYg0xQO4FT3egd39y-umW5bejVBsjmO6EV9eEWn71LsxunVqAafIZenMcp4oZYYm2XfrynnRVtjX3Xu1VSlJpdsAXty3983IzuS4wB0GopbUKowtp3k-oO0yTo8Tt9sQd9sT1PXH7PXG71rF7qTf0B5P4Ial1cV5C_W_7gay_mufOjg
CitedBy_id crossref_primary_10_3389_fimmu_2025_1544104
Cites_doi 10.1002/cpmb.67
10.1093/bioinformatics/bts635
10.1038/s41580-023-00624-9
10.1038/s41467-017-01981-8
10.1016/j.ccell.2018.08.004
10.1038/s41467-023-44405-6
10.1038/nmeth.4631
10.7554/eLife.58659
10.1016/j.molcel.2023.12.003
10.1093/bioinformatics/btz878
10.1093/bib/bbae268
10.14806/ej.17.1.200
10.1101/cshperspect.a014308
10.1016/j.celrep.2020.107782
10.1038/s41593-022-01164-9
10.1038/nmeth.4256
10.1016/j.mcpro.2023.100631
10.1093/nar/gkac1000
10.1038/s41594-020-0450-4
10.5281/zenodo.10689717
10.1038/s41392-021-00728-8
10.1038/s41587-022-01369-0
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-025-56543-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE

Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_052ada0fde7740adaeb8cd63e065d973
PMC11788427
39894899
10_1038_s41467_025_56543_0
Genre Journal Article
GrantInformation_xml – fundername: ChadTough Foundation (Chad Tough Foundation)
  funderid: https://doi.org/10.13039/100010612
– fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
  grantid: K08-CA263552-01A1
  funderid: https://doi.org/10.13039/100000054
– fundername: Damon Runyon Cancer Research Foundation (Cancer Research Fund of the Damon Runyon-Walter Winchell Foundation)
  grantid: CI-127-24
  funderid: https://doi.org/10.13039/100001021
– fundername: Alex's Lemonade Stand Foundation for Childhood Cancer (Alex's Lemonade Stand Foundation)
  grantid: 21-23983
  funderid: https://doi.org/10.13039/100001445
– fundername: Hyundai Motor Group | Hyundai Motor America | Hyundai Hope On Wheels (Hope On Wheels)
  funderid: https://doi.org/10.13039/100008258
– fundername: Novo Nordisk
  funderid: https://doi.org/10.13039/501100004191
– fundername: St. Baldrick's Foundation (St. Baldrick's Foundation, Inc)
  grantid: 931638
  funderid: https://doi.org/10.13039/100006058
– fundername: NCI NIH HHS
  grantid: K08 CA263552
– fundername: Alex's Lemonade Stand Foundation for Childhood Cancer (Alex's Lemonade Stand Foundation)
  grantid: 21-23983
– fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
  grantid: K08-CA263552-01A1
– fundername: Damon Runyon Cancer Research Foundation (Cancer Research Fund of the Damon Runyon-Walter Winchell Foundation)
  grantid: CI-127-24
– fundername: St. Baldrick's Foundation (St. Baldrick's Foundation, Inc)
  grantid: 931638
– fundername: NIGMS NIH HHS
  grantid: R01 GM094231
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PKEHL
PQEST
PQUKI
PRINS
PUEGO
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c471t-41d3ecddc3af1437e7646dd8d2c9796da0341454533e5229f824353c36a73be03
IEDL.DBID DOA
ISSN 2041-1723
IngestDate Wed Aug 27 01:23:16 EDT 2025
Thu Aug 21 18:38:45 EDT 2025
Thu Sep 04 18:16:34 EDT 2025
Sat Aug 23 13:06:32 EDT 2025
Wed Jul 23 01:47:16 EDT 2025
Tue Jul 01 02:37:58 EDT 2025
Thu Apr 24 22:50:53 EDT 2025
Fri Feb 21 02:38:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-41d3ecddc3af1437e7646dd8d2c9796da0341454533e5229f824353c36a73be03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6841-6676
0000-0002-7575-2085
0000-0002-5876-1406
0000-0002-7024-636X
OpenAccessLink https://doaj.org/article/052ada0fde7740adaeb8cd63e065d973
PMID 39894899
PQID 3162651587
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_052ada0fde7740adaeb8cd63e065d973
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11788427
proquest_miscellaneous_3162849079
proquest_journals_3162651587
pubmed_primary_39894899
crossref_citationtrail_10_1038_s41467_025_56543_0
crossref_primary_10_1038_s41467_025_56543_0
springer_journals_10_1038_s41467_025_56543_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-02
PublicationDateYYYYMMDD 2025-02-02
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References F Erhard (56543_CR9) 2018; 15
JM Mudge (56543_CR3) 2022; 40
AD Fedorova (56543_CR4) 2024; 15
B Gaertner (56543_CR13) 2020; 9
56543_CR17
TC Archer (56543_CR18) 2018; 34
AT Kong (56543_CR23) 2017; 14
M Martin (56543_CR19) 2011; 17
P Zhang (56543_CR7) 2017; 8
J Kang (56543_CR2) 2021; 6
MF Roussel (56543_CR16) 2013; 3
L Calviello (56543_CR5) 2020; 27
Z Ji (56543_CR10) 2018; 124
A Dobin (56543_CR20) 2013; 29
B Malone (56543_CR6) 2017; 45
EE Duffy (56543_CR14) 2022; 25
56543_CR15
S Choudhary (56543_CR8) 2020; 36
56543_CR24
56543_CR11
G Tong (56543_CR12) 2024; 25
56543_CR1
56543_CR21
D Szklarczyk (56543_CR22) 2023; 51
38585907 - bioRxiv. 2024 Mar 25:2024.03.21.586110. doi: 10.1101/2024.03.21.586110.
References_xml – ident: 56543_CR21
– volume: 124
  year: 2018
  ident: 56543_CR10
  publication-title: Curr. Protoc. Mol. Biol.
  doi: 10.1002/cpmb.67
– volume: 29
  start-page: 15
  year: 2013
  ident: 56543_CR20
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– ident: 56543_CR1
  doi: 10.1038/s41580-023-00624-9
– volume: 8
  year: 2017
  ident: 56543_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01981-8
– volume: 34
  start-page: 396
  year: 2018
  ident: 56543_CR18
  publication-title: Cancer Cell.
  doi: 10.1016/j.ccell.2018.08.004
– volume: 15
  year: 2024
  ident: 56543_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-44405-6
– volume: 15
  start-page: 363
  year: 2018
  ident: 56543_CR9
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4631
– volume: 9
  year: 2020
  ident: 56543_CR13
  publication-title: Elife.
  doi: 10.7554/eLife.58659
– volume: 45
  start-page: 2960
  year: 2017
  ident: 56543_CR6
  publication-title: Nucleic Acids Res.
– ident: 56543_CR15
  doi: 10.1016/j.molcel.2023.12.003
– volume: 36
  start-page: 2053
  year: 2020
  ident: 56543_CR8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz878
– volume: 25
  year: 2024
  ident: 56543_CR12
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbae268
– volume: 17
  start-page: 10
  year: 2011
  ident: 56543_CR19
  publication-title: EMBnet. J.
  doi: 10.14806/ej.17.1.200
– volume: 3
  start-page: a014308
  year: 2013
  ident: 56543_CR16
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a014308
– ident: 56543_CR17
  doi: 10.1016/j.celrep.2020.107782
– volume: 25
  start-page: 1353
  year: 2022
  ident: 56543_CR14
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-022-01164-9
– volume: 14
  start-page: 513
  year: 2017
  ident: 56543_CR23
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4256
– ident: 56543_CR11
  doi: 10.1016/j.mcpro.2023.100631
– volume: 51
  start-page: D638
  year: 2023
  ident: 56543_CR22
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac1000
– volume: 27
  start-page: 717
  year: 2020
  ident: 56543_CR5
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-020-0450-4
– ident: 56543_CR24
  doi: 10.5281/zenodo.10689717
– volume: 6
  start-page: 323
  year: 2021
  ident: 56543_CR2
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-021-00728-8
– volume: 40
  start-page: 994
  year: 2022
  ident: 56543_CR3
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01369-0
– reference: 38585907 - bioRxiv. 2024 Mar 25:2024.03.21.586110. doi: 10.1101/2024.03.21.586110.
SSID ssj0000391844
Score 2.4728909
Snippet The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Accurate delineation of RNA...
Abstract The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Accurate delineation of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1275
SubjectTerms 101/58
49/91
631/114/1305
631/337/574/1789
692/4028/67/2332
Biological activity
Brain
Brain - metabolism
Brain cancer
Cancer
Data analysis
Deep Learning
Deregulation
Humanities and Social Sciences
Humans
Machine learning
Medulloblastoma
Medulloblastoma - genetics
Medulloblastoma - metabolism
multidisciplinary
Open reading frames
Open Reading Frames - genetics
Protein biosynthesis
Protein Biosynthesis - genetics
Protein synthesis
Ribonucleic acid
Ribosomes - genetics
Ribosomes - metabolism
RNA
RNA, Messenger - genetics
RNA, Messenger - metabolism
Science
Science (multidisciplinary)
Sensitivity analysis
Transcription
Translation
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxg6hO7I2dEyqPpUKiQohKvVmOPWkrVcmySQ_9951xvKmWR29R7Cj2zNjz-THfMPY25ogWssmFFyJXXofcaZB53ZaydQKgCRTv_P2wOjhS344Xx2nDbUjXKjdzYpyoQ-9pj3xPFgi90fka_WH1O6esUXS6mlJo3GZ3ihJ9LUWKL7_OeyzEfm6USrEyQpq9QcWZgXK4LiiqMhdb_ijS9v8La_59ZfKPc9PojpYP2P2EI_n-pPiH7BZ0j9jdKbPk5WP24zPAiqeUECd87HkAil7n1J2B9y3_ebjPR3JU02U4ftbxjvDrOXdd4J6MYd1fDHyMmhmesKPll1-fDvKUPCH36G_GXBVBgg_BS9ciJtKgK1WFYELpa11XwQn0Xwrxk5SAGKxuTYnISXpZOS0bEPIp2-n6Dp4zrlpwRIOmK48L6bKdOPRNjXqU4JzOWLERofWJWZwSXJzbeMItjZ3EblHsNordioy9m79ZTbwaN9b-SJqZaxIndnzRr09sGmJWLEqH3WoDIKQV-AiN8aGSgCgr1FpmbHejV5sG6mCvzSpjb-ZiHGJ0buI6QEHHOkbVQtcZezaZwdwSSQT2uGbNmNkykK2mbpd0Z6eRxrsotDGqxB-_39jSdbv-L4sXN3fjJbtXknnTxfJyl-2M6wt4hbhpbF7HwXEFhiAUAA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9cwEA9jQ_BF_G11SgTftJjm8m3Sx-2rYwgOEQd7C2lynYPRjm-7h_33u6Q_5KtT8K20F5pcLr1PmrvPMfYu1YgWUOfCC5Err0PuNEJeNRIaJxDrEPOdv56Ux6fqy9nqbIfJORcmBe0nSsv0mZ6jwz72Ki3pWHx1FdMhc9qm7xkNq2jV63K9_FeJjOdGqSk_RoC5o-mWD0pU_Xfhyz_DJH87K00u6OghezBhR34w9vYR28H2Mbs3VpO8ecK-fUK84lMZiHM-dDxgzFjn8YC4513Dv58c8CE6pzEAjl-0vI2Y9ZK7NnAfDWDTXfd8SLPRP2WnR59_rI_zqWBC7snHDLkqAqAPwYNrCAdp1KUqQzBB-kpXZXCCfJYizASAhLuqxkhCS-ChdBpqFPCM7bZdiy8YVw26SH2mS0-bZ9mMvPmmorkDdE5nrJhVaP3EJh6LWlzadKoNxo5qt6R2m9RuRcbeL22uRi6Nf0ofxplZJCMPdrrRbc7tZBdWrKSjYTUBCcYKusTa-FACErIKlYaM7c_zaqfF2VsoaBdHOM7QKN4uj2lZxbMS1yIpOskYVQldZez5aAZLTyCS1tM-NWNmy0C2urr9pL34mai7i0IboyS9-MNsS7_69XddvPw_8VfsvozmHoPL5T7bHTbX-Jqw01C_SYvlFsfxEck
  priority: 102
  providerName: Springer Nature
Title Deep learning to decode sites of RNA translation in normal and cancerous tissues
URI https://link.springer.com/article/10.1038/s41467-025-56543-0
https://www.ncbi.nlm.nih.gov/pubmed/39894899
https://www.proquest.com/docview/3162651587
https://www.proquest.com/docview/3162849079
https://pubmed.ncbi.nlm.nih.gov/PMC11788427
https://doaj.org/article/052ada0fde7740adaeb8cd63e065d973
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZgCIkLYvwMbJWRuEE0J3Zj-9h1K1MlqmkwqTfLsV9g0pROS3bgv-fZTssKAy5ckshxFOfzc973ZPt7hLyLOaIZr3PmGMuFkz63Enium5I3lgHUPux3_rSoTs7FfDle3kr1FdaEJXngBNwBG5fWW9Z4QKLC8BJq5XzFAX2n1zLqfDLNbgVT8R_MNYYuYtglw7g66ET8J4TsreOwnzJnW54oCvbfxTJ_Xyz5y4xpdESzJ-TxwCDpJLV8l9yD9il5mHJKfn9GTo8AruiQDOIr7VfUQ9i3TsM0cUdXDT1bTGgfXFRaBkcvWtoG5npJbeupC2ZwvbrpaB_7pHtOzmfHX6Yn-ZA2IXfoafpcFJ6D895x2yAbkiArUXmvfOm01BWCiZ5LIHPiHJB96UaVyJm445WVvAbGX5CddtXCK0JFAzYIoMnKYQhdNkk9X2nsQQ7WyowUawiNGzTFQ2qLSxPntrkyCXaDsJsIu2EZeb955iopavy19mHomU3NoIYdC9BGzGAj5l82kpG9db-aYYh2hhcYyyGbU_gVbze3cXCFGRPbAgId6yihmdQZeZnMYNMSHqTrMVrNiNoykK2mbt9pL75FAe-ikEqJEl_8YW1LP9v1Zyxe_w8s3pBHZRgEYeF5uUd2-usb2Ede1dcjcl8uJR7V7OOIPJhM5p_neD48XpyeYem0mo7iIPsBrywjdQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFGd2Bs7B4QKpdrSdoVQK-3NOLZTKlXJskmF-qf4jcw4j2p59NZblDiJM_5m_DnjmSHkVagRzXgRM8tYLKx0sZGex3mZ8tIw7wuH8c4Hs2x6JD7PJ_M18muIhcFtlYNNDIba1Rb_kW_yBKg3TL5Kvl_8iLFqFHpXhxIaHSz2_PlPWLI173a3YXxfp-nOp8OP07ivKhBbMMRtLBLHvXXOclMCWZBeZiJzTrnU5jLPnGFg2AUQC849kJO8VClQCm55ZiQvPOPw3GvkukAXI-iPnMvxnw5mW1dC9LE5jKvNRgRLhDVjJxjFGbOV-S-UCfgXt_17i-Yfftow_e3cIbd73kq3OqDdJWu-ukdudJUsz--TL9veL2hfguKYtjV1HqPlKYqvoXVJv862aIsTY7f5jp5UtEK-fEpN5ahF8C3rs4a2AQnNA3J0JWJ9SNaruvKPCRWlN5h2TWYWFu5p2eXsVznghntjZESSQYTa9pnMsaDGqQ4eda50J3YNYtdB7JpF5M14z6LL43Fp6w84MmNLzMEdTtTLY92rtGaT1MBnlc4DhWZw6AtlXcY9sDqXSx6RjWFcdW8YGn0B44i8HC-DSqOfxlQeBB3aKJEzmUfkUQeDsSccE-bDGjkiagUgK11dvVKdfA9pw5NEKiVSePHbAUsX_fq_LJ5c_hkvyM3p4cG-3t-d7T0lt1KEOm5qTzfIers888-As7XF86AolHy7as38DWVaT4Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJhAviDuBAUaCJ4jqxG7sPExoo6s2BlU1MWlvnmM7Y9KUlCYT2l_kV3HsOJnKZW97qxqndY7P5XN8zvkQeus5ogktYqIJiZnmJlbc0jgvU1oqYm1hXL3z11m2d8Q-H4-P19CvvhbGpVX2PtE7alNr9458RBOA3hB8BR-VIS1iPpl-XPyIHYOUO2nt6TRUoFkwW77dWCjyOLCXP2E712ztT2Dt36XpdPfbp704MA7EGpx0G7PEUKuN0VSVACS45RnLjBEm1TnPM6MIOH0GoINSC8AlL0UKcINqmilOC0so_O4ttMEh6sNGcGNndzY_HN74uF7sgrFQuUOoGDXM-ynHKDt2NZ4xWYmOnkTgX8j37wTOP05xfXCc3kf3AqrF250aPkBrtnqIbnc8l5eP0Hxi7QIHgopT3NbYWFdLj51AG1yX-HC2jVsXNrvUPHxW4cqh6XOsKoO1U81lfdHg1utJ8xgd3Yhgn6D1qq7sM4RZaZVrysYzDdv6tOw6-osctIpapXiEkl6EUoc-545u41z683YqZCd2CWKXXuySROj9cM-i6_Jx7egdtzLDSNeh239RL09lMHhJxqmCxyqNBYBN4KMthDYZtYD5TM5phDb7dZXBbTTySskj9Ga4DAbvTnFUZUHQfoxgOeF5hJ52ajDMhLp2-rCDjpBYUZCVqa5eqc6--6biScKFYCn88Ydel67m9X9ZPL_-MV6jO2Cl8sv-7OAFups6TXcZ7-kmWm-XF_YlALq2eBUsBaOTmzbO3_yfWmE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+to+decode+sites+of+RNA+translation+in+normal+and+cancerous+tissues&rft.jtitle=Nature+communications&rft.au=Jim+Clauwaert&rft.au=Zahra+McVey&rft.au=Ramneek+Gupta&rft.au=Ian+Yannuzzi&rft.date=2025-02-02&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41467-025-56543-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_052ada0fde7740adaeb8cd63e065d973
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon