How environment and self‐motion combine in neural representations of space
Estimates of location or orientation can be constructed solely from sensory information representing environmental cues. In unfamiliar or sensory‐poor environments, these estimates can also be maintained and updated by integrating self‐motion information. However, the accumulation of error dictates...
Saved in:
Published in | The Journal of physiology Vol. 594; no. 22; pp. 6535 - 6546 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
15.11.2016
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0022-3751 1469-7793 |
DOI | 10.1113/JP270666 |
Cover
Abstract | Estimates of location or orientation can be constructed solely from sensory information representing environmental cues. In unfamiliar or sensory‐poor environments, these estimates can also be maintained and updated by integrating self‐motion information. However, the accumulation of error dictates that updated representations of heading direction and location become progressively less reliable over time, and must be corrected by environmental sensory inputs when available. Anatomical, electrophysiological and behavioural evidence indicates that angular and translational path integration contributes to the firing of head direction cells and grid cells. We discuss how sensory inputs may be combined with self‐motion information in the firing patterns of these cells. For head direction cells, direct projections from egocentric sensory representations of distal cues can help to correct cumulative errors. Grid cells may benefit from sensory inputs via boundary vector cells and place cells. However, the allocentric code of boundary vector cells and place cells requires consistent head‐direction information in order to translate the sensory signal of egocentric boundary distance into allocentric boundary vector cell firing, suggesting that the different spatial representations found in and around the hippocampal formation are interdependent. We conclude that, rather than representing pure path integration, the firing of head‐direction cells and grid cells reflects the interface between self‐motion and environmental sensory information. Together with place cells and boundary vector cells they can support a coherent unitary representation of space based on both environmental sensory inputs and path integration signals.
Spatial navigation is thought to rely on complementary information from environmental sensory cues and an internal path integration system. An estimate of one's location within an environment can be constructed purely from environmental sensory information, however in sensory‐poor environments (e.g. in the dark or far from geometrical cues) this estimate can also be maintained by integrating self‐motion information, a process known as path integration (red dashed line). Path integration tracks changes in both the angular and translational components of movement, but is subject to drift over time due to the accumulation of error. Head direction cells (HDCs) and grid cells (GCs) are thought to represent the neural bases of these components and are known to be anchored to environmental cues, correcting for drift (mountain and purple arrows). Information on the distance to the boundaries of an environment is provided by boundary vector cells (BVCs). |
---|---|
AbstractList | Estimates of location or orientation can be constructed solely from sensory information representing environmental cues. In unfamiliar or sensory‐poor environments, these estimates can also be maintained and updated by integrating self‐motion information. However, the accumulation of error dictates that updated representations of heading direction and location become progressively less reliable over time, and must be corrected by environmental sensory inputs when available. Anatomical, electrophysiological and behavioural evidence indicates that angular and translational path integration contributes to the firing of head direction cells and grid cells. We discuss how sensory inputs may be combined with self‐motion information in the firing patterns of these cells. For head direction cells, direct projections from egocentric sensory representations of distal cues can help to correct cumulative errors. Grid cells may benefit from sensory inputs via boundary vector cells and place cells. However, the allocentric code of boundary vector cells and place cells requires consistent head‐direction information in order to translate the sensory signal of egocentric boundary distance into allocentric boundary vector cell firing, suggesting that the different spatial representations found in and around the hippocampal formation are interdependent. We conclude that, rather than representing pure path integration, the firing of head‐direction cells and grid cells reflects the interface between self‐motion and environmental sensory information. Together with place cells and boundary vector cells they can support a coherent unitary representation of space based on both environmental sensory inputs and path integration signals. Estimates of location or orientation can be constructed solely from sensory information representing environmental cues. In unfamiliar or sensory-poor environments, these estimates can also be maintained and updated by integrating self-motion information. However, the accumulation of error dictates that updated representations of heading direction and location become progressively less reliable over time, and must be corrected by environmental sensory inputs when available. Anatomical, electrophysiological and behavioural evidence indicates that angular and translational path integration contributes to the firing of head direction cells and grid cells. We discuss how sensory inputs may be combined with self-motion information in the firing patterns of these cells. For head direction cells, direct projections from egocentric sensory representations of distal cues can help to correct cumulative errors. Grid cells may benefit from sensory inputs via boundary vector cells and place cells. However, the allocentric code of boundary vector cells and place cells requires consistent head-direction information in order to translate the sensory signal of egocentric boundary distance into allocentric boundary vector cell firing, suggesting that the different spatial representations found in and around the hippocampal formation are interdependent. We conclude that, rather than representing pure path integration, the firing of head-direction cells and grid cells reflects the interface between self-motion and environmental sensory information. Together with place cells and boundary vector cells they can support a coherent unitary representation of space based on both environmental sensory inputs and path integration signals. Spatial navigation is thought to rely on complementary information from environmental sensory cues and an internal path integration system. An estimate of one's location within an environment can be constructed purely from environmental sensory information, however in sensory-poor environments (e.g. in the dark or far from geometrical cues) this estimate can also be maintained by integrating self-motion information, a process known as path integration (red dashed line). Path integration tracks changes in both the angular and translational components of movement, but is subject to drift over time due to the accumulation of error. Head direction cells (HDCs) and grid cells (GCs) are thought to represent the neural bases of these components and are known to be anchored to environmental cues, correcting for drift (mountain and purple arrows). Information on the distance to the boundaries of an environment is provided by boundary vector cells (BVCs). Estimates of location or orientation can be constructed solely from sensory information representing environmental cues. In unfamiliar or sensory‐poor environments, these estimates can also be maintained and updated by integrating self‐motion information. However, the accumulation of error dictates that updated representations of heading direction and location become progressively less reliable over time, and must be corrected by environmental sensory inputs when available. Anatomical, electrophysiological and behavioural evidence indicates that angular and translational path integration contributes to the firing of head direction cells and grid cells. We discuss how sensory inputs may be combined with self‐motion information in the firing patterns of these cells. For head direction cells, direct projections from egocentric sensory representations of distal cues can help to correct cumulative errors. Grid cells may benefit from sensory inputs via boundary vector cells and place cells. However, the allocentric code of boundary vector cells and place cells requires consistent head‐direction information in order to translate the sensory signal of egocentric boundary distance into allocentric boundary vector cell firing, suggesting that the different spatial representations found in and around the hippocampal formation are interdependent. We conclude that, rather than representing pure path integration, the firing of head‐direction cells and grid cells reflects the interface between self‐motion and environmental sensory information. Together with place cells and boundary vector cells they can support a coherent unitary representation of space based on both environmental sensory inputs and path integration signals. image Estimates of location or orientation can be constructed solely from sensory information representing environmental cues. In unfamiliar or sensory‐poor environments, these estimates can also be maintained and updated by integrating self‐motion information. However, the accumulation of error dictates that updated representations of heading direction and location become progressively less reliable over time, and must be corrected by environmental sensory inputs when available. Anatomical, electrophysiological and behavioural evidence indicates that angular and translational path integration contributes to the firing of head direction cells and grid cells. We discuss how sensory inputs may be combined with self‐motion information in the firing patterns of these cells. For head direction cells, direct projections from egocentric sensory representations of distal cues can help to correct cumulative errors. Grid cells may benefit from sensory inputs via boundary vector cells and place cells. However, the allocentric code of boundary vector cells and place cells requires consistent head‐direction information in order to translate the sensory signal of egocentric boundary distance into allocentric boundary vector cell firing, suggesting that the different spatial representations found in and around the hippocampal formation are interdependent. We conclude that, rather than representing pure path integration, the firing of head‐direction cells and grid cells reflects the interface between self‐motion and environmental sensory information. Together with place cells and boundary vector cells they can support a coherent unitary representation of space based on both environmental sensory inputs and path integration signals. Spatial navigation is thought to rely on complementary information from environmental sensory cues and an internal path integration system. An estimate of one's location within an environment can be constructed purely from environmental sensory information, however in sensory‐poor environments (e.g. in the dark or far from geometrical cues) this estimate can also be maintained by integrating self‐motion information, a process known as path integration (red dashed line). Path integration tracks changes in both the angular and translational components of movement, but is subject to drift over time due to the accumulation of error. Head direction cells (HDCs) and grid cells (GCs) are thought to represent the neural bases of these components and are known to be anchored to environmental cues, correcting for drift (mountain and purple arrows). Information on the distance to the boundaries of an environment is provided by boundary vector cells (BVCs). |
Author | Bicanski, Andrej Burgess, Neil Bush, Daniel Evans, Talfan |
AuthorAffiliation | 2 UCL Institute of Cognitive Neuroscience 17 Queen Square London WC1N 3AZ UK 4 UCL Department of Neuroscience Physiology and Pharmacology Gower Street London WC1E 6BT UK 3 UCL Institute of Neurology Queen Square London WC1N 3BG UK 1 UCL Centre for Mathematics and Physics in the Life Sciences and Experimental Biology Gower Street London WC1E 6BT UK |
AuthorAffiliation_xml | – name: 4 UCL Department of Neuroscience Physiology and Pharmacology Gower Street London WC1E 6BT UK – name: 3 UCL Institute of Neurology Queen Square London WC1N 3BG UK – name: 1 UCL Centre for Mathematics and Physics in the Life Sciences and Experimental Biology Gower Street London WC1E 6BT UK – name: 2 UCL Institute of Cognitive Neuroscience 17 Queen Square London WC1N 3AZ UK |
Author_xml | – sequence: 1 givenname: Talfan surname: Evans fullname: Evans, Talfan organization: Physiology and Pharmacology – sequence: 2 givenname: Andrej surname: Bicanski fullname: Bicanski, Andrej organization: UCL Institute of Neurology – sequence: 3 givenname: Daniel surname: Bush fullname: Bush, Daniel organization: UCL Institute of Neurology – sequence: 4 givenname: Neil surname: Burgess fullname: Burgess, Neil email: n.burgess@ucl.ac.uk organization: UCL Institute of Neurology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26607203$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0c1qFTEUB_AgFXtbBZ9AAm7cTD2Z3MnHRpCi1nLBLuo6ZDInmjKTXJM7Ld35CD6jT2Iut7d-oOAqi_zy559zjshBTBEJecrghDHGX55ftBKEEA_Igi2FbqTU_IAsANq24bJjh-SolCsAxkHrR-SwFQJkC3xBVmfphmK8DjnFCeOG2jjQgqP__vXblDYhRerS1IeINEQacc52pBnXGUvVdgsKTZ6WtXX4mDz0diz45O48Jh_fvrk8PWtWH969P329atxSMt50WgvXd9aD8j14LT24Dm2rGOsdMDWwQQ3cMmDCcy8l59LWJ8I6oQC958fk1S53PfcTDq42qbXMOofJ5luTbDC_38Tw2XxK16ZjoJTmNeDFXUBOX2YsGzOF4nAcbcQ0F8NUB1JokP9D6zD5Undb-vwPepXmHOskqlp2WwOqqme_lr9vvd9JBSc74HIqJaM3LuwmXf8SRsPAbJdu9kv_WfH-wT7zL7TZ0Zsw4u0_nbk8vxBacf4D0o25kw |
CODEN | JPHYA7 |
CitedBy_id | crossref_primary_10_1016_j_ynstr_2023_100561 crossref_primary_10_1016_j_cub_2018_05_050 crossref_primary_10_7554_eLife_46687 crossref_primary_10_7554_eLife_62500 crossref_primary_10_1038_nn_4653 crossref_primary_10_3390_brainsci13111592 crossref_primary_10_1371_journal_pcbi_1009434 crossref_primary_10_1038_s41583_020_0336_9 crossref_primary_10_1016_j_bbr_2023_114305 crossref_primary_10_1162_neco_a_01280 crossref_primary_10_7554_eLife_43140 crossref_primary_10_1093_cercor_bhaa117 crossref_primary_10_3389_fnagi_2019_00253 crossref_primary_10_1113_JP273087 crossref_primary_10_7554_eLife_46351 crossref_primary_10_1242_jeb_188912 crossref_primary_10_1007_s10548_023_01032_0 crossref_primary_10_1016_j_neurobiolaging_2023_07_025 crossref_primary_10_1186_s13195_025_01679_w crossref_primary_10_1016_j_procs_2016_07_433 crossref_primary_10_7554_eLife_38169 crossref_primary_10_3389_fncom_2020_00063 crossref_primary_10_1073_pnas_1805959115 crossref_primary_10_7554_eLife_16937 crossref_primary_10_7554_eLife_33752 crossref_primary_10_1038_srep29163 crossref_primary_10_3389_fpsyg_2023_1144861 crossref_primary_10_1111_ejn_13918 |
Cites_doi | 10.1126/science.1166466 10.1037/0735-7044.112.4.749 10.3389/fnbeh.2011.00069 10.1523/JNEUROSCI.16-24-08027.1996 10.1002/hipo.450010207 10.1016/S0028-3908(98)00053-7 10.1523/JNEUROSCI.10-02-00420.1990 10.1037/0735-7044.119.6.1682 10.1016/0166-2236(92)90344-8 10.1037/0735-7044.119.6.1511 10.1007/BF00239813 10.1073/pnas.93.21.11956 10.1016/j.cub.2015.08.034 10.1016/0166-4328(82)90081-X 10.1142/S0129065707001093 10.1038/nature14622 10.1523/JNEUROSCI.21-14-j0001.2001 10.1242/jeb.199.1.201 10.1038/416090a 10.1126/science.1096615 10.1002/hipo.20880 10.1002/1098-1063(2000)10:4<369::AID-HIPO3>3.0.CO;2-0 10.1038/nature14153 10.1523/JNEUROSCI.21-15-05740.2001 10.1523/JNEUROSCI.4017-13.2014 10.1007/BF00450672 10.1523/JNEUROSCI.23-26-08827.2003 10.1002/hipo.20327 10.1038/nrn1932 10.1523/JNEUROSCI.15-03-01648.1995 10.1016/S0166-2236(00)01797-5 10.1016/S0896-6273(00)80657-1 10.1037/0033-295X.114.2.340 10.1038/nrn2733 10.1002/hipo.450030307 10.1098/rstb.2012.0512 10.1038/nn.3968 10.1523/JNEUROSCI.18-21-09020.1998 10.1016/j.cub.2014.02.049 10.1523/JNEUROSCI.07-07-01951.1987 10.1523/JNEUROSCI.3450-09.2009 10.1126/science.1125572 10.1152/jn.00194.2005 10.1038/nature03721 10.1016/j.neuron.2015.05.011 10.1093/cercor/bhs033 10.1523/JNEUROSCI.4353-05.2006 10.1126/science.1201685 10.1038/nn1905 10.1038/nn.3462 10.1038/nn.2602 10.1016/j.neuron.2012.11.032 10.1126/science.1071089 10.1016/0006-8993(71)90358-1 10.1016/j.tins.2011.08.004 10.1126/science.1188224 10.1002/(SICI)1098-1063(1996)6:6<720::AID-HIPO14>3.0.CO;2-2 10.1016/j.bbr.2005.07.004 10.1038/nrn2614 10.1098/rstb.1998.0287 10.1038/nature06957 10.1016/0006-8993(80)91214-7 10.1098/rstb.2001.0948 10.1038/nature11649 10.1523/JNEUROSCI.16-06-02112.1996 10.1523/JNEUROSCI.5684-07.2008 10.1523/JNEUROSCI.10-02-00436.1990 10.1016/j.cub.2015.02.037 10.1126/science.1201652 10.1016/j.cub.2008.04.021 10.1073/pnas.1011843108 10.1002/hipo.10173 10.1126/science.1259591 10.1073/pnas.1209918109 10.1038/nn.3215 10.1038/381425a0 10.1016/j.neuron.2007.11.034 10.1038/nature14151 10.1016/j.neuron.2015.07.006 10.1007/BF00243212 10.1038/nn.3450 10.1523/JNEUROSCI.0268-07.2007 10.1523/JNEUROSCI.13-09-04015.1993 10.1523/JNEUROSCI.1418-14.2015 10.1002/hipo.1112 10.1126/science.1188210 10.1002/hipo.20511 10.1515/REVNEURO.2006.17.1-2.71 10.1146/annurev.neuro.29.051605.112854 10.1523/JNEUROSCI.17-11-04349.1997 10.1098/rstb.1997.0131 10.1038/nn.3311 10.1523/JNEUROSCI.1319-09.2009 10.1016/j.cub.2013.01.036 10.1016/j.neuron.2015.03.039 10.1002/hipo.20115 10.1073/pnas.1215834110 |
ContentType | Journal Article |
Copyright | 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society. Journal compilation © 2016 The Physiological Society |
Copyright_xml | – notice: 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society – notice: 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society. – notice: Journal compilation © 2016 The Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
DOI | 10.1113/JP270666 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Calcium & Calcified Tissue Abstracts MEDLINE - Academic CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | T. Evans and others |
EISSN | 1469-7793 |
EndPage | 6546 |
ExternalDocumentID | PMC5108893 4268838321 26607203 10_1113_JP270666 TJP6983 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: EPSRC – fundername: Wellcome Trust – fundername: Medical Research Council – fundername: Wellcome Trust grantid: 091593 – fundername: Wellcome Trust grantid: 095811 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 0YM 10A 123 18M 1OB 1OC 24P 29L 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABITZ ABIVO ABJNI ABOCM ABPPZ ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EBS EJD EMOBN EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HGLYW HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K ROL RPM RX1 SUPJJ TEORI TLM TN5 TR2 UB1 UPT V8K VH1 W8F W8V W99 WBKPD WH7 WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ XG1 YBU YHG YKV YQT YSK YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c4713-5996cb5af08fb0f97f0c5ea2811bc018d1d8d3a1016f3f77337a9966ac680eff3 |
IEDL.DBID | DR2 |
ISSN | 0022-3751 |
IngestDate | Tue Sep 30 16:25:04 EDT 2025 Fri Jul 11 04:35:45 EDT 2025 Fri Jul 11 04:13:26 EDT 2025 Fri Jul 25 11:59:10 EDT 2025 Thu Apr 03 06:58:22 EDT 2025 Wed Oct 01 05:06:15 EDT 2025 Thu Apr 24 23:12:56 EDT 2025 Wed Jan 22 16:20:45 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4713-5996cb5af08fb0f97f0c5ea2811bc018d1d8d3a1016f3f77337a9966ac680eff3 |
Notes | T. Evans and A. Bicanski contributed equally. This review was presented at the symposium “Spatial Computation: from neural circuits to robot navigation”, which took place at the University of Edinburgh, on 11 April 2015. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5108893 |
PMID | 26607203 |
PQID | 1845495308 |
PQPubID | 1086388 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5108893 proquest_miscellaneous_1850769073 proquest_miscellaneous_1826634953 proquest_journals_1845495308 pubmed_primary_26607203 crossref_citationtrail_10_1113_JP270666 crossref_primary_10_1113_JP270666 wiley_primary_10_1113_JP270666_TJP6983 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 November 2016 |
PublicationDateYYYYMMDD | 2016-11-15 |
PublicationDate_xml | – month: 11 year: 2016 text: 15 November 2016 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London – name: Hoboken |
PublicationTitle | The Journal of physiology |
PublicationTitleAlternate | J Physiol |
PublicationYear | 2016 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2015; 35 1990; 10 2010; 13 2015; 347 1978; 31 2013; 23 2013; 369 2002; 12 1997; 352 1987; 7 1996; 381 2014; 24 1992; 15 2007; 30 2012; 15 1998; 353 1998; 112 1993; 3 1994; 101 2012; 492 1998; 18 2009; 10 2013; 16 2015; 86 2000; 10 1984; 10 1982; 6 2015; 87 2008; 28 2006; 26 1997; 17 2013; 110 2012; 22 2006; 166 1996; 6 2007; 27 2007; 17 1991; 1 2015; 18 2002; 296 2015; 523 2010; 328 1995; 15 2008; 18 2006; 17 1980; 67 2005; 436 2006; 7 2005; 119 1996; 93 2008; 57 2011; 34 2002; 416 1980; 194 2008; 322 2007; 10 1998; 21 1996; 16 2001; 24 2011; 5 2004; 304 2011; 332 2012; 109 2009; 29 2006; 312 2001; 21 1995; 7 2007; 114 1998; 37 1993; 13 2015; 25 2011; 108 2013; 77 2004; 14 1971; 34 2015; 518 1996; 199 2005; 94 2008; 453 2005; 15 2014; 34 2001; 356 2003; 23 e_1_2_3_73_1 e_1_2_3_50_1 e_1_2_3_92_1 e_1_2_3_16_1 e_1_2_3_39_1 e_1_2_3_4_1 e_1_2_3_12_1 e_1_2_3_35_1 e_1_2_3_58_1 e_1_2_3_8_1 e_1_2_3_31_1 e_1_2_3_77_1 e_1_2_3_54_1 e_1_2_3_96_1 e_1_2_3_62_1 e_1_2_3_81_1 e_1_2_3_28_1 e_1_2_3_24_1 e_1_2_3_47_1 e_1_2_3_89_1 e_1_2_3_20_1 e_1_2_3_66_1 e_1_2_3_43_1 e_1_2_3_85_1 e_1_2_3_72_1 e_1_2_3_95_1 e_1_2_3_91_1 Mizumori SJ (e_1_2_3_53_1) 1993; 13 e_1_2_3_38_1 e_1_2_3_3_1 e_1_2_3_19_1 e_1_2_3_57_1 e_1_2_3_34_1 e_1_2_3_7_1 e_1_2_3_15_1 e_1_2_3_30_1 e_1_2_3_99_1 e_1_2_3_11_1 e_1_2_3_61_1 e_1_2_3_84_1 e_1_2_3_80_1 e_1_2_3_27_1 e_1_2_3_23_1 e_1_2_3_46_1 e_1_2_3_69_1 e_1_2_3_42_1 e_1_2_3_65_1 e_1_2_3_88_1 e_1_2_3_94_1 Ranck JB (e_1_2_3_68_1) 1984; 10 e_1_2_3_71_1 e_1_2_3_90_1 e_1_2_3_2_1 e_1_2_3_6_1 e_1_2_3_18_1 e_1_2_3_56_1 e_1_2_3_14_1 e_1_2_3_37_1 e_1_2_3_79_1 e_1_2_3_52_1 e_1_2_3_98_1 e_1_2_3_10_1 e_1_2_3_33_1 e_1_2_3_75_1 e_1_2_3_83_1 e_1_2_3_60_1 Skaggs WE (e_1_2_3_76_1) 1995; 7 e_1_2_3_49_1 e_1_2_3_45_1 e_1_2_3_26_1 e_1_2_3_41_1 e_1_2_3_87_1 e_1_2_3_22_1 e_1_2_3_64_1 e_1_2_3_51_1 e_1_2_3_70_1 e_1_2_3_93_1 e_1_2_3_5_1 e_1_2_3_17_1 e_1_2_3_9_1 e_1_2_3_13_1 e_1_2_3_59_1 e_1_2_3_78_1 e_1_2_3_36_1 e_1_2_3_55_1 e_1_2_3_74_1 e_1_2_3_97_1 e_1_2_3_32_1 e_1_2_3_40_1 e_1_2_3_82_1 e_1_2_3_29_1 e_1_2_3_25_1 e_1_2_3_48_1 e_1_2_3_67_1 Zugaro MB (e_1_2_3_100_1) 2001; 21 e_1_2_3_21_1 e_1_2_3_44_1 e_1_2_3_63_1 e_1_2_3_86_1 17486102 - Nat Neurosci. 2007 Jun;10(6):682-4 7388617 - Brain Res. 1980 Aug 4;194(2):311-23 11466446 - J Neurosci. 2001 Aug 1;21(15):5740-51 17696288 - Int J Neural Syst. 2007 Aug;17(4):231-40 8366357 - J Neurosci. 1993 Sep;13(9):4015-28 8632799 - Nature. 1996 May 30;381(6581):425-8 20657591 - Nat Neurosci. 2010 Aug;13(8):987-94 17598147 - Hippocampus. 2007;17(9):801-12 5124915 - Brain Res. 1971 Nov;34(1):171-5 18596161 - J Neurosci. 2008 Jul 2;28(27):6858-71 26050036 - Neuron. 2015 Jun 3;86(5):1167-73 12077421 - Science. 2002 Jun 21;296(5576):2243-6 16703944 - Rev Neurosci. 2006;17(1-2):71-97 18450447 - Curr Biol. 2008 May 6;18(9):689-93 18480753 - Nature. 2008 Jun 26;453(7199):1248-52 15143284 - Science. 2004 May 14;304(5673):1021-4 9705005 - Neuropharmacology. 1998 Apr-May;37(4-5):677-87 25632114 - J Neurosci. 2015 Jan 28;35(4):1354-67 21199934 - Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1152-7 9151751 - J Neurosci. 1997 Jun 1;17(11):4349-58 24695724 - J Neurosci. 2014 Apr 2;34(14):5065-79 8576691 - J Exp Biol. 1996 Jan;199(Pt 1):201-9 8876244 - Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11956-61 3612226 - J Neurosci. 1987 Jul;7(7):1951-68 19657030 - J Neurosci. 2009 Aug 5;29(31):9771-7 23045662 - Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17687-92 16420155 - Behav Neurosci. 2005 Dec;119(6):1511-23 17341158 - Annu Rev Neurosci. 2007;30:181-207 16420172 - Behav Neurosci. 2005 Dec;119(6):1682-6 9034858 - Hippocampus. 1996;6(6):720-34 7126325 - Behav Brain Res. 1982 Sep;6(1):57-77 20558720 - Science. 2010 Jun 18;328(5985):1573-6 15857969 - J Neurophysiol. 2005 Sep;94(3):1920-7 9770226 - Philos Trans R Soc Lond B Biol Sci. 1998 Aug 29;353(1373):1333-40 22983210 - Nat Neurosci. 2012 Oct;15(10):1445-53 11571039 - Philos Trans R Soc Lond B Biol Sci. 2001 Sep 29;356(1413):1493-503 11311382 - Trends Neurosci. 2001 May;24(5):289-94 16145693 - Hippocampus. 2005;15(7):853-66 21080407 - Hippocampus. 2012 Feb;22(2):172-87 9733184 - Behav Neurosci. 1998 Aug;112(4):749-61 16624947 - J Neurosci. 2006 Apr 19;26(16):4266-76 7843305 - Exp Brain Res. 1994;101(1):8-23 19812579 - Nat Rev Neurosci. 2009 Nov;10(11):792-802 25730672 - Nat Neurosci. 2015 Apr;18(4):569-75 25913404 - Curr Biol. 2015 May 4;25(9):1176-82 22065409 - Front Behav Neurosci. 2011 Oct 28;5:69 2303851 - J Neurosci. 1990 Feb;10(2):420-35 16675704 - Science. 2006 May 5;312(5774):758-62 23852111 - Nat Neurosci. 2013 Aug;16(8):1077-84 1669293 - Hippocampus. 1991 Apr;1(2):193-205 2303852 - J Neurosci. 1990 Feb;10(2):436-47 7891125 - J Neurosci. 1995 Mar;15(3 Pt 1):1648-59 23222610 - Nature. 2012 Dec 6;492(7427):72-8 658182 - Exp Brain Res. 1978 Apr 14;31(4):573-90 19095945 - Science. 2008 Dec 19;322(5909):1865-8 18215625 - Neuron. 2008 Jan 24;57(2):290-302 23334581 - Nat Neurosci. 2013 Mar;16(3):309-17 24366127 - Philos Trans R Soc Lond B Biol Sci. 2013 Dec 23;369(1635):20120512 1374953 - Trends Neurosci. 1992 Jan;15(1):20-5 21982585 - Trends Neurosci. 2011 Nov;34(11):561-71 16143407 - Behav Brain Res. 2006 Jan 6;166(1):55-70 21527714 - Science. 2011 Apr 29;332(6029):595-9 9787007 - J Neurosci. 1998 Nov 1;18(21):9020-37 21527713 - Science. 2011 Apr 29;332(6029):592-5 10985276 - Hippocampus. 2000;10(4):369-79 19021262 - Hippocampus. 2008;18(12):1270-82 19923286 - J Neurosci. 2009 Nov 18;29(46):14521-33 23312522 - Neuron. 2013 Jan 9;77(1):141-54 25700518 - Science. 2015 Feb 20;347(6224):870-4 11539168 - Adv Neural Inf Process Syst. 1995;7:173-80 14523083 - J Neurosci. 2003 Oct 1;23(26):8827-35 20558721 - Science. 2010 Jun 18;328(5985):1576-80 23852116 - Nat Neurosci. 2013 Aug;16(8):1085-93 9883731 - Neuron. 1998 Dec;21(6):1387-97 24735859 - Curr Biol. 2014 Apr 14;24(8):R330-9 8353611 - Hippocampus. 1993 Jul;3(3):317-30 26387719 - Curr Biol. 2015 Oct 5;25(19):2493-502 11882899 - Nature. 2002 Mar 7;416(6876):90-4 17626218 - J Neurosci. 2007 Jul 11;27(28):7564-77 17500630 - Psychol Rev. 2007 Apr;114(2):340-75 23256159 - Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):378-83 19300446 - Nat Rev Neurosci. 2009 Apr;10(4):272-82 12099481 - Hippocampus. 2002;12(3):291-303 16858394 - Nat Rev Neurosci. 2006 Aug;7(8):663-78 26176924 - Nature. 2015 Jul 23;523(7561):419-24 23434282 - Curr Biol. 2013 Mar 4;23(5):399-405 25673414 - Nature. 2015 Feb 12;518(7538):207-12 15965463 - Nature. 2005 Aug 11;436(7052):801-6 26247860 - Neuron. 2015 Aug 5;87(3):507-20 11425881 - J Neurosci. 2001 Jul 15;21(14):RC154 15098724 - Hippocampus. 2004;14(2):180-92 25892299 - Neuron. 2015 May 6;86(3):827-39 8987829 - J Neurosci. 1996 Dec 15;16(24):8027-40 8604055 - J Neurosci. 1996 Mar 15;16(6):2112-26 22357665 - Cereb Cortex. 2013 Feb;23(2):451-9 9368933 - Philos Trans R Soc Lond B Biol Sci. 1997 Oct 29;352(1360):1449-59 25673417 - Nature. 2015 Feb 12;518(7538):232-5 |
References_xml | – volume: 18 start-page: 569 year: 2015 end-page: 575 article-title: Internally organized mechanisms of the head direction sense publication-title: Nat Neurosci – volume: 34 start-page: 171 year: 1971 end-page: 175 article-title: The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely‐moving rat publication-title: Brain Res – volume: 17 start-page: 4349 year: 1997 end-page: 4358 article-title: Firing properties of head direction cells in the rat anterior thalamic nucleus: dependence on vestibular input publication-title: J Neurosci – volume: 21 start-page: 1387 year: 1998 end-page: 1397 article-title: Role of the lateral mammillary nucleus in the rat head direction circuit: a combined single unit recording and lesion study publication-title: Neuron – volume: 10 start-page: 792 year: 2009 end-page: 802 article-title: What does the retrosplenial cortex do? publication-title: Nat Rev Neurosci – volume: 7 start-page: 1951 year: 1987 end-page: 1968 article-title: The effects of changes in the environment on the spatial firing of hippocampal complex‐spike cells publication-title: J Neurosci – volume: 16 start-page: 1085 year: 2013 end-page: 1093 article-title: Impaired hippocampal rate coding after lesions of the lateral entorhinal cortex publication-title: Nat Neurosci – volume: 10 start-page: 272 year: 2009 end-page: 282 article-title: The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network publication-title: Nat Rev Neurosci – volume: 21 start-page: RC154 year: 2001 article-title: Background, but not foreground, spatial cues are taken as references for head direction responses by rat anterodorsal thalamus neurons publication-title: J Neurosci – volume: 18 start-page: 9020 year: 1998 end-page: 9037 article-title: Firing properties of rat lateral mammillary single units: head direction, head pitch, and angular head velocity publication-title: J Neurosci – volume: 3 start-page: 317 year: 1993 end-page: 330 article-title: Phase relationship between hippocampal place units and the EEG theta rhythm publication-title: Hippocampus – volume: 23 start-page: 399 year: 2013 end-page: 405 article-title: Traces of experience in the lateral entorhinal cortex publication-title: Curr Biol – volume: 17 start-page: 801 year: 2007 end-page: 812 article-title: An oscillatory interference model of grid cell firing publication-title: Hippocampus – volume: 15 start-page: 1648 year: 1995 end-page: 1659 article-title: Place cells, head direction cells, and the learning of landmark stability publication-title: J Neurosci – volume: 87 start-page: 507 year: 2015 end-page: 520 article-title: Using grid cells for navigation publication-title: Neuron – volume: 312 start-page: 758 year: 2006 end-page: 762 article-title: Conjunctive representation of position, direction, and velocity in entorhinal cortex publication-title: Science – volume: 15 start-page: 20 year: 1992 end-page: 25 article-title: Separate visual pathways for perception and action publication-title: Trends Neurosci – volume: 34 start-page: 5065 year: 2014 end-page: 5079 article-title: A hybrid oscillatory interference/continuous attractor network model of grid cell firing publication-title: J Neurosci – volume: 37 start-page: 677 year: 1998 end-page: 687 article-title: Learning of landmark stability and instability by hippocampal place cells publication-title: Neuropharmacology – volume: 30 start-page: 181 year: 2007 end-page: 207 article-title: The head direction signal: origins and sensory‐motor integration publication-title: Annu Rev Neurosci – volume: 18 start-page: 1270 year: 2008 end-page: 1282 article-title: Influence of boundary removal on the spatial representations of the medial entorhinal cortex publication-title: Hippocampus – volume: 7 start-page: 663 year: 2006 end-page: 678 article-title: Path integration and the neural basis of the “cognitive map publication-title: Nat Rev Neurosci – volume: 352 start-page: 1449 year: 1997 end-page: 1459 article-title: A new view of hemineglect based on the response properties of parietal neurones publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 108 start-page: 1152 year: 2011 end-page: 1157 article-title: Visual influence on path integration in darkness indicates a multimodal representation of large‐scale space publication-title: Proc Natl Acad Sci USA – volume: 25 start-page: 1 year: 2015 end-page: 7 article-title: Grid cells form a global representation of connected environments publication-title: Curr Biol – volume: 22 start-page: 172 year: 2012 end-page: 187 article-title: Control of anterodorsal thalamic head direction cells by environmental boundaries: Comparison with conflicting distal landmarks publication-title: Hippocampus – volume: 31 start-page: 573 year: 1978 end-page: 590 article-title: Hippocampal place units in the freely moving rat: why they fire where they fire publication-title: Exp Brain Res – volume: 77 start-page: 141 year: 2013 end-page: 154 article-title: Feedback inhibition enables theta‐nested gamma oscillations and grid firing fields publication-title: Neuron – volume: 23 start-page: 8827 year: 2003 end-page: 8835 article-title: Heterogeneous modulation of place cell firing by changes in context publication-title: J Neurosci – volume: 29 start-page: 9771 year: 2009 end-page: 9777 article-title: Boundary vector cells in the subiculum of the hippocampal formation publication-title: J Neurosci – volume: 24 start-page: R330 year: 2014 end-page: R339 article-title: Neural mechanisms of self‐location publication-title: Curr Biol – volume: 112 start-page: 749 year: 1998 end-page: 761 article-title: Cue control and head direction cells publication-title: Behav Neurosci – volume: 94 start-page: 1920 year: 2005 end-page: 1927 article-title: Movement‐related correlates of single‐cell activity in the medial mammillary nucleus of the rat during a pellet‐chasing task publication-title: J Neurophysiol – volume: 15 start-page: 853 year: 2005 end-page: 866 article-title: Dual phase and rate coding in hippocampal place cells: Theoretical significance and relationship to entorhinal grid cells publication-title: Hippocampus – volume: 381 start-page: 425 year: 1996 end-page: 428 article-title: Geometric determinants of the place fields of hippocampal neurons publication-title: Nature – volume: 518 start-page: 232 year: 2015 end-page: 235 article-title: Grid cell symmetry is shaped by environmental geometry publication-title: Nature – volume: 328 start-page: 1576 year: 2010 end-page: 1580 article-title: Development of the spatial representation system in the rat publication-title: Science – volume: 16 start-page: 309 year: 2013 end-page: 317 article-title: Grid cells require excitatory drive from the hippocampus publication-title: Nat Neurosci – volume: 16 start-page: 2112 year: 1996 end-page: 2126 article-title: Representation of spatial orientation by the intrinsic dynamics of the head‐direction cell ensemble: a theory publication-title: J Neurosci – volume: 296 start-page: 2243 year: 2002 end-page: 2246 article-title: Place cells and place recognition maintained by direct entorhinal‐hippocampal circuitry publication-title: Science – volume: 166 start-page: 55 year: 2006 end-page: 70 article-title: Movement‐related correlates of single cell activity in the interpeduncular nucleus and habenula of the rat during a pellet‐chasing task publication-title: Behav Brain Res – volume: 5 start-page: 69 year: 2011 article-title: Representation of non‐spatial and spatial information in the lateral entorhinal cortex publication-title: Front Behav Neurosci – volume: 35 start-page: 1354 year: 2015 end-page: 1367 article-title: Visual landmark information gains control of the head direction signal at the lateral mammillary nuclei publication-title: J Neurosci – volume: 57 start-page: 290 year: 2008 end-page: 302 article-title: Impaired spatial representation in CA1 after lesion of direct input from entorhinal cortex publication-title: Neuron – volume: 67 start-page: 566 year: 1980 end-page: 567 article-title: Homing by path integration in a mammal publication-title: Naturwissenschaften – volume: 114 start-page: 340 year: 2007 end-page: 375 article-title: Remembering the past and imagining the future: A neural model of spatial memory and imagery publication-title: Psychol Rev – volume: 416 start-page: 90 year: 2002 end-page: 94 article-title: Long‐term plasticity in hippocampal place‐cell representation of environmental geometry publication-title: Nature – volume: 101 start-page: 8 year: 1994 end-page: 23 article-title: Head‐direction cells in the rat posterior cortex publication-title: Exp Brain Res – volume: 15 start-page: 1445 year: 2012 end-page: 1453 article-title: Path integration: how the head direction signal maintains and corrects spatial orientation publication-title: Nat Neurosci – volume: 28 start-page: 6858 year: 2008 end-page: 6871 article-title: What grid cells convey about rat location publication-title: J Neurosci – volume: 7 start-page: 173 year: 1995 end-page: 180 article-title: A mode of the neural basis of the rat's sense of direction publication-title: Adv Neural Inf Process Syst – volume: 16 start-page: 8027 year: 1996 end-page: 8040 article-title: Dynamics of mismatch correction in the hippocampal ensemble code for space: interaction between path integration and environmental cues publication-title: J Neurosci – volume: 13 start-page: 4015 year: 1993 end-page: 4028 article-title: Directionally selective mnemonic properties of neurons in the lateral dorsal nucleus of the thalamus of rats publication-title: J Neurosci – volume: 10 start-page: 176.12 year: 1984 article-title: Head direction cells in the deep cell layer of dorsal presubiculum in freely moving rats publication-title: Soc Neurosci Abstr – volume: 29 start-page: 14521 year: 2009 end-page: 14533 article-title: Disruption of the head direction cell signal after occlusion of the semicircular canals in the freely moving chin‐chilla publication-title: J Neurosci – volume: 6 start-page: 57 year: 1982 end-page: 77 article-title: Contribution of striate inputs to the visuospatial functions of parieto‐preoccipital cortex in monkeys publication-title: Behav Brain Res – volume: 347 start-page: 870 year: 2015 end-page: 874 article-title: Disruption of the head direction cell network impairs the parahippocampal grid cell signal publication-title: Science – volume: 10 start-page: 436 year: 1990 end-page: 447 article-title: Head‐direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations publication-title: J Neurosci – volume: 21 start-page: 5740 year: 2001 end-page: 5751 article-title: Neural correlates for angular head velocity in the rat dorsal tegmental nucleus publication-title: J Neurosci – volume: 353 start-page: 1333 year: 1998 end-page: 1340 article-title: Place cells, navigational accuracy, and the human hippocampus publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 332 start-page: 592 year: 2011 end-page: 595 article-title: The spatial periodicity of grid cells is not sustained during reduced theta oscillations publication-title: Science – volume: 25 start-page: 2493 year: 2015 end-page: 2502 article-title: Passive transport disrupts grid signals in the parahippocampal cortex publication-title: Curr Biol – volume: 6 start-page: 720 year: 1996 end-page: 734 article-title: Neural network modeling of the hippocampal formation spatial signals and their possible role in navigation: a modular approach publication-title: Hippocampus – volume: 16 start-page: 1077 year: 2013 end-page: 1084 article-title: Specific evidence of low‐dimensional continuous attractor dynamics in grid cells publication-title: Nat Neurosci – volume: 332 start-page: 595 year: 2011 end-page: 599 article-title: Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning publication-title: Science – volume: 356 start-page: 1493 year: 2001 end-page: 1503 article-title: Memory for events and their spatial context: models and experiments publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 1 start-page: 193 year: 1991 end-page: 205 article-title: Experience‐dependent modifications of hippocampal place cell firing publication-title: Hippocampus – volume: 322 start-page: 1865 year: 2008 end-page: 1868 article-title: Representation of geometric borders in the entorhinal cortex publication-title: Science – volume: 304 start-page: 1021 year: 2004 end-page: 1024 article-title: Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity publication-title: Science – volume: 119 start-page: 1682 year: 2005 end-page: 1686 article-title: Selective dysgranular retrosplenial cortex lesions in rats disrupt allocentric performance of the radial‐arm maze task publication-title: Behav Neurosci – volume: 194 start-page: 311 year: 1980 end-page: 323 article-title: Spatial correlates of hippocampal unit activity are altered by lesions of the fornix and entorhinal cortex publication-title: Brain Res – volume: 453 start-page: 1248 year: 2008 end-page: 1252 article-title: Hippocampus‐independent phase precession in entorhinal grid cells publication-title: Nature – volume: 523 start-page: 419 year: 2015 end-page: 424 article-title: Speed cells in the medial entorhinal cortex publication-title: Nature – volume: 27 start-page: 7564 year: 2007 end-page: 7577 article-title: Lesions of the tegmentomammillary circuit in the head direction system disrupt the head direction signal in the anterior thalamus publication-title: J Neurosci – volume: 492 start-page: 72 year: 2012 end-page: 78 article-title: The entorhinal grid map is discretized publication-title: Nature – volume: 10 start-page: 420 year: 1990 end-page: 435 article-title: Head‐direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis publication-title: J Neurosci – volume: 18 start-page: 689 year: 2008 end-page: 693 article-title: Development of cue integration in human navigation publication-title: Curr Biol – volume: 518 start-page: 207 year: 2015 end-page: 212 article-title: Shearing‐induced asymmetry in entorhinal grid cells publication-title: Nature – volume: 23 start-page: 451 year: 2013 end-page: 459 article-title: Distinct roles of medial and lateral entorhinal cortex in spatial cognition publication-title: Cereb Cortex – volume: 436 start-page: 801 year: 2005 end-page: 806 article-title: Microstructure of a spatial map in the entorhinal cortex publication-title: Nature – volume: 24 start-page: 289 year: 2001 end-page: 294 article-title: The anatomical and computational basis of the rat head‐direction cell signal publication-title: Trends Neurosci – volume: 10 start-page: 369 year: 2000 end-page: 379 article-title: Modeling place fields in terms of the cortical inputs to the hippocampus publication-title: Hippocampus – volume: 12 start-page: 291 year: 2002 end-page: 303 article-title: Hippocampal spatial representations require vestibular input publication-title: Hippocampus – volume: 17 start-page: 71 year: 2006 end-page: 97 article-title: The boundary vector cell model of place cell firing and spatial memory publication-title: Rev Neurosci – volume: 109 start-page: 17687 year: 2012 end-page: 17692 article-title: Grid cell firing patterns signal environmental novelty by expansion publication-title: Proc Natl Acad Sci USA – volume: 13 start-page: 987 year: 2010 end-page: 994 article-title: Grid cells in pre‐ and parasubiculum publication-title: Nat Neurosci – volume: 93 start-page: 11956 year: 1996 end-page: 11961 article-title: A model of multiplicative neural responses in parietal cortex publication-title: Proc Natl Acad Sci USA – volume: 110 start-page: 378 year: 2013 end-page: 383 article-title: How vision and movement combine in the hippocampal place code publication-title: Proc Natl Acad Sci USA – volume: 14 start-page: 180 year: 2004 end-page: 192 article-title: Path integration in mammals publication-title: Hippocampus – volume: 119 start-page: 1511 year: 2005 end-page: 1523 article-title: The formation of cognitive maps of adjacent environments: evidence from the head direction cell system publication-title: Behav Neurosci – volume: 34 start-page: 561 year: 2011 end-page: 571 article-title: Origins of landmark encoding in the brain publication-title: Trends Neurosci – volume: 26 start-page: 4266 year: 2006 end-page: 4276 article-title: A spin glass model of path integration in rat medial entorhinal cortex publication-title: J Neurosci – volume: 369 start-page: 20120512 year: 2013 article-title: Weighted cue integration in the rodent head direction system publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 17 start-page: 231 year: 2007 end-page: 240 article-title: A model of grid cells based on a twisted torus topology publication-title: Int J Neural Syst – volume: 86 start-page: 1 year: 2015 end-page: 13 article-title: Environmental boundaries as an error correction mechanism for grid cells publication-title: Neuron – volume: 86 start-page: 1167 year: 2015 end-page: 1173 article-title: A developmental switch in place cell accuracy coincides with grid cell maturation publication-title: Neuron – volume: 10 start-page: 682 year: 2007 end-page: 684 article-title: Experience‐dependent rescaling of entorhinal grids publication-title: Nat Neurosci – volume: 328 start-page: 1573 year: 2010 end-page: 1576 article-title: Development of the hippocampal cognitive map in preweanling rats publication-title: Science – volume: 199 start-page: 201 year: 1996 end-page: 209 article-title: Path integration in mammals and its interaction with visual landmarks publication-title: J Exp Biol – ident: e_1_2_3_77_1 doi: 10.1126/science.1166466 – ident: e_1_2_3_32_1 doi: 10.1037/0735-7044.112.4.749 – ident: e_1_2_3_26_1 doi: 10.3389/fnbeh.2011.00069 – ident: e_1_2_3_33_1 doi: 10.1523/JNEUROSCI.16-24-08027.1996 – ident: e_1_2_3_12_1 doi: 10.1002/hipo.450010207 – ident: e_1_2_3_39_1 doi: 10.1016/S0028-3908(98)00053-7 – ident: e_1_2_3_85_1 doi: 10.1523/JNEUROSCI.10-02-00420.1990 – ident: e_1_2_3_91_1 doi: 10.1037/0735-7044.119.6.1682 – ident: e_1_2_3_31_1 doi: 10.1016/0166-2236(92)90344-8 – ident: e_1_2_3_25_1 doi: 10.1037/0735-7044.119.6.1511 – ident: e_1_2_3_62_1 doi: 10.1007/BF00239813 – ident: e_1_2_3_69_1 doi: 10.1073/pnas.93.21.11956 – ident: e_1_2_3_95_1 doi: 10.1016/j.cub.2015.08.034 – ident: e_1_2_3_51_1 doi: 10.1016/0166-4328(82)90081-X – ident: e_1_2_3_34_1 doi: 10.1142/S0129065707001093 – ident: e_1_2_3_43_1 doi: 10.1038/nature14622 – volume: 21 start-page: RC154 year: 2001 ident: e_1_2_3_100_1 article-title: Background, but not foreground, spatial cues are taken as references for head direction responses by rat anterodorsal thalamus neurons publication-title: J Neurosci doi: 10.1523/JNEUROSCI.21-14-j0001.2001 – ident: e_1_2_3_28_1 doi: 10.1242/jeb.199.1.201 – ident: e_1_2_3_47_1 doi: 10.1038/416090a – ident: e_1_2_3_48_1 doi: 10.1126/science.1096615 – ident: e_1_2_3_24_1 doi: 10.1002/hipo.20880 – ident: e_1_2_3_38_1 doi: 10.1002/1098-1063(2000)10:4<369::AID-HIPO3>3.0.CO;2-0 – ident: e_1_2_3_44_1 doi: 10.1038/nature14153 – ident: e_1_2_3_7_1 doi: 10.1523/JNEUROSCI.21-15-05740.2001 – ident: e_1_2_3_19_1 doi: 10.1523/JNEUROSCI.4017-13.2014 – ident: e_1_2_3_52_1 doi: 10.1007/BF00450672 – ident: e_1_2_3_2_1 doi: 10.1523/JNEUROSCI.23-26-08827.2003 – ident: e_1_2_3_16_1 doi: 10.1002/hipo.20327 – ident: e_1_2_3_50_1 doi: 10.1038/nrn1932 – ident: e_1_2_3_40_1 doi: 10.1523/JNEUROSCI.15-03-01648.1995 – ident: e_1_2_3_73_1 doi: 10.1016/S0166-2236(00)01797-5 – ident: e_1_2_3_9_1 doi: 10.1016/S0896-6273(00)80657-1 – ident: e_1_2_3_20_1 doi: 10.1037/0033-295X.114.2.340 – ident: e_1_2_3_90_1 doi: 10.1038/nrn2733 – ident: e_1_2_3_64_1 doi: 10.1002/hipo.450030307 – ident: e_1_2_3_41_1 doi: 10.1098/rstb.2012.0512 – ident: e_1_2_3_66_1 doi: 10.1038/nn.3968 – ident: e_1_2_3_79_1 doi: 10.1523/JNEUROSCI.18-21-09020.1998 – ident: e_1_2_3_3_1 doi: 10.1016/j.cub.2014.02.049 – ident: e_1_2_3_56_1 doi: 10.1523/JNEUROSCI.07-07-01951.1987 – ident: e_1_2_3_55_1 doi: 10.1523/JNEUROSCI.3450-09.2009 – ident: e_1_2_3_70_1 doi: 10.1126/science.1125572 – ident: e_1_2_3_74_1 doi: 10.1152/jn.00194.2005 – ident: e_1_2_3_35_1 doi: 10.1038/nature03721 – ident: e_1_2_3_54_1 doi: 10.1016/j.neuron.2015.05.011 – ident: e_1_2_3_89_1 doi: 10.1093/cercor/bhs033 – ident: e_1_2_3_30_1 doi: 10.1523/JNEUROSCI.4353-05.2006 – ident: e_1_2_3_42_1 doi: 10.1126/science.1201685 – ident: e_1_2_3_5_1 doi: 10.1038/nn1905 – ident: e_1_2_3_49_1 doi: 10.1038/nn.3462 – ident: e_1_2_3_10_1 doi: 10.1038/nn.2602 – ident: e_1_2_3_65_1 doi: 10.1016/j.neuron.2012.11.032 – ident: e_1_2_3_15_1 doi: 10.1126/science.1071089 – ident: e_1_2_3_63_1 doi: 10.1016/0006-8993(71)90358-1 – ident: e_1_2_3_96_1 doi: 10.1016/j.tins.2011.08.004 – ident: e_1_2_3_93_1 doi: 10.1126/science.1188224 – volume: 7 start-page: 173 year: 1995 ident: e_1_2_3_76_1 article-title: A mode of the neural basis of the rat's sense of direction publication-title: Adv Neural Inf Process Syst – ident: e_1_2_3_72_1 doi: 10.1002/(SICI)1098-1063(1996)6:6<720::AID-HIPO14>3.0.CO;2-2 – ident: e_1_2_3_75_1 doi: 10.1016/j.bbr.2005.07.004 – ident: e_1_2_3_92_1 doi: 10.1038/nrn2614 – ident: e_1_2_3_61_1 doi: 10.1098/rstb.1998.0287 – ident: e_1_2_3_36_1 doi: 10.1038/nature06957 – ident: e_1_2_3_57_1 doi: 10.1016/0006-8993(80)91214-7 – ident: e_1_2_3_17_1 doi: 10.1098/rstb.2001.0948 – ident: e_1_2_3_81_1 doi: 10.1038/nature11649 – ident: e_1_2_3_99_1 doi: 10.1523/JNEUROSCI.16-06-02112.1996 – ident: e_1_2_3_29_1 doi: 10.1523/JNEUROSCI.5684-07.2008 – ident: e_1_2_3_84_1 doi: 10.1523/JNEUROSCI.10-02-00436.1990 – ident: e_1_2_3_21_1 doi: 10.1016/j.cub.2015.02.037 – volume: 10 start-page: 176.12 year: 1984 ident: e_1_2_3_68_1 article-title: Head direction cells in the deep cell layer of dorsal presubiculum in freely moving rats publication-title: Soc Neurosci Abstr – ident: e_1_2_3_13_1 doi: 10.1126/science.1201652 – ident: e_1_2_3_58_1 doi: 10.1016/j.cub.2008.04.021 – ident: e_1_2_3_86_1 doi: 10.1073/pnas.1011843108 – ident: e_1_2_3_27_1 doi: 10.1002/hipo.10173 – ident: e_1_2_3_94_1 doi: 10.1126/science.1259591 – ident: e_1_2_3_4_1 doi: 10.1073/pnas.1209918109 – ident: e_1_2_3_88_1 doi: 10.1038/nn.3215 – ident: e_1_2_3_59_1 doi: 10.1038/381425a0 – ident: e_1_2_3_14_1 doi: 10.1016/j.neuron.2007.11.034 – ident: e_1_2_3_82_1 doi: 10.1038/nature14151 – ident: e_1_2_3_18_1 doi: 10.1016/j.neuron.2015.07.006 – ident: e_1_2_3_23_1 doi: 10.1007/BF00243212 – ident: e_1_2_3_98_1 doi: 10.1038/nn.3450 – ident: e_1_2_3_8_1 doi: 10.1523/JNEUROSCI.0268-07.2007 – volume: 13 start-page: 4015 year: 1993 ident: e_1_2_3_53_1 article-title: Directionally selective mnemonic properties of neurons in the lateral dorsal nucleus of the thalamus of rats publication-title: J Neurosci doi: 10.1523/JNEUROSCI.13-09-04015.1993 – ident: e_1_2_3_97_1 doi: 10.1523/JNEUROSCI.1418-14.2015 – ident: e_1_2_3_80_1 doi: 10.1002/hipo.1112 – ident: e_1_2_3_45_1 doi: 10.1126/science.1188210 – ident: e_1_2_3_71_1 doi: 10.1002/hipo.20511 – ident: e_1_2_3_6_1 doi: 10.1515/REVNEURO.2006.17.1-2.71 – ident: e_1_2_3_83_1 doi: 10.1146/annurev.neuro.29.051605.112854 – ident: e_1_2_3_78_1 doi: 10.1523/JNEUROSCI.17-11-04349.1997 – ident: e_1_2_3_67_1 doi: 10.1098/rstb.1997.0131 – ident: e_1_2_3_11_1 doi: 10.1038/nn.3311 – ident: e_1_2_3_46_1 doi: 10.1523/JNEUROSCI.1319-09.2009 – ident: e_1_2_3_87_1 doi: 10.1016/j.cub.2013.01.036 – ident: e_1_2_3_37_1 doi: 10.1016/j.neuron.2015.03.039 – ident: e_1_2_3_60_1 doi: 10.1002/hipo.20115 – ident: e_1_2_3_22_1 doi: 10.1073/pnas.1215834110 – reference: 8632799 - Nature. 1996 May 30;381(6581):425-8 – reference: 2303852 - J Neurosci. 1990 Feb;10(2):436-47 – reference: 16703944 - Rev Neurosci. 2006;17(1-2):71-97 – reference: 23256159 - Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):378-83 – reference: 16624947 - J Neurosci. 2006 Apr 19;26(16):4266-76 – reference: 15098724 - Hippocampus. 2004;14(2):180-92 – reference: 8353611 - Hippocampus. 1993 Jul;3(3):317-30 – reference: 17696288 - Int J Neural Syst. 2007 Aug;17(4):231-40 – reference: 20558721 - Science. 2010 Jun 18;328(5985):1576-80 – reference: 7891125 - J Neurosci. 1995 Mar;15(3 Pt 1):1648-59 – reference: 21527714 - Science. 2011 Apr 29;332(6029):595-9 – reference: 11539168 - Adv Neural Inf Process Syst. 1995;7:173-80 – reference: 23334581 - Nat Neurosci. 2013 Mar;16(3):309-17 – reference: 18480753 - Nature. 2008 Jun 26;453(7199):1248-52 – reference: 12077421 - Science. 2002 Jun 21;296(5576):2243-6 – reference: 24695724 - J Neurosci. 2014 Apr 2;34(14):5065-79 – reference: 8576691 - J Exp Biol. 1996 Jan;199(Pt 1):201-9 – reference: 5124915 - Brain Res. 1971 Nov;34(1):171-5 – reference: 12099481 - Hippocampus. 2002;12(3):291-303 – reference: 16145693 - Hippocampus. 2005;15(7):853-66 – reference: 10985276 - Hippocampus. 2000;10(4):369-79 – reference: 19095945 - Science. 2008 Dec 19;322(5909):1865-8 – reference: 8604055 - J Neurosci. 1996 Mar 15;16(6):2112-26 – reference: 23222610 - Nature. 2012 Dec 6;492(7427):72-8 – reference: 22983210 - Nat Neurosci. 2012 Oct;15(10):1445-53 – reference: 25632114 - J Neurosci. 2015 Jan 28;35(4):1354-67 – reference: 21199934 - Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1152-7 – reference: 24366127 - Philos Trans R Soc Lond B Biol Sci. 2013 Dec 23;369(1635):20120512 – reference: 11882899 - Nature. 2002 Mar 7;416(6876):90-4 – reference: 16858394 - Nat Rev Neurosci. 2006 Aug;7(8):663-78 – reference: 20558720 - Science. 2010 Jun 18;328(5985):1573-6 – reference: 18596161 - J Neurosci. 2008 Jul 2;28(27):6858-71 – reference: 1669293 - Hippocampus. 1991 Apr;1(2):193-205 – reference: 11571039 - Philos Trans R Soc Lond B Biol Sci. 2001 Sep 29;356(1413):1493-503 – reference: 16420172 - Behav Neurosci. 2005 Dec;119(6):1682-6 – reference: 23852111 - Nat Neurosci. 2013 Aug;16(8):1077-84 – reference: 15143284 - Science. 2004 May 14;304(5673):1021-4 – reference: 25673417 - Nature. 2015 Feb 12;518(7538):232-5 – reference: 20657591 - Nat Neurosci. 2010 Aug;13(8):987-94 – reference: 17626218 - J Neurosci. 2007 Jul 11;27(28):7564-77 – reference: 8876244 - Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11956-61 – reference: 7843305 - Exp Brain Res. 1994;101(1):8-23 – reference: 23434282 - Curr Biol. 2013 Mar 4;23(5):399-405 – reference: 8366357 - J Neurosci. 1993 Sep;13(9):4015-28 – reference: 2303851 - J Neurosci. 1990 Feb;10(2):420-35 – reference: 16143407 - Behav Brain Res. 2006 Jan 6;166(1):55-70 – reference: 19923286 - J Neurosci. 2009 Nov 18;29(46):14521-33 – reference: 14523083 - J Neurosci. 2003 Oct 1;23(26):8827-35 – reference: 15965463 - Nature. 2005 Aug 11;436(7052):801-6 – reference: 9151751 - J Neurosci. 1997 Jun 1;17(11):4349-58 – reference: 23312522 - Neuron. 2013 Jan 9;77(1):141-54 – reference: 3612226 - J Neurosci. 1987 Jul;7(7):1951-68 – reference: 18215625 - Neuron. 2008 Jan 24;57(2):290-302 – reference: 22065409 - Front Behav Neurosci. 2011 Oct 28;5:69 – reference: 18450447 - Curr Biol. 2008 May 6;18(9):689-93 – reference: 25700518 - Science. 2015 Feb 20;347(6224):870-4 – reference: 21080407 - Hippocampus. 2012 Feb;22(2):172-87 – reference: 7126325 - Behav Brain Res. 1982 Sep;6(1):57-77 – reference: 19657030 - J Neurosci. 2009 Aug 5;29(31):9771-7 – reference: 8987829 - J Neurosci. 1996 Dec 15;16(24):8027-40 – reference: 26387719 - Curr Biol. 2015 Oct 5;25(19):2493-502 – reference: 11311382 - Trends Neurosci. 2001 May;24(5):289-94 – reference: 7388617 - Brain Res. 1980 Aug 4;194(2):311-23 – reference: 26050036 - Neuron. 2015 Jun 3;86(5):1167-73 – reference: 19021262 - Hippocampus. 2008;18(12):1270-82 – reference: 25913404 - Curr Biol. 2015 May 4;25(9):1176-82 – reference: 658182 - Exp Brain Res. 1978 Apr 14;31(4):573-90 – reference: 17341158 - Annu Rev Neurosci. 2007;30:181-207 – reference: 19812579 - Nat Rev Neurosci. 2009 Nov;10(11):792-802 – reference: 9883731 - Neuron. 1998 Dec;21(6):1387-97 – reference: 22357665 - Cereb Cortex. 2013 Feb;23(2):451-9 – reference: 17486102 - Nat Neurosci. 2007 Jun;10(6):682-4 – reference: 9705005 - Neuropharmacology. 1998 Apr-May;37(4-5):677-87 – reference: 11466446 - J Neurosci. 2001 Aug 1;21(15):5740-51 – reference: 26176924 - Nature. 2015 Jul 23;523(7561):419-24 – reference: 17598147 - Hippocampus. 2007;17(9):801-12 – reference: 15857969 - J Neurophysiol. 2005 Sep;94(3):1920-7 – reference: 21982585 - Trends Neurosci. 2011 Nov;34(11):561-71 – reference: 9034858 - Hippocampus. 1996;6(6):720-34 – reference: 11425881 - J Neurosci. 2001 Jul 15;21(14):RC154 – reference: 25673414 - Nature. 2015 Feb 12;518(7538):207-12 – reference: 9787007 - J Neurosci. 1998 Nov 1;18(21):9020-37 – reference: 9733184 - Behav Neurosci. 1998 Aug;112(4):749-61 – reference: 23045662 - Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17687-92 – reference: 9770226 - Philos Trans R Soc Lond B Biol Sci. 1998 Aug 29;353(1373):1333-40 – reference: 26247860 - Neuron. 2015 Aug 5;87(3):507-20 – reference: 1374953 - Trends Neurosci. 1992 Jan;15(1):20-5 – reference: 9368933 - Philos Trans R Soc Lond B Biol Sci. 1997 Oct 29;352(1360):1449-59 – reference: 16420155 - Behav Neurosci. 2005 Dec;119(6):1511-23 – reference: 23852116 - Nat Neurosci. 2013 Aug;16(8):1085-93 – reference: 16675704 - Science. 2006 May 5;312(5774):758-62 – reference: 17500630 - Psychol Rev. 2007 Apr;114(2):340-75 – reference: 24735859 - Curr Biol. 2014 Apr 14;24(8):R330-9 – reference: 25892299 - Neuron. 2015 May 6;86(3):827-39 – reference: 19300446 - Nat Rev Neurosci. 2009 Apr;10(4):272-82 – reference: 21527713 - Science. 2011 Apr 29;332(6029):592-5 – reference: 25730672 - Nat Neurosci. 2015 Apr;18(4):569-75 |
SSID | ssj0013099 |
Score | 2.3979917 |
SecondaryResourceType | review_article |
Snippet | Estimates of location or orientation can be constructed solely from sensory information representing environmental cues. In unfamiliar or sensory‐poor... Estimates of location or orientation can be constructed solely from sensory information representing environmental cues. In unfamiliar or sensory-poor... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6535 |
SubjectTerms | Animals Cognitive and Behavioural Neuroscience Environment Head - physiology Humans Models, Neurological Motion Neurons - physiology Orientation - physiology Space Perception - physiology Symposium Review Symposium section reviews: Neural circuits for spatial computation |
Title | How environment and self‐motion combine in neural representations of space |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP270666 https://www.ncbi.nlm.nih.gov/pubmed/26607203 https://www.proquest.com/docview/1845495308 https://www.proquest.com/docview/1826634953 https://www.proquest.com/docview/1850769073 https://pubmed.ncbi.nlm.nih.gov/PMC5108893 |
Volume | 594 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1469-7793 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0013099 issn: 0022-3751 databaseCode: DIK dateStart: 18780101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1469-7793 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0013099 issn: 0022-3751 databaseCode: GX1 dateStart: 18780101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: Open Access: PubMed Central customDbUrl: eissn: 1469-7793 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0013099 issn: 0022-3751 databaseCode: RPM dateStart: 18780101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0022-3751 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1469-7793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013099 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELZQT71AaflJaZEjoXDa4l2v195jhaiiCFCFWikSh5XttdWqrVM1iRCceASekSfpjPeHhgCqOHu8ttee8Tee8WdCXikjwJP1PoG9gCW5KXOwg5lJlGcWHWyjYzLmh4_F-DSfTMW0zarEuzANP0R_4IaaEe01Krg27SskKZINTI4zieAbzG_KRYzQfsp-BRBYWfZE4VKkLe8sVH3TVVzdidbg5XqW5F30Grefo0fkc9fxJuvk4mC5MAf222-cjv83si3ysEWl9LBZRo_JAxe2yc5hAI_86isd0ZgnGg_gd8j78ewLvXM_jupQ07m79D-__2jeBKLQIDjcjp4HinyZ8OXIndndcwpzOvMUTJl1T8jp0buTt-OkfZMhsbCN8QTZXKwR2jPlDfOlhDkVTmcqTQ1MrqrTWtVc45mA515KzqVGl0rbQjHnPX9KNsIsuOeEMq-s8LWWpc5zr2RZZgLgq04LsDHGqgF53c1PZVvCcnw347JqHBdedT9qQIa95HVD0vEHmb1uiqtWTecVuLcCE2wZNDbsi0HBMGqig5stUQYwDEepf8kArMZzBpB51qyaviNQm2Gse0DkynrqBZDge7UknJ9Fom-wlwrw5ICM4nL569iqk8lxUSq-e1_BF2QTgF-BdypTsUc2FjdLtw_gamFeRjW6BcdQH4I |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoALr_JYKOBKqJxSkjiOHXGqgGpZtlWFtlIPSJGd2GrV4kXsrlB74ifwG_klzDgPuhQQ4uxxbMee8Tfj8WeAZ8oI9GSdi3AviKPMFBnawdREysUVOdhGh2TM3b18eJCNDsXhCrzs7sI0_BB9wI00I9hrUnAKSLdaTmwDo_1UEvq-AlfpeI608vX79OcRQlwUPVW4FEnLPIt1X3Q1l_eiSwDzcp7kRfwaNqCdm_Ch63qTd3KytZibrer8F1bH_xzbLbjRAlO23ayk27Bi_R1Y2_bolH88Y5sspIqGGPwajIfTL-zCFTmmfc1m9tR9__qteRaIYYvoc1t27BlRZuKXA31md9XJz9jUMbRmlb0LBztvJq-GUfssQ1ThTsYjInSpjNAuVs7ErpA4rcLqVCWJwflVdVKrmmsKCzjupORcavKqdJWr2DrH78Gqn3r7AFjsVCVcrWWhs8wpWRSpQASrkxzNjKnUAJ53E1RWLWc5PZ1xWja-Cy-7HzWAjV7yU8PT8RuZ9W6Oy1ZTZyV6uIJybGNsbKMvRh2jgxPt7XRBMghjOEn9TQaRNYUaUOZ-s2z6jmDtmI67ByCXFlQvQBzfyyX--ChwfaPJVAgpB7AZ1ssfx1ZORvt5ofjDfxV8CteGk91xOX679-4RXEccmNMVy0Ssw-r888I-Rqw1N0-CTv0Apocjng |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fbxQhECdaE-NLrVbtaVWamPq0lV2WhX1sqpfzrM3FtEkTHzbAQmysXOPdxeiTH8HP2E_SGfaPPavG-MywwMIMvxmGH4Q8U0aAJ-t9AnsBS3JT5mAHM5Mozyw62EbHZMy3B8XoKB8fi-M2qxLvwjT8EH3ADTUj2mtU8LPat0qOZAPjSSYRfF8nN_ICnCsERO-ynycIrCx7pnAp0pZ4Fuq-6Goub0VX8OXVNMnL8DXuP8Pb5H3X8ybt5OPOYm527LdfSB3_b2hrZLWFpXS3WUd3yDUX7pL13QAu-aevdJvGRNEYgV8n-6PpF3rpghzVoaYzd-rPv_9oHgWi0CB43I6eBIqEmfDlSJ7ZXXQKMzr1FGyZdffI0fDV4d4oaR9lSCzsYzxBOhdrhPZMecN8KWFShdOZSlMDs6vqtFY11xgU8NxLybnU6FNpWyjmvOf3yUqYBrdBKPPKCl9rWeo890qWZSYAv-q0ACNjrBqQ5938VLZlLMeHM06rxnPhVfejBmSrlzxrWDp-I7PZTXHV6umsAv9WYIYtg8a2-mLQMDw20cFNFygDIIaj1N9kAFdjoAFkHjSrpu8I1GZ42D0gcmk99QLI8L1cEk4-RKZvMJgKAOWAbMfl8sexVYfjSVEq_vBfBZ-Sm5OXw2r_9cGbR-QWgMAC71emYpOszD8v3GMAWnPzJGrUBSUJIk0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+environment+and+self-motion+combine+in+neural+representations+of+space&rft.jtitle=The+Journal+of+physiology&rft.au=Evans%2C+Talfan&rft.au=Bicanski%2C+Andrej&rft.au=Bush%2C+Daniel&rft.au=Burgess%2C+Neil&rft.date=2016-11-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=594&rft.issue=22&rft.spage=6535&rft_id=info:doi/10.1113%2FJP270666&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4268838321 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |