A Mold Damage Monitoring Algorithm for Power Metallurgy Molding Machines Using Bidirectional Long Short-Term Memory on an Internet of Things Platform
In this paper, an analysis and monitoring algorithm is proposed for mold health evaluation using vibration data. Two inertial measurement units (IMUs) and an embedded system are first used to acquire vibration data from a powder metallurgy molding machine. These data are collected on an Internet of...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 25; no. 7; p. 2143 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
28.03.2025
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s25072143 |
Cover
| Abstract | In this paper, an analysis and monitoring algorithm is proposed for mold health evaluation using vibration data. Two inertial measurement units (IMUs) and an embedded system are first used to acquire vibration data from a powder metallurgy molding machine. These data are collected on an Internet of Things (IoT) platform using the Message Queueing Telemetry Transport (MQTT) protocol. For data analysis, the vibration signal on the Z axis is segmented to label the contact section of the upper and middle molds, and the corresponding vibration data of the stamping friction on the X, Y, and Z axes are extracted. Using only historical vibration data from normal stamping, a Bidirectional Long Short-Term Memory (Bi-LSTM) model with an attention mechanism is trained to predict normal stamping vibrations several minutes in advance. By comparing the predicted stamping vibrations with the observed data at the current time, the mean square errors (MSEs) are calculated to evaluate the health status of the mold. Several ablation experiments were conducted to assess the performance of the trained model. The average MSE values for normal samples and abnormal samples were smaller than 0.5 and larger than 1.0, respectively. The experimental results confirm that the trained prediction model and evaluation indicators can effectively notify operators in advance. An early warning system using vibration data for mold damage was successfully implemented, enhancing predictive maintenance. |
|---|---|
| AbstractList | HighlightsWhat are the main findings?Damage to the mold will be reflected in the vibration.The vibration caused by the damaged mold is very small.What are the implications of the main finding?Bidirectional LSTM can be used to determine the mold status through vibration.The accuracy highly depends on the captured data, with a high sampling rate.AbstractIn this paper, an analysis and monitoring algorithm is proposed for mold health evaluation using vibration data. Two inertial measurement units (IMUs) and an embedded system are first used to acquire vibration data from a powder metallurgy molding machine. These data are collected on an Internet of Things (IoT) platform using the Message Queueing Telemetry Transport (MQTT) protocol. For data analysis, the vibration signal on the Z axis is segmented to label the contact section of the upper and middle molds, and the corresponding vibration data of the stamping friction on the X, Y, and Z axes are extracted. Using only historical vibration data from normal stamping, a Bidirectional Long Short-Term Memory (Bi-LSTM) model with an attention mechanism is trained to predict normal stamping vibrations several minutes in advance. By comparing the predicted stamping vibrations with the observed data at the current time, the mean square errors (MSEs) are calculated to evaluate the health status of the mold. Several ablation experiments were conducted to assess the performance of the trained model. The average MSE values for normal samples and abnormal samples were smaller than 0.5 and larger than 1.0, respectively. The experimental results confirm that the trained prediction model and evaluation indicators can effectively notify operators in advance. An early warning system using vibration data for mold damage was successfully implemented, enhancing predictive maintenance. In this paper, an analysis and monitoring algorithm is proposed for mold health evaluation using vibration data. Two inertial measurement units (IMUs) and an embedded system are first used to acquire vibration data from a powder metallurgy molding machine. These data are collected on an Internet of Things (IoT) platform using the Message Queueing Telemetry Transport (MQTT) protocol. For data analysis, the vibration signal on the axis is segmented to label the contact section of the upper and middle molds, and the corresponding vibration data of the stamping friction on the X, Y, and Z axes are extracted. Using only historical vibration data from normal stamping, a Bidirectional Long Short-Term Memory (Bi-LSTM) model with an attention mechanism is trained to predict normal stamping vibrations several minutes in advance. By comparing the predicted stamping vibrations with the observed data at the current time, the mean square errors (MSEs) are calculated to evaluate the health status of the mold. Several ablation experiments were conducted to assess the performance of the trained model. The average MSE values for normal samples and abnormal samples were smaller than 0.5 and larger than 1.0, respectively. The experimental results confirm that the trained prediction model and evaluation indicators can effectively notify operators in advance. An early warning system using vibration data for mold damage was successfully implemented, enhancing predictive maintenance. In this paper, an analysis and monitoring algorithm is proposed for mold health evaluation using vibration data. Two inertial measurement units (IMUs) and an embedded system are first used to acquire vibration data from a powder metallurgy molding machine. These data are collected on an Internet of Things (IoT) platform using the Message Queueing Telemetry Transport (MQTT) protocol. For data analysis, the vibration signal on the Z axis is segmented to label the contact section of the upper and middle molds, and the corresponding vibration data of the stamping friction on the X, Y, and Z axes are extracted. Using only historical vibration data from normal stamping, a Bidirectional Long Short-Term Memory (Bi-LSTM) model with an attention mechanism is trained to predict normal stamping vibrations several minutes in advance. By comparing the predicted stamping vibrations with the observed data at the current time, the mean square errors (MSEs) are calculated to evaluate the health status of the mold. Several ablation experiments were conducted to assess the performance of the trained model. The average MSE values for normal samples and abnormal samples were smaller than 0.5 and larger than 1.0, respectively. The experimental results confirm that the trained prediction model and evaluation indicators can effectively notify operators in advance. An early warning system using vibration data for mold damage was successfully implemented, enhancing predictive maintenance. In this paper, an analysis and monitoring algorithm is proposed for mold health evaluation using vibration data. Two inertial measurement units (IMUs) and an embedded system are first used to acquire vibration data from a powder metallurgy molding machine. These data are collected on an Internet of Things (IoT) platform using the Message Queueing Telemetry Transport (MQTT) protocol. For data analysis, the vibration signal on the Z axis is segmented to label the contact section of the upper and middle molds, and the corresponding vibration data of the stamping friction on the X, Y, and Z axes are extracted. Using only historical vibration data from normal stamping, a Bidirectional Long Short-Term Memory (Bi-LSTM) model with an attention mechanism is trained to predict normal stamping vibrations several minutes in advance. By comparing the predicted stamping vibrations with the observed data at the current time, the mean square errors (MSEs) are calculated to evaluate the health status of the mold. Several ablation experiments were conducted to assess the performance of the trained model. The average MSE values for normal samples and abnormal samples were smaller than 0.5 and larger than 1.0, respectively. The experimental results confirm that the trained prediction model and evaluation indicators can effectively notify operators in advance. An early warning system using vibration data for mold damage was successfully implemented, enhancing predictive maintenance.In this paper, an analysis and monitoring algorithm is proposed for mold health evaluation using vibration data. Two inertial measurement units (IMUs) and an embedded system are first used to acquire vibration data from a powder metallurgy molding machine. These data are collected on an Internet of Things (IoT) platform using the Message Queueing Telemetry Transport (MQTT) protocol. For data analysis, the vibration signal on the Z axis is segmented to label the contact section of the upper and middle molds, and the corresponding vibration data of the stamping friction on the X, Y, and Z axes are extracted. Using only historical vibration data from normal stamping, a Bidirectional Long Short-Term Memory (Bi-LSTM) model with an attention mechanism is trained to predict normal stamping vibrations several minutes in advance. By comparing the predicted stamping vibrations with the observed data at the current time, the mean square errors (MSEs) are calculated to evaluate the health status of the mold. Several ablation experiments were conducted to assess the performance of the trained model. The average MSE values for normal samples and abnormal samples were smaller than 0.5 and larger than 1.0, respectively. The experimental results confirm that the trained prediction model and evaluation indicators can effectively notify operators in advance. An early warning system using vibration data for mold damage was successfully implemented, enhancing predictive maintenance. What are the main findings? * Damage to the mold will be reflected in the vibration. * The vibration caused by the damaged mold is very small. Damage to the mold will be reflected in the vibration. The vibration caused by the damaged mold is very small. What are the implications of the main finding? * Bidirectional LSTM can be used to determine the mold status through vibration. * The accuracy highly depends on the captured data, with a high sampling rate. Bidirectional LSTM can be used to determine the mold status through vibration. The accuracy highly depends on the captured data, with a high sampling rate. In this paper, an analysis and monitoring algorithm is proposed for mold health evaluation using vibration data. Two inertial measurement units (IMUs) and an embedded system are first used to acquire vibration data from a powder metallurgy molding machine. These data are collected on an Internet of Things (IoT) platform using the Message Queueing Telemetry Transport (MQTT) protocol. For data analysis, the vibration signal on the Z axis is segmented to label the contact section of the upper and middle molds, and the corresponding vibration data of the stamping friction on the X, Y, and Z axes are extracted. Using only historical vibration data from normal stamping, a Bidirectional Long Short-Term Memory (Bi-LSTM) model with an attention mechanism is trained to predict normal stamping vibrations several minutes in advance. By comparing the predicted stamping vibrations with the observed data at the current time, the mean square errors (MSEs) are calculated to evaluate the health status of the mold. Several ablation experiments were conducted to assess the performance of the trained model. The average MSE values for normal samples and abnormal samples were smaller than 0.5 and larger than 1.0, respectively. The experimental results confirm that the trained prediction model and evaluation indicators can effectively notify operators in advance. An early warning system using vibration data for mold damage was successfully implemented, enhancing predictive maintenance. |
| Audience | Academic |
| Author | Chen, Yuan-Chieh Wu, Yu-Chi Han, Chin-Chuan Lin, Hao-Pu Lin, Jin-Yuan |
| AuthorAffiliation | 1 Ph. D. Program in Material and Chemical Engineering, National United University, MiaoLi 360302, Taiwan; d1012005@o365.nuu.edu.tw 2 Department of Computer Science and Information Engineering, National United University, MiaoLi 360302, Taiwan; tryit320495@gmail.com 3 Department of Electrical Engineering, National United University, MiaoLi 360302, Taiwan; ycwu@nuu.edu.tw (Y.-C.W.); yuan@nuu.edu.tw (J.-Y.L.) |
| AuthorAffiliation_xml | – name: 3 Department of Electrical Engineering, National United University, MiaoLi 360302, Taiwan; ycwu@nuu.edu.tw (Y.-C.W.); yuan@nuu.edu.tw (J.-Y.L.) – name: 1 Ph. D. Program in Material and Chemical Engineering, National United University, MiaoLi 360302, Taiwan; d1012005@o365.nuu.edu.tw – name: 2 Department of Computer Science and Information Engineering, National United University, MiaoLi 360302, Taiwan; tryit320495@gmail.com |
| Author_xml | – sequence: 1 givenname: Hao-Pu surname: Lin fullname: Lin, Hao-Pu – sequence: 2 givenname: Yuan-Chieh surname: Chen fullname: Chen, Yuan-Chieh – sequence: 3 givenname: Chin-Chuan surname: Han fullname: Han, Chin-Chuan – sequence: 4 givenname: Yu-Chi orcidid: 0000-0003-2821-2040 surname: Wu fullname: Wu, Yu-Chi – sequence: 5 givenname: Jin-Yuan surname: Lin fullname: Lin, Jin-Yuan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40218656$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktvEzEQx1eoiD7gwBdAlrgAUopfu-s9oVBekRJRifS8cuzxxtGuHWwvVT4I3xenKVHLAfvg8fg3f3s8c16cOO-gKF4SfMlYg99HWuKaEs6eFGeEUz4RlOKTB_ZpcR7jBmPKGBPPilOOKRFVWZ0Vv6do4XuNPslBdpBtZ5MP1nVo2nfZSOsBGR_Qtb-FgBaQZN-PodvdRe2xhVRr6yCim7jffrTaBlDJeid7NPfZ9WPtQ5osIQw5fvBhh7xD0qGZSxAcJOQNWmaNLqLrXqZ82_C8eGpkH-HF_XpR3Hz5vLz6Npl__zq7ms4nitckTZjJCWkiV1w1DBpa17psCHBQHGpOmW6MKUWlRNUA1kSUmpqSriTRQmCGJbsoZgdd7eWm3QY7yLBrvbTtncOHrpUhWdVDy6loSmW0UsZwY3CzouWqxFSYSkoKKmu9O2iNbit3t_mfjoIEt_s6tcc6ZfjDAd6OqwG0ApeC7B-94PGJs-u2879aQpqGlIxmhTf3CsH_HCGmdrBRQd9LB36MLSOi4RXjpMro63_QjR9Drs8dJRpM8sjU5YHqZE7XOuPzxSpPDYNVueGMzf6pYIJgQnmdA149zOH4-L_NlYG3B0AFH2MA858P-QNed97G |
| Cites_doi | 10.3390/aerospace11070509 10.1109/PHM-Qingdao46334.2019.8942870 10.1109/ICC.2019.8761383 10.1155/2023/3906180 10.1007/978-3-031-09385-2_2 10.1016/j.iot.2024.101280 10.1109/Confluence52989.2022.9734133 10.1109/GUCON50781.2021.9573857 10.1109/PERCOM.2018.8444596 10.1109/CCGE50943.2021.9776434 10.1002/we.2567 10.12792/icisip2023.027 10.1109/COMSWA.2008.4554519 10.1162/neco.1997.9.8.1735 10.1016/j.ymssp.2021.108752 10.36001/phmconf.2020.v12i1.1143 10.3115/v1/D14-1179 10.3390/s23021009 10.1109/ICKII.2018.8569065 10.3390/s24092833 10.1109/ICSMD57530.2022.10058425 10.1016/j.aei.2023.101907 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s25072143 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_42895cfdccff4ff09b25b5028f6aa2ec 10.3390/s25072143 PMC11991532 A838101247 40218656 10_3390_s25072143 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Science and Technology Council, TAIWAN grantid: 111-2221-E-239-026 – fundername: Chao-Chuan Industrial Co., Ltd. – fundername: National Science and Technology Council grantid: 111-2221-E-239-026 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c471t-3f233d1ab4c93e9277d591e4ec4e7423d9ff586c869e0d185d2f52ba1d88030a3 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:39:54 EDT 2025 Sun Oct 26 03:29:04 EDT 2025 Tue Sep 30 17:04:00 EDT 2025 Fri Sep 05 17:39:11 EDT 2025 Tue Oct 07 07:43:42 EDT 2025 Mon Oct 20 16:53:25 EDT 2025 Tue Apr 15 01:23:26 EDT 2025 Thu Oct 16 04:25:36 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | deep learning inertial measurement unit (IMU) Internet of Things (IoT) intelligence system mean square error vibration data |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c471t-3f233d1ab4c93e9277d591e4ec4e7423d9ff586c869e0d185d2f52ba1d88030a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This article is an extended version of the conference paper: Lin, H.P.; Chen, Y.C.; Han, C.C.; Wu, Y.C.; Chang, C.S.; Lin, J.Y. Mold Damage Monitoring for Power Metallurgy Molding Machines Using Deep Learning Methods. In Proceedings of the 10th IIAE International Conference on Intelligent Systems and Image Processing, Beppu, Japan, 4–8 September 2023. |
| ORCID | 0000-0003-2821-2040 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25072143 |
| PMID | 40218656 |
| PQID | 3188901111 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_42895cfdccff4ff09b25b5028f6aa2ec unpaywall_primary_10_3390_s25072143 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11991532 proquest_miscellaneous_3189463416 proquest_journals_3188901111 gale_infotracacademiconefile_A838101247 pubmed_primary_40218656 crossref_primary_10_3390_s25072143 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-28 |
| PublicationDateYYYYMMDD | 2025-03-28 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Li (ref_7) 2019; 105 Cho (ref_11) 2024; 27 Hasegawa (ref_2) 2017; 8 ref_13 Deac (ref_4) 2021; 11 Zhang (ref_12) 2023; 2023 ref_19 ref_18 ref_17 ref_16 ref_15 Turnbull (ref_9) 2021; 24 Meng (ref_20) 2023; 55 Zhang (ref_3) 2008; 34 ref_25 Hochreiter (ref_27) 1997; 9 ref_24 ref_23 ref_22 ref_21 ref_1 ref_28 ref_26 ref_8 ref_5 ref_6 Vos (ref_10) 2022; 165 Patra (ref_14) 2022; 30 |
| References_xml | – ident: ref_6 doi: 10.3390/aerospace11070509 – volume: 11 start-page: 19 year: 2021 ident: ref_4 article-title: Vibration anomaly detection using deep neural network and convolutional neural network publication-title: Int. J. Mech. Optim. – ident: ref_17 doi: 10.1109/PHM-Qingdao46334.2019.8942870 – ident: ref_15 doi: 10.1109/ICC.2019.8761383 – volume: 2023 start-page: 3906180 year: 2023 ident: ref_12 article-title: Structural vibration data anomaly detection based on multiple feature information using CNN-LSTM Model publication-title: Struct. Control Health Monit. doi: 10.1155/2023/3906180 – volume: 30 start-page: 1256 year: 2022 ident: ref_14 article-title: Anomaly detection in rotating machinery using autoencoders based on bidirectional LSTM and GRU neural networks publication-title: Turk. J. Electr. Eng. Comput. Sci. – ident: ref_1 doi: 10.1007/978-3-031-09385-2_2 – volume: 27 start-page: 101280 year: 2024 ident: ref_11 article-title: Real-time AIoT anomaly detection for industrial diesel generator based on an efficient deep learning CNN-LSTM in Industry 4.0 publication-title: Internet Things doi: 10.1016/j.iot.2024.101280 – ident: ref_16 doi: 10.1109/Confluence52989.2022.9734133 – ident: ref_25 doi: 10.1109/GUCON50781.2021.9573857 – ident: ref_21 doi: 10.1109/PERCOM.2018.8444596 – ident: ref_23 doi: 10.1109/CCGE50943.2021.9776434 – volume: 105 start-page: 4421 year: 2019 ident: ref_7 article-title: A deep learning approach for anomaly detection based on SAE and LSTM in mechanical equipment publication-title: Int. J. Adv. Manuf. Technol. – volume: 24 start-page: 123 year: 2021 ident: ref_9 article-title: Combining SCADA and vibration data into a single anomaly detection model to predict wind turbine component failure publication-title: Wind Energy doi: 10.1002/we.2567 – ident: ref_19 doi: 10.12792/icisip2023.027 – ident: ref_24 doi: 10.1109/COMSWA.2008.4554519 – volume: 8 start-page: 1 year: 2017 ident: ref_2 article-title: Adaptive training of vibration-based anomaly detector for wind turbine condition monitoring publication-title: Int. J. Progn. Health Manag. – volume: 9 start-page: 1735 year: 1997 ident: ref_27 article-title: Long short term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 34 start-page: 923 year: 2008 ident: ref_3 article-title: Rolling element bearing feature extraction and anomaly detection based on vibration monitoring publication-title: IEEE Trans. Control Autom. – volume: 165 start-page: 108752 year: 2022 ident: ref_10 article-title: Vibration-based anomaly detection using LSTM/SVM approaches publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.108752 – ident: ref_18 doi: 10.36001/phmconf.2020.v12i1.1143 – ident: ref_28 doi: 10.3115/v1/D14-1179 – ident: ref_5 doi: 10.3390/s23021009 – ident: ref_13 doi: 10.1109/ICKII.2018.8569065 – ident: ref_8 doi: 10.3390/s24092833 – ident: ref_26 doi: 10.1109/ICSMD57530.2022.10058425 – volume: 55 start-page: 101907 year: 2023 ident: ref_20 article-title: Anomaly detection for construction vibration signals using unsupervised deep learning and cloud computing publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2023.101907 – ident: ref_22 |
| SSID | ssj0023338 |
| Score | 2.4472237 |
| Snippet | In this paper, an analysis and monitoring algorithm is proposed for mold health evaluation using vibration data. Two inertial measurement units (IMUs) and an... What are the main findings? * Damage to the mold will be reflected in the vibration. * The vibration caused by the damaged mold is very small. Damage to the... HighlightsWhat are the main findings?Damage to the mold will be reflected in the vibration.The vibration caused by the damaged mold is very small.What are the... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 2143 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Automation Bearings Deep learning Degassing of metals Embedded systems Factories Fault diagnosis inertial measurement unit (IMU) intelligence system Internet of Things Internet of Things (IoT) Machine learning Machinery Manufacturers Manufacturing mean square error Metal powder products Metal powders Metals Middleware Mold damage Neural networks Powder metallurgy Preventive maintenance Sensors Support vector machines vibration data |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBajL9sexu5z1w3tAnsytW62_JhuK2Uso7AW-mZ0bQqOXRKHkR-y_7sjyQnJxtjLXkKwZJB1bt-xj76D0HtNlS90VeVeUpdzDz-yqGiunDVCaEK0DgeFp9_Ks0v-5Upc7bT6CjVhiR44bdwxwONaGG-N8Z57X9SaCi0gKvpSKepM8L6FrDfJ1JhqMci8Eo8Qg6T-eAmBHlIdzvaiTyTp_9MV78Si3-sk7666W7X-odp2JwidPkQPRvSIJ2nVj9Ad1z1G93c4BZ-gnxM87VuLP6k5uAqcbDYM4Ul7DX-G2RwDUMXnoT0anjoA3-1qcb2Od4Vp01he6ZY4VhPgk5sU9eIrQ_y1h0vfZ4DZ8wvw6XD_vF-scd9h1eH0dtENuPc49QPF560aAix-ii5PP198PMvH3gu5gXA15MzDHlqiNDc1czWtKitq4rgz3IWPu7b2XsjSyLJ2hYWgb6kXVCtiwSGwQrFn6KDrO_cCYeIqWjhjWQBnXhHFAoqqCiU5Y67kGXq7kUlzmyg2GkhNguCareAydBKktZ0QWLHjBdCVZtSV5l-6kqEPQdZNsF0QqFHjEQRYZ2DBaiYy8Z3xKkNHG3VoRqNeNuD-ZDipS0iG3myHwRzDNxbVuX4V59S8BGhQZuh50p7tmnlsACZgRO7p1d5D7Y90N7NI-U1ChZpgNEPvtir49806_B-b9RLdo6HXccFyKo_QwbBYuVcAwAb9OtraL3wwMg0 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9NAFB6V9AAcEGsxFDQsEier9ixeDggl0KpCJIqglXqzxrMklRw7JI5Qfgj_l_dsxzQguFiWZyyN_Zb53syb7xHyNmfKBXkc-y5h1hcOLkkQM19Zo6XMwzDP8aDweBKdX4rPV_LqgEx2Z2EwrXLnExtHbSqNa-QnoHsJHpMMww_L7z5WjcLd1V0JDdWVVjDvG4qxW-SQITPWgByOTifTr30IxiEia_mFOAT7J2sAABACCb43KzXk_X-76Btz1J_5k7c35VJtf6iiuDE5nd0n9zpUSYetGjwgB7Z8SO7e4Bp8RH4O6bgqDP2kFuBCaGvL2ESHxQxu6vmCAoClUyybRscWQHmxWc22zVvYbdykXdo1bbIM6Oi6nQ2bpUT6pYJH3-aA5f0L8PXw_qJabWlVUlXSdtXR1rRytK0TSqeFqhEuPyaXZ6cXH8_9riaDr2Eaq33u4B-aUOVCp9ymLI6NTEMrrBYWN31N6pxMIp1EqQ0MgAHDnGS5Cg04Ch4o_oQMyqq0TwkNbcwCqw1H0OZUqDiiqzhQieDcRsIjr3cyyZYt9UYGIQsKLusF55ERSqvvgGzZzYNqNcs648sgxEqldkZr54RzQZozmUtAVi5SilntkXco6wxtGgSqVXc0AcaJ7FjZMGl50ETskeOdOmSdsa-z36rpkVd9M5gp7r2o0labpk8qIoAMkUeOWu3pxyyawmASWpI9vdr7qP2W8nreUIGHmLkmOfPIm14F__2znv1_9M_JHYbVjQPus-SYDOrVxr4AyFXnLzs7-gXDSC5c priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V9AA98IYaCtoCEicXex9-HFOgqhCpItFI5WTtrnebCseuElso_A_-L7O2E5IiEJco8o4le3ce33pnvgF4o6i0gYpj3ybU-NziTxLE1Jcm10KoMFTKFQqPzqLTCf90IS524HBVC7Nxfs9wO_5ugSEaNymc3YLdSCDcHsDu5Gw8_NpWDVHuY4ALOsagbfmtONPS8f_pdDeizs2MyNtNeS2X32VRbISbk3u_i3a6LJNvR02tjvSPGxyO_3yT-3C3B5tk2GnHA9gx5UPY26AgfAQ_h2RUFTn5IGfoWUhn4m6IDItL_FNPZwRxLRm7bmpkZBCrF838ctne5cRGbTamWZA2-YAcX3VBsv3CSD5XeOnLFCG-f44hAO-fVfMlqUoiS9J9jDQ1qSzp2oeScSFrh6Ifw-Tk4_n7U79v1eBrjG61zyxlLA-l4jplJqVxnIs0NNxobtxZcJ5aK5JIJ1FqghwxQk6toEqGOfoPFkj2BAZlVZp9IKGJaWB0zhyWszKUzIGuOJAJZ8xE3INXq4XNrjtGjgx3Mm6Os_Uce3Dslnwt4Ei02wu4IllvkxnuvFKhba61tdzaIFVUKIGAy0ZSUqM9eOsUJnOmjlqhZV-xgM_pSLOyYdLRo_HYg4OVTmW9D1hk6C0TV9gbhh4crofRet2RjCxN1bQyKY8QSUQePO1UcP3MvO0XJnAk2VLOrZfaHimvpi1DeOgS2gSjHrxe6_HfJ-vZf0k9hzvU9T4OmE-TAxjU88a8QEBWq5e9Sf4CAyAzPA priority: 102 providerName: Unpaywall |
| Title | A Mold Damage Monitoring Algorithm for Power Metallurgy Molding Machines Using Bidirectional Long Short-Term Memory on an Internet of Things Platform |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40218656 https://www.proquest.com/docview/3188901111 https://www.proquest.com/docview/3189463416 https://pubmed.ncbi.nlm.nih.gov/PMC11991532 https://doi.org/10.3390/s25072143 https://doaj.org/article/42895cfdccff4ff09b25b5028f6aa2ec |
| UnpaywallVersion | publishedVersion |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCO Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFH6aRYLhgNgJDJVZJE6BxHa2A0ItTBkhWlUwlcopchy7HSlNhjYV9Ifwf3l22qhluXCJIttRkrd-z8t7AC8yKrSXRZGrY6pcrvESexF1hcplEGS-n2XmoPBgGJ6P-cdJMDmAbY3NDQGXfw3tTD2p8aJ49ePb-i0q_BsTcWLI_nqJbhwDGc4O4RgdVGIqOAx4u5hAGYZhTVKh_eEncI3bmkymevWOV7LJ-_800Ts-6vf9k9dX5ZVYfxdFseOc-rfg5gZVkm4jBrfhQJV34MZOrsG78LNLBlWRk_dijiaENLpsuki3mOJNPZsTBLBkZMqmkYFCehSrxXRtnzLDBnbbpVoSu8uA9C4bb2inEsmnCpu-zJCM7gXaenx-Xi3WpCqJKEkz66hqUmnS1Aklo0LUBi7fg3H_7OLdubupyeBKdGO1yzSSM_dFxmXCVEKjKA8SX3EluTKLvnmidRCHMg4T5eUIBnKqA5oJP0dDwTzB7sNRWZXqIRBfRdRTMmcGtGnhC2bQVeSJmDOmQu7Asy1P0qsm9UaKIYvhYdry0IGe4VY7wGTLtg3VYppulC_FECsJpM6l1Jpr7SUZDbIAkZUOhaBKOvDS8Do1UoYMlWJzNAG_02THSrtxkweNRw6cbsUh3cpqimYxNid4fd-Bp203qqlZexGlqlZ2TMJDhAyhAw8a6Wm_eSuEDsR7crX3U_s95eXMpgL3zc61gFEHnrci-G9iPfr_FzyGE2oqH3vMpfEpHNWLlXqCcKzOOnAYTSK8xv0PHTjunQ1Hnzt2aqNj1RDbxsNR9-svs7U82A |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcigcKt4YCiwvcbJq78OPA0IppUppUlUilXJz1_tIKjl2mjiq8kP4G_xGZtdJmoDg1osVedfWOjP7zTe7szMIfciJMEEex75JiPaZgUsSxMQXWknO8zDMc3tQuHsatc_Z9z7vb6Ffy7MwNqxyiYkOqFUl7Rr5PuheYo9JhuGX8ZVvq0bZ3dVlCY1GLU70_Bpctunn40OQ70dCjr71vrb9RVUBXwIQ1z41hFIVipzJlOqUxLHiaaiZlkzbbUuVGsOTSCZRqgMF5kwRw0kuQgWqTgNB4b130F1GAUtg_sT9GwePgr_XZC-iNA32p0AvwMFidMPmudIAfxuANQv4Z3Tmzqwci_m1KIo103f0AO0uOCtuNUr2EG3p8hG6v5bJ8DH62cLdqlD4UIwAoHCDFLYJt4oB_KiHIwz0GJ_Zomy4q4HyF7PJYO6est26LqhTT7GLYcAHl42tdQuVuFPBrR9D8BT8HlgSeH5UTea4KrEocbOmqWtcGdxUIcVnhagtGX-Czm9FNk_RdlmV-jnCoY5JoKWilhIaEQpquVsciIRRqiPmoXdLmWTjJrFHBg6RFVy2EpyHDqy0Vh1sLm53o5oMssXUzsCBS7k0SkpjmDFBmhOec-BtJhKCaOmhT1bWmUUMEKgUi4MPME6beytrJU2WNRZ7aG-pDtkCSqbZjeJ76O2qGUDA7uyIUlcz1ydlERCSyEPPGu1ZjZm5smMcWpINvdr4qM2W8nLoEo2HNi6OU-Kh9ysV_Pef9eL_o3-Ddtq9bifrHJ-evET3iK2jHFCfJHtou57M9Csgd3X-2s0ojC5uewr_BmFSZC0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIvE4IN4YCiwv9WTF3l2_DgilhKilTRWJVsrNrNe7SSXHDomjKj-EP8OvY8Z23AQEt16syLO21pnXN7uzM4S8T5g0ThIEtgmZtoWBS-gEzJY6VZ6XuG6S4EHhwal_eC6-jrzRDvm1PguDaZVrm1gZ6rRQuEbeAdkL8Zik63ZMkxYx7PU_zX7Y2EEKd1rX7TRqETnWq0sI3xYfj3rA6w-M9b-cfT60mw4DtgKjXNrcMM5TVyZCRVxHLAhSL3K10Epo3MJMI2O80FehH2knBdeWMuOxRLopiD13JIf33iA3A84jTCcMRlfBHofYr65kBESnswCoAcGW4Fv-r2oT8Lcz2PCGf2Zq3l7mM7m6lFm24Qb798m9Br_Sbi1wD8iOzh-SuxtVDR-Rn106KLKU9uQUjBWtrQaSaDcbw49yMqUAlekQG7TRgQb4ny3n41X1FA4bVAmeekGrfAZ6cFH73WrRkp4UcOvbBKIG-wy8Cjw_LeYrWuRU5rRe39QlLQytO5LSYSZLBOaPyfm18OYJ2c2LXD8j1NUBc7RKOcJDI13JEccFjgwF59oXFnm75kk8q4t8xBAcIePilnEWOUButQOwLnd1o5iP40bNYwjmIk-ZVCljhDFOlDAv8QDDGV9KppVF9pHXMVoPYKiSzSEImCfW4Yq7YV1xTQQW2VuLQ9yYlUV8pQQWedOSwSDgLo_MdbGsxkTCB3DiW-RpLT3tnEXVgswDSrglV1sftU3JLyZV0XEXc-Q8zizyrhXBf_9Zz_8_-9fkFihvfHJ0evyC3GHYUtnhNgv3yG45X-qXgPPK5FWlUJR8v24N_g0WQGhw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V9AA98IYaCtoCEicXex9-HFOgqhCpItFI5WTtrnebCseuElso_A_-L7O2E5IiEJco8o4le3ce33pnvgF4o6i0gYpj3ybU-NziTxLE1Jcm10KoMFTKFQqPzqLTCf90IS524HBVC7Nxfs9wO_5ugSEaNymc3YLdSCDcHsDu5Gw8_NpWDVHuY4ALOsagbfmtONPS8f_pdDeizs2MyNtNeS2X32VRbISbk3u_i3a6LJNvR02tjvSPGxyO_3yT-3C3B5tk2GnHA9gx5UPY26AgfAQ_h2RUFTn5IGfoWUhn4m6IDItL_FNPZwRxLRm7bmpkZBCrF838ctne5cRGbTamWZA2-YAcX3VBsv3CSD5XeOnLFCG-f44hAO-fVfMlqUoiS9J9jDQ1qSzp2oeScSFrh6Ifw-Tk4_n7U79v1eBrjG61zyxlLA-l4jplJqVxnIs0NNxobtxZcJ5aK5JIJ1FqghwxQk6toEqGOfoPFkj2BAZlVZp9IKGJaWB0zhyWszKUzIGuOJAJZ8xE3INXq4XNrjtGjgx3Mm6Os_Uce3Dslnwt4Ei02wu4IllvkxnuvFKhba61tdzaIFVUKIGAy0ZSUqM9eOsUJnOmjlqhZV-xgM_pSLOyYdLRo_HYg4OVTmW9D1hk6C0TV9gbhh4crofRet2RjCxN1bQyKY8QSUQePO1UcP3MvO0XJnAk2VLOrZfaHimvpi1DeOgS2gSjHrxe6_HfJ-vZf0k9hzvU9T4OmE-TAxjU88a8QEBWq5e9Sf4CAyAzPA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Mold+Damage+Monitoring+Algorithm+for+Power+Metallurgy+Molding+Machines+Using+Bidirectional+Long+Short-Term+Memory+on+an+Internet+of+Things+Platform&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Lin%2C+Hao-Pu&rft.au=Chen%2C+Yuan-Chieh&rft.au=Han%2C+Chin-Chuan&rft.au=Wu%2C+Yu-Chi&rft.date=2025-03-28&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=25&rft.issue=7&rft_id=info:doi/10.3390%2Fs25072143&rft_id=info%3Apmid%2F40218656&rft.externalDocID=PMC11991532 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |