Deep learning to decode sites of RNA translation in normal and cancerous tissues
The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Accurate delineation of RNA translation variation represents a significant challenge due to the complexity of the process and technical limitations. Here, we introduce RiboT...
Saved in:
Published in | Nature communications Vol. 16; no. 1; pp. 1275 - 10 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.02.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-025-56543-0 |
Cover
Abstract | The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Accurate delineation of RNA translation variation represents a significant challenge due to the complexity of the process and technical limitations. Here, we introduce RiboTIE, a transformer model-based approach designed to enhance the analysis of ribosome profiling data. Unlike existing methods, RiboTIE leverages raw ribosome profiling counts directly to robustly detect translated open reading frames (ORFs) with high precision and sensitivity, evaluated on a diverse set of datasets. We demonstrate that RiboTIE successfully recapitulates known findings and provides novel insights into the regulation of RNA translation in both normal brain and medulloblastoma cancer samples. Our results suggest that RiboTIE is a versatile tool that can significantly improve the accuracy and depth of Ribo-Seq data analysis, thereby advancing our understanding of protein synthesis and its implications in disease.
RNA translation is a core cell process that is deregulated in cancer. Here, the authors show that a machine learning approach, RiboTIE, can reconstruct RNA translation in cancer and non-cancer cells. In medulloblastoma, a brain cancer, RiboTIE enables discovery of subtype-specific microproteins. |
---|---|
AbstractList | The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Accurate delineation of RNA translation variation represents a significant challenge due to the complexity of the process and technical limitations. Here, we introduce RiboTIE, a transformer model-based approach designed to enhance the analysis of ribosome profiling data. Unlike existing methods, RiboTIE leverages raw ribosome profiling counts directly to robustly detect translated open reading frames (ORFs) with high precision and sensitivity, evaluated on a diverse set of datasets. We demonstrate that RiboTIE successfully recapitulates known findings and provides novel insights into the regulation of RNA translation in both normal brain and medulloblastoma cancer samples. Our results suggest that RiboTIE is a versatile tool that can significantly improve the accuracy and depth of Ribo-Seq data analysis, thereby advancing our understanding of protein synthesis and its implications in disease. Abstract The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Accurate delineation of RNA translation variation represents a significant challenge due to the complexity of the process and technical limitations. Here, we introduce RiboTIE, a transformer model-based approach designed to enhance the analysis of ribosome profiling data. Unlike existing methods, RiboTIE leverages raw ribosome profiling counts directly to robustly detect translated open reading frames (ORFs) with high precision and sensitivity, evaluated on a diverse set of datasets. We demonstrate that RiboTIE successfully recapitulates known findings and provides novel insights into the regulation of RNA translation in both normal brain and medulloblastoma cancer samples. Our results suggest that RiboTIE is a versatile tool that can significantly improve the accuracy and depth of Ribo-Seq data analysis, thereby advancing our understanding of protein synthesis and its implications in disease. The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Accurate delineation of RNA translation variation represents a significant challenge due to the complexity of the process and technical limitations. Here, we introduce RiboTIE, a transformer model-based approach designed to enhance the analysis of ribosome profiling data. Unlike existing methods, RiboTIE leverages raw ribosome profiling counts directly to robustly detect translated open reading frames (ORFs) with high precision and sensitivity, evaluated on a diverse set of datasets. We demonstrate that RiboTIE successfully recapitulates known findings and provides novel insights into the regulation of RNA translation in both normal brain and medulloblastoma cancer samples. Our results suggest that RiboTIE is a versatile tool that can significantly improve the accuracy and depth of Ribo-Seq data analysis, thereby advancing our understanding of protein synthesis and its implications in disease. RNA translation is a core cell process that is deregulated in cancer. Here, the authors show that a machine learning approach, RiboTIE, can reconstruct RNA translation in cancer and non-cancer cells. In medulloblastoma, a brain cancer, RiboTIE enables discovery of subtype-specific microproteins. The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Accurate delineation of RNA translation variation represents a significant challenge due to the complexity of the process and technical limitations. Here, we introduce RiboTIE, a transformer model-based approach designed to enhance the analysis of ribosome profiling data. Unlike existing methods, RiboTIE leverages raw ribosome profiling counts directly to robustly detect translated open reading frames (ORFs) with high precision and sensitivity, evaluated on a diverse set of datasets. We demonstrate that RiboTIE successfully recapitulates known findings and provides novel insights into the regulation of RNA translation in both normal brain and medulloblastoma cancer samples. Our results suggest that RiboTIE is a versatile tool that can significantly improve the accuracy and depth of Ribo-Seq data analysis, thereby advancing our understanding of protein synthesis and its implications in disease.RNA translation is a core cell process that is deregulated in cancer. Here, the authors show that a machine learning approach, RiboTIE, can reconstruct RNA translation in cancer and non-cancer cells. In medulloblastoma, a brain cancer, RiboTIE enables discovery of subtype-specific microproteins. The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Accurate delineation of RNA translation variation represents a significant challenge due to the complexity of the process and technical limitations. Here, we introduce RiboTIE, a transformer model-based approach designed to enhance the analysis of ribosome profiling data. Unlike existing methods, RiboTIE leverages raw ribosome profiling counts directly to robustly detect translated open reading frames (ORFs) with high precision and sensitivity, evaluated on a diverse set of datasets. We demonstrate that RiboTIE successfully recapitulates known findings and provides novel insights into the regulation of RNA translation in both normal brain and medulloblastoma cancer samples. Our results suggest that RiboTIE is a versatile tool that can significantly improve the accuracy and depth of Ribo-Seq data analysis, thereby advancing our understanding of protein synthesis and its implications in disease.The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Accurate delineation of RNA translation variation represents a significant challenge due to the complexity of the process and technical limitations. Here, we introduce RiboTIE, a transformer model-based approach designed to enhance the analysis of ribosome profiling data. Unlike existing methods, RiboTIE leverages raw ribosome profiling counts directly to robustly detect translated open reading frames (ORFs) with high precision and sensitivity, evaluated on a diverse set of datasets. We demonstrate that RiboTIE successfully recapitulates known findings and provides novel insights into the regulation of RNA translation in both normal brain and medulloblastoma cancer samples. Our results suggest that RiboTIE is a versatile tool that can significantly improve the accuracy and depth of Ribo-Seq data analysis, thereby advancing our understanding of protein synthesis and its implications in disease. |
ArticleNumber | 1275 |
Author | McVey, Zahra Yannuzzi, Ian Nesvizhskii, Alexey I. Menschaert, Gerben Prensner, John R. Gupta, Ramneek Clauwaert, Jim Basrur, Venkatesha |
Author_xml | – sequence: 1 givenname: Jim orcidid: 0000-0002-5876-1406 surname: Clauwaert fullname: Clauwaert, Jim email: clauwaer@umich.edu organization: Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Chad Carr Pediatric Brain Tumor Center, University of Michigan, Department of Biological Chemistry, University of Michigan – sequence: 2 givenname: Zahra surname: McVey fullname: McVey, Zahra organization: Novo Nordisk Research Centre Oxford, Novo Nordisk Ltd – sequence: 3 givenname: Ramneek orcidid: 0000-0001-6841-6676 surname: Gupta fullname: Gupta, Ramneek organization: Novo Nordisk Research Centre Oxford, Novo Nordisk Ltd – sequence: 4 givenname: Ian surname: Yannuzzi fullname: Yannuzzi, Ian organization: Cancer Program, Broad Institute of MIT and Harvard – sequence: 5 givenname: Venkatesha surname: Basrur fullname: Basrur, Venkatesha organization: Department of Pathology, University of Michigan – sequence: 6 givenname: Alexey I. surname: Nesvizhskii fullname: Nesvizhskii, Alexey I. organization: Department of Pathology, University of Michigan, Department of Computational Medicine and Bioinformatics, University of Michigan – sequence: 7 givenname: Gerben orcidid: 0000-0002-7575-2085 surname: Menschaert fullname: Menschaert, Gerben email: gerben.menschaert@ugent.be organization: Department of Data Analysis and Mathematical Modelling, Ghent University – sequence: 8 givenname: John R. orcidid: 0000-0002-7024-636X surname: Prensner fullname: Prensner, John R. email: prensner@umich.edu organization: Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Chad Carr Pediatric Brain Tumor Center, University of Michigan, Department of Biological Chemistry, University of Michigan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39894899$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktrVDEUx4NUbK39Ai4k4MbN1bwfKyn1VSgqouuQSc4dM9xJxuSO4Lc3M9Nq20WzySH5nx__83iKjnLJgNBzSl5Tws2bJqhQeiBMDlJJwQfyCJ0wIuhANeNHt-JjdNbaivTDLTVCPEHH3BorjLUn6Os7gA2ewNec8hLPBUcIJQJuaYaGy4i_fT7Hc_W5TX5OJeOUcS517Sfsc8TB5wC1bBueU2tbaM_Q49FPDc6u71P048P77xefhqsvHy8vzq-GIDSdB0EjhxBj4H6kgmvQSqgYTWTBaquiJ7wXKIXkHCRjdjRMcMkDV17zBRB-ii4P3Fj8ym1qWvv6xxWf3P6h1KXzdU5hAkck8x04RtBakB7CwoSoOBAlo9W8s94eWJvtYg0xQO4FT3egd39y-umW5bejVBsjmO6EV9eEWn71LsxunVqAafIZenMcp4oZYYm2XfrynnRVtjX3Xu1VSlJpdsAXty3983IzuS4wB0GopbUKowtp3k-oO0yTo8Tt9sQd9sT1PXH7PXG71rF7qTf0B5P4Ial1cV5C_W_7gay_mufOjg |
CitedBy_id | crossref_primary_10_3389_fimmu_2025_1544104 |
Cites_doi | 10.1002/cpmb.67 10.1093/bioinformatics/bts635 10.1038/s41580-023-00624-9 10.1038/s41467-017-01981-8 10.1016/j.ccell.2018.08.004 10.1038/s41467-023-44405-6 10.1038/nmeth.4631 10.7554/eLife.58659 10.1016/j.molcel.2023.12.003 10.1093/bioinformatics/btz878 10.1093/bib/bbae268 10.14806/ej.17.1.200 10.1101/cshperspect.a014308 10.1016/j.celrep.2020.107782 10.1038/s41593-022-01164-9 10.1038/nmeth.4256 10.1016/j.mcpro.2023.100631 10.1093/nar/gkac1000 10.1038/s41594-020-0450-4 10.5281/zenodo.10689717 10.1038/s41392-021-00728-8 10.1038/s41587-022-01369-0 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-025-56543-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_052ada0fde7740adaeb8cd63e065d973 PMC11788427 39894899 10_1038_s41467_025_56543_0 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ChadTough Foundation (Chad Tough Foundation) funderid: https://doi.org/10.13039/100010612 – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: K08-CA263552-01A1 funderid: https://doi.org/10.13039/100000054 – fundername: Damon Runyon Cancer Research Foundation (Cancer Research Fund of the Damon Runyon-Walter Winchell Foundation) grantid: CI-127-24 funderid: https://doi.org/10.13039/100001021 – fundername: Alex's Lemonade Stand Foundation for Childhood Cancer (Alex's Lemonade Stand Foundation) grantid: 21-23983 funderid: https://doi.org/10.13039/100001445 – fundername: Hyundai Motor Group | Hyundai Motor America | Hyundai Hope On Wheels (Hope On Wheels) funderid: https://doi.org/10.13039/100008258 – fundername: Novo Nordisk funderid: https://doi.org/10.13039/501100004191 – fundername: St. Baldrick's Foundation (St. Baldrick's Foundation, Inc) grantid: 931638 funderid: https://doi.org/10.13039/100006058 – fundername: NCI NIH HHS grantid: K08 CA263552 – fundername: Alex's Lemonade Stand Foundation for Childhood Cancer (Alex's Lemonade Stand Foundation) grantid: 21-23983 – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: K08-CA263552-01A1 – fundername: Damon Runyon Cancer Research Foundation (Cancer Research Fund of the Damon Runyon-Walter Winchell Foundation) grantid: CI-127-24 – fundername: St. Baldrick's Foundation (St. Baldrick's Foundation, Inc) grantid: 931638 – fundername: NIGMS NIH HHS grantid: R01 GM094231 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M48 P64 PKEHL PQEST PQUKI PRINS PUEGO RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c471t-41d3ecddc3af1437e7646dd8d2c9796da0341454533e5229f824353c36a73be03 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:23:16 EDT 2025 Thu Aug 21 18:38:45 EDT 2025 Thu Sep 04 18:16:34 EDT 2025 Sat Aug 23 13:06:32 EDT 2025 Wed Jul 23 01:47:16 EDT 2025 Tue Jul 01 02:37:58 EDT 2025 Thu Apr 24 22:50:53 EDT 2025 Fri Feb 21 02:38:11 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-41d3ecddc3af1437e7646dd8d2c9796da0341454533e5229f824353c36a73be03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6841-6676 0000-0002-7575-2085 0000-0002-5876-1406 0000-0002-7024-636X |
OpenAccessLink | https://doaj.org/article/052ada0fde7740adaeb8cd63e065d973 |
PMID | 39894899 |
PQID | 3162651587 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_052ada0fde7740adaeb8cd63e065d973 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11788427 proquest_miscellaneous_3162849079 proquest_journals_3162651587 pubmed_primary_39894899 crossref_citationtrail_10_1038_s41467_025_56543_0 crossref_primary_10_1038_s41467_025_56543_0 springer_journals_10_1038_s41467_025_56543_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-02 |
PublicationDateYYYYMMDD | 2025-02-02 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | F Erhard (56543_CR9) 2018; 15 JM Mudge (56543_CR3) 2022; 40 AD Fedorova (56543_CR4) 2024; 15 B Gaertner (56543_CR13) 2020; 9 56543_CR17 TC Archer (56543_CR18) 2018; 34 AT Kong (56543_CR23) 2017; 14 M Martin (56543_CR19) 2011; 17 P Zhang (56543_CR7) 2017; 8 J Kang (56543_CR2) 2021; 6 MF Roussel (56543_CR16) 2013; 3 L Calviello (56543_CR5) 2020; 27 Z Ji (56543_CR10) 2018; 124 A Dobin (56543_CR20) 2013; 29 B Malone (56543_CR6) 2017; 45 EE Duffy (56543_CR14) 2022; 25 56543_CR15 S Choudhary (56543_CR8) 2020; 36 56543_CR24 56543_CR11 G Tong (56543_CR12) 2024; 25 56543_CR1 56543_CR21 D Szklarczyk (56543_CR22) 2023; 51 38585907 - bioRxiv. 2024 Mar 25:2024.03.21.586110. doi: 10.1101/2024.03.21.586110. |
References_xml | – ident: 56543_CR21 – volume: 124 year: 2018 ident: 56543_CR10 publication-title: Curr. Protoc. Mol. Biol. doi: 10.1002/cpmb.67 – volume: 29 start-page: 15 year: 2013 ident: 56543_CR20 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – ident: 56543_CR1 doi: 10.1038/s41580-023-00624-9 – volume: 8 year: 2017 ident: 56543_CR7 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01981-8 – volume: 34 start-page: 396 year: 2018 ident: 56543_CR18 publication-title: Cancer Cell. doi: 10.1016/j.ccell.2018.08.004 – volume: 15 year: 2024 ident: 56543_CR4 publication-title: Nat. Commun. doi: 10.1038/s41467-023-44405-6 – volume: 15 start-page: 363 year: 2018 ident: 56543_CR9 publication-title: Nat. Methods doi: 10.1038/nmeth.4631 – volume: 9 year: 2020 ident: 56543_CR13 publication-title: Elife. doi: 10.7554/eLife.58659 – volume: 45 start-page: 2960 year: 2017 ident: 56543_CR6 publication-title: Nucleic Acids Res. – ident: 56543_CR15 doi: 10.1016/j.molcel.2023.12.003 – volume: 36 start-page: 2053 year: 2020 ident: 56543_CR8 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz878 – volume: 25 year: 2024 ident: 56543_CR12 publication-title: Brief. Bioinform. doi: 10.1093/bib/bbae268 – volume: 17 start-page: 10 year: 2011 ident: 56543_CR19 publication-title: EMBnet. J. doi: 10.14806/ej.17.1.200 – volume: 3 start-page: a014308 year: 2013 ident: 56543_CR16 publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a014308 – ident: 56543_CR17 doi: 10.1016/j.celrep.2020.107782 – volume: 25 start-page: 1353 year: 2022 ident: 56543_CR14 publication-title: Nat. Neurosci. doi: 10.1038/s41593-022-01164-9 – volume: 14 start-page: 513 year: 2017 ident: 56543_CR23 publication-title: Nat. Methods doi: 10.1038/nmeth.4256 – ident: 56543_CR11 doi: 10.1016/j.mcpro.2023.100631 – volume: 51 start-page: D638 year: 2023 ident: 56543_CR22 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac1000 – volume: 27 start-page: 717 year: 2020 ident: 56543_CR5 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0450-4 – ident: 56543_CR24 doi: 10.5281/zenodo.10689717 – volume: 6 start-page: 323 year: 2021 ident: 56543_CR2 publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-021-00728-8 – volume: 40 start-page: 994 year: 2022 ident: 56543_CR3 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01369-0 – reference: 38585907 - bioRxiv. 2024 Mar 25:2024.03.21.586110. doi: 10.1101/2024.03.21.586110. |
SSID | ssj0000391844 |
Score | 2.4728909 |
Snippet | The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Accurate delineation of RNA... Abstract The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Accurate delineation of... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1275 |
SubjectTerms | 101/58 49/91 631/114/1305 631/337/574/1789 692/4028/67/2332 Biological activity Brain Brain - metabolism Brain cancer Cancer Data analysis Deep Learning Deregulation Humanities and Social Sciences Humans Machine learning Medulloblastoma Medulloblastoma - genetics Medulloblastoma - metabolism multidisciplinary Open reading frames Open Reading Frames - genetics Protein biosynthesis Protein Biosynthesis - genetics Protein synthesis Ribonucleic acid Ribosomes - genetics Ribosomes - metabolism RNA RNA, Messenger - genetics RNA, Messenger - metabolism Science Science (multidisciplinary) Sensitivity analysis Transcription Translation |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxg6hO7I2dEyqPpUKiQohKvVmOPWkrVcmySQ_9951xvKmWR29R7Cj2zNjz-THfMPY25ogWssmFFyJXXofcaZB53ZaydQKgCRTv_P2wOjhS344Xx2nDbUjXKjdzYpyoQ-9pj3xPFgi90fka_WH1O6esUXS6mlJo3GZ3ihJ9LUWKL7_OeyzEfm6USrEyQpq9QcWZgXK4LiiqMhdb_ijS9v8La_59ZfKPc9PojpYP2P2EI_n-pPiH7BZ0j9jdKbPk5WP24zPAiqeUECd87HkAil7n1J2B9y3_ebjPR3JU02U4ftbxjvDrOXdd4J6MYd1fDHyMmhmesKPll1-fDvKUPCH36G_GXBVBgg_BS9ciJtKgK1WFYELpa11XwQn0Xwrxk5SAGKxuTYnISXpZOS0bEPIp2-n6Dp4zrlpwRIOmK48L6bKdOPRNjXqU4JzOWLERofWJWZwSXJzbeMItjZ3EblHsNordioy9m79ZTbwaN9b-SJqZaxIndnzRr09sGmJWLEqH3WoDIKQV-AiN8aGSgCgr1FpmbHejV5sG6mCvzSpjb-ZiHGJ0buI6QEHHOkbVQtcZezaZwdwSSQT2uGbNmNkykK2mbpd0Z6eRxrsotDGqxB-_39jSdbv-L4sXN3fjJbtXknnTxfJyl-2M6wt4hbhpbF7HwXEFhiAUAA priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9cwEA9jQ_BF_G11SgTftJjm8m3Sx-2rYwgOEQd7C2lynYPRjm-7h_33u6Q_5KtT8K20F5pcLr1PmrvPMfYu1YgWUOfCC5Err0PuNEJeNRIaJxDrEPOdv56Ux6fqy9nqbIfJORcmBe0nSsv0mZ6jwz72Ki3pWHx1FdMhc9qm7xkNq2jV63K9_FeJjOdGqSk_RoC5o-mWD0pU_Xfhyz_DJH87K00u6OghezBhR34w9vYR28H2Mbs3VpO8ecK-fUK84lMZiHM-dDxgzFjn8YC4513Dv58c8CE6pzEAjl-0vI2Y9ZK7NnAfDWDTXfd8SLPRP2WnR59_rI_zqWBC7snHDLkqAqAPwYNrCAdp1KUqQzBB-kpXZXCCfJYizASAhLuqxkhCS-ChdBpqFPCM7bZdiy8YVw26SH2mS0-bZ9mMvPmmorkDdE5nrJhVaP3EJh6LWlzadKoNxo5qt6R2m9RuRcbeL22uRi6Nf0ofxplZJCMPdrrRbc7tZBdWrKSjYTUBCcYKusTa-FACErIKlYaM7c_zaqfF2VsoaBdHOM7QKN4uj2lZxbMS1yIpOskYVQldZez5aAZLTyCS1tM-NWNmy0C2urr9pL34mai7i0IboyS9-MNsS7_69XddvPw_8VfsvozmHoPL5T7bHTbX-Jqw01C_SYvlFsfxEck priority: 102 providerName: Springer Nature |
Title | Deep learning to decode sites of RNA translation in normal and cancerous tissues |
URI | https://link.springer.com/article/10.1038/s41467-025-56543-0 https://www.ncbi.nlm.nih.gov/pubmed/39894899 https://www.proquest.com/docview/3162651587 https://www.proquest.com/docview/3162849079 https://pubmed.ncbi.nlm.nih.gov/PMC11788427 https://doaj.org/article/052ada0fde7740adaeb8cd63e065d973 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZgCIkLYvwMbJWRuEE0J3Zj-9h1K1MlqmkwqTfLsV9g0pROS3bgv-fZTssKAy5ckshxFOfzc973ZPt7hLyLOaIZr3PmGMuFkz63Enium5I3lgHUPux3_rSoTs7FfDle3kr1FdaEJXngBNwBG5fWW9Z4QKLC8BJq5XzFAX2n1zLqfDLNbgVT8R_MNYYuYtglw7g66ET8J4TsreOwnzJnW54oCvbfxTJ_Xyz5y4xpdESzJ-TxwCDpJLV8l9yD9il5mHJKfn9GTo8AruiQDOIr7VfUQ9i3TsM0cUdXDT1bTGgfXFRaBkcvWtoG5npJbeupC2ZwvbrpaB_7pHtOzmfHX6Yn-ZA2IXfoafpcFJ6D895x2yAbkiArUXmvfOm01BWCiZ5LIHPiHJB96UaVyJm445WVvAbGX5CddtXCK0JFAzYIoMnKYQhdNkk9X2nsQQ7WyowUawiNGzTFQ2qLSxPntrkyCXaDsJsIu2EZeb955iopavy19mHomU3NoIYdC9BGzGAj5l82kpG9db-aYYh2hhcYyyGbU_gVbze3cXCFGRPbAgId6yihmdQZeZnMYNMSHqTrMVrNiNoykK2mbt9pL75FAe-ikEqJEl_8YW1LP9v1Zyxe_w8s3pBHZRgEYeF5uUd2-usb2Ede1dcjcl8uJR7V7OOIPJhM5p_neD48XpyeYem0mo7iIPsBrywjdQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFGd2Bs7B4QKpdrSdoVQK-3NOLZTKlXJskmF-qf4jcw4j2p59NZblDiJM_5m_DnjmSHkVagRzXgRM8tYLKx0sZGex3mZ8tIw7wuH8c4Hs2x6JD7PJ_M18muIhcFtlYNNDIba1Rb_kW_yBKg3TL5Kvl_8iLFqFHpXhxIaHSz2_PlPWLI173a3YXxfp-nOp8OP07ivKhBbMMRtLBLHvXXOclMCWZBeZiJzTrnU5jLPnGFg2AUQC849kJO8VClQCm55ZiQvPOPw3GvkukAXI-iPnMvxnw5mW1dC9LE5jKvNRgRLhDVjJxjFGbOV-S-UCfgXt_17i-Yfftow_e3cIbd73kq3OqDdJWu-ukdudJUsz--TL9veL2hfguKYtjV1HqPlKYqvoXVJv862aIsTY7f5jp5UtEK-fEpN5ahF8C3rs4a2AQnNA3J0JWJ9SNaruvKPCRWlN5h2TWYWFu5p2eXsVznghntjZESSQYTa9pnMsaDGqQ4eda50J3YNYtdB7JpF5M14z6LL43Fp6w84MmNLzMEdTtTLY92rtGaT1MBnlc4DhWZw6AtlXcY9sDqXSx6RjWFcdW8YGn0B44i8HC-DSqOfxlQeBB3aKJEzmUfkUQeDsSccE-bDGjkiagUgK11dvVKdfA9pw5NEKiVSePHbAUsX_fq_LJ5c_hkvyM3p4cG-3t-d7T0lt1KEOm5qTzfIers888-As7XF86AolHy7as38DWVaT4Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJhAviDuBAUaCJ4jqxG7sPExoo6s2BlU1MWlvnmM7Y9KUlCYT2l_kV3HsOJnKZW97qxqndY7P5XN8zvkQeus5ogktYqIJiZnmJlbc0jgvU1oqYm1hXL3z11m2d8Q-H4-P19CvvhbGpVX2PtE7alNr9458RBOA3hB8BR-VIS1iPpl-XPyIHYOUO2nt6TRUoFkwW77dWCjyOLCXP2E712ztT2Dt36XpdPfbp704MA7EGpx0G7PEUKuN0VSVACS45RnLjBEm1TnPM6MIOH0GoINSC8AlL0UKcINqmilOC0so_O4ttMEh6sNGcGNndzY_HN74uF7sgrFQuUOoGDXM-ynHKDt2NZ4xWYmOnkTgX8j37wTOP05xfXCc3kf3AqrF250aPkBrtnqIbnc8l5eP0Hxi7QIHgopT3NbYWFdLj51AG1yX-HC2jVsXNrvUPHxW4cqh6XOsKoO1U81lfdHg1utJ8xgd3Yhgn6D1qq7sM4RZaZVrysYzDdv6tOw6-osctIpapXiEkl6EUoc-545u41z683YqZCd2CWKXXuySROj9cM-i6_Jx7egdtzLDSNeh239RL09lMHhJxqmCxyqNBYBN4KMthDYZtYD5TM5phDb7dZXBbTTySskj9Ga4DAbvTnFUZUHQfoxgOeF5hJ52ajDMhLp2-rCDjpBYUZCVqa5eqc6--6biScKFYCn88Ydel67m9X9ZPL_-MV6jO2Cl8sv-7OAFups6TXcZ7-kmWm-XF_YlALq2eBUsBaOTmzbO3_yfWmE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+to+decode+sites+of+RNA+translation+in+normal+and+cancerous+tissues&rft.jtitle=Nature+communications&rft.au=Jim+Clauwaert&rft.au=Zahra+McVey&rft.au=Ramneek+Gupta&rft.au=Ian+Yannuzzi&rft.date=2025-02-02&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41467-025-56543-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_052ada0fde7740adaeb8cd63e065d973 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |