How environment and self‐motion combine in neural representations of space

Estimates of location or orientation can be constructed solely from sensory information representing environmental cues. In unfamiliar or sensory‐poor environments, these estimates can also be maintained and updated by integrating self‐motion information. However, the accumulation of error dictates...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 594; no. 22; pp. 6535 - 6546
Main Authors Evans, Talfan, Bicanski, Andrej, Bush, Daniel, Burgess, Neil
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 15.11.2016
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0022-3751
1469-7793
DOI10.1113/JP270666

Cover

Abstract Estimates of location or orientation can be constructed solely from sensory information representing environmental cues. In unfamiliar or sensory‐poor environments, these estimates can also be maintained and updated by integrating self‐motion information. However, the accumulation of error dictates that updated representations of heading direction and location become progressively less reliable over time, and must be corrected by environmental sensory inputs when available. Anatomical, electrophysiological and behavioural evidence indicates that angular and translational path integration contributes to the firing of head direction cells and grid cells. We discuss how sensory inputs may be combined with self‐motion information in the firing patterns of these cells. For head direction cells, direct projections from egocentric sensory representations of distal cues can help to correct cumulative errors. Grid cells may benefit from sensory inputs via boundary vector cells and place cells. However, the allocentric code of boundary vector cells and place cells requires consistent head‐direction information in order to translate the sensory signal of egocentric boundary distance into allocentric boundary vector cell firing, suggesting that the different spatial representations found in and around the hippocampal formation are interdependent. We conclude that, rather than representing pure path integration, the firing of head‐direction cells and grid cells reflects the interface between self‐motion and environmental sensory information. Together with place cells and boundary vector cells they can support a coherent unitary representation of space based on both environmental sensory inputs and path integration signals. Spatial navigation is thought to rely on complementary information from environmental sensory cues and an internal path integration system. An estimate of one's location within an environment can be constructed purely from environmental sensory information, however in sensory‐poor environments (e.g. in the dark or far from geometrical cues) this estimate can also be maintained by integrating self‐motion information, a process known as path integration (red dashed line). Path integration tracks changes in both the angular and translational components of movement, but is subject to drift over time due to the accumulation of error. Head direction cells (HDCs) and grid cells (GCs) are thought to represent the neural bases of these components and are known to be anchored to environmental cues, correcting for drift (mountain and purple arrows). Information on the distance to the boundaries of an environment is provided by boundary vector cells (BVCs).
AbstractList Estimates of location or orientation can be constructed solely from sensory information representing environmental cues. In unfamiliar or sensory‐poor environments, these estimates can also be maintained and updated by integrating self‐motion information. However, the accumulation of error dictates that updated representations of heading direction and location become progressively less reliable over time, and must be corrected by environmental sensory inputs when available. Anatomical, electrophysiological and behavioural evidence indicates that angular and translational path integration contributes to the firing of head direction cells and grid cells. We discuss how sensory inputs may be combined with self‐motion information in the firing patterns of these cells. For head direction cells, direct projections from egocentric sensory representations of distal cues can help to correct cumulative errors. Grid cells may benefit from sensory inputs via boundary vector cells and place cells. However, the allocentric code of boundary vector cells and place cells requires consistent head‐direction information in order to translate the sensory signal of egocentric boundary distance into allocentric boundary vector cell firing, suggesting that the different spatial representations found in and around the hippocampal formation are interdependent. We conclude that, rather than representing pure path integration, the firing of head‐direction cells and grid cells reflects the interface between self‐motion and environmental sensory information. Together with place cells and boundary vector cells they can support a coherent unitary representation of space based on both environmental sensory inputs and path integration signals.
Estimates of location or orientation can be constructed solely from sensory information representing environmental cues. In unfamiliar or sensory-poor environments, these estimates can also be maintained and updated by integrating self-motion information. However, the accumulation of error dictates that updated representations of heading direction and location become progressively less reliable over time, and must be corrected by environmental sensory inputs when available. Anatomical, electrophysiological and behavioural evidence indicates that angular and translational path integration contributes to the firing of head direction cells and grid cells. We discuss how sensory inputs may be combined with self-motion information in the firing patterns of these cells. For head direction cells, direct projections from egocentric sensory representations of distal cues can help to correct cumulative errors. Grid cells may benefit from sensory inputs via boundary vector cells and place cells. However, the allocentric code of boundary vector cells and place cells requires consistent head-direction information in order to translate the sensory signal of egocentric boundary distance into allocentric boundary vector cell firing, suggesting that the different spatial representations found in and around the hippocampal formation are interdependent. We conclude that, rather than representing pure path integration, the firing of head-direction cells and grid cells reflects the interface between self-motion and environmental sensory information. Together with place cells and boundary vector cells they can support a coherent unitary representation of space based on both environmental sensory inputs and path integration signals. Spatial navigation is thought to rely on complementary information from environmental sensory cues and an internal path integration system. An estimate of one's location within an environment can be constructed purely from environmental sensory information, however in sensory-poor environments (e.g. in the dark or far from geometrical cues) this estimate can also be maintained by integrating self-motion information, a process known as path integration (red dashed line). Path integration tracks changes in both the angular and translational components of movement, but is subject to drift over time due to the accumulation of error. Head direction cells (HDCs) and grid cells (GCs) are thought to represent the neural bases of these components and are known to be anchored to environmental cues, correcting for drift (mountain and purple arrows). Information on the distance to the boundaries of an environment is provided by boundary vector cells (BVCs).
Estimates of location or orientation can be constructed solely from sensory information representing environmental cues. In unfamiliar or sensory‐poor environments, these estimates can also be maintained and updated by integrating self‐motion information. However, the accumulation of error dictates that updated representations of heading direction and location become progressively less reliable over time, and must be corrected by environmental sensory inputs when available. Anatomical, electrophysiological and behavioural evidence indicates that angular and translational path integration contributes to the firing of head direction cells and grid cells. We discuss how sensory inputs may be combined with self‐motion information in the firing patterns of these cells. For head direction cells, direct projections from egocentric sensory representations of distal cues can help to correct cumulative errors. Grid cells may benefit from sensory inputs via boundary vector cells and place cells. However, the allocentric code of boundary vector cells and place cells requires consistent head‐direction information in order to translate the sensory signal of egocentric boundary distance into allocentric boundary vector cell firing, suggesting that the different spatial representations found in and around the hippocampal formation are interdependent. We conclude that, rather than representing pure path integration, the firing of head‐direction cells and grid cells reflects the interface between self‐motion and environmental sensory information. Together with place cells and boundary vector cells they can support a coherent unitary representation of space based on both environmental sensory inputs and path integration signals. image
Estimates of location or orientation can be constructed solely from sensory information representing environmental cues. In unfamiliar or sensory‐poor environments, these estimates can also be maintained and updated by integrating self‐motion information. However, the accumulation of error dictates that updated representations of heading direction and location become progressively less reliable over time, and must be corrected by environmental sensory inputs when available. Anatomical, electrophysiological and behavioural evidence indicates that angular and translational path integration contributes to the firing of head direction cells and grid cells. We discuss how sensory inputs may be combined with self‐motion information in the firing patterns of these cells. For head direction cells, direct projections from egocentric sensory representations of distal cues can help to correct cumulative errors. Grid cells may benefit from sensory inputs via boundary vector cells and place cells. However, the allocentric code of boundary vector cells and place cells requires consistent head‐direction information in order to translate the sensory signal of egocentric boundary distance into allocentric boundary vector cell firing, suggesting that the different spatial representations found in and around the hippocampal formation are interdependent. We conclude that, rather than representing pure path integration, the firing of head‐direction cells and grid cells reflects the interface between self‐motion and environmental sensory information. Together with place cells and boundary vector cells they can support a coherent unitary representation of space based on both environmental sensory inputs and path integration signals. Spatial navigation is thought to rely on complementary information from environmental sensory cues and an internal path integration system. An estimate of one's location within an environment can be constructed purely from environmental sensory information, however in sensory‐poor environments (e.g. in the dark or far from geometrical cues) this estimate can also be maintained by integrating self‐motion information, a process known as path integration (red dashed line). Path integration tracks changes in both the angular and translational components of movement, but is subject to drift over time due to the accumulation of error. Head direction cells (HDCs) and grid cells (GCs) are thought to represent the neural bases of these components and are known to be anchored to environmental cues, correcting for drift (mountain and purple arrows). Information on the distance to the boundaries of an environment is provided by boundary vector cells (BVCs).
Author Bicanski, Andrej
Burgess, Neil
Bush, Daniel
Evans, Talfan
AuthorAffiliation 2 UCL Institute of Cognitive Neuroscience 17 Queen Square London WC1N 3AZ UK
4 UCL Department of Neuroscience Physiology and Pharmacology Gower Street London WC1E 6BT UK
3 UCL Institute of Neurology Queen Square London WC1N 3BG UK
1 UCL Centre for Mathematics and Physics in the Life Sciences and Experimental Biology Gower Street London WC1E 6BT UK
AuthorAffiliation_xml – name: 4 UCL Department of Neuroscience Physiology and Pharmacology Gower Street London WC1E 6BT UK
– name: 3 UCL Institute of Neurology Queen Square London WC1N 3BG UK
– name: 1 UCL Centre for Mathematics and Physics in the Life Sciences and Experimental Biology Gower Street London WC1E 6BT UK
– name: 2 UCL Institute of Cognitive Neuroscience 17 Queen Square London WC1N 3AZ UK
Author_xml – sequence: 1
  givenname: Talfan
  surname: Evans
  fullname: Evans, Talfan
  organization: Physiology and Pharmacology
– sequence: 2
  givenname: Andrej
  surname: Bicanski
  fullname: Bicanski, Andrej
  organization: UCL Institute of Neurology
– sequence: 3
  givenname: Daniel
  surname: Bush
  fullname: Bush, Daniel
  organization: UCL Institute of Neurology
– sequence: 4
  givenname: Neil
  surname: Burgess
  fullname: Burgess, Neil
  email: n.burgess@ucl.ac.uk
  organization: UCL Institute of Neurology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26607203$$D View this record in MEDLINE/PubMed
BookMark eNqN0c1qFTEUB_AgFXtbBZ9AAm7cTD2Z3MnHRpCi1nLBLuo6ZDInmjKTXJM7Ld35CD6jT2Iut7d-oOAqi_zy559zjshBTBEJecrghDHGX55ftBKEEA_Igi2FbqTU_IAsANq24bJjh-SolCsAxkHrR-SwFQJkC3xBVmfphmK8DjnFCeOG2jjQgqP__vXblDYhRerS1IeINEQacc52pBnXGUvVdgsKTZ6WtXX4mDz0diz45O48Jh_fvrk8PWtWH969P329atxSMt50WgvXd9aD8j14LT24Dm2rGOsdMDWwQQ3cMmDCcy8l59LWJ8I6oQC958fk1S53PfcTDq42qbXMOofJ5luTbDC_38Tw2XxK16ZjoJTmNeDFXUBOX2YsGzOF4nAcbcQ0F8NUB1JokP9D6zD5Undb-vwPepXmHOskqlp2WwOqqme_lr9vvd9JBSc74HIqJaM3LuwmXf8SRsPAbJdu9kv_WfH-wT7zL7TZ0Zsw4u0_nbk8vxBacf4D0o25kw
CODEN JPHYA7
CitedBy_id crossref_primary_10_1016_j_ynstr_2023_100561
crossref_primary_10_1016_j_cub_2018_05_050
crossref_primary_10_7554_eLife_46687
crossref_primary_10_7554_eLife_62500
crossref_primary_10_1038_nn_4653
crossref_primary_10_3390_brainsci13111592
crossref_primary_10_1371_journal_pcbi_1009434
crossref_primary_10_1038_s41583_020_0336_9
crossref_primary_10_1016_j_bbr_2023_114305
crossref_primary_10_1162_neco_a_01280
crossref_primary_10_7554_eLife_43140
crossref_primary_10_1093_cercor_bhaa117
crossref_primary_10_3389_fnagi_2019_00253
crossref_primary_10_1113_JP273087
crossref_primary_10_7554_eLife_46351
crossref_primary_10_1242_jeb_188912
crossref_primary_10_1007_s10548_023_01032_0
crossref_primary_10_1016_j_neurobiolaging_2023_07_025
crossref_primary_10_1186_s13195_025_01679_w
crossref_primary_10_1016_j_procs_2016_07_433
crossref_primary_10_7554_eLife_38169
crossref_primary_10_3389_fncom_2020_00063
crossref_primary_10_1073_pnas_1805959115
crossref_primary_10_7554_eLife_16937
crossref_primary_10_7554_eLife_33752
crossref_primary_10_1038_srep29163
crossref_primary_10_3389_fpsyg_2023_1144861
crossref_primary_10_1111_ejn_13918
Cites_doi 10.1126/science.1166466
10.1037/0735-7044.112.4.749
10.3389/fnbeh.2011.00069
10.1523/JNEUROSCI.16-24-08027.1996
10.1002/hipo.450010207
10.1016/S0028-3908(98)00053-7
10.1523/JNEUROSCI.10-02-00420.1990
10.1037/0735-7044.119.6.1682
10.1016/0166-2236(92)90344-8
10.1037/0735-7044.119.6.1511
10.1007/BF00239813
10.1073/pnas.93.21.11956
10.1016/j.cub.2015.08.034
10.1016/0166-4328(82)90081-X
10.1142/S0129065707001093
10.1038/nature14622
10.1523/JNEUROSCI.21-14-j0001.2001
10.1242/jeb.199.1.201
10.1038/416090a
10.1126/science.1096615
10.1002/hipo.20880
10.1002/1098-1063(2000)10:4<369::AID-HIPO3>3.0.CO;2-0
10.1038/nature14153
10.1523/JNEUROSCI.21-15-05740.2001
10.1523/JNEUROSCI.4017-13.2014
10.1007/BF00450672
10.1523/JNEUROSCI.23-26-08827.2003
10.1002/hipo.20327
10.1038/nrn1932
10.1523/JNEUROSCI.15-03-01648.1995
10.1016/S0166-2236(00)01797-5
10.1016/S0896-6273(00)80657-1
10.1037/0033-295X.114.2.340
10.1038/nrn2733
10.1002/hipo.450030307
10.1098/rstb.2012.0512
10.1038/nn.3968
10.1523/JNEUROSCI.18-21-09020.1998
10.1016/j.cub.2014.02.049
10.1523/JNEUROSCI.07-07-01951.1987
10.1523/JNEUROSCI.3450-09.2009
10.1126/science.1125572
10.1152/jn.00194.2005
10.1038/nature03721
10.1016/j.neuron.2015.05.011
10.1093/cercor/bhs033
10.1523/JNEUROSCI.4353-05.2006
10.1126/science.1201685
10.1038/nn1905
10.1038/nn.3462
10.1038/nn.2602
10.1016/j.neuron.2012.11.032
10.1126/science.1071089
10.1016/0006-8993(71)90358-1
10.1016/j.tins.2011.08.004
10.1126/science.1188224
10.1002/(SICI)1098-1063(1996)6:6<720::AID-HIPO14>3.0.CO;2-2
10.1016/j.bbr.2005.07.004
10.1038/nrn2614
10.1098/rstb.1998.0287
10.1038/nature06957
10.1016/0006-8993(80)91214-7
10.1098/rstb.2001.0948
10.1038/nature11649
10.1523/JNEUROSCI.16-06-02112.1996
10.1523/JNEUROSCI.5684-07.2008
10.1523/JNEUROSCI.10-02-00436.1990
10.1016/j.cub.2015.02.037
10.1126/science.1201652
10.1016/j.cub.2008.04.021
10.1073/pnas.1011843108
10.1002/hipo.10173
10.1126/science.1259591
10.1073/pnas.1209918109
10.1038/nn.3215
10.1038/381425a0
10.1016/j.neuron.2007.11.034
10.1038/nature14151
10.1016/j.neuron.2015.07.006
10.1007/BF00243212
10.1038/nn.3450
10.1523/JNEUROSCI.0268-07.2007
10.1523/JNEUROSCI.13-09-04015.1993
10.1523/JNEUROSCI.1418-14.2015
10.1002/hipo.1112
10.1126/science.1188210
10.1002/hipo.20511
10.1515/REVNEURO.2006.17.1-2.71
10.1146/annurev.neuro.29.051605.112854
10.1523/JNEUROSCI.17-11-04349.1997
10.1098/rstb.1997.0131
10.1038/nn.3311
10.1523/JNEUROSCI.1319-09.2009
10.1016/j.cub.2013.01.036
10.1016/j.neuron.2015.03.039
10.1002/hipo.20115
10.1073/pnas.1215834110
ContentType Journal Article
Copyright 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society
2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Journal compilation © 2016 The Physiological Society
Copyright_xml – notice: 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society
– notice: 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
– notice: Journal compilation © 2016 The Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
DOI 10.1113/JP270666
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
CrossRef

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate T. Evans and others
EISSN 1469-7793
EndPage 6546
ExternalDocumentID PMC5108893
4268838321
26607203
10_1113_JP270666
TJP6983
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: EPSRC
– fundername: Wellcome Trust
– fundername: Medical Research Council
– fundername: Wellcome Trust
  grantid: 091593
– fundername: Wellcome Trust
  grantid: 095811
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
0YM
10A
123
18M
1OB
1OC
24P
29L
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
YBU
YHG
YKV
YQT
YSK
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c4713-5996cb5af08fb0f97f0c5ea2811bc018d1d8d3a1016f3f77337a9966ac680eff3
IEDL.DBID DR2
ISSN 0022-3751
IngestDate Tue Sep 30 16:25:04 EDT 2025
Fri Jul 11 04:35:45 EDT 2025
Fri Jul 11 04:13:26 EDT 2025
Fri Jul 25 11:59:10 EDT 2025
Thu Apr 03 06:58:22 EDT 2025
Wed Oct 01 05:06:15 EDT 2025
Thu Apr 24 23:12:56 EDT 2025
Wed Jan 22 16:20:45 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4713-5996cb5af08fb0f97f0c5ea2811bc018d1d8d3a1016f3f77337a9966ac680eff3
Notes T. Evans and A. Bicanski contributed equally.
This review was presented at the symposium “Spatial Computation: from neural circuits to robot navigation”, which took place at the University of Edinburgh, on 11 April 2015.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5108893
PMID 26607203
PQID 1845495308
PQPubID 1086388
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5108893
proquest_miscellaneous_1850769073
proquest_miscellaneous_1826634953
proquest_journals_1845495308
pubmed_primary_26607203
crossref_citationtrail_10_1113_JP270666
crossref_primary_10_1113_JP270666
wiley_primary_10_1113_JP270666_TJP6983
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 November 2016
PublicationDateYYYYMMDD 2016-11-15
PublicationDate_xml – month: 11
  year: 2016
  text: 15 November 2016
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Hoboken
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2016
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2015; 35
1990; 10
2010; 13
2015; 347
1978; 31
2013; 23
2013; 369
2002; 12
1997; 352
1987; 7
1996; 381
2014; 24
1992; 15
2007; 30
2012; 15
1998; 353
1998; 112
1993; 3
1994; 101
2012; 492
1998; 18
2009; 10
2013; 16
2015; 86
2000; 10
1984; 10
1982; 6
2015; 87
2008; 28
2006; 26
1997; 17
2013; 110
2012; 22
2006; 166
1996; 6
2007; 27
2007; 17
1991; 1
2015; 18
2002; 296
2015; 523
2010; 328
1995; 15
2008; 18
2006; 17
1980; 67
2005; 436
2006; 7
2005; 119
1996; 93
2008; 57
2011; 34
2002; 416
1980; 194
2008; 322
2007; 10
1998; 21
1996; 16
2001; 24
2011; 5
2004; 304
2011; 332
2012; 109
2009; 29
2006; 312
2001; 21
1995; 7
2007; 114
1998; 37
1993; 13
2015; 25
2011; 108
2013; 77
2004; 14
1971; 34
2015; 518
1996; 199
2005; 94
2008; 453
2005; 15
2014; 34
2001; 356
2003; 23
e_1_2_3_73_1
e_1_2_3_50_1
e_1_2_3_92_1
e_1_2_3_16_1
e_1_2_3_39_1
e_1_2_3_4_1
e_1_2_3_12_1
e_1_2_3_35_1
e_1_2_3_58_1
e_1_2_3_8_1
e_1_2_3_31_1
e_1_2_3_77_1
e_1_2_3_54_1
e_1_2_3_96_1
e_1_2_3_62_1
e_1_2_3_81_1
e_1_2_3_28_1
e_1_2_3_24_1
e_1_2_3_47_1
e_1_2_3_89_1
e_1_2_3_20_1
e_1_2_3_66_1
e_1_2_3_43_1
e_1_2_3_85_1
e_1_2_3_72_1
e_1_2_3_95_1
e_1_2_3_91_1
Mizumori SJ (e_1_2_3_53_1) 1993; 13
e_1_2_3_38_1
e_1_2_3_3_1
e_1_2_3_19_1
e_1_2_3_57_1
e_1_2_3_34_1
e_1_2_3_7_1
e_1_2_3_15_1
e_1_2_3_30_1
e_1_2_3_99_1
e_1_2_3_11_1
e_1_2_3_61_1
e_1_2_3_84_1
e_1_2_3_80_1
e_1_2_3_27_1
e_1_2_3_23_1
e_1_2_3_46_1
e_1_2_3_69_1
e_1_2_3_42_1
e_1_2_3_65_1
e_1_2_3_88_1
e_1_2_3_94_1
Ranck JB (e_1_2_3_68_1) 1984; 10
e_1_2_3_71_1
e_1_2_3_90_1
e_1_2_3_2_1
e_1_2_3_6_1
e_1_2_3_18_1
e_1_2_3_56_1
e_1_2_3_14_1
e_1_2_3_37_1
e_1_2_3_79_1
e_1_2_3_52_1
e_1_2_3_98_1
e_1_2_3_10_1
e_1_2_3_33_1
e_1_2_3_75_1
e_1_2_3_83_1
e_1_2_3_60_1
Skaggs WE (e_1_2_3_76_1) 1995; 7
e_1_2_3_49_1
e_1_2_3_45_1
e_1_2_3_26_1
e_1_2_3_41_1
e_1_2_3_87_1
e_1_2_3_22_1
e_1_2_3_64_1
e_1_2_3_51_1
e_1_2_3_70_1
e_1_2_3_93_1
e_1_2_3_5_1
e_1_2_3_17_1
e_1_2_3_9_1
e_1_2_3_13_1
e_1_2_3_59_1
e_1_2_3_78_1
e_1_2_3_36_1
e_1_2_3_55_1
e_1_2_3_74_1
e_1_2_3_97_1
e_1_2_3_32_1
e_1_2_3_40_1
e_1_2_3_82_1
e_1_2_3_29_1
e_1_2_3_25_1
e_1_2_3_48_1
e_1_2_3_67_1
Zugaro MB (e_1_2_3_100_1) 2001; 21
e_1_2_3_21_1
e_1_2_3_44_1
e_1_2_3_63_1
e_1_2_3_86_1
17486102 - Nat Neurosci. 2007 Jun;10(6):682-4
7388617 - Brain Res. 1980 Aug 4;194(2):311-23
11466446 - J Neurosci. 2001 Aug 1;21(15):5740-51
17696288 - Int J Neural Syst. 2007 Aug;17(4):231-40
8366357 - J Neurosci. 1993 Sep;13(9):4015-28
8632799 - Nature. 1996 May 30;381(6581):425-8
20657591 - Nat Neurosci. 2010 Aug;13(8):987-94
17598147 - Hippocampus. 2007;17(9):801-12
5124915 - Brain Res. 1971 Nov;34(1):171-5
18596161 - J Neurosci. 2008 Jul 2;28(27):6858-71
26050036 - Neuron. 2015 Jun 3;86(5):1167-73
12077421 - Science. 2002 Jun 21;296(5576):2243-6
16703944 - Rev Neurosci. 2006;17(1-2):71-97
18450447 - Curr Biol. 2008 May 6;18(9):689-93
18480753 - Nature. 2008 Jun 26;453(7199):1248-52
15143284 - Science. 2004 May 14;304(5673):1021-4
9705005 - Neuropharmacology. 1998 Apr-May;37(4-5):677-87
25632114 - J Neurosci. 2015 Jan 28;35(4):1354-67
21199934 - Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1152-7
9151751 - J Neurosci. 1997 Jun 1;17(11):4349-58
24695724 - J Neurosci. 2014 Apr 2;34(14):5065-79
8576691 - J Exp Biol. 1996 Jan;199(Pt 1):201-9
8876244 - Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11956-61
3612226 - J Neurosci. 1987 Jul;7(7):1951-68
19657030 - J Neurosci. 2009 Aug 5;29(31):9771-7
23045662 - Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17687-92
16420155 - Behav Neurosci. 2005 Dec;119(6):1511-23
17341158 - Annu Rev Neurosci. 2007;30:181-207
16420172 - Behav Neurosci. 2005 Dec;119(6):1682-6
9034858 - Hippocampus. 1996;6(6):720-34
7126325 - Behav Brain Res. 1982 Sep;6(1):57-77
20558720 - Science. 2010 Jun 18;328(5985):1573-6
15857969 - J Neurophysiol. 2005 Sep;94(3):1920-7
9770226 - Philos Trans R Soc Lond B Biol Sci. 1998 Aug 29;353(1373):1333-40
22983210 - Nat Neurosci. 2012 Oct;15(10):1445-53
11571039 - Philos Trans R Soc Lond B Biol Sci. 2001 Sep 29;356(1413):1493-503
11311382 - Trends Neurosci. 2001 May;24(5):289-94
16145693 - Hippocampus. 2005;15(7):853-66
21080407 - Hippocampus. 2012 Feb;22(2):172-87
9733184 - Behav Neurosci. 1998 Aug;112(4):749-61
16624947 - J Neurosci. 2006 Apr 19;26(16):4266-76
7843305 - Exp Brain Res. 1994;101(1):8-23
19812579 - Nat Rev Neurosci. 2009 Nov;10(11):792-802
25730672 - Nat Neurosci. 2015 Apr;18(4):569-75
25913404 - Curr Biol. 2015 May 4;25(9):1176-82
22065409 - Front Behav Neurosci. 2011 Oct 28;5:69
2303851 - J Neurosci. 1990 Feb;10(2):420-35
16675704 - Science. 2006 May 5;312(5774):758-62
23852111 - Nat Neurosci. 2013 Aug;16(8):1077-84
1669293 - Hippocampus. 1991 Apr;1(2):193-205
2303852 - J Neurosci. 1990 Feb;10(2):436-47
7891125 - J Neurosci. 1995 Mar;15(3 Pt 1):1648-59
23222610 - Nature. 2012 Dec 6;492(7427):72-8
658182 - Exp Brain Res. 1978 Apr 14;31(4):573-90
19095945 - Science. 2008 Dec 19;322(5909):1865-8
18215625 - Neuron. 2008 Jan 24;57(2):290-302
23334581 - Nat Neurosci. 2013 Mar;16(3):309-17
24366127 - Philos Trans R Soc Lond B Biol Sci. 2013 Dec 23;369(1635):20120512
1374953 - Trends Neurosci. 1992 Jan;15(1):20-5
21982585 - Trends Neurosci. 2011 Nov;34(11):561-71
16143407 - Behav Brain Res. 2006 Jan 6;166(1):55-70
21527714 - Science. 2011 Apr 29;332(6029):595-9
9787007 - J Neurosci. 1998 Nov 1;18(21):9020-37
21527713 - Science. 2011 Apr 29;332(6029):592-5
10985276 - Hippocampus. 2000;10(4):369-79
19021262 - Hippocampus. 2008;18(12):1270-82
19923286 - J Neurosci. 2009 Nov 18;29(46):14521-33
23312522 - Neuron. 2013 Jan 9;77(1):141-54
25700518 - Science. 2015 Feb 20;347(6224):870-4
11539168 - Adv Neural Inf Process Syst. 1995;7:173-80
14523083 - J Neurosci. 2003 Oct 1;23(26):8827-35
20558721 - Science. 2010 Jun 18;328(5985):1576-80
23852116 - Nat Neurosci. 2013 Aug;16(8):1085-93
9883731 - Neuron. 1998 Dec;21(6):1387-97
24735859 - Curr Biol. 2014 Apr 14;24(8):R330-9
8353611 - Hippocampus. 1993 Jul;3(3):317-30
26387719 - Curr Biol. 2015 Oct 5;25(19):2493-502
11882899 - Nature. 2002 Mar 7;416(6876):90-4
17626218 - J Neurosci. 2007 Jul 11;27(28):7564-77
17500630 - Psychol Rev. 2007 Apr;114(2):340-75
23256159 - Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):378-83
19300446 - Nat Rev Neurosci. 2009 Apr;10(4):272-82
12099481 - Hippocampus. 2002;12(3):291-303
16858394 - Nat Rev Neurosci. 2006 Aug;7(8):663-78
26176924 - Nature. 2015 Jul 23;523(7561):419-24
23434282 - Curr Biol. 2013 Mar 4;23(5):399-405
25673414 - Nature. 2015 Feb 12;518(7538):207-12
15965463 - Nature. 2005 Aug 11;436(7052):801-6
26247860 - Neuron. 2015 Aug 5;87(3):507-20
11425881 - J Neurosci. 2001 Jul 15;21(14):RC154
15098724 - Hippocampus. 2004;14(2):180-92
25892299 - Neuron. 2015 May 6;86(3):827-39
8987829 - J Neurosci. 1996 Dec 15;16(24):8027-40
8604055 - J Neurosci. 1996 Mar 15;16(6):2112-26
22357665 - Cereb Cortex. 2013 Feb;23(2):451-9
9368933 - Philos Trans R Soc Lond B Biol Sci. 1997 Oct 29;352(1360):1449-59
25673417 - Nature. 2015 Feb 12;518(7538):232-5
References_xml – volume: 18
  start-page: 569
  year: 2015
  end-page: 575
  article-title: Internally organized mechanisms of the head direction sense
  publication-title: Nat Neurosci
– volume: 34
  start-page: 171
  year: 1971
  end-page: 175
  article-title: The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely‐moving rat
  publication-title: Brain Res
– volume: 17
  start-page: 4349
  year: 1997
  end-page: 4358
  article-title: Firing properties of head direction cells in the rat anterior thalamic nucleus: dependence on vestibular input
  publication-title: J Neurosci
– volume: 21
  start-page: 1387
  year: 1998
  end-page: 1397
  article-title: Role of the lateral mammillary nucleus in the rat head direction circuit: a combined single unit recording and lesion study
  publication-title: Neuron
– volume: 10
  start-page: 792
  year: 2009
  end-page: 802
  article-title: What does the retrosplenial cortex do?
  publication-title: Nat Rev Neurosci
– volume: 7
  start-page: 1951
  year: 1987
  end-page: 1968
  article-title: The effects of changes in the environment on the spatial firing of hippocampal complex‐spike cells
  publication-title: J Neurosci
– volume: 16
  start-page: 1085
  year: 2013
  end-page: 1093
  article-title: Impaired hippocampal rate coding after lesions of the lateral entorhinal cortex
  publication-title: Nat Neurosci
– volume: 10
  start-page: 272
  year: 2009
  end-page: 282
  article-title: The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network
  publication-title: Nat Rev Neurosci
– volume: 21
  start-page: RC154
  year: 2001
  article-title: Background, but not foreground, spatial cues are taken as references for head direction responses by rat anterodorsal thalamus neurons
  publication-title: J Neurosci
– volume: 18
  start-page: 9020
  year: 1998
  end-page: 9037
  article-title: Firing properties of rat lateral mammillary single units: head direction, head pitch, and angular head velocity
  publication-title: J Neurosci
– volume: 3
  start-page: 317
  year: 1993
  end-page: 330
  article-title: Phase relationship between hippocampal place units and the EEG theta rhythm
  publication-title: Hippocampus
– volume: 23
  start-page: 399
  year: 2013
  end-page: 405
  article-title: Traces of experience in the lateral entorhinal cortex
  publication-title: Curr Biol
– volume: 17
  start-page: 801
  year: 2007
  end-page: 812
  article-title: An oscillatory interference model of grid cell firing
  publication-title: Hippocampus
– volume: 15
  start-page: 1648
  year: 1995
  end-page: 1659
  article-title: Place cells, head direction cells, and the learning of landmark stability
  publication-title: J Neurosci
– volume: 87
  start-page: 507
  year: 2015
  end-page: 520
  article-title: Using grid cells for navigation
  publication-title: Neuron
– volume: 312
  start-page: 758
  year: 2006
  end-page: 762
  article-title: Conjunctive representation of position, direction, and velocity in entorhinal cortex
  publication-title: Science
– volume: 15
  start-page: 20
  year: 1992
  end-page: 25
  article-title: Separate visual pathways for perception and action
  publication-title: Trends Neurosci
– volume: 34
  start-page: 5065
  year: 2014
  end-page: 5079
  article-title: A hybrid oscillatory interference/continuous attractor network model of grid cell firing
  publication-title: J Neurosci
– volume: 37
  start-page: 677
  year: 1998
  end-page: 687
  article-title: Learning of landmark stability and instability by hippocampal place cells
  publication-title: Neuropharmacology
– volume: 30
  start-page: 181
  year: 2007
  end-page: 207
  article-title: The head direction signal: origins and sensory‐motor integration
  publication-title: Annu Rev Neurosci
– volume: 18
  start-page: 1270
  year: 2008
  end-page: 1282
  article-title: Influence of boundary removal on the spatial representations of the medial entorhinal cortex
  publication-title: Hippocampus
– volume: 7
  start-page: 663
  year: 2006
  end-page: 678
  article-title: Path integration and the neural basis of the “cognitive map
  publication-title: Nat Rev Neurosci
– volume: 352
  start-page: 1449
  year: 1997
  end-page: 1459
  article-title: A new view of hemineglect based on the response properties of parietal neurones
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 108
  start-page: 1152
  year: 2011
  end-page: 1157
  article-title: Visual influence on path integration in darkness indicates a multimodal representation of large‐scale space
  publication-title: Proc Natl Acad Sci USA
– volume: 25
  start-page: 1
  year: 2015
  end-page: 7
  article-title: Grid cells form a global representation of connected environments
  publication-title: Curr Biol
– volume: 22
  start-page: 172
  year: 2012
  end-page: 187
  article-title: Control of anterodorsal thalamic head direction cells by environmental boundaries: Comparison with conflicting distal landmarks
  publication-title: Hippocampus
– volume: 31
  start-page: 573
  year: 1978
  end-page: 590
  article-title: Hippocampal place units in the freely moving rat: why they fire where they fire
  publication-title: Exp Brain Res
– volume: 77
  start-page: 141
  year: 2013
  end-page: 154
  article-title: Feedback inhibition enables theta‐nested gamma oscillations and grid firing fields
  publication-title: Neuron
– volume: 23
  start-page: 8827
  year: 2003
  end-page: 8835
  article-title: Heterogeneous modulation of place cell firing by changes in context
  publication-title: J Neurosci
– volume: 29
  start-page: 9771
  year: 2009
  end-page: 9777
  article-title: Boundary vector cells in the subiculum of the hippocampal formation
  publication-title: J Neurosci
– volume: 24
  start-page: R330
  year: 2014
  end-page: R339
  article-title: Neural mechanisms of self‐location
  publication-title: Curr Biol
– volume: 112
  start-page: 749
  year: 1998
  end-page: 761
  article-title: Cue control and head direction cells
  publication-title: Behav Neurosci
– volume: 94
  start-page: 1920
  year: 2005
  end-page: 1927
  article-title: Movement‐related correlates of single‐cell activity in the medial mammillary nucleus of the rat during a pellet‐chasing task
  publication-title: J Neurophysiol
– volume: 15
  start-page: 853
  year: 2005
  end-page: 866
  article-title: Dual phase and rate coding in hippocampal place cells: Theoretical significance and relationship to entorhinal grid cells
  publication-title: Hippocampus
– volume: 381
  start-page: 425
  year: 1996
  end-page: 428
  article-title: Geometric determinants of the place fields of hippocampal neurons
  publication-title: Nature
– volume: 518
  start-page: 232
  year: 2015
  end-page: 235
  article-title: Grid cell symmetry is shaped by environmental geometry
  publication-title: Nature
– volume: 328
  start-page: 1576
  year: 2010
  end-page: 1580
  article-title: Development of the spatial representation system in the rat
  publication-title: Science
– volume: 16
  start-page: 309
  year: 2013
  end-page: 317
  article-title: Grid cells require excitatory drive from the hippocampus
  publication-title: Nat Neurosci
– volume: 16
  start-page: 2112
  year: 1996
  end-page: 2126
  article-title: Representation of spatial orientation by the intrinsic dynamics of the head‐direction cell ensemble: a theory
  publication-title: J Neurosci
– volume: 296
  start-page: 2243
  year: 2002
  end-page: 2246
  article-title: Place cells and place recognition maintained by direct entorhinal‐hippocampal circuitry
  publication-title: Science
– volume: 166
  start-page: 55
  year: 2006
  end-page: 70
  article-title: Movement‐related correlates of single cell activity in the interpeduncular nucleus and habenula of the rat during a pellet‐chasing task
  publication-title: Behav Brain Res
– volume: 5
  start-page: 69
  year: 2011
  article-title: Representation of non‐spatial and spatial information in the lateral entorhinal cortex
  publication-title: Front Behav Neurosci
– volume: 35
  start-page: 1354
  year: 2015
  end-page: 1367
  article-title: Visual landmark information gains control of the head direction signal at the lateral mammillary nuclei
  publication-title: J Neurosci
– volume: 57
  start-page: 290
  year: 2008
  end-page: 302
  article-title: Impaired spatial representation in CA1 after lesion of direct input from entorhinal cortex
  publication-title: Neuron
– volume: 67
  start-page: 566
  year: 1980
  end-page: 567
  article-title: Homing by path integration in a mammal
  publication-title: Naturwissenschaften
– volume: 114
  start-page: 340
  year: 2007
  end-page: 375
  article-title: Remembering the past and imagining the future: A neural model of spatial memory and imagery
  publication-title: Psychol Rev
– volume: 416
  start-page: 90
  year: 2002
  end-page: 94
  article-title: Long‐term plasticity in hippocampal place‐cell representation of environmental geometry
  publication-title: Nature
– volume: 101
  start-page: 8
  year: 1994
  end-page: 23
  article-title: Head‐direction cells in the rat posterior cortex
  publication-title: Exp Brain Res
– volume: 15
  start-page: 1445
  year: 2012
  end-page: 1453
  article-title: Path integration: how the head direction signal maintains and corrects spatial orientation
  publication-title: Nat Neurosci
– volume: 28
  start-page: 6858
  year: 2008
  end-page: 6871
  article-title: What grid cells convey about rat location
  publication-title: J Neurosci
– volume: 7
  start-page: 173
  year: 1995
  end-page: 180
  article-title: A mode of the neural basis of the rat's sense of direction
  publication-title: Adv Neural Inf Process Syst
– volume: 16
  start-page: 8027
  year: 1996
  end-page: 8040
  article-title: Dynamics of mismatch correction in the hippocampal ensemble code for space: interaction between path integration and environmental cues
  publication-title: J Neurosci
– volume: 13
  start-page: 4015
  year: 1993
  end-page: 4028
  article-title: Directionally selective mnemonic properties of neurons in the lateral dorsal nucleus of the thalamus of rats
  publication-title: J Neurosci
– volume: 10
  start-page: 176.12
  year: 1984
  article-title: Head direction cells in the deep cell layer of dorsal presubiculum in freely moving rats
  publication-title: Soc Neurosci Abstr
– volume: 29
  start-page: 14521
  year: 2009
  end-page: 14533
  article-title: Disruption of the head direction cell signal after occlusion of the semicircular canals in the freely moving chin‐chilla
  publication-title: J Neurosci
– volume: 6
  start-page: 57
  year: 1982
  end-page: 77
  article-title: Contribution of striate inputs to the visuospatial functions of parieto‐preoccipital cortex in monkeys
  publication-title: Behav Brain Res
– volume: 347
  start-page: 870
  year: 2015
  end-page: 874
  article-title: Disruption of the head direction cell network impairs the parahippocampal grid cell signal
  publication-title: Science
– volume: 10
  start-page: 436
  year: 1990
  end-page: 447
  article-title: Head‐direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations
  publication-title: J Neurosci
– volume: 21
  start-page: 5740
  year: 2001
  end-page: 5751
  article-title: Neural correlates for angular head velocity in the rat dorsal tegmental nucleus
  publication-title: J Neurosci
– volume: 353
  start-page: 1333
  year: 1998
  end-page: 1340
  article-title: Place cells, navigational accuracy, and the human hippocampus
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 332
  start-page: 592
  year: 2011
  end-page: 595
  article-title: The spatial periodicity of grid cells is not sustained during reduced theta oscillations
  publication-title: Science
– volume: 25
  start-page: 2493
  year: 2015
  end-page: 2502
  article-title: Passive transport disrupts grid signals in the parahippocampal cortex
  publication-title: Curr Biol
– volume: 6
  start-page: 720
  year: 1996
  end-page: 734
  article-title: Neural network modeling of the hippocampal formation spatial signals and their possible role in navigation: a modular approach
  publication-title: Hippocampus
– volume: 16
  start-page: 1077
  year: 2013
  end-page: 1084
  article-title: Specific evidence of low‐dimensional continuous attractor dynamics in grid cells
  publication-title: Nat Neurosci
– volume: 332
  start-page: 595
  year: 2011
  end-page: 599
  article-title: Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning
  publication-title: Science
– volume: 356
  start-page: 1493
  year: 2001
  end-page: 1503
  article-title: Memory for events and their spatial context: models and experiments
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 1
  start-page: 193
  year: 1991
  end-page: 205
  article-title: Experience‐dependent modifications of hippocampal place cell firing
  publication-title: Hippocampus
– volume: 322
  start-page: 1865
  year: 2008
  end-page: 1868
  article-title: Representation of geometric borders in the entorhinal cortex
  publication-title: Science
– volume: 304
  start-page: 1021
  year: 2004
  end-page: 1024
  article-title: Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity
  publication-title: Science
– volume: 119
  start-page: 1682
  year: 2005
  end-page: 1686
  article-title: Selective dysgranular retrosplenial cortex lesions in rats disrupt allocentric performance of the radial‐arm maze task
  publication-title: Behav Neurosci
– volume: 194
  start-page: 311
  year: 1980
  end-page: 323
  article-title: Spatial correlates of hippocampal unit activity are altered by lesions of the fornix and entorhinal cortex
  publication-title: Brain Res
– volume: 453
  start-page: 1248
  year: 2008
  end-page: 1252
  article-title: Hippocampus‐independent phase precession in entorhinal grid cells
  publication-title: Nature
– volume: 523
  start-page: 419
  year: 2015
  end-page: 424
  article-title: Speed cells in the medial entorhinal cortex
  publication-title: Nature
– volume: 27
  start-page: 7564
  year: 2007
  end-page: 7577
  article-title: Lesions of the tegmentomammillary circuit in the head direction system disrupt the head direction signal in the anterior thalamus
  publication-title: J Neurosci
– volume: 492
  start-page: 72
  year: 2012
  end-page: 78
  article-title: The entorhinal grid map is discretized
  publication-title: Nature
– volume: 10
  start-page: 420
  year: 1990
  end-page: 435
  article-title: Head‐direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis
  publication-title: J Neurosci
– volume: 18
  start-page: 689
  year: 2008
  end-page: 693
  article-title: Development of cue integration in human navigation
  publication-title: Curr Biol
– volume: 518
  start-page: 207
  year: 2015
  end-page: 212
  article-title: Shearing‐induced asymmetry in entorhinal grid cells
  publication-title: Nature
– volume: 23
  start-page: 451
  year: 2013
  end-page: 459
  article-title: Distinct roles of medial and lateral entorhinal cortex in spatial cognition
  publication-title: Cereb Cortex
– volume: 436
  start-page: 801
  year: 2005
  end-page: 806
  article-title: Microstructure of a spatial map in the entorhinal cortex
  publication-title: Nature
– volume: 24
  start-page: 289
  year: 2001
  end-page: 294
  article-title: The anatomical and computational basis of the rat head‐direction cell signal
  publication-title: Trends Neurosci
– volume: 10
  start-page: 369
  year: 2000
  end-page: 379
  article-title: Modeling place fields in terms of the cortical inputs to the hippocampus
  publication-title: Hippocampus
– volume: 12
  start-page: 291
  year: 2002
  end-page: 303
  article-title: Hippocampal spatial representations require vestibular input
  publication-title: Hippocampus
– volume: 17
  start-page: 71
  year: 2006
  end-page: 97
  article-title: The boundary vector cell model of place cell firing and spatial memory
  publication-title: Rev Neurosci
– volume: 109
  start-page: 17687
  year: 2012
  end-page: 17692
  article-title: Grid cell firing patterns signal environmental novelty by expansion
  publication-title: Proc Natl Acad Sci USA
– volume: 13
  start-page: 987
  year: 2010
  end-page: 994
  article-title: Grid cells in pre‐ and parasubiculum
  publication-title: Nat Neurosci
– volume: 93
  start-page: 11956
  year: 1996
  end-page: 11961
  article-title: A model of multiplicative neural responses in parietal cortex
  publication-title: Proc Natl Acad Sci USA
– volume: 110
  start-page: 378
  year: 2013
  end-page: 383
  article-title: How vision and movement combine in the hippocampal place code
  publication-title: Proc Natl Acad Sci USA
– volume: 14
  start-page: 180
  year: 2004
  end-page: 192
  article-title: Path integration in mammals
  publication-title: Hippocampus
– volume: 119
  start-page: 1511
  year: 2005
  end-page: 1523
  article-title: The formation of cognitive maps of adjacent environments: evidence from the head direction cell system
  publication-title: Behav Neurosci
– volume: 34
  start-page: 561
  year: 2011
  end-page: 571
  article-title: Origins of landmark encoding in the brain
  publication-title: Trends Neurosci
– volume: 26
  start-page: 4266
  year: 2006
  end-page: 4276
  article-title: A spin glass model of path integration in rat medial entorhinal cortex
  publication-title: J Neurosci
– volume: 369
  start-page: 20120512
  year: 2013
  article-title: Weighted cue integration in the rodent head direction system
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 17
  start-page: 231
  year: 2007
  end-page: 240
  article-title: A model of grid cells based on a twisted torus topology
  publication-title: Int J Neural Syst
– volume: 86
  start-page: 1
  year: 2015
  end-page: 13
  article-title: Environmental boundaries as an error correction mechanism for grid cells
  publication-title: Neuron
– volume: 86
  start-page: 1167
  year: 2015
  end-page: 1173
  article-title: A developmental switch in place cell accuracy coincides with grid cell maturation
  publication-title: Neuron
– volume: 10
  start-page: 682
  year: 2007
  end-page: 684
  article-title: Experience‐dependent rescaling of entorhinal grids
  publication-title: Nat Neurosci
– volume: 328
  start-page: 1573
  year: 2010
  end-page: 1576
  article-title: Development of the hippocampal cognitive map in preweanling rats
  publication-title: Science
– volume: 199
  start-page: 201
  year: 1996
  end-page: 209
  article-title: Path integration in mammals and its interaction with visual landmarks
  publication-title: J Exp Biol
– ident: e_1_2_3_77_1
  doi: 10.1126/science.1166466
– ident: e_1_2_3_32_1
  doi: 10.1037/0735-7044.112.4.749
– ident: e_1_2_3_26_1
  doi: 10.3389/fnbeh.2011.00069
– ident: e_1_2_3_33_1
  doi: 10.1523/JNEUROSCI.16-24-08027.1996
– ident: e_1_2_3_12_1
  doi: 10.1002/hipo.450010207
– ident: e_1_2_3_39_1
  doi: 10.1016/S0028-3908(98)00053-7
– ident: e_1_2_3_85_1
  doi: 10.1523/JNEUROSCI.10-02-00420.1990
– ident: e_1_2_3_91_1
  doi: 10.1037/0735-7044.119.6.1682
– ident: e_1_2_3_31_1
  doi: 10.1016/0166-2236(92)90344-8
– ident: e_1_2_3_25_1
  doi: 10.1037/0735-7044.119.6.1511
– ident: e_1_2_3_62_1
  doi: 10.1007/BF00239813
– ident: e_1_2_3_69_1
  doi: 10.1073/pnas.93.21.11956
– ident: e_1_2_3_95_1
  doi: 10.1016/j.cub.2015.08.034
– ident: e_1_2_3_51_1
  doi: 10.1016/0166-4328(82)90081-X
– ident: e_1_2_3_34_1
  doi: 10.1142/S0129065707001093
– ident: e_1_2_3_43_1
  doi: 10.1038/nature14622
– volume: 21
  start-page: RC154
  year: 2001
  ident: e_1_2_3_100_1
  article-title: Background, but not foreground, spatial cues are taken as references for head direction responses by rat anterodorsal thalamus neurons
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.21-14-j0001.2001
– ident: e_1_2_3_28_1
  doi: 10.1242/jeb.199.1.201
– ident: e_1_2_3_47_1
  doi: 10.1038/416090a
– ident: e_1_2_3_48_1
  doi: 10.1126/science.1096615
– ident: e_1_2_3_24_1
  doi: 10.1002/hipo.20880
– ident: e_1_2_3_38_1
  doi: 10.1002/1098-1063(2000)10:4<369::AID-HIPO3>3.0.CO;2-0
– ident: e_1_2_3_44_1
  doi: 10.1038/nature14153
– ident: e_1_2_3_7_1
  doi: 10.1523/JNEUROSCI.21-15-05740.2001
– ident: e_1_2_3_19_1
  doi: 10.1523/JNEUROSCI.4017-13.2014
– ident: e_1_2_3_52_1
  doi: 10.1007/BF00450672
– ident: e_1_2_3_2_1
  doi: 10.1523/JNEUROSCI.23-26-08827.2003
– ident: e_1_2_3_16_1
  doi: 10.1002/hipo.20327
– ident: e_1_2_3_50_1
  doi: 10.1038/nrn1932
– ident: e_1_2_3_40_1
  doi: 10.1523/JNEUROSCI.15-03-01648.1995
– ident: e_1_2_3_73_1
  doi: 10.1016/S0166-2236(00)01797-5
– ident: e_1_2_3_9_1
  doi: 10.1016/S0896-6273(00)80657-1
– ident: e_1_2_3_20_1
  doi: 10.1037/0033-295X.114.2.340
– ident: e_1_2_3_90_1
  doi: 10.1038/nrn2733
– ident: e_1_2_3_64_1
  doi: 10.1002/hipo.450030307
– ident: e_1_2_3_41_1
  doi: 10.1098/rstb.2012.0512
– ident: e_1_2_3_66_1
  doi: 10.1038/nn.3968
– ident: e_1_2_3_79_1
  doi: 10.1523/JNEUROSCI.18-21-09020.1998
– ident: e_1_2_3_3_1
  doi: 10.1016/j.cub.2014.02.049
– ident: e_1_2_3_56_1
  doi: 10.1523/JNEUROSCI.07-07-01951.1987
– ident: e_1_2_3_55_1
  doi: 10.1523/JNEUROSCI.3450-09.2009
– ident: e_1_2_3_70_1
  doi: 10.1126/science.1125572
– ident: e_1_2_3_74_1
  doi: 10.1152/jn.00194.2005
– ident: e_1_2_3_35_1
  doi: 10.1038/nature03721
– ident: e_1_2_3_54_1
  doi: 10.1016/j.neuron.2015.05.011
– ident: e_1_2_3_89_1
  doi: 10.1093/cercor/bhs033
– ident: e_1_2_3_30_1
  doi: 10.1523/JNEUROSCI.4353-05.2006
– ident: e_1_2_3_42_1
  doi: 10.1126/science.1201685
– ident: e_1_2_3_5_1
  doi: 10.1038/nn1905
– ident: e_1_2_3_49_1
  doi: 10.1038/nn.3462
– ident: e_1_2_3_10_1
  doi: 10.1038/nn.2602
– ident: e_1_2_3_65_1
  doi: 10.1016/j.neuron.2012.11.032
– ident: e_1_2_3_15_1
  doi: 10.1126/science.1071089
– ident: e_1_2_3_63_1
  doi: 10.1016/0006-8993(71)90358-1
– ident: e_1_2_3_96_1
  doi: 10.1016/j.tins.2011.08.004
– ident: e_1_2_3_93_1
  doi: 10.1126/science.1188224
– volume: 7
  start-page: 173
  year: 1995
  ident: e_1_2_3_76_1
  article-title: A mode of the neural basis of the rat's sense of direction
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_3_72_1
  doi: 10.1002/(SICI)1098-1063(1996)6:6<720::AID-HIPO14>3.0.CO;2-2
– ident: e_1_2_3_75_1
  doi: 10.1016/j.bbr.2005.07.004
– ident: e_1_2_3_92_1
  doi: 10.1038/nrn2614
– ident: e_1_2_3_61_1
  doi: 10.1098/rstb.1998.0287
– ident: e_1_2_3_36_1
  doi: 10.1038/nature06957
– ident: e_1_2_3_57_1
  doi: 10.1016/0006-8993(80)91214-7
– ident: e_1_2_3_17_1
  doi: 10.1098/rstb.2001.0948
– ident: e_1_2_3_81_1
  doi: 10.1038/nature11649
– ident: e_1_2_3_99_1
  doi: 10.1523/JNEUROSCI.16-06-02112.1996
– ident: e_1_2_3_29_1
  doi: 10.1523/JNEUROSCI.5684-07.2008
– ident: e_1_2_3_84_1
  doi: 10.1523/JNEUROSCI.10-02-00436.1990
– ident: e_1_2_3_21_1
  doi: 10.1016/j.cub.2015.02.037
– volume: 10
  start-page: 176.12
  year: 1984
  ident: e_1_2_3_68_1
  article-title: Head direction cells in the deep cell layer of dorsal presubiculum in freely moving rats
  publication-title: Soc Neurosci Abstr
– ident: e_1_2_3_13_1
  doi: 10.1126/science.1201652
– ident: e_1_2_3_58_1
  doi: 10.1016/j.cub.2008.04.021
– ident: e_1_2_3_86_1
  doi: 10.1073/pnas.1011843108
– ident: e_1_2_3_27_1
  doi: 10.1002/hipo.10173
– ident: e_1_2_3_94_1
  doi: 10.1126/science.1259591
– ident: e_1_2_3_4_1
  doi: 10.1073/pnas.1209918109
– ident: e_1_2_3_88_1
  doi: 10.1038/nn.3215
– ident: e_1_2_3_59_1
  doi: 10.1038/381425a0
– ident: e_1_2_3_14_1
  doi: 10.1016/j.neuron.2007.11.034
– ident: e_1_2_3_82_1
  doi: 10.1038/nature14151
– ident: e_1_2_3_18_1
  doi: 10.1016/j.neuron.2015.07.006
– ident: e_1_2_3_23_1
  doi: 10.1007/BF00243212
– ident: e_1_2_3_98_1
  doi: 10.1038/nn.3450
– ident: e_1_2_3_8_1
  doi: 10.1523/JNEUROSCI.0268-07.2007
– volume: 13
  start-page: 4015
  year: 1993
  ident: e_1_2_3_53_1
  article-title: Directionally selective mnemonic properties of neurons in the lateral dorsal nucleus of the thalamus of rats
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.13-09-04015.1993
– ident: e_1_2_3_97_1
  doi: 10.1523/JNEUROSCI.1418-14.2015
– ident: e_1_2_3_80_1
  doi: 10.1002/hipo.1112
– ident: e_1_2_3_45_1
  doi: 10.1126/science.1188210
– ident: e_1_2_3_71_1
  doi: 10.1002/hipo.20511
– ident: e_1_2_3_6_1
  doi: 10.1515/REVNEURO.2006.17.1-2.71
– ident: e_1_2_3_83_1
  doi: 10.1146/annurev.neuro.29.051605.112854
– ident: e_1_2_3_78_1
  doi: 10.1523/JNEUROSCI.17-11-04349.1997
– ident: e_1_2_3_67_1
  doi: 10.1098/rstb.1997.0131
– ident: e_1_2_3_11_1
  doi: 10.1038/nn.3311
– ident: e_1_2_3_46_1
  doi: 10.1523/JNEUROSCI.1319-09.2009
– ident: e_1_2_3_87_1
  doi: 10.1016/j.cub.2013.01.036
– ident: e_1_2_3_37_1
  doi: 10.1016/j.neuron.2015.03.039
– ident: e_1_2_3_60_1
  doi: 10.1002/hipo.20115
– ident: e_1_2_3_22_1
  doi: 10.1073/pnas.1215834110
– reference: 8632799 - Nature. 1996 May 30;381(6581):425-8
– reference: 2303852 - J Neurosci. 1990 Feb;10(2):436-47
– reference: 16703944 - Rev Neurosci. 2006;17(1-2):71-97
– reference: 23256159 - Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):378-83
– reference: 16624947 - J Neurosci. 2006 Apr 19;26(16):4266-76
– reference: 15098724 - Hippocampus. 2004;14(2):180-92
– reference: 8353611 - Hippocampus. 1993 Jul;3(3):317-30
– reference: 17696288 - Int J Neural Syst. 2007 Aug;17(4):231-40
– reference: 20558721 - Science. 2010 Jun 18;328(5985):1576-80
– reference: 7891125 - J Neurosci. 1995 Mar;15(3 Pt 1):1648-59
– reference: 21527714 - Science. 2011 Apr 29;332(6029):595-9
– reference: 11539168 - Adv Neural Inf Process Syst. 1995;7:173-80
– reference: 23334581 - Nat Neurosci. 2013 Mar;16(3):309-17
– reference: 18480753 - Nature. 2008 Jun 26;453(7199):1248-52
– reference: 12077421 - Science. 2002 Jun 21;296(5576):2243-6
– reference: 24695724 - J Neurosci. 2014 Apr 2;34(14):5065-79
– reference: 8576691 - J Exp Biol. 1996 Jan;199(Pt 1):201-9
– reference: 5124915 - Brain Res. 1971 Nov;34(1):171-5
– reference: 12099481 - Hippocampus. 2002;12(3):291-303
– reference: 16145693 - Hippocampus. 2005;15(7):853-66
– reference: 10985276 - Hippocampus. 2000;10(4):369-79
– reference: 19095945 - Science. 2008 Dec 19;322(5909):1865-8
– reference: 8604055 - J Neurosci. 1996 Mar 15;16(6):2112-26
– reference: 23222610 - Nature. 2012 Dec 6;492(7427):72-8
– reference: 22983210 - Nat Neurosci. 2012 Oct;15(10):1445-53
– reference: 25632114 - J Neurosci. 2015 Jan 28;35(4):1354-67
– reference: 21199934 - Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1152-7
– reference: 24366127 - Philos Trans R Soc Lond B Biol Sci. 2013 Dec 23;369(1635):20120512
– reference: 11882899 - Nature. 2002 Mar 7;416(6876):90-4
– reference: 16858394 - Nat Rev Neurosci. 2006 Aug;7(8):663-78
– reference: 20558720 - Science. 2010 Jun 18;328(5985):1573-6
– reference: 18596161 - J Neurosci. 2008 Jul 2;28(27):6858-71
– reference: 1669293 - Hippocampus. 1991 Apr;1(2):193-205
– reference: 11571039 - Philos Trans R Soc Lond B Biol Sci. 2001 Sep 29;356(1413):1493-503
– reference: 16420172 - Behav Neurosci. 2005 Dec;119(6):1682-6
– reference: 23852111 - Nat Neurosci. 2013 Aug;16(8):1077-84
– reference: 15143284 - Science. 2004 May 14;304(5673):1021-4
– reference: 25673417 - Nature. 2015 Feb 12;518(7538):232-5
– reference: 20657591 - Nat Neurosci. 2010 Aug;13(8):987-94
– reference: 17626218 - J Neurosci. 2007 Jul 11;27(28):7564-77
– reference: 8876244 - Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11956-61
– reference: 7843305 - Exp Brain Res. 1994;101(1):8-23
– reference: 23434282 - Curr Biol. 2013 Mar 4;23(5):399-405
– reference: 8366357 - J Neurosci. 1993 Sep;13(9):4015-28
– reference: 2303851 - J Neurosci. 1990 Feb;10(2):420-35
– reference: 16143407 - Behav Brain Res. 2006 Jan 6;166(1):55-70
– reference: 19923286 - J Neurosci. 2009 Nov 18;29(46):14521-33
– reference: 14523083 - J Neurosci. 2003 Oct 1;23(26):8827-35
– reference: 15965463 - Nature. 2005 Aug 11;436(7052):801-6
– reference: 9151751 - J Neurosci. 1997 Jun 1;17(11):4349-58
– reference: 23312522 - Neuron. 2013 Jan 9;77(1):141-54
– reference: 3612226 - J Neurosci. 1987 Jul;7(7):1951-68
– reference: 18215625 - Neuron. 2008 Jan 24;57(2):290-302
– reference: 22065409 - Front Behav Neurosci. 2011 Oct 28;5:69
– reference: 18450447 - Curr Biol. 2008 May 6;18(9):689-93
– reference: 25700518 - Science. 2015 Feb 20;347(6224):870-4
– reference: 21080407 - Hippocampus. 2012 Feb;22(2):172-87
– reference: 7126325 - Behav Brain Res. 1982 Sep;6(1):57-77
– reference: 19657030 - J Neurosci. 2009 Aug 5;29(31):9771-7
– reference: 8987829 - J Neurosci. 1996 Dec 15;16(24):8027-40
– reference: 26387719 - Curr Biol. 2015 Oct 5;25(19):2493-502
– reference: 11311382 - Trends Neurosci. 2001 May;24(5):289-94
– reference: 7388617 - Brain Res. 1980 Aug 4;194(2):311-23
– reference: 26050036 - Neuron. 2015 Jun 3;86(5):1167-73
– reference: 19021262 - Hippocampus. 2008;18(12):1270-82
– reference: 25913404 - Curr Biol. 2015 May 4;25(9):1176-82
– reference: 658182 - Exp Brain Res. 1978 Apr 14;31(4):573-90
– reference: 17341158 - Annu Rev Neurosci. 2007;30:181-207
– reference: 19812579 - Nat Rev Neurosci. 2009 Nov;10(11):792-802
– reference: 9883731 - Neuron. 1998 Dec;21(6):1387-97
– reference: 22357665 - Cereb Cortex. 2013 Feb;23(2):451-9
– reference: 17486102 - Nat Neurosci. 2007 Jun;10(6):682-4
– reference: 9705005 - Neuropharmacology. 1998 Apr-May;37(4-5):677-87
– reference: 11466446 - J Neurosci. 2001 Aug 1;21(15):5740-51
– reference: 26176924 - Nature. 2015 Jul 23;523(7561):419-24
– reference: 17598147 - Hippocampus. 2007;17(9):801-12
– reference: 15857969 - J Neurophysiol. 2005 Sep;94(3):1920-7
– reference: 21982585 - Trends Neurosci. 2011 Nov;34(11):561-71
– reference: 9034858 - Hippocampus. 1996;6(6):720-34
– reference: 11425881 - J Neurosci. 2001 Jul 15;21(14):RC154
– reference: 25673414 - Nature. 2015 Feb 12;518(7538):207-12
– reference: 9787007 - J Neurosci. 1998 Nov 1;18(21):9020-37
– reference: 9733184 - Behav Neurosci. 1998 Aug;112(4):749-61
– reference: 23045662 - Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17687-92
– reference: 9770226 - Philos Trans R Soc Lond B Biol Sci. 1998 Aug 29;353(1373):1333-40
– reference: 26247860 - Neuron. 2015 Aug 5;87(3):507-20
– reference: 1374953 - Trends Neurosci. 1992 Jan;15(1):20-5
– reference: 9368933 - Philos Trans R Soc Lond B Biol Sci. 1997 Oct 29;352(1360):1449-59
– reference: 16420155 - Behav Neurosci. 2005 Dec;119(6):1511-23
– reference: 23852116 - Nat Neurosci. 2013 Aug;16(8):1085-93
– reference: 16675704 - Science. 2006 May 5;312(5774):758-62
– reference: 17500630 - Psychol Rev. 2007 Apr;114(2):340-75
– reference: 24735859 - Curr Biol. 2014 Apr 14;24(8):R330-9
– reference: 25892299 - Neuron. 2015 May 6;86(3):827-39
– reference: 19300446 - Nat Rev Neurosci. 2009 Apr;10(4):272-82
– reference: 21527713 - Science. 2011 Apr 29;332(6029):592-5
– reference: 25730672 - Nat Neurosci. 2015 Apr;18(4):569-75
SSID ssj0013099
Score 2.3979917
SecondaryResourceType review_article
Snippet Estimates of location or orientation can be constructed solely from sensory information representing environmental cues. In unfamiliar or sensory‐poor...
Estimates of location or orientation can be constructed solely from sensory information representing environmental cues. In unfamiliar or sensory-poor...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6535
SubjectTerms Animals
Cognitive and Behavioural Neuroscience
Environment
Head - physiology
Humans
Models, Neurological
Motion
Neurons - physiology
Orientation - physiology
Space Perception - physiology
Symposium Review
Symposium section reviews: Neural circuits for spatial computation
Title How environment and self‐motion combine in neural representations of space
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP270666
https://www.ncbi.nlm.nih.gov/pubmed/26607203
https://www.proquest.com/docview/1845495308
https://www.proquest.com/docview/1826634953
https://www.proquest.com/docview/1850769073
https://pubmed.ncbi.nlm.nih.gov/PMC5108893
Volume 594
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0013099
  issn: 0022-3751
  databaseCode: DIK
  dateStart: 18780101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0013099
  issn: 0022-3751
  databaseCode: GX1
  dateStart: 18780101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: Open Access: PubMed Central
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0013099
  issn: 0022-3751
  databaseCode: RPM
  dateStart: 18780101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0022-3751
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1469-7793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013099
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELZQT71AaflJaZEjoXDa4l2v195jhaiiCFCFWikSh5XttdWqrVM1iRCceASekSfpjPeHhgCqOHu8ttee8Tee8WdCXikjwJP1PoG9gCW5KXOwg5lJlGcWHWyjYzLmh4_F-DSfTMW0zarEuzANP0R_4IaaEe01Krg27SskKZINTI4zieAbzG_KRYzQfsp-BRBYWfZE4VKkLe8sVH3TVVzdidbg5XqW5F30Grefo0fkc9fxJuvk4mC5MAf222-cjv83si3ysEWl9LBZRo_JAxe2yc5hAI_86isd0ZgnGg_gd8j78ewLvXM_jupQ07m79D-__2jeBKLQIDjcjp4HinyZ8OXIndndcwpzOvMUTJl1T8jp0buTt-OkfZMhsbCN8QTZXKwR2jPlDfOlhDkVTmcqTQ1MrqrTWtVc45mA515KzqVGl0rbQjHnPX9KNsIsuOeEMq-s8LWWpc5zr2RZZgLgq04LsDHGqgF53c1PZVvCcnw347JqHBdedT9qQIa95HVD0vEHmb1uiqtWTecVuLcCE2wZNDbsi0HBMGqig5stUQYwDEepf8kArMZzBpB51qyaviNQm2Gse0DkynrqBZDge7UknJ9Fom-wlwrw5ICM4nL569iqk8lxUSq-e1_BF2QTgF-BdypTsUc2FjdLtw_gamFeRjW6BcdQH4I
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoALr_JYKOBKqJxSkjiOHXGqgGpZtlWFtlIPSJGd2GrV4kXsrlB74ifwG_klzDgPuhQQ4uxxbMee8Tfj8WeAZ8oI9GSdi3AviKPMFBnawdREysUVOdhGh2TM3b18eJCNDsXhCrzs7sI0_BB9wI00I9hrUnAKSLdaTmwDo_1UEvq-AlfpeI608vX79OcRQlwUPVW4FEnLPIt1X3Q1l_eiSwDzcp7kRfwaNqCdm_Ch63qTd3KytZibrer8F1bH_xzbLbjRAlO23ayk27Bi_R1Y2_bolH88Y5sspIqGGPwajIfTL-zCFTmmfc1m9tR9__qteRaIYYvoc1t27BlRZuKXA31md9XJz9jUMbRmlb0LBztvJq-GUfssQ1ThTsYjInSpjNAuVs7ErpA4rcLqVCWJwflVdVKrmmsKCzjupORcavKqdJWr2DrH78Gqn3r7AFjsVCVcrWWhs8wpWRSpQASrkxzNjKnUAJ53E1RWLWc5PZ1xWja-Cy-7HzWAjV7yU8PT8RuZ9W6Oy1ZTZyV6uIJybGNsbKMvRh2jgxPt7XRBMghjOEn9TQaRNYUaUOZ-s2z6jmDtmI67ByCXFlQvQBzfyyX--ChwfaPJVAgpB7AZ1ssfx1ZORvt5ofjDfxV8CteGk91xOX679-4RXEccmNMVy0Ssw-r888I-Rqw1N0-CTv0Apocjng
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fbxQhECdaE-NLrVbtaVWamPq0lV2WhX1sqpfzrM3FtEkTHzbAQmysXOPdxeiTH8HP2E_SGfaPPavG-MywwMIMvxmGH4Q8U0aAJ-t9AnsBS3JT5mAHM5Mozyw62EbHZMy3B8XoKB8fi-M2qxLvwjT8EH3ADTUj2mtU8LPat0qOZAPjSSYRfF8nN_ICnCsERO-ynycIrCx7pnAp0pZ4Fuq-6Goub0VX8OXVNMnL8DXuP8Pb5H3X8ybt5OPOYm527LdfSB3_b2hrZLWFpXS3WUd3yDUX7pL13QAu-aevdJvGRNEYgV8n-6PpF3rpghzVoaYzd-rPv_9oHgWi0CB43I6eBIqEmfDlSJ7ZXXQKMzr1FGyZdffI0fDV4d4oaR9lSCzsYzxBOhdrhPZMecN8KWFShdOZSlMDs6vqtFY11xgU8NxLybnU6FNpWyjmvOf3yUqYBrdBKPPKCl9rWeo890qWZSYAv-q0ACNjrBqQ5938VLZlLMeHM06rxnPhVfejBmSrlzxrWDp-I7PZTXHV6umsAv9WYIYtg8a2-mLQMDw20cFNFygDIIaj1N9kAFdjoAFkHjSrpu8I1GZ42D0gcmk99QLI8L1cEk4-RKZvMJgKAOWAbMfl8sexVYfjSVEq_vBfBZ-Sm5OXw2r_9cGbR-QWgMAC71emYpOszD8v3GMAWnPzJGrUBSUJIk0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+environment+and+self-motion+combine+in+neural+representations+of+space&rft.jtitle=The+Journal+of+physiology&rft.au=Evans%2C+Talfan&rft.au=Bicanski%2C+Andrej&rft.au=Bush%2C+Daniel&rft.au=Burgess%2C+Neil&rft.date=2016-11-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=594&rft.issue=22&rft.spage=6535&rft_id=info:doi/10.1113%2FJP270666&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4268838321
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon