A Mold Damage Monitoring Algorithm for Power Metallurgy Molding Machines Using Bidirectional Long Short-Term Memory on an Internet of Things Platform

In this paper, an analysis and monitoring algorithm is proposed for mold health evaluation using vibration data. Two inertial measurement units (IMUs) and an embedded system are first used to acquire vibration data from a powder metallurgy molding machine. These data are collected on an Internet of...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 7; p. 2143
Main Authors Lin, Hao-Pu, Chen, Yuan-Chieh, Han, Chin-Chuan, Wu, Yu-Chi, Lin, Jin-Yuan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 28.03.2025
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s25072143

Cover

Abstract In this paper, an analysis and monitoring algorithm is proposed for mold health evaluation using vibration data. Two inertial measurement units (IMUs) and an embedded system are first used to acquire vibration data from a powder metallurgy molding machine. These data are collected on an Internet of Things (IoT) platform using the Message Queueing Telemetry Transport (MQTT) protocol. For data analysis, the vibration signal on the Z axis is segmented to label the contact section of the upper and middle molds, and the corresponding vibration data of the stamping friction on the X, Y, and Z axes are extracted. Using only historical vibration data from normal stamping, a Bidirectional Long Short-Term Memory (Bi-LSTM) model with an attention mechanism is trained to predict normal stamping vibrations several minutes in advance. By comparing the predicted stamping vibrations with the observed data at the current time, the mean square errors (MSEs) are calculated to evaluate the health status of the mold. Several ablation experiments were conducted to assess the performance of the trained model. The average MSE values for normal samples and abnormal samples were smaller than 0.5 and larger than 1.0, respectively. The experimental results confirm that the trained prediction model and evaluation indicators can effectively notify operators in advance. An early warning system using vibration data for mold damage was successfully implemented, enhancing predictive maintenance.
AbstractList HighlightsWhat are the main findings?Damage to the mold will be reflected in the vibration.The vibration caused by the damaged mold is very small.What are the implications of the main finding?Bidirectional LSTM can be used to determine the mold status through vibration.The accuracy highly depends on the captured data, with a high sampling rate.AbstractIn this paper, an analysis and monitoring algorithm is proposed for mold health evaluation using vibration data. Two inertial measurement units (IMUs) and an embedded system are first used to acquire vibration data from a powder metallurgy molding machine. These data are collected on an Internet of Things (IoT) platform using the Message Queueing Telemetry Transport (MQTT) protocol. For data analysis, the vibration signal on the Z axis is segmented to label the contact section of the upper and middle molds, and the corresponding vibration data of the stamping friction on the X, Y, and Z axes are extracted. Using only historical vibration data from normal stamping, a Bidirectional Long Short-Term Memory (Bi-LSTM) model with an attention mechanism is trained to predict normal stamping vibrations several minutes in advance. By comparing the predicted stamping vibrations with the observed data at the current time, the mean square errors (MSEs) are calculated to evaluate the health status of the mold. Several ablation experiments were conducted to assess the performance of the trained model. The average MSE values for normal samples and abnormal samples were smaller than 0.5 and larger than 1.0, respectively. The experimental results confirm that the trained prediction model and evaluation indicators can effectively notify operators in advance. An early warning system using vibration data for mold damage was successfully implemented, enhancing predictive maintenance.
In this paper, an analysis and monitoring algorithm is proposed for mold health evaluation using vibration data. Two inertial measurement units (IMUs) and an embedded system are first used to acquire vibration data from a powder metallurgy molding machine. These data are collected on an Internet of Things (IoT) platform using the Message Queueing Telemetry Transport (MQTT) protocol. For data analysis, the vibration signal on the axis is segmented to label the contact section of the upper and middle molds, and the corresponding vibration data of the stamping friction on the X, Y, and Z axes are extracted. Using only historical vibration data from normal stamping, a Bidirectional Long Short-Term Memory (Bi-LSTM) model with an attention mechanism is trained to predict normal stamping vibrations several minutes in advance. By comparing the predicted stamping vibrations with the observed data at the current time, the mean square errors (MSEs) are calculated to evaluate the health status of the mold. Several ablation experiments were conducted to assess the performance of the trained model. The average MSE values for normal samples and abnormal samples were smaller than 0.5 and larger than 1.0, respectively. The experimental results confirm that the trained prediction model and evaluation indicators can effectively notify operators in advance. An early warning system using vibration data for mold damage was successfully implemented, enhancing predictive maintenance.
In this paper, an analysis and monitoring algorithm is proposed for mold health evaluation using vibration data. Two inertial measurement units (IMUs) and an embedded system are first used to acquire vibration data from a powder metallurgy molding machine. These data are collected on an Internet of Things (IoT) platform using the Message Queueing Telemetry Transport (MQTT) protocol. For data analysis, the vibration signal on the Z axis is segmented to label the contact section of the upper and middle molds, and the corresponding vibration data of the stamping friction on the X, Y, and Z axes are extracted. Using only historical vibration data from normal stamping, a Bidirectional Long Short-Term Memory (Bi-LSTM) model with an attention mechanism is trained to predict normal stamping vibrations several minutes in advance. By comparing the predicted stamping vibrations with the observed data at the current time, the mean square errors (MSEs) are calculated to evaluate the health status of the mold. Several ablation experiments were conducted to assess the performance of the trained model. The average MSE values for normal samples and abnormal samples were smaller than 0.5 and larger than 1.0, respectively. The experimental results confirm that the trained prediction model and evaluation indicators can effectively notify operators in advance. An early warning system using vibration data for mold damage was successfully implemented, enhancing predictive maintenance.
In this paper, an analysis and monitoring algorithm is proposed for mold health evaluation using vibration data. Two inertial measurement units (IMUs) and an embedded system are first used to acquire vibration data from a powder metallurgy molding machine. These data are collected on an Internet of Things (IoT) platform using the Message Queueing Telemetry Transport (MQTT) protocol. For data analysis, the vibration signal on the Z axis is segmented to label the contact section of the upper and middle molds, and the corresponding vibration data of the stamping friction on the X, Y, and Z axes are extracted. Using only historical vibration data from normal stamping, a Bidirectional Long Short-Term Memory (Bi-LSTM) model with an attention mechanism is trained to predict normal stamping vibrations several minutes in advance. By comparing the predicted stamping vibrations with the observed data at the current time, the mean square errors (MSEs) are calculated to evaluate the health status of the mold. Several ablation experiments were conducted to assess the performance of the trained model. The average MSE values for normal samples and abnormal samples were smaller than 0.5 and larger than 1.0, respectively. The experimental results confirm that the trained prediction model and evaluation indicators can effectively notify operators in advance. An early warning system using vibration data for mold damage was successfully implemented, enhancing predictive maintenance.In this paper, an analysis and monitoring algorithm is proposed for mold health evaluation using vibration data. Two inertial measurement units (IMUs) and an embedded system are first used to acquire vibration data from a powder metallurgy molding machine. These data are collected on an Internet of Things (IoT) platform using the Message Queueing Telemetry Transport (MQTT) protocol. For data analysis, the vibration signal on the Z axis is segmented to label the contact section of the upper and middle molds, and the corresponding vibration data of the stamping friction on the X, Y, and Z axes are extracted. Using only historical vibration data from normal stamping, a Bidirectional Long Short-Term Memory (Bi-LSTM) model with an attention mechanism is trained to predict normal stamping vibrations several minutes in advance. By comparing the predicted stamping vibrations with the observed data at the current time, the mean square errors (MSEs) are calculated to evaluate the health status of the mold. Several ablation experiments were conducted to assess the performance of the trained model. The average MSE values for normal samples and abnormal samples were smaller than 0.5 and larger than 1.0, respectively. The experimental results confirm that the trained prediction model and evaluation indicators can effectively notify operators in advance. An early warning system using vibration data for mold damage was successfully implemented, enhancing predictive maintenance.
What are the main findings? * Damage to the mold will be reflected in the vibration. * The vibration caused by the damaged mold is very small. Damage to the mold will be reflected in the vibration. The vibration caused by the damaged mold is very small. What are the implications of the main finding? * Bidirectional LSTM can be used to determine the mold status through vibration. * The accuracy highly depends on the captured data, with a high sampling rate. Bidirectional LSTM can be used to determine the mold status through vibration. The accuracy highly depends on the captured data, with a high sampling rate. In this paper, an analysis and monitoring algorithm is proposed for mold health evaluation using vibration data. Two inertial measurement units (IMUs) and an embedded system are first used to acquire vibration data from a powder metallurgy molding machine. These data are collected on an Internet of Things (IoT) platform using the Message Queueing Telemetry Transport (MQTT) protocol. For data analysis, the vibration signal on the Z axis is segmented to label the contact section of the upper and middle molds, and the corresponding vibration data of the stamping friction on the X, Y, and Z axes are extracted. Using only historical vibration data from normal stamping, a Bidirectional Long Short-Term Memory (Bi-LSTM) model with an attention mechanism is trained to predict normal stamping vibrations several minutes in advance. By comparing the predicted stamping vibrations with the observed data at the current time, the mean square errors (MSEs) are calculated to evaluate the health status of the mold. Several ablation experiments were conducted to assess the performance of the trained model. The average MSE values for normal samples and abnormal samples were smaller than 0.5 and larger than 1.0, respectively. The experimental results confirm that the trained prediction model and evaluation indicators can effectively notify operators in advance. An early warning system using vibration data for mold damage was successfully implemented, enhancing predictive maintenance.
Audience Academic
Author Chen, Yuan-Chieh
Wu, Yu-Chi
Han, Chin-Chuan
Lin, Hao-Pu
Lin, Jin-Yuan
AuthorAffiliation 1 Ph. D. Program in Material and Chemical Engineering, National United University, MiaoLi 360302, Taiwan; d1012005@o365.nuu.edu.tw
2 Department of Computer Science and Information Engineering, National United University, MiaoLi 360302, Taiwan; tryit320495@gmail.com
3 Department of Electrical Engineering, National United University, MiaoLi 360302, Taiwan; ycwu@nuu.edu.tw (Y.-C.W.); yuan@nuu.edu.tw (J.-Y.L.)
AuthorAffiliation_xml – name: 3 Department of Electrical Engineering, National United University, MiaoLi 360302, Taiwan; ycwu@nuu.edu.tw (Y.-C.W.); yuan@nuu.edu.tw (J.-Y.L.)
– name: 1 Ph. D. Program in Material and Chemical Engineering, National United University, MiaoLi 360302, Taiwan; d1012005@o365.nuu.edu.tw
– name: 2 Department of Computer Science and Information Engineering, National United University, MiaoLi 360302, Taiwan; tryit320495@gmail.com
Author_xml – sequence: 1
  givenname: Hao-Pu
  surname: Lin
  fullname: Lin, Hao-Pu
– sequence: 2
  givenname: Yuan-Chieh
  surname: Chen
  fullname: Chen, Yuan-Chieh
– sequence: 3
  givenname: Chin-Chuan
  surname: Han
  fullname: Han, Chin-Chuan
– sequence: 4
  givenname: Yu-Chi
  orcidid: 0000-0003-2821-2040
  surname: Wu
  fullname: Wu, Yu-Chi
– sequence: 5
  givenname: Jin-Yuan
  surname: Lin
  fullname: Lin, Jin-Yuan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40218656$$D View this record in MEDLINE/PubMed
BookMark eNp9kktvEzEQx1eoiD7gwBdAlrgAUopfu-s9oVBekRJRifS8cuzxxtGuHWwvVT4I3xenKVHLAfvg8fg3f3s8c16cOO-gKF4SfMlYg99HWuKaEs6eFGeEUz4RlOKTB_ZpcR7jBmPKGBPPilOOKRFVWZ0Vv6do4XuNPslBdpBtZ5MP1nVo2nfZSOsBGR_Qtb-FgBaQZN-PodvdRe2xhVRr6yCim7jffrTaBlDJeid7NPfZ9WPtQ5osIQw5fvBhh7xD0qGZSxAcJOQNWmaNLqLrXqZ82_C8eGpkH-HF_XpR3Hz5vLz6Npl__zq7ms4nitckTZjJCWkiV1w1DBpa17psCHBQHGpOmW6MKUWlRNUA1kSUmpqSriTRQmCGJbsoZgdd7eWm3QY7yLBrvbTtncOHrpUhWdVDy6loSmW0UsZwY3CzouWqxFSYSkoKKmu9O2iNbit3t_mfjoIEt_s6tcc6ZfjDAd6OqwG0ApeC7B-94PGJs-u2879aQpqGlIxmhTf3CsH_HCGmdrBRQd9LB36MLSOi4RXjpMro63_QjR9Drs8dJRpM8sjU5YHqZE7XOuPzxSpPDYNVueGMzf6pYIJgQnmdA149zOH4-L_NlYG3B0AFH2MA858P-QNed97G
Cites_doi 10.3390/aerospace11070509
10.1109/PHM-Qingdao46334.2019.8942870
10.1109/ICC.2019.8761383
10.1155/2023/3906180
10.1007/978-3-031-09385-2_2
10.1016/j.iot.2024.101280
10.1109/Confluence52989.2022.9734133
10.1109/GUCON50781.2021.9573857
10.1109/PERCOM.2018.8444596
10.1109/CCGE50943.2021.9776434
10.1002/we.2567
10.12792/icisip2023.027
10.1109/COMSWA.2008.4554519
10.1162/neco.1997.9.8.1735
10.1016/j.ymssp.2021.108752
10.36001/phmconf.2020.v12i1.1143
10.3115/v1/D14-1179
10.3390/s23021009
10.1109/ICKII.2018.8569065
10.3390/s24092833
10.1109/ICSMD57530.2022.10058425
10.1016/j.aei.2023.101907
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s25072143
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_42895cfdccff4ff09b25b5028f6aa2ec
10.3390/s25072143
PMC11991532
A838101247
40218656
10_3390_s25072143
Genre Journal Article
GrantInformation_xml – fundername: National Science and Technology Council, TAIWAN
  grantid: 111-2221-E-239-026
– fundername: Chao-Chuan Industrial Co., Ltd.
– fundername: National Science and Technology Council
  grantid: 111-2221-E-239-026
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c471t-3f233d1ab4c93e9277d591e4ec4e7423d9ff586c869e0d185d2f52ba1d88030a3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:39:54 EDT 2025
Sun Oct 26 03:29:04 EDT 2025
Tue Sep 30 17:04:00 EDT 2025
Fri Sep 05 17:39:11 EDT 2025
Tue Oct 07 07:43:42 EDT 2025
Mon Oct 20 16:53:25 EDT 2025
Tue Apr 15 01:23:26 EDT 2025
Thu Oct 16 04:25:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords deep learning
inertial measurement unit (IMU)
Internet of Things (IoT)
intelligence system
mean square error
vibration data
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-3f233d1ab4c93e9277d591e4ec4e7423d9ff586c869e0d185d2f52ba1d88030a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This article is an extended version of the conference paper: Lin, H.P.; Chen, Y.C.; Han, C.C.; Wu, Y.C.; Chang, C.S.; Lin, J.Y. Mold Damage Monitoring for Power Metallurgy Molding Machines Using Deep Learning Methods. In Proceedings of the 10th IIAE International Conference on Intelligent Systems and Image Processing, Beppu, Japan, 4–8 September 2023.
ORCID 0000-0003-2821-2040
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25072143
PMID 40218656
PQID 3188901111
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_42895cfdccff4ff09b25b5028f6aa2ec
unpaywall_primary_10_3390_s25072143
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11991532
proquest_miscellaneous_3189463416
proquest_journals_3188901111
gale_infotracacademiconefile_A838101247
pubmed_primary_40218656
crossref_primary_10_3390_s25072143
PublicationCentury 2000
PublicationDate 2025-03-28
PublicationDateYYYYMMDD 2025-03-28
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-28
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Li (ref_7) 2019; 105
Cho (ref_11) 2024; 27
Hasegawa (ref_2) 2017; 8
ref_13
Deac (ref_4) 2021; 11
Zhang (ref_12) 2023; 2023
ref_19
ref_18
ref_17
ref_16
ref_15
Turnbull (ref_9) 2021; 24
Meng (ref_20) 2023; 55
Zhang (ref_3) 2008; 34
ref_25
Hochreiter (ref_27) 1997; 9
ref_24
ref_23
ref_22
ref_21
ref_1
ref_28
ref_26
ref_8
ref_5
ref_6
Vos (ref_10) 2022; 165
Patra (ref_14) 2022; 30
References_xml – ident: ref_6
  doi: 10.3390/aerospace11070509
– volume: 11
  start-page: 19
  year: 2021
  ident: ref_4
  article-title: Vibration anomaly detection using deep neural network and convolutional neural network
  publication-title: Int. J. Mech. Optim.
– ident: ref_17
  doi: 10.1109/PHM-Qingdao46334.2019.8942870
– ident: ref_15
  doi: 10.1109/ICC.2019.8761383
– volume: 2023
  start-page: 3906180
  year: 2023
  ident: ref_12
  article-title: Structural vibration data anomaly detection based on multiple feature information using CNN-LSTM Model
  publication-title: Struct. Control Health Monit.
  doi: 10.1155/2023/3906180
– volume: 30
  start-page: 1256
  year: 2022
  ident: ref_14
  article-title: Anomaly detection in rotating machinery using autoencoders based on bidirectional LSTM and GRU neural networks
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
– ident: ref_1
  doi: 10.1007/978-3-031-09385-2_2
– volume: 27
  start-page: 101280
  year: 2024
  ident: ref_11
  article-title: Real-time AIoT anomaly detection for industrial diesel generator based on an efficient deep learning CNN-LSTM in Industry 4.0
  publication-title: Internet Things
  doi: 10.1016/j.iot.2024.101280
– ident: ref_16
  doi: 10.1109/Confluence52989.2022.9734133
– ident: ref_25
  doi: 10.1109/GUCON50781.2021.9573857
– ident: ref_21
  doi: 10.1109/PERCOM.2018.8444596
– ident: ref_23
  doi: 10.1109/CCGE50943.2021.9776434
– volume: 105
  start-page: 4421
  year: 2019
  ident: ref_7
  article-title: A deep learning approach for anomaly detection based on SAE and LSTM in mechanical equipment
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 24
  start-page: 123
  year: 2021
  ident: ref_9
  article-title: Combining SCADA and vibration data into a single anomaly detection model to predict wind turbine component failure
  publication-title: Wind Energy
  doi: 10.1002/we.2567
– ident: ref_19
  doi: 10.12792/icisip2023.027
– ident: ref_24
  doi: 10.1109/COMSWA.2008.4554519
– volume: 8
  start-page: 1
  year: 2017
  ident: ref_2
  article-title: Adaptive training of vibration-based anomaly detector for wind turbine condition monitoring
  publication-title: Int. J. Progn. Health Manag.
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_27
  article-title: Long short term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 34
  start-page: 923
  year: 2008
  ident: ref_3
  article-title: Rolling element bearing feature extraction and anomaly detection based on vibration monitoring
  publication-title: IEEE Trans. Control Autom.
– volume: 165
  start-page: 108752
  year: 2022
  ident: ref_10
  article-title: Vibration-based anomaly detection using LSTM/SVM approaches
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108752
– ident: ref_18
  doi: 10.36001/phmconf.2020.v12i1.1143
– ident: ref_28
  doi: 10.3115/v1/D14-1179
– ident: ref_5
  doi: 10.3390/s23021009
– ident: ref_13
  doi: 10.1109/ICKII.2018.8569065
– ident: ref_8
  doi: 10.3390/s24092833
– ident: ref_26
  doi: 10.1109/ICSMD57530.2022.10058425
– volume: 55
  start-page: 101907
  year: 2023
  ident: ref_20
  article-title: Anomaly detection for construction vibration signals using unsupervised deep learning and cloud computing
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2023.101907
– ident: ref_22
SSID ssj0023338
Score 2.4472237
Snippet In this paper, an analysis and monitoring algorithm is proposed for mold health evaluation using vibration data. Two inertial measurement units (IMUs) and an...
What are the main findings? * Damage to the mold will be reflected in the vibration. * The vibration caused by the damaged mold is very small. Damage to the...
HighlightsWhat are the main findings?Damage to the mold will be reflected in the vibration.The vibration caused by the damaged mold is very small.What are the...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2143
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Automation
Bearings
Deep learning
Degassing of metals
Embedded systems
Factories
Fault diagnosis
inertial measurement unit (IMU)
intelligence system
Internet of Things
Internet of Things (IoT)
Machine learning
Machinery
Manufacturers
Manufacturing
mean square error
Metal powder products
Metal powders
Metals
Middleware
Mold damage
Neural networks
Powder metallurgy
Preventive maintenance
Sensors
Support vector machines
vibration data
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBajL9sexu5z1w3tAnsytW62_JhuK2Uso7AW-mZ0bQqOXRKHkR-y_7sjyQnJxtjLXkKwZJB1bt-xj76D0HtNlS90VeVeUpdzDz-yqGiunDVCaEK0DgeFp9_Ks0v-5Upc7bT6CjVhiR44bdwxwONaGG-N8Z57X9SaCi0gKvpSKepM8L6FrDfJ1JhqMci8Eo8Qg6T-eAmBHlIdzvaiTyTp_9MV78Si3-sk7666W7X-odp2JwidPkQPRvSIJ2nVj9Ad1z1G93c4BZ-gnxM87VuLP6k5uAqcbDYM4Ul7DX-G2RwDUMXnoT0anjoA3-1qcb2Od4Vp01he6ZY4VhPgk5sU9eIrQ_y1h0vfZ4DZ8wvw6XD_vF-scd9h1eH0dtENuPc49QPF560aAix-ii5PP198PMvH3gu5gXA15MzDHlqiNDc1czWtKitq4rgz3IWPu7b2XsjSyLJ2hYWgb6kXVCtiwSGwQrFn6KDrO_cCYeIqWjhjWQBnXhHFAoqqCiU5Y67kGXq7kUlzmyg2GkhNguCareAydBKktZ0QWLHjBdCVZtSV5l-6kqEPQdZNsF0QqFHjEQRYZ2DBaiYy8Z3xKkNHG3VoRqNeNuD-ZDipS0iG3myHwRzDNxbVuX4V59S8BGhQZuh50p7tmnlsACZgRO7p1d5D7Y90N7NI-U1ChZpgNEPvtir49806_B-b9RLdo6HXccFyKo_QwbBYuVcAwAb9OtraL3wwMg0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9NAFB6V9AAcEGsxFDQsEier9ixeDggl0KpCJIqglXqzxrMklRw7JI5Qfgj_l_dsxzQguFiWZyyN_Zb53syb7xHyNmfKBXkc-y5h1hcOLkkQM19Zo6XMwzDP8aDweBKdX4rPV_LqgEx2Z2EwrXLnExtHbSqNa-QnoHsJHpMMww_L7z5WjcLd1V0JDdWVVjDvG4qxW-SQITPWgByOTifTr30IxiEia_mFOAT7J2sAABACCb43KzXk_X-76Btz1J_5k7c35VJtf6iiuDE5nd0n9zpUSYetGjwgB7Z8SO7e4Bp8RH4O6bgqDP2kFuBCaGvL2ESHxQxu6vmCAoClUyybRscWQHmxWc22zVvYbdykXdo1bbIM6Oi6nQ2bpUT6pYJH3-aA5f0L8PXw_qJabWlVUlXSdtXR1rRytK0TSqeFqhEuPyaXZ6cXH8_9riaDr2Eaq33u4B-aUOVCp9ymLI6NTEMrrBYWN31N6pxMIp1EqQ0MgAHDnGS5Cg04Ch4o_oQMyqq0TwkNbcwCqw1H0OZUqDiiqzhQieDcRsIjr3cyyZYt9UYGIQsKLusF55ERSqvvgGzZzYNqNcs648sgxEqldkZr54RzQZozmUtAVi5SilntkXco6wxtGgSqVXc0AcaJ7FjZMGl50ETskeOdOmSdsa-z36rpkVd9M5gp7r2o0labpk8qIoAMkUeOWu3pxyyawmASWpI9vdr7qP2W8nreUIGHmLkmOfPIm14F__2znv1_9M_JHYbVjQPus-SYDOrVxr4AyFXnLzs7-gXDSC5c
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V9AA98IYaCtoCEicXex9-HFOgqhCpItFI5WTtrnebCseuElso_A_-L7O2E5IiEJco8o4le3ce33pnvgF4o6i0gYpj3ybU-NziTxLE1Jcm10KoMFTKFQqPzqLTCf90IS524HBVC7Nxfs9wO_5ugSEaNymc3YLdSCDcHsDu5Gw8_NpWDVHuY4ALOsagbfmtONPS8f_pdDeizs2MyNtNeS2X32VRbISbk3u_i3a6LJNvR02tjvSPGxyO_3yT-3C3B5tk2GnHA9gx5UPY26AgfAQ_h2RUFTn5IGfoWUhn4m6IDItL_FNPZwRxLRm7bmpkZBCrF838ctne5cRGbTamWZA2-YAcX3VBsv3CSD5XeOnLFCG-f44hAO-fVfMlqUoiS9J9jDQ1qSzp2oeScSFrh6Ifw-Tk4_n7U79v1eBrjG61zyxlLA-l4jplJqVxnIs0NNxobtxZcJ5aK5JIJ1FqghwxQk6toEqGOfoPFkj2BAZlVZp9IKGJaWB0zhyWszKUzIGuOJAJZ8xE3INXq4XNrjtGjgx3Mm6Os_Uce3Dslnwt4Ei02wu4IllvkxnuvFKhba61tdzaIFVUKIGAy0ZSUqM9eOsUJnOmjlqhZV-xgM_pSLOyYdLRo_HYg4OVTmW9D1hk6C0TV9gbhh4crofRet2RjCxN1bQyKY8QSUQePO1UcP3MvO0XJnAk2VLOrZfaHimvpi1DeOgS2gSjHrxe6_HfJ-vZf0k9hzvU9T4OmE-TAxjU88a8QEBWq5e9Sf4CAyAzPA
  priority: 102
  providerName: Unpaywall
Title A Mold Damage Monitoring Algorithm for Power Metallurgy Molding Machines Using Bidirectional Long Short-Term Memory on an Internet of Things Platform
URI https://www.ncbi.nlm.nih.gov/pubmed/40218656
https://www.proquest.com/docview/3188901111
https://www.proquest.com/docview/3189463416
https://pubmed.ncbi.nlm.nih.gov/PMC11991532
https://doi.org/10.3390/s25072143
https://doaj.org/article/42895cfdccff4ff09b25b5028f6aa2ec
UnpaywallVersion publishedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFH6aRYLhgNgJDJVZJE6BxHa2A0ItTBkhWlUwlcopchy7HSlNhjYV9Ifwf3l22qhluXCJIttRkrd-z8t7AC8yKrSXRZGrY6pcrvESexF1hcplEGS-n2XmoPBgGJ6P-cdJMDmAbY3NDQGXfw3tTD2p8aJ49ePb-i0q_BsTcWLI_nqJbhwDGc4O4RgdVGIqOAx4u5hAGYZhTVKh_eEncI3bmkymevWOV7LJ-_800Ts-6vf9k9dX5ZVYfxdFseOc-rfg5gZVkm4jBrfhQJV34MZOrsG78LNLBlWRk_dijiaENLpsuki3mOJNPZsTBLBkZMqmkYFCehSrxXRtnzLDBnbbpVoSu8uA9C4bb2inEsmnCpu-zJCM7gXaenx-Xi3WpCqJKEkz66hqUmnS1Aklo0LUBi7fg3H_7OLdubupyeBKdGO1yzSSM_dFxmXCVEKjKA8SX3EluTKLvnmidRCHMg4T5eUIBnKqA5oJP0dDwTzB7sNRWZXqIRBfRdRTMmcGtGnhC2bQVeSJmDOmQu7Asy1P0qsm9UaKIYvhYdry0IGe4VY7wGTLtg3VYppulC_FECsJpM6l1Jpr7SUZDbIAkZUOhaBKOvDS8Do1UoYMlWJzNAG_02THSrtxkweNRw6cbsUh3cpqimYxNid4fd-Bp203qqlZexGlqlZ2TMJDhAyhAw8a6Wm_eSuEDsR7crX3U_s95eXMpgL3zc61gFEHnrci-G9iPfr_FzyGE2oqH3vMpfEpHNWLlXqCcKzOOnAYTSK8xv0PHTjunQ1Hnzt2aqNj1RDbxsNR9-svs7U82A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcigcKt4YCiwvcbJq78OPA0IppUppUlUilXJz1_tIKjl2mjiq8kP4G_xGZtdJmoDg1osVedfWOjP7zTe7szMIfciJMEEex75JiPaZgUsSxMQXWknO8zDMc3tQuHsatc_Z9z7vb6Ffy7MwNqxyiYkOqFUl7Rr5PuheYo9JhuGX8ZVvq0bZ3dVlCY1GLU70_Bpctunn40OQ70dCjr71vrb9RVUBXwIQ1z41hFIVipzJlOqUxLHiaaiZlkzbbUuVGsOTSCZRqgMF5kwRw0kuQgWqTgNB4b130F1GAUtg_sT9GwePgr_XZC-iNA32p0AvwMFidMPmudIAfxuANQv4Z3Tmzqwci_m1KIo103f0AO0uOCtuNUr2EG3p8hG6v5bJ8DH62cLdqlD4UIwAoHCDFLYJt4oB_KiHIwz0GJ_Zomy4q4HyF7PJYO6est26LqhTT7GLYcAHl42tdQuVuFPBrR9D8BT8HlgSeH5UTea4KrEocbOmqWtcGdxUIcVnhagtGX-Czm9FNk_RdlmV-jnCoY5JoKWilhIaEQpquVsciIRRqiPmoXdLmWTjJrFHBg6RFVy2EpyHDqy0Vh1sLm53o5oMssXUzsCBS7k0SkpjmDFBmhOec-BtJhKCaOmhT1bWmUUMEKgUi4MPME6beytrJU2WNRZ7aG-pDtkCSqbZjeJ76O2qGUDA7uyIUlcz1ydlERCSyEPPGu1ZjZm5smMcWpINvdr4qM2W8nLoEo2HNi6OU-Kh9ysV_Pef9eL_o3-Ddtq9bifrHJ-evET3iK2jHFCfJHtou57M9Csgd3X-2s0ojC5uewr_BmFSZC0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIvE4IN4YCiwv9WTF3l2_DgilhKilTRWJVsrNrNe7SSXHDomjKj-EP8OvY8Z23AQEt16syLO21pnXN7uzM4S8T5g0ThIEtgmZtoWBS-gEzJY6VZ6XuG6S4EHhwal_eC6-jrzRDvm1PguDaZVrm1gZ6rRQuEbeAdkL8Zik63ZMkxYx7PU_zX7Y2EEKd1rX7TRqETnWq0sI3xYfj3rA6w-M9b-cfT60mw4DtgKjXNrcMM5TVyZCRVxHLAhSL3K10Epo3MJMI2O80FehH2knBdeWMuOxRLopiD13JIf33iA3A84jTCcMRlfBHofYr65kBESnswCoAcGW4Fv-r2oT8Lcz2PCGf2Zq3l7mM7m6lFm24Qb798m9Br_Sbi1wD8iOzh-SuxtVDR-Rn106KLKU9uQUjBWtrQaSaDcbw49yMqUAlekQG7TRgQb4ny3n41X1FA4bVAmeekGrfAZ6cFH73WrRkp4UcOvbBKIG-wy8Cjw_LeYrWuRU5rRe39QlLQytO5LSYSZLBOaPyfm18OYJ2c2LXD8j1NUBc7RKOcJDI13JEccFjgwF59oXFnm75kk8q4t8xBAcIePilnEWOUButQOwLnd1o5iP40bNYwjmIk-ZVCljhDFOlDAv8QDDGV9KppVF9pHXMVoPYKiSzSEImCfW4Yq7YV1xTQQW2VuLQ9yYlUV8pQQWedOSwSDgLo_MdbGsxkTCB3DiW-RpLT3tnEXVgswDSrglV1sftU3JLyZV0XEXc-Q8zizyrhXBf_9Zz_8_-9fkFihvfHJ0evyC3GHYUtnhNgv3yG45X-qXgPPK5FWlUJR8v24N_g0WQGhw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V9AA98IYaCtoCEicXex9-HFOgqhCpItFI5WTtrnebCseuElso_A_-L7O2E5IiEJco8o4le3ce33pnvgF4o6i0gYpj3ybU-NziTxLE1Jcm10KoMFTKFQqPzqLTCf90IS524HBVC7Nxfs9wO_5ugSEaNymc3YLdSCDcHsDu5Gw8_NpWDVHuY4ALOsagbfmtONPS8f_pdDeizs2MyNtNeS2X32VRbISbk3u_i3a6LJNvR02tjvSPGxyO_3yT-3C3B5tk2GnHA9gx5UPY26AgfAQ_h2RUFTn5IGfoWUhn4m6IDItL_FNPZwRxLRm7bmpkZBCrF838ctne5cRGbTamWZA2-YAcX3VBsv3CSD5XeOnLFCG-f44hAO-fVfMlqUoiS9J9jDQ1qSzp2oeScSFrh6Ifw-Tk4_n7U79v1eBrjG61zyxlLA-l4jplJqVxnIs0NNxobtxZcJ5aK5JIJ1FqghwxQk6toEqGOfoPFkj2BAZlVZp9IKGJaWB0zhyWszKUzIGuOJAJZ8xE3INXq4XNrjtGjgx3Mm6Os_Uce3Dslnwt4Ei02wu4IllvkxnuvFKhba61tdzaIFVUKIGAy0ZSUqM9eOsUJnOmjlqhZV-xgM_pSLOyYdLRo_HYg4OVTmW9D1hk6C0TV9gbhh4crofRet2RjCxN1bQyKY8QSUQePO1UcP3MvO0XJnAk2VLOrZfaHimvpi1DeOgS2gSjHrxe6_HfJ-vZf0k9hzvU9T4OmE-TAxjU88a8QEBWq5e9Sf4CAyAzPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Mold+Damage+Monitoring+Algorithm+for+Power+Metallurgy+Molding+Machines+Using+Bidirectional+Long+Short-Term+Memory+on+an+Internet+of+Things+Platform&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Lin%2C+Hao-Pu&rft.au=Chen%2C+Yuan-Chieh&rft.au=Han%2C+Chin-Chuan&rft.au=Wu%2C+Yu-Chi&rft.date=2025-03-28&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=25&rft.issue=7&rft_id=info:doi/10.3390%2Fs25072143&rft_id=info%3Apmid%2F40218656&rft.externalDocID=PMC11991532
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon