Identification of the Norton-Green Compaction Model for the Prediction of the Ti-6Al-4V Densification During the Spark Plasma Sintering Process

One of the main challenges for the industrialization of the spark plasma sintering (SPS) is to resolve issues linked to the compaction of real parts with complex shapes. The modeling of powder compaction is an interesting tool to predict how the densification field varies during sintering. However,...

Full description

Saved in:
Bibliographic Details
Published inAdvanced engineering materials Vol. 18; no. 10; pp. 1720 - 1727
Main Authors Manière, Charles, Kus, Ugras, Durand, Lise, Mainguy, Ronan, Huez, Julitte, Delagnes, Denis, Estournès, Claude
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.10.2016
Wiley
Subjects
Online AccessGet full text
ISSN1438-1656
1527-2648
DOI10.1002/adem.201600348

Cover

Abstract One of the main challenges for the industrialization of the spark plasma sintering (SPS) is to resolve issues linked to the compaction of real parts with complex shapes. The modeling of powder compaction is an interesting tool to predict how the densification field varies during sintering. However, expressing the behavior law which reflect the powder compaction is often a difficult and long step in the model establishment. In this paper, a simple methodology for the identification of the densification parameters is proposed. Dense and porous creep tests combined with SPS die compaction tests are employed to determine a complete densification law on a Ti–6Al–4V alloy directly in a SPS machine. The compaction model obtained is successfully validated through prediction of the densification of new SPSed samples. An in situ SPS identification, using a complete and non‐reductive method of the Norton‐Green law is performed on a Ti–6Al–4V materials. The identified model is tested on two independent SPS experiments for the densification of this powder material and shows very good prediction of the experimental sintering trajectory.
AbstractList One of the main challenges for the industrialization of the spark plasma sintering (SPS) is to resolve issues linked to the compaction of real parts with complex shapes. The modeling of powder compaction is an interesting tool to predict how the densification field varies during sintering. However, expressing the behavior law which reflect the powder compaction is often a difficult and long step in the model establishment. In this paper, a simple methodology for the identification of the densification parameters is proposed. Dense and porous creep tests combined with SPS die compaction tests are employed to determine a complete densification law on a Ti-6Al-4V alloy directly in a SPS machine. The compaction model obtained is successfully validated through prediction of the densification of new SPSed samples. An in situ SPS identification, using a complete and non-reductive method of the Norton-Green law is performed on a Ti-6Al-4V materials. The identified model is tested on two independent SPS experiments for the densification of this powder material and shows very good prediction of the experimental sintering trajectory.
One of the main challenges for the industrialization of the spark plasma sintering (SPS) is to resolve issues linked to the compaction of real parts with complex shapes. The modeling of powder compaction is an interesting tool to predict how the densification field varies during sintering. However, expressing the behavior law which reflect the powder compaction is often a difficult and long step in the model establishment. In this paper, a simple methodology for the identification of the densification parameters is proposed. Dense and porous creep tests combined with SPS die compaction tests are employed to determine a complete densification law on a Ti–6Al–4V alloy directly in a SPS machine. The compaction model obtained is successfully validated through prediction of the densification of new SPSed samples. An in situ SPS identification, using a complete and non‐reductive method of the Norton‐Green law is performed on a Ti–6Al–4V materials. The identified model is tested on two independent SPS experiments for the densification of this powder material and shows very good prediction of the experimental sintering trajectory.
One of the main challenges for the industrialization of the spark plasma sintering (SPS) is to resolve issues linked to the compaction of real parts with complex shapes. The modeling of powder compaction is an interesting tool to predict how the densification field varies during sintering. However, expressing the behavior law which reflect the powder compaction is often a difficult and long step in the model establishment. In this paper, a simple methodology for the identification of the densification parameters is proposed. Dense and porous creep tests combined with SPS die compaction tests are employed to determine a complete densification law on a Ti–6Al–4V alloy directly in a SPS machine. The compaction model obtained is successfully validated through prediction of the densification of new SPSed samples.
Author Estournès, Claude
Huez, Julitte
Kus, Ugras
Mainguy, Ronan
Delagnes, Denis
Durand, Lise
Manière, Charles
Author_xml – sequence: 1
  givenname: Charles
  surname: Manière
  fullname: Manière, Charles
  organization: CIRIMAT, Université de Toulouse, CNRS, INPT, UPS 118 route de Narbonne, 31062, Toulouse cedex 9, France
– sequence: 2
  givenname: Ugras
  surname: Kus
  fullname: Kus, Ugras
  organization: CIRIMAT, Université de Toulouse, CNRS, INPT, UPS 118 route de Narbonne, 31062, Toulouse cedex 9, France
– sequence: 3
  givenname: Lise
  surname: Durand
  fullname: Durand, Lise
  organization: CEMES, CNRS UPR 8011 and Université de Toulouse, 29 rue Jeanne Marvig, 31055, Toulouse, France
– sequence: 4
  givenname: Ronan
  surname: Mainguy
  fullname: Mainguy, Ronan
  organization: CIRIMAT, Université de Toulouse, CNRS, INPT, UPS 4 allée Emile Monso, 31030, Toulouse cedex 4, France
– sequence: 5
  givenname: Julitte
  surname: Huez
  fullname: Huez, Julitte
  organization: CIRIMAT, Université de Toulouse, CNRS, INPT, UPS 4 allée Emile Monso, 31030, Toulouse cedex 4, France
– sequence: 6
  givenname: Denis
  surname: Delagnes
  fullname: Delagnes, Denis
  organization: Université de Toulouse, CNRS, Mines Albi, INSA, UPS, ISAE, ICA (Institut Clément Ader), Campus Jarlard, 81013, Albi, France
– sequence: 7
  givenname: Claude
  surname: Estournès
  fullname: Estournès, Claude
  email: estournes@chimie.ups-tlse.fr
  organization: CIRIMAT, Université de Toulouse, CNRS, INPT, UPS 118 route de Narbonne, 31062, Toulouse cedex 9, France
BackLink https://hal.science/hal-01493174$$DView record in HAL
BookMark eNqFkUFv0zAYhi00JLbBlXOOcEhnx3bsHKt26ya6UakFjpYbf2aGxO7sFLZfwV8mTWBMSIiTLb_P88n2e4KOfPCA0GuCJwTj4kwbaCcFJiXGlMln6JjwQuRFyeRRv2dU5qTk5Qt0ktIXjAnBhB6jH1cGfOesq3Xngs-CzbpbyG5C7ILPFxHAZ7PQ7nQ9xNfBQJPZEAdqFcG4-qm3cXk5bXL2MZuDT3_GzvfR-c8Dst7p-DVbNTq1Ols738EQrWKoIaWX6LnVTYJXv9ZT9OHifDO7zJfvF1ez6TKvmSAy31ptsTbaCl5wKQ2A0JoZsBq2wlaGlpRhY_pMABf9swveR2TLC2mYlVt6it6Oc291o3bRtTo-qKCdupwu1eEME1ZRItg30rNvRnYXw90eUqdal2poGu0h7JMiknGJecWrHmUjWseQUgSratcNX9BF7RpFsDp0pQ5dqceuem3yl_b7Sv8UqlH47hp4-A-tpvPz66duProudXD_6PatqFJQwdWnm4W6YO82rJBMrelPct-5lQ
CitedBy_id crossref_primary_10_1007_s10853_018_2096_8
crossref_primary_10_1016_j_actamat_2024_120024
crossref_primary_10_1016_j_applthermaleng_2017_05_116
crossref_primary_10_2139_ssrn_4133619
crossref_primary_10_1016_j_actamat_2017_11_010
crossref_primary_10_1016_j_scriptamat_2023_115346
crossref_primary_10_1016_j_msea_2017_11_041
crossref_primary_10_1016_j_cherd_2019_12_001
crossref_primary_10_1016_j_scriptamat_2017_07_026
crossref_primary_10_1016_j_matlet_2023_133930
crossref_primary_10_1111_jace_15892
crossref_primary_10_1016_j_jeurceramsoc_2021_09_021
crossref_primary_10_1016_j_mechmat_2023_104834
crossref_primary_10_1016_j_intermet_2021_107435
crossref_primary_10_1016_j_intermet_2024_108204
crossref_primary_10_1002_adem_202301391
crossref_primary_10_1016_j_ijmecsci_2018_02_003
crossref_primary_10_1080_02670836_2019_1620538
crossref_primary_10_1155_2021_9505249
crossref_primary_10_1016_j_actamat_2018_01_017
crossref_primary_10_3390_met9060654
crossref_primary_10_3390_met11020322
crossref_primary_10_1016_j_jeurceramsoc_2021_02_010
crossref_primary_10_3103_S1063457624050022
crossref_primary_10_1016_j_jmapro_2024_01_084
crossref_primary_10_1016_j_actamat_2021_116899
crossref_primary_10_3390_ma12040557
crossref_primary_10_1016_j_intermet_2017_03_006
crossref_primary_10_1016_j_jmatprotec_2022_117779
crossref_primary_10_1016_j_mechmat_2023_104664
Cites_doi 10.1016/j.msea.2004.01.052
10.1007/s10853-006-6555-2
10.2298/SOS1103247X
10.1016/j.msea.2004.11.019
10.1016/S0997-7538(99)00101-1
10.1007/s10853-015-9293-5
10.1016/j.epsr.2015.06.009
10.1016/j.jeurceramsoc.2015.10.033
10.5402/2012/698158
10.1155/2010/145431
10.1016/j.jeurceramsoc.2006.04.142
10.1016/j.mser.2008.09.003
10.1016/0020-7403(72)90063-X
10.1016/j.ceramint.2016.02.048
10.1016/j.msea.2011.09.061
10.1016/0921-5093(96)10233-1
10.1002/nme.1620250116
10.1016/j.ijadhadh.2013.09.030
10.1016/j.actamat.2015.09.003
10.3390/ma8095289
10.1016/S0997-7538(99)00102-3
10.1016/S0924-0136(02)01039-7
10.1007/s10853-008-3179-8
10.1016/j.jmst.2014.04.011
10.1111/j.1551-2916.2012.05096.x
ContentType Journal Article
Copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
7SR
8BQ
8FD
JG9
1XC
VOOES
DOI 10.1002/adem.201600348
DatabaseName Istex
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1527-2648
EndPage 1727
ExternalDocumentID oai_HAL_hal_01493174v1
10_1002_adem_201600348
ADEM201600348
ark_67375_WNG_F4KT4284_S
Genre article
GroupedDBID -~X
05W
0R~
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
50Y
52U
5GY
5VS
66C
6P2
8-0
8-1
8UM
AAESR
AAEVG
AAHQN
AAIHA
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F5P
FEDTE
G-S
GNP
GODZA
HGLYW
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
QRW
R.K
ROL
RX1
RYL
SUPJJ
TUS
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
XPP
XV2
ZZTAW
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7SR
8BQ
8FD
JG9
1XC
VOOES
ID FETCH-LOGICAL-c4718-bfaf0adaf752588dee7aa4defaeb7f9d36340dd2587e5765625fae1b528d4f8b3
IEDL.DBID DR2
ISSN 1438-1656
IngestDate Sat Sep 20 06:20:28 EDT 2025
Fri Jul 11 00:02:05 EDT 2025
Tue Jul 01 02:50:58 EDT 2025
Thu Apr 24 23:07:48 EDT 2025
Sun Sep 21 06:24:02 EDT 2025
Sun Sep 21 06:25:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Ti–6Al–4V
Spark Plasma Sintering Process
Norton-Green Compaction Model f
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4718-bfaf0adaf752588dee7aa4defaeb7f9d36340dd2587e5765625fae1b528d4f8b3
Notes ArticleID:ADEM201600348
istex:B45AEF4F70EDC92B96A8A200901B695D2065E465
The support of the Plateforme Nationale CNRS de Frittage Flash (PNF2/CNRS) is gratefully appreciated. C. M. and C. E. thank the French National Research Agency (ANR) for financial support of this study within project ANR09 MAPR-007 Impulsé.
ark:/67375/WNG-F4KT4284-S
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0006-0354-1461
0000-0001-8381-8454
0000-0003-0073-9772
0000-0002-9229-0003
0009-0004-7196-8622
OpenAccessLink https://hal.science/hal-01493174
PQID 1845805959
PQPubID 23500
PageCount 8
ParticipantIDs hal_primary_oai_HAL_hal_01493174v1
proquest_miscellaneous_1845805959
crossref_citationtrail_10_1002_adem_201600348
crossref_primary_10_1002_adem_201600348
wiley_primary_10_1002_adem_201600348_ADEM201600348
istex_primary_ark_67375_WNG_F4KT4284_S
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2016
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: October 2016
PublicationDecade 2010
PublicationTitle Advanced engineering materials
PublicationTitleAlternate Adv. Eng. Mater
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References C. Manière, A. Pavia, L. Durand, G. Chevallier, V. Bley, K. Afanga, A. Peigney, C. Estournès, Electr. Power Syst. Res. 2015, 127, 307.
E. Mohseni, E. Zalnezhad, A. R. Bushroa, Int. J. Adhes. Adhes. 2014, 48, 238.
U. Anselmi-Tamburini, S. Gennari, J. E. Garay, Z. A. Munir, Mater. Sci. Eng. A 2005, 394, 139.
K. Matsugi, H. Kuramoto, T. Hatayama, O. Yanagisawa, J. Mater. Process. Technol. 2003, 134, 225.
C. Manière, L. Durand, A. Weibel, C. Estournès, Ceram. Int. 2016, 42, 9274.
X. Li, T. Sugui, B. Xianyu, C. Liqing, Mater. Sci. Eng. A 2011, 529, 452.
L. Badea, M. Surand, B. Viguier, J. Ruau, U. P. B. Sci. Bull. Series B 2014, 76, 185.
K. V. Ranjit, N. S. Mahesh, M. I. Anwar, SAS Technol. 2012, 11, 79.
L. Xu, R. Guo, C. Bai, J. Lei, R. Yang, J. Mater. Sci. Technol. 2014, 30, 1289.
X. Wei, C. Back, O. Izhvanov, O. Khasanov, C. Haines, E. Olevsky, Materials 2015, 8, 6043.
C. Manière, A. Pavia, L. Durand, G. Chevallier, K. Afanga, C. Estournès, J. Eur. Ceram. Soc. 2015, 36, 741.
G. Maizza, S. Grasso, Y. Sakka, J. Mater. Sci. 2009, 44, 1219.
G. Molénat, L. Durand, J. Galy, A. Couret, J. Metall. 2010, 2010, 1.
R. German, Sintering Theory and Practice, Wiley, New York 1996.
A. Zavaliangos, J. Zhang, M. Krammer, J. R. Groza, Mater. Sci. Eng. A 2004, 379, 218.
R. J. Green, Int. J. Mech. Sci. 1972, 14, 215.
R. Orrù, R. Licheri, A. M. Locci, A. Cincotti, G. Cao, Mater. Sci. Eng. R 2009, 63, 127.
J. B. Allen, C. Walter, ISRN Mater. Sci. 2012, 2012, 1.
Z. A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, J. Mater. Sci. 2006, 41, 763.
C. Geindreau, D. Bouvard, P. Doremus, Eur. J. Mech. A Solid 1999, 18, 581.
K. Vanmeensel, A. Laptev, O. Van der Biest, J. Vleugels, J. Eur. Ceram. Soc. 2007, 27, 979.
M. Abouaf, J. L. Chenot, G. Raisson, P. Bauduin, Int. J. Numer. Methods Eng. 1988, 25, 191.
C. Manière, L. Durand, A. Weibel, C. Estournès, Acta Mater. 2016, 102, 169.
R. R. Boyer, Mater. Sci. Eng. A 1996, 213, 103.
C. Geindreau, D. Bouvard, P. Doremus, Eur. J. Mech. A Solid 1999, 18, 597.
E. A. Olevsky, C. Garcia-Cardona, W. L. Bradbury, C. D. Haines, D. G. Martin, D. Kapoor, J. Am. Ceram. Soc. 2012, 95, 2414.
C. Arnaud, C. Manière, G. Chevallier, C. Estournès, R. Mainguy, F. Lecouturier, D. Mesguich, A. Weibel, L. Durand, Ch. Laurent, J. Mater. Sci. 2015, 50, 7364.
Y. Xue, L. H. Lang, G. L. Bu, L. Li, Sci. Sinter. 2011, 43, 247.
2009; 44
2015; 36
2009; 63
2012; 2012
2005; 394
2010; 2010
2012
2015; 127
2011
2015; 50
2016; 102
2014; 48
1996
2015; 8
2003; 134
2012; 11
2012; 95
2006; 41
2004; 379
1990
2011; 529
1999; 18
1988; 25
2016; 42
1985
2011; 43
2016
2014
2013
1972; 14
2014; 30
1996; 213
2014; 76
2007; 27
German R. (e_1_2_6_35_1) 1996
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
Badea L. (e_1_2_6_27_1) 2014; 76
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
Ranjit K. V. (e_1_2_6_16_1) 2012; 11
e_1_2_6_26_1
References_xml – reference: C. Manière, A. Pavia, L. Durand, G. Chevallier, V. Bley, K. Afanga, A. Peigney, C. Estournès, Electr. Power Syst. Res. 2015, 127, 307.
– reference: M. Abouaf, J. L. Chenot, G. Raisson, P. Bauduin, Int. J. Numer. Methods Eng. 1988, 25, 191.
– reference: C. Manière, L. Durand, A. Weibel, C. Estournès, Acta Mater. 2016, 102, 169.
– reference: U. Anselmi-Tamburini, S. Gennari, J. E. Garay, Z. A. Munir, Mater. Sci. Eng. A 2005, 394, 139.
– reference: E. A. Olevsky, C. Garcia-Cardona, W. L. Bradbury, C. D. Haines, D. G. Martin, D. Kapoor, J. Am. Ceram. Soc. 2012, 95, 2414.
– reference: C. Manière, L. Durand, A. Weibel, C. Estournès, Ceram. Int. 2016, 42, 9274.
– reference: R. German, Sintering Theory and Practice, Wiley, New York 1996.
– reference: R. R. Boyer, Mater. Sci. Eng. A 1996, 213, 103.
– reference: C. Geindreau, D. Bouvard, P. Doremus, Eur. J. Mech. A Solid 1999, 18, 597.
– reference: A. Zavaliangos, J. Zhang, M. Krammer, J. R. Groza, Mater. Sci. Eng. A 2004, 379, 218.
– reference: J. B. Allen, C. Walter, ISRN Mater. Sci. 2012, 2012, 1.
– reference: R. J. Green, Int. J. Mech. Sci. 1972, 14, 215.
– reference: X. Li, T. Sugui, B. Xianyu, C. Liqing, Mater. Sci. Eng. A 2011, 529, 452.
– reference: L. Badea, M. Surand, B. Viguier, J. Ruau, U. P. B. Sci. Bull. Series B 2014, 76, 185.
– reference: E. Mohseni, E. Zalnezhad, A. R. Bushroa, Int. J. Adhes. Adhes. 2014, 48, 238.
– reference: Y. Xue, L. H. Lang, G. L. Bu, L. Li, Sci. Sinter. 2011, 43, 247.
– reference: G. Molénat, L. Durand, J. Galy, A. Couret, J. Metall. 2010, 2010, 1.
– reference: R. Orrù, R. Licheri, A. M. Locci, A. Cincotti, G. Cao, Mater. Sci. Eng. R 2009, 63, 127.
– reference: L. Xu, R. Guo, C. Bai, J. Lei, R. Yang, J. Mater. Sci. Technol. 2014, 30, 1289.
– reference: C. Geindreau, D. Bouvard, P. Doremus, Eur. J. Mech. A Solid 1999, 18, 581.
– reference: C. Arnaud, C. Manière, G. Chevallier, C. Estournès, R. Mainguy, F. Lecouturier, D. Mesguich, A. Weibel, L. Durand, Ch. Laurent, J. Mater. Sci. 2015, 50, 7364.
– reference: G. Maizza, S. Grasso, Y. Sakka, J. Mater. Sci. 2009, 44, 1219.
– reference: K. V. Ranjit, N. S. Mahesh, M. I. Anwar, SAS Technol. 2012, 11, 79.
– reference: Z. A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, J. Mater. Sci. 2006, 41, 763.
– reference: K. Matsugi, H. Kuramoto, T. Hatayama, O. Yanagisawa, J. Mater. Process. Technol. 2003, 134, 225.
– reference: K. Vanmeensel, A. Laptev, O. Van der Biest, J. Vleugels, J. Eur. Ceram. Soc. 2007, 27, 979.
– reference: C. Manière, A. Pavia, L. Durand, G. Chevallier, K. Afanga, C. Estournès, J. Eur. Ceram. Soc. 2015, 36, 741.
– reference: X. Wei, C. Back, O. Izhvanov, O. Khasanov, C. Haines, E. Olevsky, Materials 2015, 8, 6043.
– year: 1985
– year: 2011
– volume: 41
  start-page: 763
  year: 2006
  publication-title: J. Mater. Sci
– volume: 102
  start-page: 169
  year: 2016
  publication-title: Acta Mater
– volume: 44
  start-page: 1219
  year: 2009
  publication-title: J. Mater. Sci
– volume: 27
  start-page: 979
  year: 2007
  publication-title: J. Eur. Ceram. Soc
– volume: 11
  start-page: 79
  year: 2012
  publication-title: SAS Technol
– volume: 127
  start-page: 307
  year: 2015
  publication-title: Electr. Power Syst. Res
– volume: 213
  start-page: 103
  year: 1996
  publication-title: Mater. Sci. Eng. A
– year: 1996
– volume: 2012
  start-page: 1
  year: 2012
  publication-title: ISRN Mater. Sci
– volume: 42
  start-page: 9274
  year: 2016
  publication-title: Ceram. Int
– year: 2016
– year: 1990
– volume: 48
  start-page: 238
  year: 2014
  publication-title: Int. J. Adhes. Adhes
– volume: 2010
  start-page: 1
  year: 2010
  publication-title: J. Metall
– year: 2014
– volume: 63
  start-page: 127
  year: 2009
  publication-title: Mater. Sci. Eng. R
– year: 2012
– volume: 8
  start-page: 6043
  year: 2015
  publication-title: Materials
– volume: 36
  start-page: 741
  year: 2015
  publication-title: J. Eur. Ceram. Soc
– volume: 134
  start-page: 225
  year: 2003
  publication-title: J. Mater. Process. Technol
– volume: 14
  start-page: 215
  year: 1972
  publication-title: Int. J. Mech. Sci
– volume: 95
  start-page: 2414
  year: 2012
  publication-title: J. Am. Ceram. Soc
– volume: 25
  start-page: 191
  year: 1988
  publication-title: Int. J. Numer. Methods Eng
– volume: 18
  start-page: 597
  year: 1999
  publication-title: Eur. J. Mech. A Solid
– volume: 379
  start-page: 218
  year: 2004
  publication-title: Mater. Sci. Eng. A
– volume: 529
  start-page: 452
  year: 2011
  publication-title: Mater. Sci. Eng. A
– volume: 30
  start-page: 1289
  year: 2014
  publication-title: J. Mater. Sci. Technol
– volume: 76
  start-page: 185
  year: 2014
  publication-title: U. P. B. Sci. Bull. Series B
– volume: 50
  start-page: 7364
  year: 2015
  publication-title: J. Mater. Sci
– volume: 18
  start-page: 581
  year: 1999
  publication-title: Eur. J. Mech. A Solid
– volume: 43
  start-page: 247
  year: 2011
  publication-title: Sci. Sinter
– volume: 394
  start-page: 139
  year: 2005
  publication-title: Mater. Sci. Eng. A
– year: 2013
– ident: e_1_2_6_7_1
  doi: 10.1016/j.msea.2004.01.052
– ident: e_1_2_6_1_1
  doi: 10.1007/s10853-006-6555-2
– ident: e_1_2_6_29_1
  doi: 10.2298/SOS1103247X
– ident: e_1_2_6_4_1
  doi: 10.1016/j.msea.2004.11.019
– ident: e_1_2_6_23_1
  doi: 10.1016/S0997-7538(99)00101-1
– ident: e_1_2_6_31_1
– ident: e_1_2_6_12_1
  doi: 10.1007/s10853-015-9293-5
– ident: e_1_2_6_18_1
– volume: 11
  start-page: 79
  year: 2012
  ident: e_1_2_6_16_1
  publication-title: SAS Technol
– volume: 76
  start-page: 185
  year: 2014
  ident: e_1_2_6_27_1
  publication-title: U. P. B. Sci. Bull. Series B
– ident: e_1_2_6_10_1
  doi: 10.1016/j.epsr.2015.06.009
– ident: e_1_2_6_11_1
  doi: 10.1016/j.jeurceramsoc.2015.10.033
– ident: e_1_2_6_17_1
– volume-title: Sintering Theory and Practice
  year: 1996
  ident: e_1_2_6_35_1
– ident: e_1_2_6_33_1
– ident: e_1_2_6_6_1
  doi: 10.5402/2012/698158
– ident: e_1_2_6_5_1
  doi: 10.1155/2010/145431
– ident: e_1_2_6_19_1
– ident: e_1_2_6_9_1
  doi: 10.1016/j.jeurceramsoc.2006.04.142
– ident: e_1_2_6_2_1
  doi: 10.1016/j.mser.2008.09.003
– ident: e_1_2_6_24_1
  doi: 10.1016/0020-7403(72)90063-X
– ident: e_1_2_6_34_1
  doi: 10.1016/j.ceramint.2016.02.048
– ident: e_1_2_6_28_1
  doi: 10.1016/j.msea.2011.09.061
– ident: e_1_2_6_25_1
  doi: 10.1016/0921-5093(96)10233-1
– ident: e_1_2_6_15_1
  doi: 10.1002/nme.1620250116
– ident: e_1_2_6_30_1
  doi: 10.1016/j.ijadhadh.2013.09.030
– ident: e_1_2_6_14_1
  doi: 10.1016/j.actamat.2015.09.003
– ident: e_1_2_6_21_1
– ident: e_1_2_6_32_1
– ident: e_1_2_6_20_1
  doi: 10.3390/ma8095289
– ident: e_1_2_6_22_1
  doi: 10.1016/S0997-7538(99)00102-3
– ident: e_1_2_6_3_1
  doi: 10.1016/S0924-0136(02)01039-7
– ident: e_1_2_6_8_1
  doi: 10.1007/s10853-008-3179-8
– ident: e_1_2_6_26_1
  doi: 10.1016/j.jmst.2014.04.011
– ident: e_1_2_6_13_1
  doi: 10.1111/j.1551-2916.2012.05096.x
SSID ssj0011013
Score 2.3296974
Snippet One of the main challenges for the industrialization of the spark plasma sintering (SPS) is to resolve issues linked to the compaction of real parts with...
SourceID hal
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1720
SubjectTerms Creep tests
Densification
Engineering Sciences
Industrial development
Materials
Mathematical models
Parameter identification
Sintering (powder metallurgy)
Spark plasma sintering
Titanium base alloys
Title Identification of the Norton-Green Compaction Model for the Prediction of the Ti-6Al-4V Densification During the Spark Plasma Sintering Process
URI https://api.istex.fr/ark:/67375/WNG-F4KT4284-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.201600348
https://www.proquest.com/docview/1845805959
https://hal.science/hal-01493174
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1527-2648
  dateEnd: 20240930
  omitProxy: false
  ssIdentifier: ssj0011013
  issn: 1438-1656
  databaseCode: ADMLS
  dateStart: 20120601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1438-1656
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1527-2648
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011013
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swELYGe2EPsMGmFbbJoAmeAk1iJ-ljBesqtiFEC-PNsmOfhigpKu007YmfMGniD_JLduekWTtpmjReqrQ-V47j830X333H2FtEQrFDpBrkLoRAWIMqlVgdAO6SscmpiBzlDn86Srqn4vBcns9k8Zf8EPULN9IMv1-Tgmtzs_ebNJSixyk0KyGKFcr2DWPpz2lPav4oNG2-PjKV-A6IZmbK2tiM9ua7z1mlhS8UE_mYpvnbHPCcha_e_nRWmJ6OvAw7udydjM1u_v0PUseH3NpTtlyBU94uV9Mz9sgVq-zJDGXhGrsrM3uhetXHh8ARQnI6_hkW97c_fBwP97uMz5jgVGxtwBEae7njER0MzfbsX9zf_kzaA_wUZ_yA4unrPz_wOZRerHetR5f8GLH-leY9IrnwTVWew3N22nnX3-8GVWmHICdrGBjQ0NRWQyojmWXWuVRrYR1oZ1Jo2TiJRdNabEsdekTkpWFTaGSUWQGZiV-wxWJYuJeMS0AjC85ACwT6UpAlrUjnYQqQ5-hltxosmD5alVe851R-Y6BKxuZI0XSrerobbKeWvy4ZP_4quYUrpRYiou5u-6Oi38jxRGQmvoYNtu0XUi2Gs0XBdKlUn4_eq4740MdRC9VrsM3pSlOo4nRuows3nNwodMJlhloj8V4iv27-MTBFSlx_W_-fThtsia7LsMVXbHE8mrjXCL_G5o1XsV8tkypJ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7R9gAceCPC0yAEp22TXe8jx4gQAk2jiqTAzbLXHoEaNlVIEOLUn4CE-IP9Jcx4HyRICAkukbIeR15nxv7GnvkG4DEhocgRUg1y18FAWkMmlVgdIK2Skcm5iBznDh-Mk-GRfPUurqMJORem5IdoDtzYMvx6zQbOB9J7v1hDOXycY7MS5ljJtmCHL-nYNvuvGwYp2tx8hWQu8h0w0UzN29gO9zb7b-xLW-85KnKHJ_rLBvRcB7B-BxpcBlOPvQw8Od5dLc1u_vU3Wsf_erkrcKnCp6JXKtRVOOeKa3BxjbXwOvwok3uxOu0TcxSEIgXfAM2Ls9NvPpRH-IXGJ00Irrc2E4SOvdzhgu-G1ntOP5ydfk96M_qUb0SfQ-qbH-_7NEovNjnRi2NxSHD_oxYT5rnwTVWqww04GjyfPhsGVXWHIOcNMTCosa2txjQO4yyzzqVaS-tQO5Ni10ZJJNvWUlvqyCliR42aOiYOMysxM9FN2C7mhbsFIkbaZ9EZ7KIkdwqzpBvqvJMi5jk52t0WBPV_q_KK-pwrcMxUSdocKp5u1Ux3C5428icl6ccfJR-RqjRCzNU97I0UP2Pfk8CZ_NxpwROvSY0YzRbH06Wxejt-oQZyf0qjlmrSgoe1qimycr660YWbrz4p8sPjjAwnpncJveL8ZWCK7bj5dvtfOj2A88PpwUiNXo7378AFfl5GMd6F7eVi5e4RGlua-97efgK4Li5l
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xuxKCA29EeRqE4JTdNnEePVaUUtilqmgX9mbZsUestptWpUWI0_4EJMQf3F_CjJOGFgkhwSVS43HkuDP2N_HMNwBPCQlFjpBqkLsWBtIaMqnE6gBplYxMzkXkOHf47SDpH8o3R_HRWhZ_yQ9Rf3Bjy_DrNRv4zOLeL9JQjh7n0KyEKVayLdiRCblYDIve1QRStLf5Aslc4ztgnpkVbWMz3Nvsv7EtbX3koMgdnucvG8hzHb_6Dah3FfRq6GXcycnucmF286-_sTr-z7tdgysVOhWdUp2uwwVX3IDLa5yFN-FHmdqL1bc-MUVBGFLw-c-0OD_75gN5hF9mfMqE4GprE0HY2MsN53wytN5zfHx-9j3pTOgq34suB9TXD-_6JEovNprp-YkYEtg_1WLELBe-qUp0uAWHvZfjF_2gqu0Q5LwdBgY1NrXVmMZhnGXWuVRraR1qZ1Js2yiJZNNaaksduUTsplFTy8RhZiVmJroN28W0cHdAxEi7LDqDbZTkTGGWtEOdt1LEPCc3u92AYPXXqrwiPuf6GxNVUjaHiqdb1dPdgOe1_Kyk_Pij5BPSlFqImbr7nQPF99jzJGgmP7ca8MwrUi1Gs8XRdGmsPgxeqZ7cH9OopRo14PFK0xTZOB_c6MJNl58UeeFxRmYT07uEXm_-MjDFVlz_uvsvnR7BxWG3pw5eD_bvwSW-XYYw3oftxXzpHhAUW5iH3tp-AgtrLRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+the+Norton-Green+Compaction+Model+for+the+Prediction+of+the+Ti-6Al-4V+Densification+During+the+Spark+Plasma+Sintering+Process&rft.jtitle=Advanced+engineering+materials&rft.au=Maniere%2C+Charles&rft.au=Kus%2C+Ugras&rft.au=Durand%2C+Lise&rft.au=Mainguy%2C+Ronan&rft.date=2016-10-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=18&rft.issue=10&rft.spage=1720&rft.epage=1727&rft_id=info:doi/10.1002%2Fadem.201600348&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon