Identification of the Norton-Green Compaction Model for the Prediction of the Ti-6Al-4V Densification During the Spark Plasma Sintering Process
One of the main challenges for the industrialization of the spark plasma sintering (SPS) is to resolve issues linked to the compaction of real parts with complex shapes. The modeling of powder compaction is an interesting tool to predict how the densification field varies during sintering. However,...
Saved in:
Published in | Advanced engineering materials Vol. 18; no. 10; pp. 1720 - 1727 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.10.2016
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 1438-1656 1527-2648 |
DOI | 10.1002/adem.201600348 |
Cover
Abstract | One of the main challenges for the industrialization of the spark plasma sintering (SPS) is to resolve issues linked to the compaction of real parts with complex shapes. The modeling of powder compaction is an interesting tool to predict how the densification field varies during sintering. However, expressing the behavior law which reflect the powder compaction is often a difficult and long step in the model establishment. In this paper, a simple methodology for the identification of the densification parameters is proposed. Dense and porous creep tests combined with SPS die compaction tests are employed to determine a complete densification law on a Ti–6Al–4V alloy directly in a SPS machine. The compaction model obtained is successfully validated through prediction of the densification of new SPSed samples.
An in situ SPS identification, using a complete and non‐reductive method of the Norton‐Green law is performed on a Ti–6Al–4V materials. The identified model is tested on two independent SPS experiments for the densification of this powder material and shows very good prediction of the experimental sintering trajectory. |
---|---|
AbstractList | One of the main challenges for the industrialization of the spark plasma sintering (SPS) is to resolve issues linked to the compaction of real parts with complex shapes. The modeling of powder compaction is an interesting tool to predict how the densification field varies during sintering. However, expressing the behavior law which reflect the powder compaction is often a difficult and long step in the model establishment. In this paper, a simple methodology for the identification of the densification parameters is proposed. Dense and porous creep tests combined with SPS die compaction tests are employed to determine a complete densification law on a Ti-6Al-4V alloy directly in a SPS machine. The compaction model obtained is successfully validated through prediction of the densification of new SPSed samples. An in situ SPS identification, using a complete and non-reductive method of the Norton-Green law is performed on a Ti-6Al-4V materials. The identified model is tested on two independent SPS experiments for the densification of this powder material and shows very good prediction of the experimental sintering trajectory. One of the main challenges for the industrialization of the spark plasma sintering (SPS) is to resolve issues linked to the compaction of real parts with complex shapes. The modeling of powder compaction is an interesting tool to predict how the densification field varies during sintering. However, expressing the behavior law which reflect the powder compaction is often a difficult and long step in the model establishment. In this paper, a simple methodology for the identification of the densification parameters is proposed. Dense and porous creep tests combined with SPS die compaction tests are employed to determine a complete densification law on a Ti–6Al–4V alloy directly in a SPS machine. The compaction model obtained is successfully validated through prediction of the densification of new SPSed samples. An in situ SPS identification, using a complete and non‐reductive method of the Norton‐Green law is performed on a Ti–6Al–4V materials. The identified model is tested on two independent SPS experiments for the densification of this powder material and shows very good prediction of the experimental sintering trajectory. One of the main challenges for the industrialization of the spark plasma sintering (SPS) is to resolve issues linked to the compaction of real parts with complex shapes. The modeling of powder compaction is an interesting tool to predict how the densification field varies during sintering. However, expressing the behavior law which reflect the powder compaction is often a difficult and long step in the model establishment. In this paper, a simple methodology for the identification of the densification parameters is proposed. Dense and porous creep tests combined with SPS die compaction tests are employed to determine a complete densification law on a Ti–6Al–4V alloy directly in a SPS machine. The compaction model obtained is successfully validated through prediction of the densification of new SPSed samples. |
Author | Estournès, Claude Huez, Julitte Kus, Ugras Mainguy, Ronan Delagnes, Denis Durand, Lise Manière, Charles |
Author_xml | – sequence: 1 givenname: Charles surname: Manière fullname: Manière, Charles organization: CIRIMAT, Université de Toulouse, CNRS, INPT, UPS 118 route de Narbonne, 31062, Toulouse cedex 9, France – sequence: 2 givenname: Ugras surname: Kus fullname: Kus, Ugras organization: CIRIMAT, Université de Toulouse, CNRS, INPT, UPS 118 route de Narbonne, 31062, Toulouse cedex 9, France – sequence: 3 givenname: Lise surname: Durand fullname: Durand, Lise organization: CEMES, CNRS UPR 8011 and Université de Toulouse, 29 rue Jeanne Marvig, 31055, Toulouse, France – sequence: 4 givenname: Ronan surname: Mainguy fullname: Mainguy, Ronan organization: CIRIMAT, Université de Toulouse, CNRS, INPT, UPS 4 allée Emile Monso, 31030, Toulouse cedex 4, France – sequence: 5 givenname: Julitte surname: Huez fullname: Huez, Julitte organization: CIRIMAT, Université de Toulouse, CNRS, INPT, UPS 4 allée Emile Monso, 31030, Toulouse cedex 4, France – sequence: 6 givenname: Denis surname: Delagnes fullname: Delagnes, Denis organization: Université de Toulouse, CNRS, Mines Albi, INSA, UPS, ISAE, ICA (Institut Clément Ader), Campus Jarlard, 81013, Albi, France – sequence: 7 givenname: Claude surname: Estournès fullname: Estournès, Claude email: estournes@chimie.ups-tlse.fr organization: CIRIMAT, Université de Toulouse, CNRS, INPT, UPS 118 route de Narbonne, 31062, Toulouse cedex 9, France |
BackLink | https://hal.science/hal-01493174$$DView record in HAL |
BookMark | eNqFkUFv0zAYhi00JLbBlXOOcEhnx3bsHKt26ya6UakFjpYbf2aGxO7sFLZfwV8mTWBMSIiTLb_P88n2e4KOfPCA0GuCJwTj4kwbaCcFJiXGlMln6JjwQuRFyeRRv2dU5qTk5Qt0ktIXjAnBhB6jH1cGfOesq3Xngs-CzbpbyG5C7ILPFxHAZ7PQ7nQ9xNfBQJPZEAdqFcG4-qm3cXk5bXL2MZuDT3_GzvfR-c8Dst7p-DVbNTq1Ols738EQrWKoIaWX6LnVTYJXv9ZT9OHifDO7zJfvF1ez6TKvmSAy31ptsTbaCl5wKQ2A0JoZsBq2wlaGlpRhY_pMABf9swveR2TLC2mYlVt6it6Oc291o3bRtTo-qKCdupwu1eEME1ZRItg30rNvRnYXw90eUqdal2poGu0h7JMiknGJecWrHmUjWseQUgSratcNX9BF7RpFsDp0pQ5dqceuem3yl_b7Sv8UqlH47hp4-A-tpvPz66duProudXD_6PatqFJQwdWnm4W6YO82rJBMrelPct-5lQ |
CitedBy_id | crossref_primary_10_1007_s10853_018_2096_8 crossref_primary_10_1016_j_actamat_2024_120024 crossref_primary_10_1016_j_applthermaleng_2017_05_116 crossref_primary_10_2139_ssrn_4133619 crossref_primary_10_1016_j_actamat_2017_11_010 crossref_primary_10_1016_j_scriptamat_2023_115346 crossref_primary_10_1016_j_msea_2017_11_041 crossref_primary_10_1016_j_cherd_2019_12_001 crossref_primary_10_1016_j_scriptamat_2017_07_026 crossref_primary_10_1016_j_matlet_2023_133930 crossref_primary_10_1111_jace_15892 crossref_primary_10_1016_j_jeurceramsoc_2021_09_021 crossref_primary_10_1016_j_mechmat_2023_104834 crossref_primary_10_1016_j_intermet_2021_107435 crossref_primary_10_1016_j_intermet_2024_108204 crossref_primary_10_1002_adem_202301391 crossref_primary_10_1016_j_ijmecsci_2018_02_003 crossref_primary_10_1080_02670836_2019_1620538 crossref_primary_10_1155_2021_9505249 crossref_primary_10_1016_j_actamat_2018_01_017 crossref_primary_10_3390_met9060654 crossref_primary_10_3390_met11020322 crossref_primary_10_1016_j_jeurceramsoc_2021_02_010 crossref_primary_10_3103_S1063457624050022 crossref_primary_10_1016_j_jmapro_2024_01_084 crossref_primary_10_1016_j_actamat_2021_116899 crossref_primary_10_3390_ma12040557 crossref_primary_10_1016_j_intermet_2017_03_006 crossref_primary_10_1016_j_jmatprotec_2022_117779 crossref_primary_10_1016_j_mechmat_2023_104664 |
Cites_doi | 10.1016/j.msea.2004.01.052 10.1007/s10853-006-6555-2 10.2298/SOS1103247X 10.1016/j.msea.2004.11.019 10.1016/S0997-7538(99)00101-1 10.1007/s10853-015-9293-5 10.1016/j.epsr.2015.06.009 10.1016/j.jeurceramsoc.2015.10.033 10.5402/2012/698158 10.1155/2010/145431 10.1016/j.jeurceramsoc.2006.04.142 10.1016/j.mser.2008.09.003 10.1016/0020-7403(72)90063-X 10.1016/j.ceramint.2016.02.048 10.1016/j.msea.2011.09.061 10.1016/0921-5093(96)10233-1 10.1002/nme.1620250116 10.1016/j.ijadhadh.2013.09.030 10.1016/j.actamat.2015.09.003 10.3390/ma8095289 10.1016/S0997-7538(99)00102-3 10.1016/S0924-0136(02)01039-7 10.1007/s10853-008-3179-8 10.1016/j.jmst.2014.04.011 10.1111/j.1551-2916.2012.05096.x |
ContentType | Journal Article |
Copyright | 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL AAYXX CITATION 7SR 8BQ 8FD JG9 1XC VOOES |
DOI | 10.1002/adem.201600348 |
DatabaseName | Istex CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1527-2648 |
EndPage | 1727 |
ExternalDocumentID | oai_HAL_hal_01493174v1 10_1002_adem_201600348 ADEM201600348 ark_67375_WNG_F4KT4284_S |
Genre | article |
GroupedDBID | -~X 05W 0R~ 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 50Y 52U 5GY 5VS 66C 6P2 8-0 8-1 8UM AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI BSCLL CS3 DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F5P FEDTE G-S GNP GODZA HGLYW HVGLF HZ~ IX1 JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W QRW R.K ROL RX1 RYL SUPJJ TUS W99 WBKPD WIH WIK WOHZO WXSBR XPP XV2 ZZTAW AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7SR 8BQ 8FD JG9 1XC VOOES |
ID | FETCH-LOGICAL-c4718-bfaf0adaf752588dee7aa4defaeb7f9d36340dd2587e5765625fae1b528d4f8b3 |
IEDL.DBID | DR2 |
ISSN | 1438-1656 |
IngestDate | Sat Sep 20 06:20:28 EDT 2025 Fri Jul 11 00:02:05 EDT 2025 Tue Jul 01 02:50:58 EDT 2025 Thu Apr 24 23:07:48 EDT 2025 Sun Sep 21 06:24:02 EDT 2025 Sun Sep 21 06:25:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Ti–6Al–4V Spark Plasma Sintering Process Norton-Green Compaction Model f |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4718-bfaf0adaf752588dee7aa4defaeb7f9d36340dd2587e5765625fae1b528d4f8b3 |
Notes | ArticleID:ADEM201600348 istex:B45AEF4F70EDC92B96A8A200901B695D2065E465 The support of the Plateforme Nationale CNRS de Frittage Flash (PNF2/CNRS) is gratefully appreciated. C. M. and C. E. thank the French National Research Agency (ANR) for financial support of this study within project ANR09 MAPR-007 Impulsé. ark:/67375/WNG-F4KT4284-S ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0006-0354-1461 0000-0001-8381-8454 0000-0003-0073-9772 0000-0002-9229-0003 0009-0004-7196-8622 |
OpenAccessLink | https://hal.science/hal-01493174 |
PQID | 1845805959 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | hal_primary_oai_HAL_hal_01493174v1 proquest_miscellaneous_1845805959 crossref_citationtrail_10_1002_adem_201600348 crossref_primary_10_1002_adem_201600348 wiley_primary_10_1002_adem_201600348_ADEM201600348 istex_primary_ark_67375_WNG_F4KT4284_S |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2016 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: October 2016 |
PublicationDecade | 2010 |
PublicationTitle | Advanced engineering materials |
PublicationTitleAlternate | Adv. Eng. Mater |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley |
References | C. Manière, A. Pavia, L. Durand, G. Chevallier, V. Bley, K. Afanga, A. Peigney, C. Estournès, Electr. Power Syst. Res. 2015, 127, 307. E. Mohseni, E. Zalnezhad, A. R. Bushroa, Int. J. Adhes. Adhes. 2014, 48, 238. U. Anselmi-Tamburini, S. Gennari, J. E. Garay, Z. A. Munir, Mater. Sci. Eng. A 2005, 394, 139. K. Matsugi, H. Kuramoto, T. Hatayama, O. Yanagisawa, J. Mater. Process. Technol. 2003, 134, 225. C. Manière, L. Durand, A. Weibel, C. Estournès, Ceram. Int. 2016, 42, 9274. X. Li, T. Sugui, B. Xianyu, C. Liqing, Mater. Sci. Eng. A 2011, 529, 452. L. Badea, M. Surand, B. Viguier, J. Ruau, U. P. B. Sci. Bull. Series B 2014, 76, 185. K. V. Ranjit, N. S. Mahesh, M. I. Anwar, SAS Technol. 2012, 11, 79. L. Xu, R. Guo, C. Bai, J. Lei, R. Yang, J. Mater. Sci. Technol. 2014, 30, 1289. X. Wei, C. Back, O. Izhvanov, O. Khasanov, C. Haines, E. Olevsky, Materials 2015, 8, 6043. C. Manière, A. Pavia, L. Durand, G. Chevallier, K. Afanga, C. Estournès, J. Eur. Ceram. Soc. 2015, 36, 741. G. Maizza, S. Grasso, Y. Sakka, J. Mater. Sci. 2009, 44, 1219. G. Molénat, L. Durand, J. Galy, A. Couret, J. Metall. 2010, 2010, 1. R. German, Sintering Theory and Practice, Wiley, New York 1996. A. Zavaliangos, J. Zhang, M. Krammer, J. R. Groza, Mater. Sci. Eng. A 2004, 379, 218. R. J. Green, Int. J. Mech. Sci. 1972, 14, 215. R. Orrù, R. Licheri, A. M. Locci, A. Cincotti, G. Cao, Mater. Sci. Eng. R 2009, 63, 127. J. B. Allen, C. Walter, ISRN Mater. Sci. 2012, 2012, 1. Z. A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, J. Mater. Sci. 2006, 41, 763. C. Geindreau, D. Bouvard, P. Doremus, Eur. J. Mech. A Solid 1999, 18, 581. K. Vanmeensel, A. Laptev, O. Van der Biest, J. Vleugels, J. Eur. Ceram. Soc. 2007, 27, 979. M. Abouaf, J. L. Chenot, G. Raisson, P. Bauduin, Int. J. Numer. Methods Eng. 1988, 25, 191. C. Manière, L. Durand, A. Weibel, C. Estournès, Acta Mater. 2016, 102, 169. R. R. Boyer, Mater. Sci. Eng. A 1996, 213, 103. C. Geindreau, D. Bouvard, P. Doremus, Eur. J. Mech. A Solid 1999, 18, 597. E. A. Olevsky, C. Garcia-Cardona, W. L. Bradbury, C. D. Haines, D. G. Martin, D. Kapoor, J. Am. Ceram. Soc. 2012, 95, 2414. C. Arnaud, C. Manière, G. Chevallier, C. Estournès, R. Mainguy, F. Lecouturier, D. Mesguich, A. Weibel, L. Durand, Ch. Laurent, J. Mater. Sci. 2015, 50, 7364. Y. Xue, L. H. Lang, G. L. Bu, L. Li, Sci. Sinter. 2011, 43, 247. 2009; 44 2015; 36 2009; 63 2012; 2012 2005; 394 2010; 2010 2012 2015; 127 2011 2015; 50 2016; 102 2014; 48 1996 2015; 8 2003; 134 2012; 11 2012; 95 2006; 41 2004; 379 1990 2011; 529 1999; 18 1988; 25 2016; 42 1985 2011; 43 2016 2014 2013 1972; 14 2014; 30 1996; 213 2014; 76 2007; 27 German R. (e_1_2_6_35_1) 1996 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 Badea L. (e_1_2_6_27_1) 2014; 76 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 Ranjit K. V. (e_1_2_6_16_1) 2012; 11 e_1_2_6_26_1 |
References_xml | – reference: C. Manière, A. Pavia, L. Durand, G. Chevallier, V. Bley, K. Afanga, A. Peigney, C. Estournès, Electr. Power Syst. Res. 2015, 127, 307. – reference: M. Abouaf, J. L. Chenot, G. Raisson, P. Bauduin, Int. J. Numer. Methods Eng. 1988, 25, 191. – reference: C. Manière, L. Durand, A. Weibel, C. Estournès, Acta Mater. 2016, 102, 169. – reference: U. Anselmi-Tamburini, S. Gennari, J. E. Garay, Z. A. Munir, Mater. Sci. Eng. A 2005, 394, 139. – reference: E. A. Olevsky, C. Garcia-Cardona, W. L. Bradbury, C. D. Haines, D. G. Martin, D. Kapoor, J. Am. Ceram. Soc. 2012, 95, 2414. – reference: C. Manière, L. Durand, A. Weibel, C. Estournès, Ceram. Int. 2016, 42, 9274. – reference: R. German, Sintering Theory and Practice, Wiley, New York 1996. – reference: R. R. Boyer, Mater. Sci. Eng. A 1996, 213, 103. – reference: C. Geindreau, D. Bouvard, P. Doremus, Eur. J. Mech. A Solid 1999, 18, 597. – reference: A. Zavaliangos, J. Zhang, M. Krammer, J. R. Groza, Mater. Sci. Eng. A 2004, 379, 218. – reference: J. B. Allen, C. Walter, ISRN Mater. Sci. 2012, 2012, 1. – reference: R. J. Green, Int. J. Mech. Sci. 1972, 14, 215. – reference: X. Li, T. Sugui, B. Xianyu, C. Liqing, Mater. Sci. Eng. A 2011, 529, 452. – reference: L. Badea, M. Surand, B. Viguier, J. Ruau, U. P. B. Sci. Bull. Series B 2014, 76, 185. – reference: E. Mohseni, E. Zalnezhad, A. R. Bushroa, Int. J. Adhes. Adhes. 2014, 48, 238. – reference: Y. Xue, L. H. Lang, G. L. Bu, L. Li, Sci. Sinter. 2011, 43, 247. – reference: G. Molénat, L. Durand, J. Galy, A. Couret, J. Metall. 2010, 2010, 1. – reference: R. Orrù, R. Licheri, A. M. Locci, A. Cincotti, G. Cao, Mater. Sci. Eng. R 2009, 63, 127. – reference: L. Xu, R. Guo, C. Bai, J. Lei, R. Yang, J. Mater. Sci. Technol. 2014, 30, 1289. – reference: C. Geindreau, D. Bouvard, P. Doremus, Eur. J. Mech. A Solid 1999, 18, 581. – reference: C. Arnaud, C. Manière, G. Chevallier, C. Estournès, R. Mainguy, F. Lecouturier, D. Mesguich, A. Weibel, L. Durand, Ch. Laurent, J. Mater. Sci. 2015, 50, 7364. – reference: G. Maizza, S. Grasso, Y. Sakka, J. Mater. Sci. 2009, 44, 1219. – reference: K. V. Ranjit, N. S. Mahesh, M. I. Anwar, SAS Technol. 2012, 11, 79. – reference: Z. A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, J. Mater. Sci. 2006, 41, 763. – reference: K. Matsugi, H. Kuramoto, T. Hatayama, O. Yanagisawa, J. Mater. Process. Technol. 2003, 134, 225. – reference: K. Vanmeensel, A. Laptev, O. Van der Biest, J. Vleugels, J. Eur. Ceram. Soc. 2007, 27, 979. – reference: C. Manière, A. Pavia, L. Durand, G. Chevallier, K. Afanga, C. Estournès, J. Eur. Ceram. Soc. 2015, 36, 741. – reference: X. Wei, C. Back, O. Izhvanov, O. Khasanov, C. Haines, E. Olevsky, Materials 2015, 8, 6043. – year: 1985 – year: 2011 – volume: 41 start-page: 763 year: 2006 publication-title: J. Mater. Sci – volume: 102 start-page: 169 year: 2016 publication-title: Acta Mater – volume: 44 start-page: 1219 year: 2009 publication-title: J. Mater. Sci – volume: 27 start-page: 979 year: 2007 publication-title: J. Eur. Ceram. Soc – volume: 11 start-page: 79 year: 2012 publication-title: SAS Technol – volume: 127 start-page: 307 year: 2015 publication-title: Electr. Power Syst. Res – volume: 213 start-page: 103 year: 1996 publication-title: Mater. Sci. Eng. A – year: 1996 – volume: 2012 start-page: 1 year: 2012 publication-title: ISRN Mater. Sci – volume: 42 start-page: 9274 year: 2016 publication-title: Ceram. Int – year: 2016 – year: 1990 – volume: 48 start-page: 238 year: 2014 publication-title: Int. J. Adhes. Adhes – volume: 2010 start-page: 1 year: 2010 publication-title: J. Metall – year: 2014 – volume: 63 start-page: 127 year: 2009 publication-title: Mater. Sci. Eng. R – year: 2012 – volume: 8 start-page: 6043 year: 2015 publication-title: Materials – volume: 36 start-page: 741 year: 2015 publication-title: J. Eur. Ceram. Soc – volume: 134 start-page: 225 year: 2003 publication-title: J. Mater. Process. Technol – volume: 14 start-page: 215 year: 1972 publication-title: Int. J. Mech. Sci – volume: 95 start-page: 2414 year: 2012 publication-title: J. Am. Ceram. Soc – volume: 25 start-page: 191 year: 1988 publication-title: Int. J. Numer. Methods Eng – volume: 18 start-page: 597 year: 1999 publication-title: Eur. J. Mech. A Solid – volume: 379 start-page: 218 year: 2004 publication-title: Mater. Sci. Eng. A – volume: 529 start-page: 452 year: 2011 publication-title: Mater. Sci. Eng. A – volume: 30 start-page: 1289 year: 2014 publication-title: J. Mater. Sci. Technol – volume: 76 start-page: 185 year: 2014 publication-title: U. P. B. Sci. Bull. Series B – volume: 50 start-page: 7364 year: 2015 publication-title: J. Mater. Sci – volume: 18 start-page: 581 year: 1999 publication-title: Eur. J. Mech. A Solid – volume: 43 start-page: 247 year: 2011 publication-title: Sci. Sinter – volume: 394 start-page: 139 year: 2005 publication-title: Mater. Sci. Eng. A – year: 2013 – ident: e_1_2_6_7_1 doi: 10.1016/j.msea.2004.01.052 – ident: e_1_2_6_1_1 doi: 10.1007/s10853-006-6555-2 – ident: e_1_2_6_29_1 doi: 10.2298/SOS1103247X – ident: e_1_2_6_4_1 doi: 10.1016/j.msea.2004.11.019 – ident: e_1_2_6_23_1 doi: 10.1016/S0997-7538(99)00101-1 – ident: e_1_2_6_31_1 – ident: e_1_2_6_12_1 doi: 10.1007/s10853-015-9293-5 – ident: e_1_2_6_18_1 – volume: 11 start-page: 79 year: 2012 ident: e_1_2_6_16_1 publication-title: SAS Technol – volume: 76 start-page: 185 year: 2014 ident: e_1_2_6_27_1 publication-title: U. P. B. Sci. Bull. Series B – ident: e_1_2_6_10_1 doi: 10.1016/j.epsr.2015.06.009 – ident: e_1_2_6_11_1 doi: 10.1016/j.jeurceramsoc.2015.10.033 – ident: e_1_2_6_17_1 – volume-title: Sintering Theory and Practice year: 1996 ident: e_1_2_6_35_1 – ident: e_1_2_6_33_1 – ident: e_1_2_6_6_1 doi: 10.5402/2012/698158 – ident: e_1_2_6_5_1 doi: 10.1155/2010/145431 – ident: e_1_2_6_19_1 – ident: e_1_2_6_9_1 doi: 10.1016/j.jeurceramsoc.2006.04.142 – ident: e_1_2_6_2_1 doi: 10.1016/j.mser.2008.09.003 – ident: e_1_2_6_24_1 doi: 10.1016/0020-7403(72)90063-X – ident: e_1_2_6_34_1 doi: 10.1016/j.ceramint.2016.02.048 – ident: e_1_2_6_28_1 doi: 10.1016/j.msea.2011.09.061 – ident: e_1_2_6_25_1 doi: 10.1016/0921-5093(96)10233-1 – ident: e_1_2_6_15_1 doi: 10.1002/nme.1620250116 – ident: e_1_2_6_30_1 doi: 10.1016/j.ijadhadh.2013.09.030 – ident: e_1_2_6_14_1 doi: 10.1016/j.actamat.2015.09.003 – ident: e_1_2_6_21_1 – ident: e_1_2_6_32_1 – ident: e_1_2_6_20_1 doi: 10.3390/ma8095289 – ident: e_1_2_6_22_1 doi: 10.1016/S0997-7538(99)00102-3 – ident: e_1_2_6_3_1 doi: 10.1016/S0924-0136(02)01039-7 – ident: e_1_2_6_8_1 doi: 10.1007/s10853-008-3179-8 – ident: e_1_2_6_26_1 doi: 10.1016/j.jmst.2014.04.011 – ident: e_1_2_6_13_1 doi: 10.1111/j.1551-2916.2012.05096.x |
SSID | ssj0011013 |
Score | 2.3296974 |
Snippet | One of the main challenges for the industrialization of the spark plasma sintering (SPS) is to resolve issues linked to the compaction of real parts with... |
SourceID | hal proquest crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1720 |
SubjectTerms | Creep tests Densification Engineering Sciences Industrial development Materials Mathematical models Parameter identification Sintering (powder metallurgy) Spark plasma sintering Titanium base alloys |
Title | Identification of the Norton-Green Compaction Model for the Prediction of the Ti-6Al-4V Densification During the Spark Plasma Sintering Process |
URI | https://api.istex.fr/ark:/67375/WNG-F4KT4284-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.201600348 https://www.proquest.com/docview/1845805959 https://hal.science/hal-01493174 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1527-2648 dateEnd: 20240930 omitProxy: false ssIdentifier: ssj0011013 issn: 1438-1656 databaseCode: ADMLS dateStart: 20120601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1438-1656 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1527-2648 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011013 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swELYGe2EPsMGmFbbJoAmeAk1iJ-ljBesqtiFEC-PNsmOfhigpKu007YmfMGniD_JLduekWTtpmjReqrQ-V47j830X333H2FtEQrFDpBrkLoRAWIMqlVgdAO6SscmpiBzlDn86Srqn4vBcns9k8Zf8EPULN9IMv1-Tgmtzs_ebNJSixyk0KyGKFcr2DWPpz2lPav4oNG2-PjKV-A6IZmbK2tiM9ua7z1mlhS8UE_mYpvnbHPCcha_e_nRWmJ6OvAw7udydjM1u_v0PUseH3NpTtlyBU94uV9Mz9sgVq-zJDGXhGrsrM3uhetXHh8ARQnI6_hkW97c_fBwP97uMz5jgVGxtwBEae7njER0MzfbsX9zf_kzaA_wUZ_yA4unrPz_wOZRerHetR5f8GLH-leY9IrnwTVWew3N22nnX3-8GVWmHICdrGBjQ0NRWQyojmWXWuVRrYR1oZ1Jo2TiJRdNabEsdekTkpWFTaGSUWQGZiV-wxWJYuJeMS0AjC85ACwT6UpAlrUjnYQqQ5-hltxosmD5alVe851R-Y6BKxuZI0XSrerobbKeWvy4ZP_4quYUrpRYiou5u-6Oi38jxRGQmvoYNtu0XUi2Gs0XBdKlUn4_eq4740MdRC9VrsM3pSlOo4nRuows3nNwodMJlhloj8V4iv27-MTBFSlx_W_-fThtsia7LsMVXbHE8mrjXCL_G5o1XsV8tkypJ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7R9gAceCPC0yAEp22TXe8jx4gQAk2jiqTAzbLXHoEaNlVIEOLUn4CE-IP9Jcx4HyRICAkukbIeR15nxv7GnvkG4DEhocgRUg1y18FAWkMmlVgdIK2Skcm5iBznDh-Mk-GRfPUurqMJORem5IdoDtzYMvx6zQbOB9J7v1hDOXycY7MS5ljJtmCHL-nYNvuvGwYp2tx8hWQu8h0w0UzN29gO9zb7b-xLW-85KnKHJ_rLBvRcB7B-BxpcBlOPvQw8Od5dLc1u_vU3Wsf_erkrcKnCp6JXKtRVOOeKa3BxjbXwOvwok3uxOu0TcxSEIgXfAM2Ls9NvPpRH-IXGJ00Irrc2E4SOvdzhgu-G1ntOP5ydfk96M_qUb0SfQ-qbH-_7NEovNjnRi2NxSHD_oxYT5rnwTVWqww04GjyfPhsGVXWHIOcNMTCosa2txjQO4yyzzqVaS-tQO5Ni10ZJJNvWUlvqyCliR42aOiYOMysxM9FN2C7mhbsFIkbaZ9EZ7KIkdwqzpBvqvJMi5jk52t0WBPV_q_KK-pwrcMxUSdocKp5u1Ux3C5428icl6ccfJR-RqjRCzNU97I0UP2Pfk8CZ_NxpwROvSY0YzRbH06Wxejt-oQZyf0qjlmrSgoe1qimycr660YWbrz4p8sPjjAwnpncJveL8ZWCK7bj5dvtfOj2A88PpwUiNXo7378AFfl5GMd6F7eVi5e4RGlua-97efgK4Li5l |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xuxKCA29EeRqE4JTdNnEePVaUUtilqmgX9mbZsUestptWpUWI0_4EJMQf3F_CjJOGFgkhwSVS43HkuDP2N_HMNwBPCQlFjpBqkLsWBtIaMqnE6gBplYxMzkXkOHf47SDpH8o3R_HRWhZ_yQ9Rf3Bjy_DrNRv4zOLeL9JQjh7n0KyEKVayLdiRCblYDIve1QRStLf5Aslc4ztgnpkVbWMz3Nvsv7EtbX3koMgdnucvG8hzHb_6Dah3FfRq6GXcycnucmF286-_sTr-z7tdgysVOhWdUp2uwwVX3IDLa5yFN-FHmdqL1bc-MUVBGFLw-c-0OD_75gN5hF9mfMqE4GprE0HY2MsN53wytN5zfHx-9j3pTOgq34suB9TXD-_6JEovNprp-YkYEtg_1WLELBe-qUp0uAWHvZfjF_2gqu0Q5LwdBgY1NrXVmMZhnGXWuVRraR1qZ1Js2yiJZNNaaksduUTsplFTy8RhZiVmJroN28W0cHdAxEi7LDqDbZTkTGGWtEOdt1LEPCc3u92AYPXXqrwiPuf6GxNVUjaHiqdb1dPdgOe1_Kyk_Pij5BPSlFqImbr7nQPF99jzJGgmP7ca8MwrUi1Gs8XRdGmsPgxeqZ7cH9OopRo14PFK0xTZOB_c6MJNl58UeeFxRmYT07uEXm_-MjDFVlz_uvsvnR7BxWG3pw5eD_bvwSW-XYYw3oftxXzpHhAUW5iH3tp-AgtrLRQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+the+Norton-Green+Compaction+Model+for+the+Prediction+of+the+Ti-6Al-4V+Densification+During+the+Spark+Plasma+Sintering+Process&rft.jtitle=Advanced+engineering+materials&rft.au=Maniere%2C+Charles&rft.au=Kus%2C+Ugras&rft.au=Durand%2C+Lise&rft.au=Mainguy%2C+Ronan&rft.date=2016-10-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=18&rft.issue=10&rft.spage=1720&rft.epage=1727&rft_id=info:doi/10.1002%2Fadem.201600348&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon |