Survey of machine learning methods for detecting false data injection attacks in power systems

Over the last decade, the number of cyber attacks targeting power systems and causing physical and economic damages has increased rapidly. Among them, false data injection attacks (FDIAs) are a class of cyber-attacks against power grid monitoring systems. Adversaries can successfully perform FDIAs t...

Full description

Saved in:
Bibliographic Details
Published inIET Smart Grid Vol. 3; no. 5; pp. 581 - 595
Main Authors Sayghe, Ali, Hu, Yaodan, Zografopoulos, Ioannis, Liu, XiaoRui, Dutta, Raj Gautam, Jin, Yier, Konstantinou, Charalambos
Format Journal Article
LanguageEnglish
Published Durham The Institution of Engineering and Technology 01.10.2020
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text
ISSN2515-2947
2515-2947
DOI10.1049/iet-stg.2020.0015

Cover

Abstract Over the last decade, the number of cyber attacks targeting power systems and causing physical and economic damages has increased rapidly. Among them, false data injection attacks (FDIAs) are a class of cyber-attacks against power grid monitoring systems. Adversaries can successfully perform FDIAs to manipulate the power system state estimation (SE) by compromising sensors or modifying system data. SE is an essential process performed by the energy management system towards estimating unknown state variables based on system redundant measurements and network topology. SE routines include bad data detection algorithms to eliminate errors from the acquired measurements, e.g. in case of sensor failures. FDIAs can bypass BDD modules to inject malicious data vectors into a subset of measurements without being detected, and thus manipulate the results of the SE process. To overcome the limitations of traditional residual-based BDD approaches, data-driven solutions based on machine learning algorithms have been widely adopted for detecting malicious manipulation of sensor data due to their fast execution times and accurate results. This study provides a comprehensive review of the most up-to-date machine learning methods for detecting FDIAs against power system SE algorithms.
AbstractList Over the last decade, the number of cyber attacks targeting power systems and causing physical and economic damages has increased rapidly. Among them, false data injection attacks (FDIAs) are a class of cyber‐attacks against power grid monitoring systems. Adversaries can successfully perform FDIAs to manipulate the power system state estimation (SE) by compromising sensors or modifying system data. SE is an essential process performed by the energy management system towards estimating unknown state variables based on system redundant measurements and network topology. SE routines include bad data detection algorithms to eliminate errors from the acquired measurements, e.g. in case of sensor failures. FDIAs can bypass BDD modules to inject malicious data vectors into a subset of measurements without being detected, and thus manipulate the results of the SE process. To overcome the limitations of traditional residual‐based BDD approaches, data‐driven solutions based on machine learning algorithms have been widely adopted for detecting malicious manipulation of sensor data due to their fast execution times and accurate results. This study provides a comprehensive review of the most up‐to‐date machine learning methods for detecting FDIAs against power system SE algorithms.
Author Zografopoulos, Ioannis
Jin, Yier
Liu, XiaoRui
Hu, Yaodan
Sayghe, Ali
Dutta, Raj Gautam
Konstantinou, Charalambos
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0000-0003-2145-1671
  surname: Sayghe
  fullname: Sayghe, Ali
  organization: 1FAMU-FSU College of Engineering, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, USA
– sequence: 2
  givenname: Yaodan
  surname: Hu
  fullname: Hu, Yaodan
  organization: 2Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
– sequence: 3
  givenname: Ioannis
  surname: Zografopoulos
  fullname: Zografopoulos, Ioannis
  organization: 1FAMU-FSU College of Engineering, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, USA
– sequence: 4
  givenname: XiaoRui
  surname: Liu
  fullname: Liu, XiaoRui
  organization: 1FAMU-FSU College of Engineering, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, USA
– sequence: 5
  givenname: Raj Gautam
  surname: Dutta
  fullname: Dutta, Raj Gautam
  organization: 2Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
– sequence: 6
  givenname: Yier
  surname: Jin
  fullname: Jin, Yier
  organization: 2Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
– sequence: 7
  givenname: Charalambos
  orcidid: 0000-0002-3825-3930
  surname: Konstantinou
  fullname: Konstantinou, Charalambos
  email: ckonstantinou@ieee.org
  organization: 1FAMU-FSU College of Engineering, Center for Advanced Power Systems, Florida State University, Tallahassee, FL, USA
BookMark eNqNkE9v1DAQxSNUJErpB-BmiXMWe2zHa25Q0VKpEoeWK9bEsbdesvFie7vKtydpUIWQ-HPy6On9nmfey-pkiIOrqteMrhgV-m1wpc5lswIKdEUpk8-qU5BM1qCFOvllflGd5xxayoGpRik4rb7eHtKDG0n0ZIf2PgyO9A7TEIYN2blyH7tMfEykc8XZMqse--xIhwVJGLazGAeCpaD9lieF7OPRJZLHXNwuv6qeP_rPf75n1ZfLj3cXn-qbz1fXF-9vaisUg9rimtN143XL0DVMCLH2rdXobWtBCGw4uK6VDBRYpYFKuaZaaEVBKtnIlp9V10tuF3Fr9insMI0mYjCPQkwbg6kE2zvDfdMqLxvaURC8Y4jMS81liwJBop6yYMk6DHscj9j3T4GMmrlwMxVupsLNXLiZC5-gNwu0T_H7weVitvGQhulmw6kGDpyv-eRSi8ummHNy3thQcG6wJAz9X_PZb-T_7PRuYY6hd-O_AXN7dwUfLqexgQmuF3i2Pd3y589-AOYsxvE
CitedBy_id crossref_primary_10_1016_j_epsr_2024_111259
crossref_primary_10_1109_TII_2024_3393005
crossref_primary_10_1109_TNNLS_2021_3106383
crossref_primary_10_1109_ACCESS_2021_3064689
crossref_primary_10_1109_MNET_140_2200512
crossref_primary_10_3390_su14116407
crossref_primary_10_1109_ACCESS_2021_3124270
crossref_primary_10_1016_j_lmot_2023_101895
crossref_primary_10_1109_ACCESS_2023_3348549
crossref_primary_10_1109_TPWRS_2023_3234202
crossref_primary_10_3390_electronics10060650
crossref_primary_10_1109_ACCESS_2022_3157941
crossref_primary_10_1109_TSG_2021_3117977
crossref_primary_10_1109_TTE_2024_3355094
crossref_primary_10_1109_JIOT_2021_3079916
crossref_primary_10_1155_2021_4312842
crossref_primary_10_1109_ACCESS_2021_3058403
crossref_primary_10_1109_ACCESS_2023_3331314
crossref_primary_10_1049_rpg2_12334
crossref_primary_10_3390_drones8060253
crossref_primary_10_1109_TSG_2023_3339975
crossref_primary_10_3390_info15080439
crossref_primary_10_1007_s11761_022_00349_1
crossref_primary_10_1016_j_ijepes_2022_108807
crossref_primary_10_1016_j_compeleceng_2023_108638
crossref_primary_10_1371_journal_pone_0301472
crossref_primary_10_1109_TIA_2023_3308548
crossref_primary_10_1109_TCYB_2023_3337891
crossref_primary_10_1109_ACCESS_2023_3263547
crossref_primary_10_1109_OJCS_2022_3199755
crossref_primary_10_1016_j_engappai_2024_108785
crossref_primary_10_1016_j_energy_2023_129920
crossref_primary_10_3390_su15065071
crossref_primary_10_3390_en16052288
crossref_primary_10_1049_rpg2_70016
crossref_primary_10_1155_2022_4485168
crossref_primary_10_1016_j_eswa_2023_120030
crossref_primary_10_1016_j_future_2022_10_021
crossref_primary_10_3390_s21072478
crossref_primary_10_1061__ASCE_ST_1943_541X_0003392
crossref_primary_10_1109_JIOT_2024_3416527
crossref_primary_10_1109_TSG_2023_3343100
crossref_primary_10_1016_j_ijepes_2022_108612
crossref_primary_10_1016_j_scs_2023_104475
crossref_primary_10_1109_ACCESS_2024_3425270
crossref_primary_10_32604_cmc_2023_036422
crossref_primary_10_3390_app13126938
crossref_primary_10_1016_j_cose_2022_102953
crossref_primary_10_1109_OAJPE_2024_3493757
crossref_primary_10_1109_TSG_2023_3237011
crossref_primary_10_1109_OAJPE_2024_3524268
crossref_primary_10_1016_j_cose_2024_103761
crossref_primary_10_1016_j_ijepes_2022_108815
crossref_primary_10_1080_08839514_2024_2376983
crossref_primary_10_3390_electronics13163239
crossref_primary_10_1016_j_cosrev_2024_100617
crossref_primary_10_1016_j_ecmx_2024_100715
crossref_primary_10_1049_gtd2_12929
crossref_primary_10_1109_ACCESS_2024_3477714
crossref_primary_10_1155_2022_5390176
crossref_primary_10_3390_en16165972
crossref_primary_10_1109_JIOT_2024_3436520
crossref_primary_10_1016_j_scs_2021_103116
crossref_primary_10_1049_rpg2_12432
crossref_primary_10_1016_j_ijepes_2022_108389
crossref_primary_10_1109_TII_2021_3082079
crossref_primary_10_3390_electronics10020151
crossref_primary_10_3390_en16062855
crossref_primary_10_1016_j_rineng_2024_103884
crossref_primary_10_1109_ACCESS_2024_3518494
crossref_primary_10_1007_s42979_021_00719_0
crossref_primary_10_3390_su14052520
crossref_primary_10_1109_TII_2021_3102332
crossref_primary_10_1109_TSG_2022_3203404
crossref_primary_10_3390_fractalfract8090506
crossref_primary_10_1016_j_segan_2024_101364
crossref_primary_10_1016_j_comnet_2024_110776
crossref_primary_10_1109_TFUZZ_2022_3193805
crossref_primary_10_1142_S2424922X21410023
Cites_doi 10.1109/TSG.2014.2382714
10.1109/ISGT-Asia.2012.6303199
10.1109/PESGM.2018.8586334
10.1109/GLOCOM.2018.8647324
10.1109/TAC.2014.2351625
10.1007/978-3-030-00024-0_14
10.1109/TPWRS.2011.2175255
10.1016/B978-0-12-816946-9.00005-0
10.1109/TSG.2011.2123925
10.1109/TSG.2016.2550218
10.1109/ISGT.2017.8085999
10.1109/TSG.2015.2509945
10.1109/TSG.2018.2813280
10.1109/SMARTGRID.2010.5622048
10.1109/PESGM41954.2020.9281719
10.1109/TSG.2014.2374577
10.1109/TII.2018.2875529
10.1109/ISGT45199.2020.9087789
10.1016/j.eswa.2008.09.054
10.1109/PESGM.2017.8273918
10.1016/j.neuron.2017.06.011
10.1109/PTC.2019.8810568
10.1007/978-3-319-93677-2
10.1109/ICC.2016.7510610
10.1109/TSG.2013.2294966
10.1109/CMI.2016.7413793
10.1109/ICDCS.2014.72
10.1007/s40565-018-0432-2
10.1109/TSG.2017.2703842
10.1109/SMARTGRID.2010.5622045
10.3390/en12071327
10.1109/IWCMC.2018.8450487
10.1109/SmartGridComm.2019.8909713
10.14257/ijdta.2015.8.1.18
10.1109/JPROC.2011.2109671
10.1109/TPAS.1985.318945
10.1109/TSG.2016.2561266
10.1109/TII.2017.2656905
10.1016/j.eswa.2017.05.013
10.1145/212094.212114
10.1109/TASLP.2014.2303296
10.1023/A:1022627411411
10.1109/IJCNN.2016.7727361
10.1109/PSCE.2009.4840192
10.1109/PESGM.2014.6939474
10.1109/LSP.2015.2421935
10.1049/ip-gtd:20020645
10.1109/CCECE.2019.8861919
10.1109/TIFS.2017.2676721
10.1016/j.jisa.2020.102518
10.1109/TSG.2015.2495133
10.1109/ISVLSI49217.2020.00086
10.1109/SmartGridComm.2018.8587547
10.1109/TPWRS.2016.2635156
10.1109/TSG.2015.2394358
10.1109/TSG.2015.2388545
10.3390/en12112209
10.3182/20110828-6-IT-1002.02210
10.1109/SMARTGRID.2010.5622046
10.1016/j.ijepes.2018.11.013
10.1109/CDC.2011.6160456
10.1109/TSG.2011.2161892
10.1109/TSG.2011.2159818
10.1109/TPAMI.2011.108
10.1080/00107514.2014.964942
10.1109/TII.2017.2720726
10.1109/ICPST.2008.4745312
10.1109/SURV.2012.062612.00056
10.1109/JPROC.2015.2512235
10.1109/TSG.2011.2119336
10.1109/TSG.2019.2949998
10.1109/TPWRS.2013.2281323
10.1109/TII.2016.2614396
10.1109/TPWRS.2012.2212921
10.1109/TSG.2011.2163829
10.1109/59.336098
10.1109/CAC.2018.8623514
10.1109/JSYST.2014.2341597
10.1002/9781118548387
10.1007/s11431-019-9544-7
10.1109/78.258082
10.1109/ICCNC.2014.6785297
10.1109/PGSRET.2018.8685944
10.1109/TSG.2012.2195338
10.1109/TIT.2009.2016060
10.1109/IranianCEE.2017.7985192
10.1109/TSG.2013.2284438
10.1109/TSTE.2017.2782090
10.1162/neco.1997.9.8.1735
10.1049/iet-cps.2017.0013
10.1049/iet-gtd.2010.0210
10.1109/TSP.2014.2385670
10.1109/TPWRS.2006.881149
10.1109/TPWRS.2012.2226480
10.1109/5.824004
10.1109/CISS.2010.5464816
10.1109/TPWRS.2018.2826980
10.1109/TSG.2011.2163807
10.1145/1952982.1952995
10.1049/iet-cps.2017.0033
10.1007/s40565-018-0413-5
10.1109/TII.2018.2825243
10.1093/nsr/nwx106
10.1109/ISGT.2018.8403355
10.1109/T-PAS.1975.31858
10.1109/TPAS.1983.318053
10.1109/ICCPS.2012.26
10.1080/00031305.1992.10475879
10.1007/978-1-84996-098-4_7
10.1109/TII.2016.2626782
10.1016/j.bdr.2015.04.001
10.1109/TPWRS.2018.2831453
10.1109/SmartGridComm.2011.6102326
10.4236/jcc.2018.611025
10.4249/scholarpedia.5947
10.1109/ACCESS.2019.2904959
10.1109/GLOCOM.2012.6503599
10.1109/TPWRS.2011.2145396
10.1109/JIOT.2020.2991693
10.1093/es/khi123
10.1109/TII.2019.2924246
10.1109/TPAS.1971.292925
10.1109/TNNLS.2015.2404803
ContentType Journal Article
Copyright 2020 IET Smart Grid published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 IET Smart Grid published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
– notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID IDLOA
24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.1049/iet-stg.2020.0015
DatabaseName IET Digital Library Open Access
Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList


CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: IDLOA
  name: IET Digital Library Open Access
  url: https://digital-library.theiet.org/content/collections
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2515-2947
EndPage 595
ExternalDocumentID oai_doaj_org_article_3f6b7f560d0243d1aa1f5935ba4a25a9
10.1049/iet-stg.2020.0015
10_1049_iet_stg_2020_0015
STG2BF00162
Genre reviewArticle
GroupedDBID 24P
AAJGR
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BFFAM
EBS
EJD
GROUPED_DOAJ
IDLOA
OCL
OK1
RIE
RUI
0R~
1OC
AAHHS
AAHJG
ABJCF
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
HCIFZ
IAO
IGS
ITC
K7-
M7S
M~E
PIMPY
PTHSS
ROL
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
ICD
PHGZM
PHGZT
PQGLB
WIN
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c4712-ca83086f9b1ae614448fbc9afcbc244a632edb51272c7920558094970257565b3
IEDL.DBID IDLOA
ISSN 2515-2947
IngestDate Fri Oct 03 12:51:14 EDT 2025
Sun Oct 26 04:06:23 EDT 2025
Wed Aug 13 06:31:14 EDT 2025
Wed Oct 29 21:17:30 EDT 2025
Thu Apr 24 23:00:11 EDT 2025
Wed Jan 22 16:32:22 EST 2025
Tue Jan 05 21:45:15 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords energy management system
system redundant measurements
power system measurement
sensor data
cyber-attacks
binary decision diagrams
data-driven solutions
power grid monitoring systems
power grids
learning (artificial intelligence)
machine learning algorithms
false data injection attacks
cyber attacks
data detection algorithms
power system state estimation
unknown state variables
power engineering computing
power system security
security of data
energy management systems
malicious data vectors
FDIA
power systems
system data
power system SE algorithms
Language English
License Attribution-NonCommercial-NoDerivs
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4712-ca83086f9b1ae614448fbc9afcbc244a632edb51272c7920558094970257565b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2145-1671
0000-0002-3825-3930
OpenAccessLink http://digital-library.theiet.org/content/journals/10.1049/iet-stg.2020.0015
PQID 3092323383
PQPubID 6853481
PageCount 15
ParticipantIDs iet_journals_10_1049_iet_stg_2020_0015
proquest_journals_3092323383
unpaywall_primary_10_1049_iet_stg_2020_0015
crossref_citationtrail_10_1049_iet_stg_2020_0015
crossref_primary_10_1049_iet_stg_2020_0015
wiley_primary_10_1049_iet_stg_2020_0015_STG2BF00162
doaj_primary_oai_doaj_org_article_3f6b7f560d0243d1aa1f5935ba4a25a9
ProviderPackageCode IDLOA
RUI
PublicationCentury 2000
PublicationDate 20201000
October 2020
2020-10-00
20201001
2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 20201000
PublicationDecade 2020
PublicationPlace Durham
PublicationPlace_xml – name: Durham
PublicationTitle IET Smart Grid
PublicationYear 2020
Publisher The Institution of Engineering and Technology
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: The Institution of Engineering and Technology
– name: John Wiley & Sons, Inc
– name: Wiley
References Mohammadpourfard, M.; Sami, A.; Weng, Y. (C101) 2017; 9
Konstantinou, C.; Maniatakos, M. (C122) 2019
Monticelli, A. (C44) 2000; 88
Aboelwafa, M.M.N.; Seddik, K.G.; Eldefrawy, M.H. (C128) 2020; 7
Baran, M.E.; Kelley, A.W. (C38) 1994; 9
Valverde, G.; Terzija, V. (C40) 2011; 5
Van Cutsem, T.; Ribbens-Pavella, M.; Mili, L. (C54) 1985; PAS-104
Haughton, D.A.; Heydt, G.T. (C41) 2012; 28
Zhang, M.; Shen, C.; He, N. (C14) 2019; 62
Liang, X.; Xiao, Y. (C94) 2012; 15
Sarikaya, R.; Hinton, G.E.; Deoras, A. (C129) 2014; 22
Soares, T.M.; Bezerra, U.H.; Tostes, M.E.d.L. (C35) 2019; 12
Zhao, J.; Zhang, G.; La Scala, M. (C51) 2016; 13
Wei, L.; Sarwat, A.I.; Saad, W. (C83) 2018; 9
Stephen, I. (C112) 1990; 50
Cortes, C.; Vapnik, V. (C113) 1995; 20
Chen, W.; Ma, C.; Ma, L. (C134) 2009; 36
Musleh, A.S.; Chen, G.; Dong, Z.Y. (C13) 2020; 11
Liu, L.; Esmalifalak, M.; Ding, Q. (C18) 2014; 5
Basumallik, S.; Ma, R.; Eftekharnejad, S. (C106) 2019; 107
Li, S.; Ylmaz, Y.; Wang, X. (C24) 2015; 6
Xie, L.; Mo, Y.; Sinopoli, B. (C75) 2011; 2
Altman, N.S. (C114) 1992; 46
Teng, J.-H. (C42) 2002; 149
Zhou, Z.-H. (C132) 2018; 5
Hug, G.; Giampapa, J.A. (C58) 2012; 3
Konstantinou, C.; Sazos, M.; Musleh, A.S. (C93) 2017; 2
Anderson, R.N.; Boulanger, A.; Powell, W.B. (C29) 2011; 99
Bi, S.; Zhang, Y.J. (C79) 2014; 5
Ansari, M.H.; Vakili, V.T.; Bahrak, B. (C92) 2018; 6
Cramer, J.S. (C118) 2002; 4
McLaughlin, S.; Konstantinou, C.; Wang, X. (C2) 2016; 104
Schuld, M.; Sinayskiy, I.; Petruccione, F. (C96) 2015; 56
Wang, Q.; Kulkarni, S.R.; Verdú, S. (C116) 2009; 55
Yang, C.; Wang, Y.; Zhou, Y. (C102) 2018; 6
Sanjab, A.; Saad, W. (C86) 2016; 7
Foroutan, S.A.; Salmasi, F.R. (C99) 2017; 2
Chen, J.; Abur, A. (C81) 2006; 21
Li, B.; Ding, T.; Huang, C. (C20) 2019; 15
Hassabis, D.; Kumaran, D.; Summerfield, C. (C123) 2017; 95
Deng, R.; Xiao, G.; Lu, R. (C59) 2016; 13
Hochreiter, S.; Schmidhuber, J. (C126) 1997; 9
Ozay, M.; Esnaola, I.; Vural, F.T.Y. (C31) 2016; 27
Kim, J.; Tong, L.; Thomas, R.J. (C67) 2015; 63
Al-Jarrah, O.Y.; Yoo, P.D.; Muhaidat, S. (C138) 2015; 2
Chaojun, G.; Jirutitijaroen, P.; Motani, M. (C19) 2015; 6
Dietterich, T. (C139) 1995; 27
Deng, R.; Zhuang, P.; Liang, H. (C61) 2018; 10
Živković, N.; Sarić, A.T. (C21) 2018; 6
Ma, C.Y.; Yau, D.K.; Lou, X. (C84) 2013; 28
Singh, S.K.; Khanna, K.; Bose, R. (C26) 2018; 14
Zhao, J.; Mili, L. (C27) 2018; 33
Rawat, D.B.; Bajracharya, C. (C25) 2015; 22
Hinton, G.E. (C127) 2009; 4
Nayak, J.; Naik, B.; Behera, H. (C133) 2015; 8
Hendrickx, J.M.; Johansson, K.H.; Jungers, R.M. (C121) 2014; 59
Kosut, O.; Jia, L.; Thomas, R.J. (C78) 2011; 2
Rudin, C.; Waltz, D.; Anderson, R.N. (C30) 2012; 34
Monticelli, A.; Garcia, A. (C10) 1983; PAS-102
Wang, S.; Gao, W.; Meliopoulos, A.P.S. (C39) 2012; 27
Handschin, E.; Schweppe, F.C.; Kohlas, J. (C50) 1975; 94
Aoufi, S.; Derhab, A.; Guerroumi, M. (C15) 2020; 54
Mohammadpourfard, M.; Sami, A.; Seifi, A.R. (C103) 2017; 84
James, J.; Hou, Y.; Li, V.O. (C107) 2018; 14
Chapelle, O.; Sindhwani, V.; Keerthi, S.S. (C119) 2008; 9
Liu, Y.; Ning, P.; Reiter, M.K. (C12) 2011; 14
Ghahremani, E.; Kamwa, I. (C37) 2011; 26
Lin, Y.; Abur, A. (C52) 2018; 33
Singh, A.K.; Pal, B.C. (C36) 2014; 29
Teixeira, A.; Dán, G.; Sandberg, H. (C57) 2011; 44
Choeum, D.; Choi, D.-H. (C60) 2019; 7
Kim, T.T.; Poor, H.V. (C82) 2011; 2
Kline, R.R.; Lassman, T.C. (C1) 2005; 6
Yuan, Y.; Li, Z.; Ren, K. (C70) 2011; 2
Beg, O.A.; Johnson, T.T.; Davoudi, A. (C130) 2017; 13
Majumdar, A.; Pal, B.C. (C16) 2016; 9
Esmalifalak, M.; Liu, L.; Nguyen, N. (C97) 2017; 11
Ganjkhani, M.; Fallah, S.N.; Badakhshan, S. (C104) 2019; 12
Liu, X.; Bao, Z.; Lu, D. (C69) 2015; 6
Mishra, S.; Li, X.; Pan, T. (C80) 2017; 8
Tan, R.; Nguyen, H.H.; Foo, E.Y. (C131) 2017; 12
He, Y.; Mendis, G.J.; Wei, J. (C108) 2017; 8
Merrill, H.M.; Schweppe, F.C. (C49) 1971; PAS-90
Yu, Z.-H.; Chin, W.-L. (C68) 2015; 6
Wang, C.; Hou, Y.; Ten, C.-W. (C85) 2017; 32
Zhang, Y.; Wang, L.; Sun, W. (C28) 2011; 2
Liang, G.; Zhao, J.; Luo, F. (C71) 2017; 8
Hahn, A.; Govindarasu, M. (C3) 2011; 2
Anubi, O.M.; Konstantinou, C. (C76) 2020; 16
2017; 84
2017; 8
1983; PAS‐102
2017; 2
2013; 28
2019; 12
2000; 88
2019; 15
2008; 9
2020; 16
2011; 99
2016; 104
2020; 11
2014; 29
2011; 14
2020; 54
2012; 15
1975; 94
2017; 9
1997; 9
2014; 22
1995; 20
2018; 6
2009; 55
2020; 7
2018; 9
2014; 5
2019; 62
2018; 5
1995; 27
2006; 21
2017; 32
2013; 398
2014; 59
2002; 149
1992; 46
2012; 28
2011; 26
2012; 27
1985; PAS‐104
2018; 33
1990; 50
2015; 2
2019; 7
2015; 56
1971; PAS‐90
2015; 6
2011; 2
2010; 2010
2012
2011
2010
2009
1998
2008
2002; 4
1993
2019; 107
2012; 34
2015; 8
2011; 5
2016; 13
1994; 9
2017; 95
2009; 36
2016; 7
2012; 3
2020
2017; 11
2015; 63
2015; 22
2017; 13
2017; 12
2019
2018
2011; 44
2005; 6
2017
2016
2014
2009; 4
2016; 27
2018; 10
1969
2016; 9
2018; 14
e_1_2_9_52_2
e_1_2_9_98_2
e_1_2_9_71_2
e_1_2_9_10_2
e_1_2_9_33_2
e_1_2_9_56_2
e_1_2_9_94_2
Konstantinou C. (e_1_2_9_123_2) 2019
e_1_2_9_75_2
e_1_2_9_90_2
e_1_2_9_107_2
e_1_2_9_126_2
e_1_2_9_122_2
e_1_2_9_103_2
e_1_2_9_14_2
e_1_2_9_37_2
Cramer J.S. (e_1_2_9_119_2) 2002; 4
e_1_2_9_141_2
e_1_2_9_18_2
e_1_2_9_79_2
e_1_2_9_41_2
e_1_2_9_87_2
e_1_2_9_60_2
e_1_2_9_45_2
e_1_2_9_83_2
e_1_2_9_22_2
e_1_2_9_64_2
e_1_2_9_6_2
e_1_2_9_2_2
e_1_2_9_111_2
e_1_2_9_138_2
e_1_2_9_115_2
e_1_2_9_134_2
e_1_2_9_49_2
e_1_2_9_130_2
e_1_2_9_26_2
e_1_2_9_68_2
e_1_2_9_30_2
e_1_2_9_72_2
e_1_2_9_99_2
e_1_2_9_34_2
e_1_2_9_76_2
e_1_2_9_95_2
e_1_2_9_11_2
e_1_2_9_53_2
e_1_2_9_91_2
e_1_2_9_129_2
e_1_2_9_102_2
e_1_2_9_125_2
e_1_2_9_106_2
e_1_2_9_121_2
e_1_2_9_38_2
e_1_2_9_140_2
e_1_2_9_15_2
e_1_2_9_57_2
e_1_2_9_19_2
Stephen I. (e_1_2_9_113_2) 1990; 50
e_1_2_9_61_2
e_1_2_9_88_2
e_1_2_9_23_2
e_1_2_9_42_2
e_1_2_9_65_2
e_1_2_9_84_2
e_1_2_9_5_2
e_1_2_9_80_2
e_1_2_9_118_2
e_1_2_9_137_2
e_1_2_9_110_2
e_1_2_9_133_2
e_1_2_9_9_2
e_1_2_9_114_2
e_1_2_9_27_2
e_1_2_9_46_2
e_1_2_9_69_2
e_1_2_9_73_2
e_1_2_9_50_2
e_1_2_9_77_2
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_54_2
e_1_2_9_96_2
e_1_2_9_109_2
e_1_2_9_92_2
e_1_2_9_101_2
e_1_2_9_128_2
e_1_2_9_105_2
e_1_2_9_124_2
e_1_2_9_16_2
e_1_2_9_35_2
e_1_2_9_58_2
e_1_2_9_39_2
e_1_2_9_62_2
e_1_2_9_89_2
e_1_2_9_20_2
e_1_2_9_66_2
e_1_2_9_43_2
e_1_2_9_85_2
e_1_2_9_4_2
e_1_2_9_81_2
e_1_2_9_136_2
e_1_2_9_117_2
e_1_2_9_132_2
e_1_2_9_8_2
e_1_2_9_24_2
e_1_2_9_28_2
e_1_2_9_51_2
e_1_2_9_74_2
e_1_2_9_97_2
Majumdar A. (e_1_2_9_17_2) 2016; 9
e_1_2_9_78_2
e_1_2_9_93_2
e_1_2_9_55_2
e_1_2_9_32_2
e_1_2_9_108_2
e_1_2_9_70_2
e_1_2_9_100_2
e_1_2_9_127_2
e_1_2_9_104_2
e_1_2_9_13_2
e_1_2_9_59_2
e_1_2_9_36_2
e_1_2_9_142_2
e_1_2_9_40_2
e_1_2_9_63_2
e_1_2_9_86_2
e_1_2_9_21_2
e_1_2_9_44_2
e_1_2_9_67_2
e_1_2_9_82_2
e_1_2_9_7_2
Monticelli A. (e_1_2_9_47_2) 2012
e_1_2_9_3_2
e_1_2_9_112_2
e_1_2_9_139_2
e_1_2_9_116_2
e_1_2_9_135_2
e_1_2_9_25_2
e_1_2_9_48_2
e_1_2_9_131_2
e_1_2_9_29_2
Chapelle O. (e_1_2_9_120_2) 2008; 9
References_xml – volume: 149
  start-page: 667
  issue: 6
  year: 2002
  end-page: 672
  ident: C42
  article-title: Using voltage measurements to improve the results of branch-current-based state estimators for distribution systems
  publication-title: IEE Proc. Gener. Transm. Distrib.
– volume: 6
  start-page: 1219
  issue: 3
  year: 2015
  end-page: 1226
  ident: C68
  article-title: Blind false data injection attack using PCA approximation method in smart grid
  publication-title: IEEE Trans. Smart Grid
– volume: 28
  start-page: 1676
  issue: 2
  year: 2013
  end-page: 1686
  ident: C84
  article-title: Markov game analysis for attack-defense of power networks under possible misinformation
  publication-title: IEEE Trans. Power Syst.
– volume: 34
  start-page: 328
  issue: 2
  year: 2012
  ident: C30
  article-title: Machine learning for the New York City power grid
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 2
  start-page: 161
  issue: 4
  year: 2017
  end-page: 171
  ident: C99
  article-title: Detection of false data injection attacks against state estimation in smart grids based on a mixture Gaussian distribution learning method
  publication-title: IET Cyber-Phys. Syst., Theory Appl.
– volume: 4
  year: 2002
  ident: C118
  article-title: The origins of logistic regression
  publication-title: IEEE Trans. Autom. Control
– volume: 13
  start-page: 2693
  issue: 5
  year: 2017
  end-page: 2703
  ident: C130
  article-title: Detection of false-data injection attacks in cyber-physical dc microgrids
  publication-title: IEEE Trans. Ind. Inf.
– volume: 15
  start-page: 472
  issue: 1
  year: 2012
  end-page: 486
  ident: C94
  article-title: Game theory for network security
  publication-title: IEEE Commun. Surv. Tutorials
– volume: 54
  start-page: 102518
  year: 2020
  ident: C15
  article-title: Survey of false data injection in smart power grid: attacks, countermeasures and challenges
  publication-title: J. Inf. Secur. Appl.
– volume: 8
  start-page: 2505
  issue: 5
  year: 2017
  end-page: 2516
  ident: C108
  article-title: Real-time detection of false data injection attacks in smart grid: a deep learning-based intelligent mechanism
  publication-title: IEEE Trans. Smart Grid
– volume: 36
  start-page: 7611
  issue: 4
  year: 2009
  end-page: 7616
  ident: C134
  article-title: Mining the customer credit using hybrid support vector machine technique
  publication-title: Expert Syst. Appl.
– volume: 5
  start-page: 44
  issue: 1
  year: 2018
  end-page: 53
  ident: C132
  article-title: A brief introduction to weakly supervised learning
  publication-title: Nat. Sci. Rev.
– volume: 13
  start-page: 411
  issue: 2
  year: 2016
  end-page: 423
  ident: C59
  article-title: False data injection on state estimation in power systems – attacks, impacts, and defense: A survey
  publication-title: IEEE Trans. Ind. Inf.
– volume: 10
  start-page: 2871
  issue: 3
  year: 2018
  end-page: 2881
  ident: C61
  article-title: False data injection attacks against state estimation in power distribution systems
  publication-title: IEEE Trans. Smart Grid
– volume: 6
  start-page: 860
  issue: 5
  year: 2018
  end-page: 871
  ident: C92
  article-title: Graph theoretical defense mechanisms against false data injection attacks in smart grids
  publication-title: J. Mod. Power Syst. Clean Energy
– volume: 9
  start-page: 2042
  issue: 3
  year: 2016
  end-page: 2054
  ident: C16
  article-title: Bad data detection in the context of leverage point attacks in modern power networks
  publication-title: IEEE Trans. Smart Grid
– volume: 6
  start-page: 847
  issue: 5
  year: 2018
  end-page: 859
  ident: C21
  article-title: Detection of false data injection attacks using unscented Kalman filter
  publication-title: J. Mod. Power Syst. Clean Energy
– volume: 8
  start-page: 1630
  issue: 4
  year: 2017
  end-page: 1638
  ident: C71
  article-title: A review of false data injection attacks against modern power systems
  publication-title: IEEE Trans. Smart Grid
– volume: 95
  start-page: 245
  issue: 2
  year: 2017
  end-page: 258
  ident: C123
  article-title: Neuroscience-inspired artificial intelligence
  publication-title: Neuron
– volume: 33
  start-page: 5979
  issue: 6
  year: 2018
  end-page: 5989
  ident: C52
  article-title: A highly efficient bad data identification approach for very large scale power systems
  publication-title: IEEE Trans. Power Syst.
– volume: 104
  start-page: 1039
  issue: 5
  year: 2016
  end-page: 1057
  ident: C2
  article-title: The cybersecurity landscape in industrial control systems
  publication-title: Proc. IEEE
– volume: 14
  start-page: 13
  issue: 1
  year: 2011
  ident: C12
  article-title: False data injection attacks against state estimation in electric power grids
  publication-title: ACM Trans. Inf. Syst. Secur.
– volume: 88
  start-page: 262
  issue: 2
  year: 2000
  end-page: 282
  ident: C44
  article-title: Electric power system state estimation
  publication-title: Proc. IEEE
– volume: 6
  start-page: 276
  issue: 11
  year: 2018
  end-page: 286
  ident: C102
  article-title: False data injection attacks detection in power system using machine learning method
  publication-title: J. Comput. Commun.
– volume: 15
  start-page: 2892
  issue: 5
  year: 2019
  end-page: 2904
  ident: C20
  article-title: Detecting false data injection attacks against power system state estimation with fast godecomposition (godec) approach
  publication-title: IEEE Trans. Ind. Inf.
– volume: 12
  start-page: 1327
  issue: 7
  year: 2019
  ident: C35
  article-title: Full-observable three-phase state estimation algorithm applied to electric distribution grids
  publication-title: Energies
– volume: PAS-90
  start-page: 2718
  issue: 6
  year: 1971
  end-page: 2725
  ident: C49
  article-title: Bad data suppression in power system static state estimation
  publication-title: IEEE Trans. Power Appar. Syst.
– volume: 13
  start-page: 1610
  issue: 4
  year: 2016
  end-page: 1619
  ident: C51
  article-title: Enhanced robustness of state estimator to bad data processing through multi-innovation analysis
  publication-title: IEEE Trans. Ind. Inf.
– volume: 2
  start-page: 180
  issue: 4
  year: 2017
  end-page: 187
  ident: C93
  article-title: GPS spoofing effect on phase angle monitoring and control in a real-time digital simulator-based hardware-in-the-loop environment
  publication-title: IET Cyber-Phys. Syst., Theory Appl.
– volume: 5
  start-page: 29
  issue: 1
  year: 2011
  end-page: 37
  ident: C40
  article-title: Unscented Kalman filter for power system dynamic state estimation
  publication-title: IET Gener. Transm. Distrib.
– volume: PAS-104
  start-page: 3037
  issue: 11
  year: 1985
  end-page: 3049
  ident: C54
  article-title: Bad data identification methods in power system state estimation–a comparative study
  publication-title: IEEE Trans. Power Appar. Syst.
– volume: 7
  start-page: 2038
  issue: 4
  year: 2016
  end-page: 2049
  ident: C86
  article-title: Data injection attacks on smart grids with multiple adversaries: a game-theoretic perspective
  publication-title: IEEE Trans. Smart Grid
– volume: 27
  start-page: 942
  issue: 2
  year: 2012
  end-page: 950
  ident: C39
  article-title: An alternative method for power system dynamic state estimation based on unscented transform
  publication-title: IEEE Trans. Power Syst.
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  ident: C126
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 22
  start-page: 1652
  issue: 10
  year: 2015
  end-page: 1656
  ident: C25
  article-title: Detection of false data injection attacks in smart grid communication systems
  publication-title: IEEE Signal Process. Lett.
– volume: 107
  start-page: 690
  year: 2019
  end-page: 702
  ident: C106
  article-title: Packet-data anomaly detection in PMU-based state estimator using convolutional neural network
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 63
  start-page: 1102
  issue: 5
  year: 2015
  end-page: 1114
  ident: C67
  article-title: Subspace methods for data attack on state estimation: a data driven approach
  publication-title: IEEE Trans. Signal Process.
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  ident: C113
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 11
  start-page: 2218
  issue: 3
  year: 2020
  end-page: 2234
  ident: C13
  article-title: A survey on the detection algorithms for false data injection attacks in smart grids
  publication-title: IEEE Trans. Smart Grid
– volume: 22
  start-page: 778
  issue: 4
  year: 2014
  end-page: 784
  ident: C129
  article-title: Application of deep belief networks for natural language understanding
  publication-title: IEEE/ACM Trans. Audio Speech, Lang. Process.
– volume: 29
  start-page: 794
  issue: 2
  year: 2014
  end-page: 804
  ident: C36
  article-title: Decentralized dynamic state estimation in power systems using unscented transformation
  publication-title: IEEE Trans. Power Syst.
– volume: 2
  start-page: 87
  issue: 3
  year: 2015
  end-page: 93
  ident: C138
  article-title: Efficient machine learning for big data: a review
  publication-title: Big Data Res.
– volume: 62
  start-page: 2077
  year: 2019
  end-page: 2087
  ident: C14
  article-title: False data injection attacks against smart gird state estimation: construction, detection and defense
  publication-title: Sci. China Technol. Sci.
– volume: 5
  start-page: 612
  issue: 2
  year: 2014
  end-page: 621
  ident: C18
  article-title: Detecting false data injection attacks on power grid by sparse optimization
  publication-title: IEEE Trans. Smart Grid
– volume: 12
  start-page: 1609
  issue: 7
  year: 2017
  end-page: 1624
  ident: C131
  article-title: Modeling and mitigating impact of false data injection attacks on automatic generation control
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: 2
  start-page: 835
  issue: 4
  year: 2011
  end-page: 843
  ident: C3
  article-title: Cyber attack exposure evaluation framework for the smart grid
  publication-title: IEEE Trans. Smart Grid
– volume: 27
  start-page: 1773
  issue: 8
  year: 2016
  end-page: 1786
  ident: C31
  article-title: Machine learning methods for attack detection in the smart grid
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 11
  start-page: 1644
  issue: 3
  year: 2017
  end-page: 1652
  ident: C97
  article-title: Detecting stealthy false data injection using machine learning in smart grid
  publication-title: IEEE Syst. J.
– volume: 99
  start-page: 1098
  issue: 6
  year: 2011
  end-page: 1115
  ident: C29
  article-title: Adaptive stochastic control for the smart grid
  publication-title: Proc. IEEE
– volume: 7
  start-page: 34508
  year: 2019
  end-page: 34520
  ident: C60
  article-title: OLTC-induced false data injection attack on volt/VAR optimization in distribution systems
  publication-title: IEEE Access
– volume: 2
  start-page: 659
  issue: 4
  year: 2011
  end-page: 666
  ident: C75
  article-title: Integrity data attacks in power market operations
  publication-title: IEEE Trans. Smart Grid
– volume: 9
  start-page: 1349
  issue: 3
  year: 2017
  end-page: 1364
  ident: C101
  article-title: Identification of false data injection attacks with considering the impact of wind generation and topology reconfigurations
  publication-title: IEEE Trans. Sustain. Energy
– volume: 8
  start-page: 169
  issue: 1
  year: 2015
  end-page: 186
  ident: C133
  article-title: A comprehensive survey on support vector machine in data mining tasks: applications & challenges
  publication-title: Int. J. Database Theory Appl.
– volume: 16
  start-page: 639
  issue: 1
  year: 2020
  end-page: 647
  ident: C76
  article-title: Enhanced resilient state estimation using data-driven auxiliary models
  publication-title: IEEE Trans. Ind. Inf.
– volume: 21
  start-page: 1608
  issue: 4
  year: 2006
  end-page: 1615
  ident: C81
  article-title: Placement of PMUs to enable bad data detection in state estimation
  publication-title: IEEE Trans. Power Syst.
– volume: 55
  start-page: 2392
  issue: 5
  year: 2009
  end-page: 2405
  ident: C116
  article-title: Divergence estimation for multidimensional densities via k-nearest-neighbor distances
  publication-title: IEEE Trans. Inf. Theory
– volume: 6
  start-page: 2476
  issue: 5
  year: 2015
  end-page: 2483
  ident: C19
  article-title: Detecting false data injection attacks in ac state estimation
  publication-title: IEEE Trans. Smart Grid
– volume: 50
  start-page: 179
  issue: 2
  year: 1990
  ident: C112
  article-title: Perceptron-based learning algorithms
  publication-title: IEEE Trans. Neural Netw.
– volume: 2
  start-page: 645
  issue: 4
  year: 2011
  end-page: 658
  ident: C78
  article-title: Malicious data attacks on the smart grid
  publication-title: IEEE Trans. Smart Grid
– volume: 32
  start-page: 3670
  issue: 5
  year: 2017
  end-page: 3680
  ident: C85
  article-title: Determination of Nash equilibrium based on plausible attack-defense dynamics
  publication-title: IEEE Trans. Power Syst.
– volume: 46
  start-page: 175
  issue: 3
  year: 1992
  end-page: 185
  ident: C114
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Am. Stat.
– volume: 44
  start-page: 11271
  issue: 1
  year: 2011
  end-page: 11277
  ident: C57
  article-title: A cyber security study of a SCADA energy management system: stealthy deception attacks on the state estimator
  publication-title: IFAC Proc. Vol.
– volume: 2
  start-page: 796
  issue: 4
  year: 2011
  end-page: 808
  ident: C28
  article-title: Distributed intrusion detection system in a multi-layer network architecture of smart grids
  publication-title: IEEE Trans. Smart Grid
– volume: 94
  start-page: 329
  issue: 2
  year: 1975
  end-page: 337
  ident: C50
  article-title: Bad data analysis for power system state estimation
  publication-title: IEEE Trans. Power Appar. Syst.
– volume: 27
  start-page: 326
  issue: 3
  year: 1995
  end-page: 327
  ident: C139
  article-title: Overfitting and undercomputing in machine learning
  publication-title: ACM Comput. Surv.
– volume: 8
  start-page: 1864
  issue: 4
  year: 2017
  end-page: 1875
  ident: C80
  article-title: Price modification attack and protection scheme in smart grid
  publication-title: IEEE Trans. Smart Grid
– volume: 6
  start-page: 2725
  issue: 6
  year: 2015
  end-page: 2735
  ident: C24
  article-title: Quickest detection of false data injection attack in wide-area smart grids
  publication-title: IEEE Trans. Smart Grid
– volume: 9
  start-page: 1601
  issue: 3
  year: 1994
  end-page: 1609
  ident: C38
  article-title: State estimation for real-time monitoring of distribution systems
  publication-title: IEEE Trans. Power Syst.
– volume: 28
  start-page: 1187
  issue: 2
  year: 2012
  end-page: 1195
  ident: C41
  article-title: A linear state estimation formulation for smart distribution systems
  publication-title: IEEE Trans. Power Syst.
– volume: 9
  start-page: 684
  issue: 2
  year: 2018
  end-page: 694
  ident: C83
  article-title: Stochastic games for power grid protection against coordinated cyber-physical attacks
  publication-title: IEEE Trans. Smart Grid
– volume: 5
  start-page: 1216
  issue: 3
  year: 2014
  end-page: 1227
  ident: C79
  article-title: Graphical methods for defense against false-data injection attacks on power system state estimation
  publication-title: IEEE Trans. Smart Grid
– volume: 9
  start-page: 203
  year: 2008
  end-page: 233
  ident: C119
  article-title: Optimization techniques for semi-supervised support vector machines
  publication-title: J. Mach. Learn. Res.
– volume: 6
  start-page: 601
  issue: 4
  year: 2005
  end-page: 645
  ident: C1
  article-title: Competing research traditions in American industry: uncertain alliances between engineering and science at Westinghouse Electric, 1886–1935
  publication-title: Enterp. Soc.
– volume: 26
  start-page: 2556
  issue: 4
  year: 2011
  end-page: 2566
  ident: C37
  article-title: Dynamic state estimation in power system by applying the extended Kalman filter with unknown inputs to phasor measurements
  publication-title: IEEE Trans. Power Syst.
– volume: 59
  start-page: 3194
  issue: 12
  year: 2014
  end-page: 3208
  ident: C121
  article-title: Efficient computations of a security index for false data attacks in power networks
  publication-title: IEEE Trans. Autom. Control
– volume: 2
  start-page: 382
  issue: 2
  year: 2011
  end-page: 390
  ident: C70
  article-title: Modeling load redistribution attacks in power systems
  publication-title: IEEE Trans. Smart Grid
– volume: 4
  start-page: 5947
  issue: 5
  year: 2009
  ident: C127
  article-title: Deep belief networks
  publication-title: Scholarpedia
– volume: 7
  start-page: 1
  issue: 9
  year: 2020
  end-page: 1
  ident: C128
  article-title: A machine learning-based technique for false data injection attacks detection in industrial IoT
  publication-title: IEEE Internet Things J.
– start-page: 1
  year: 2019
  end-page: 1
  ident: C122
  article-title: A data-based detection method against false data injection attacks
  publication-title: IEEE Design Test
– volume: 6
  start-page: 1686
  issue: 4
  year: 2015
  end-page: 1696
  ident: C69
  article-title: Modeling of local false data injection attacks with reduced network information
  publication-title: IEEE Trans. Smart Grid
– volume: 56
  start-page: 172
  issue: 2
  year: 2015
  end-page: 185
  ident: C96
  article-title: An introduction to quantum machine learning
  publication-title: Contemp. Phys.
– volume: 33
  start-page: 4643
  issue: 4
  year: 2018
  end-page: 4646
  ident: C27
  article-title: Vulnerability of the largest normalized residual statistical test to leverage points
  publication-title: IEEE Trans. Power Syst.
– volume: 84
  start-page: 242
  year: 2017
  end-page: 261
  ident: C103
  article-title: A statistical unsupervised method against false data injection attacks: a visualization-based approach
  publication-title: Expert Syst. Appl.
– volume: 2
  start-page: 326
  issue: 2
  year: 2011
  end-page: 333
  ident: C82
  article-title: Strategic protection against data injection attacks on power grids
  publication-title: IEEE Trans. Smart Grid
– volume: 14
  start-page: 3271
  issue: 7
  year: 2018
  end-page: 3280
  ident: C107
  article-title: Online false data injection attack detection with wavelet transform and deep neural networks
  publication-title: IEEE Trans. Ind. Inf.
– volume: 12
  start-page: 2209
  issue: 11
  year: 2019
  ident: C104
  article-title: A novel detection algorithm to identify false data injection attacks on power system state estimation
  publication-title: Energies
– volume: 14
  start-page: 89
  issue: 1
  year: 2018
  end-page: 97
  ident: C26
  article-title: Joint-transformation-based detection of false data injection attacks in smart grid
  publication-title: IEEE Trans. Ind. Inf.
– volume: PAS-102
  start-page: 1126
  issue: 5
  year: 1983
  end-page: 1139
  ident: C10
  article-title: Reliable bad data processing for real-time state estimation
  publication-title: IEEE Trans. Power Appar. Syst.
– volume: 3
  start-page: 1362
  issue: 3
  year: 2012
  end-page: 1370
  ident: C58
  article-title: Vulnerability assessment of ac state estimation with respect to false data injection cyber-attacks
  publication-title: IEEE Trans. Smart Grid
– year: 2008
  article-title: Mixture models for the analysis of gene expression
– start-page: 261
  year: 2019
  end-page: 281
– volume: 33
  start-page: 4643
  issue: 4
  year: 2018
  end-page: 4646
  article-title: Vulnerability of the largest normalized residual statistical test to leverage points
  publication-title: IEEE Trans. Power Syst.
– start-page: 226
  year: 2010
  end-page: 231
  article-title: False data injection attacks in electricity markets
– volume: 55
  start-page: 2392
  issue: 5
  year: 2009
  end-page: 2405
  article-title: Divergence estimation for multidimensional densities via k‐nearest‐neighbor distances
  publication-title: IEEE Trans. Inf. Theory
– start-page: 649
  year: 2014
  end-page: 659
  article-title: Impact analysis of topology poisoning attacks on economic operation of the smart power grid
– volume: 6
  start-page: 276
  issue: 11
  year: 2018
  end-page: 286
  article-title: False data injection attacks detection in power system using machine learning method
  publication-title: J. Comput. Commun.
– start-page: 474
  year: 2016
  end-page: 478
  article-title: A three‐phase state estimation in unbalanced distribution networks with switch modelling
– volume: 54
  start-page: 102518
  year: 2020
  article-title: Survey of false data injection in smart power grid: attacks, countermeasures and challenges
  publication-title: J. Inf. Secur. Appl.
– volume: 15
  start-page: 2892
  issue: 5
  year: 2019
  end-page: 2904
  article-title: Detecting false data injection attacks against power system state estimation with fast godecomposition (godec) approach
  publication-title: IEEE Trans. Ind. Inf.
– volume: 22
  start-page: 1652
  issue: 10
  year: 2015
  end-page: 1656
  article-title: Detection of false data injection attacks in smart grid communication systems
  publication-title: IEEE Signal Process. Lett.
– start-page: 1
  year: 2016
  end-page: 6
  article-title: Efficient prevention technique for false data injection attack in smart grid
– year: 2019
  article-title: Resilient optimal estimation using measurement prior
– start-page: 16
  year: 2014
  end-page: 20
  article-title: Combating false data injection attacks in smart grid using Kalman filter
– volume: 6
  start-page: 1219
  issue: 3
  year: 2015
  end-page: 1226
  article-title: Blind false data injection attack using PCA approximation method in smart grid
  publication-title: IEEE Trans. Smart Grid
– volume: 8
  start-page: 1864
  issue: 4
  year: 2017
  end-page: 1875
  article-title: Price modification attack and protection scheme in smart grid
  publication-title: IEEE Trans. Smart Grid
– volume: 7
  start-page: 34508
  year: 2019
  end-page: 34520
  article-title: OLTC‐induced false data injection attack on volt/VAR optimization in distribution systems
  publication-title: IEEE Access
– volume: 27
  start-page: 942
  issue: 2
  year: 2012
  end-page: 950
  article-title: An alternative method for power system dynamic state estimation based on unscented transform
  publication-title: IEEE Trans. Power Syst.
– volume: 8
  start-page: 2505
  issue: 5
  year: 2017
  end-page: 2516
  article-title: Real‐time detection of false data injection attacks in smart grid: a deep learning‐based intelligent mechanism
  publication-title: IEEE Trans. Smart Grid
– year: 1969
  article-title: Power system static state estimation: part I, II, and III
– volume: 16
  start-page: 639
  issue: 1
  year: 2020
  end-page: 647
  article-title: Enhanced resilient state estimation using data‐driven auxiliary models
  publication-title: IEEE Trans. Ind. Inf.
– volume: 11
  start-page: 1644
  issue: 3
  year: 2017
  end-page: 1652
  article-title: Detecting stealthy false data injection using machine learning in smart grid
  publication-title: IEEE Syst. J.
– volume: 5
  start-page: 44
  issue: 1
  year: 2018
  end-page: 53
  article-title: A brief introduction to weakly supervised learning
  publication-title: Nat. Sci. Rev.
– start-page: 1
  year: 2019
  end-page: 6
  article-title: Reinforcement learning for cyber‐physical security assessment of power systems
– volume: 2
  start-page: 835
  issue: 4
  year: 2011
  end-page: 843
  article-title: Cyber attack exposure evaluation framework for the smart grid
  publication-title: IEEE Trans. Smart Grid
– volume: 5
  start-page: 1216
  issue: 3
  year: 2014
  end-page: 1227
  article-title: Graphical methods for defense against false‐data injection attacks on power system state estimation
  publication-title: IEEE Trans. Smart Grid
– volume: 5
  start-page: 612
  issue: 2
  year: 2014
  end-page: 621
  article-title: Detecting false data injection attacks on power grid by sparse optimization
  publication-title: IEEE Trans. Smart Grid
– volume: 7
  start-page: 2038
  issue: 4
  year: 2016
  end-page: 2049
  article-title: Data injection attacks on smart grids with multiple adversaries: a game‐theoretic perspective
  publication-title: IEEE Trans. Smart Grid
– volume: 46
  start-page: 175
  issue: 3
  year: 1992
  end-page: 185
  article-title: An introduction to kernel and nearest‐neighbor nonparametric regression
  publication-title: Am. Stat.
– volume: 22
  start-page: 778
  issue: 4
  year: 2014
  end-page: 784
  article-title: Application of deep belief networks for natural language understanding
  publication-title: IEEE/ACM Trans. Audio Speech, Lang. Process.
– start-page: 1
  year: 2018
  end-page: 6
  article-title: PAMA: a proactive approach to mitigate false data injection attacks in smart grids
– volume: 13
  start-page: 2693
  issue: 5
  year: 2017
  end-page: 2703
  article-title: Detection of false‐data injection attacks in cyber‐physical dc microgrids
  publication-title: IEEE Trans. Ind. Inf.
– volume: 398
  year: 2013
– start-page: 1
  year: 2009
  end-page: 8
  article-title: Power system tracking and dynamic state estimation
– volume: 36
  start-page: 7611
  issue: 4
  year: 2009
  end-page: 7616
  article-title: Mining the customer credit using hybrid support vector machine technique
  publication-title: Expert Syst. Appl.
– start-page: 3153
  year: 2012
  end-page: 3158
  article-title: False data injection attacks with incomplete information against smart power grids
– volume: 2
  start-page: 161
  issue: 4
  year: 2017
  end-page: 171
  article-title: Detection of false data injection attacks against state estimation in smart grids based on a mixture Gaussian distribution learning method
  publication-title: IET Cyber‐Phys. Syst., Theory Appl.
– start-page: 2621
  year: 2019
  end-page: 2625
  article-title: False data injection attacks detection with deep belief networks in smart grid
– volume: 5
  start-page: 29
  issue: 1
  year: 2011
  end-page: 37
  article-title: Unscented Kalman filter for power system dynamic state estimation
  publication-title: IET Gener. Transm. Distrib.
– start-page: 331
  year: 2010
  end-page: 341
– start-page: 1
  year: 2010
  end-page: 6
  article-title: Limiting false data attacks on power system state estimation
– volume: 104
  start-page: 1039
  issue: 5
  year: 2016
  end-page: 1057
  article-title: The cybersecurity landscape in industrial control systems
  publication-title: Proc. IEEE
– volume: 29
  start-page: 794
  issue: 2
  year: 2014
  end-page: 804
  article-title: Decentralized dynamic state estimation in power systems using unscented transformation
  publication-title: IEEE Trans. Power Syst.
– start-page: 1
  year: 2014
  end-page: 5
  article-title: Grid topology identification using electricity prices
– volume: 4
  start-page: 5947
  issue: 5
  year: 2009
  article-title: Deep belief networks
  publication-title: Scholarpedia
– volume: PAS‐90
  start-page: 2718
  issue: 6
  year: 1971
  end-page: 2725
  article-title: Bad data suppression in power system static state estimation
  publication-title: IEEE Trans. Power Appar. Syst.
– volume: 10
  start-page: 2871
  issue: 3
  year: 2018
  end-page: 2881
  article-title: False data injection attacks against state estimation in power distribution systems
  publication-title: IEEE Trans. Smart Grid
– volume: 9
  start-page: 1349
  issue: 3
  year: 2017
  end-page: 1364
  article-title: Identification of false data injection attacks with considering the impact of wind generation and topology reconfigurations
  publication-title: IEEE Trans. Sustain. Energy
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  article-title: Long short‐term memory
  publication-title: Neural Comput.
– start-page: 244
  year: 2011
  end-page: 248
  article-title: Stealth false data injection using independent component analysis in smart grid
– volume: PAS‐102
  start-page: 1126
  issue: 5
  year: 1983
  end-page: 1139
  article-title: Reliable bad data processing for real‐time state estimation
  publication-title: IEEE Trans. Power Appar. Syst.
– volume: 2
  start-page: 326
  issue: 2
  year: 2011
  end-page: 333
  article-title: Strategic protection against data injection attacks on power grids
  publication-title: IEEE Trans. Smart Grid
– volume: 107
  start-page: 690
  year: 2019
  end-page: 702
  article-title: Packet‐data anomaly detection in PMU‐based state estimator using convolutional neural network
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 9
  start-page: 2042
  issue: 3
  year: 2016
  end-page: 2054
  article-title: Bad data detection in the context of leverage point attacks in modern power networks
  publication-title: IEEE Trans. Smart Grid
– volume: 34
  start-page: 328
  issue: 2
  year: 2012
  article-title: Machine learning for the New York City power grid
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 6
  start-page: 601
  issue: 4
  year: 2005
  end-page: 645
  article-title: Competing research traditions in American industry: uncertain alliances between engineering and science at Westinghouse Electric, 1886–1935
  publication-title: Enterp. Soc.
– start-page: 125
  year: 2020
  end-page: 146
– volume: 26
  start-page: 2556
  issue: 4
  year: 2011
  end-page: 2566
  article-title: Dynamic state estimation in power system by applying the extended Kalman filter with unknown inputs to phasor measurements
  publication-title: IEEE Trans. Power Syst.
– year: 1993
  article-title: Matching pursuit with time‐frequency dictionaries
– volume: 28
  start-page: 1187
  issue: 2
  year: 2012
  end-page: 1195
  article-title: A linear state estimation formulation for smart distribution systems
  publication-title: IEEE Trans. Power Syst.
– year: 2020
  article-title: DERauth: a battery‐based authentication scheme for distributed energy resources
– volume: 50
  start-page: 179
  issue: 2
  year: 1990
  article-title: Perceptron‐based learning algorithms
  publication-title: IEEE Trans. Neural Netw.
– volume: 8
  start-page: 169
  issue: 1
  year: 2015
  end-page: 186
  article-title: A comprehensive survey on support vector machine in data mining tasks: applications & challenges
  publication-title: Int. J. Database Theory Appl.
– volume: 9
  start-page: 203
  year: 2008
  end-page: 233
  article-title: Optimization techniques for semi‐supervised support vector machines
  publication-title: J. Mach. Learn. Res.
– volume: 6
  start-page: 860
  issue: 5
  year: 2018
  end-page: 871
  article-title: Graph theoretical defense mechanisms against false data injection attacks in smart grids
  publication-title: J. Mod. Power Syst. Clean Energy
– start-page: 1
  year: 2018
  end-page: 5
  article-title: Deep learning‐aided cyber‐attack detection in power transmission systems
– volume: 4
  year: 2002
  article-title: The origins of logistic regression
  publication-title: IEEE Trans. Autom. Control
– start-page: 220
  year: 2010
  end-page: 225
  article-title: Malicious data attacks on smart grid state estimation: attack strategies and countermeasures
– volume: 99
  start-page: 1098
  issue: 6
  year: 2011
  end-page: 1115
  article-title: Adaptive stochastic control for the smart grid
  publication-title: Proc. IEEE
– volume: 149
  start-page: 667
  issue: 6
  year: 2002
  end-page: 672
  article-title: Using voltage measurements to improve the results of branch‐current‐based state estimators for distribution systems
  publication-title: IEE Proc. Gener. Transm. Distrib.
– year: 2014
  article-title: Power systems state estimation
– volume: 9
  start-page: 684
  issue: 2
  year: 2018
  end-page: 694
  article-title: Stochastic games for power grid protection against coordinated cyber‐physical attacks
  publication-title: IEEE Trans. Smart Grid
– year: 2014
  article-title: Explaining and harnessing adversarial examples
– start-page: 1
  year: 2012
  end-page: 5
  article-title: A dynamic secret‐based encryption method in smart grids wireless communication
– start-page: 1395
  year: 2016
  end-page: 1402
  article-title: Detection of false data attacks in smart grid with supervised learning
– volume: 2
  start-page: 87
  issue: 3
  year: 2015
  end-page: 93
  article-title: Efficient machine learning for big data: a review
  publication-title: Big Data Res.
– year: 2018
– volume: 2
  start-page: 645
  issue: 4
  year: 2011
  end-page: 658
  article-title: Malicious data attacks on the smart grid
  publication-title: IEEE Trans. Smart Grid
– volume: 56
  start-page: 172
  issue: 2
  year: 2015
  end-page: 185
  article-title: An introduction to quantum machine learning
  publication-title: Contemp. Phys.
– start-page: 1
  year: 2017
  end-page: 5
  article-title: State estimation for unbalanced electric power distribution systems using AMI data
– volume: 21
  start-page: 1608
  issue: 4
  year: 2006
  end-page: 1615
  article-title: Placement of PMUs to enable bad data detection in state estimation
  publication-title: IEEE Trans. Power Syst.
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  article-title: Support‐vector networks
  publication-title: Mach. Learn.
– volume: 84
  start-page: 242
  year: 2017
  end-page: 261
  article-title: A statistical unsupervised method against false data injection attacks: a visualization‐based approach
  publication-title: Expert Syst. Appl.
– start-page: 1
  year: 2019
  end-page: 6
  article-title: Adaptive normalized attacks for learning adversarial attacks and defenses in power systems
– year: 2018
  article-title: Detection of false data injection attacks in smart grids using recurrent neural networks
– start-page: 219
  year: 2018
  end-page: 225
  article-title: Detecting stealthy false data injection attacks in power grids using deep learning
– volume: 6
  start-page: 2476
  issue: 5
  year: 2015
  end-page: 2483
  article-title: Detecting false data injection attacks in ac state estimation
  publication-title: IEEE Trans. Smart Grid
– volume: 63
  start-page: 1102
  issue: 5
  year: 2015
  end-page: 1114
  article-title: Subspace methods for data attack on state estimation: a data driven approach
  publication-title: IEEE Trans. Signal Process.
– start-page: 1
  year: 2017
  end-page: 5
  article-title: False data injection attacks targeting dc model‐based state estimation
– start-page: 1
  year: 2018
  end-page: 6
  article-title: Is machine learning in power systems vulnerable?
– volume: 14
  start-page: 3271
  issue: 7
  year: 2018
  end-page: 3280
  article-title: Online false data injection attack detection with wavelet transform and deep neural networks
  publication-title: IEEE Trans. Ind. Inf.
– volume: 28
  start-page: 1676
  issue: 2
  year: 2013
  end-page: 1686
  article-title: Markov game analysis for attack‐defense of power networks under possible misinformation
  publication-title: IEEE Trans. Power Syst.
– volume: PAS‐104
  start-page: 3037
  issue: 11
  year: 1985
  end-page: 3049
  article-title: Bad data identification methods in power system state estimation–a comparative study
  publication-title: IEEE Trans. Power Appar. Syst.
– volume: 13
  start-page: 1610
  issue: 4
  year: 2016
  end-page: 1619
  article-title: Enhanced robustness of state estimator to bad data processing through multi‐innovation analysis
  publication-title: IEEE Trans. Ind. Inf.
– volume: 11
  start-page: 2218
  issue: 3
  year: 2020
  end-page: 2234
  article-title: A survey on the detection algorithms for false data injection attacks in smart grids
  publication-title: IEEE Trans. Smart Grid
– volume: 2010
  year: 2010
  article-title: Detecting false data injection attacks on dc state estimation
– volume: 94
  start-page: 329
  issue: 2
  year: 1975
  end-page: 337
  article-title: Bad data analysis for power system state estimation
  publication-title: IEEE Trans. Power Appar. Syst.
– volume: 15
  start-page: 472
  issue: 1
  year: 2012
  end-page: 486
  article-title: Game theory for network security
  publication-title: IEEE Commun. Surv. Tutorials
– start-page: 1
  year: 2020
  end-page: 5
  article-title: Adversarial examples on power systems state estimation
– volume: 12
  start-page: 1327
  issue: 7
  year: 2019
  article-title: Full‐observable three‐phase state estimation algorithm applied to electric distribution grids
  publication-title: Energies
– volume: 2
  start-page: 180
  issue: 4
  year: 2017
  end-page: 187
  article-title: GPS spoofing effect on phase angle monitoring and control in a real‐time digital simulator‐based hardware‐in‐the‐loop environment
  publication-title: IET Cyber‐Phys. Syst., Theory Appl.
– year: 1998
  article-title: Making large‐scale SVM learning practical
– volume: 8
  start-page: 1630
  issue: 4
  year: 2017
  end-page: 1638
  article-title: A review of false data injection attacks against modern power systems
  publication-title: IEEE Trans. Smart Grid
– volume: 14
  start-page: 89
  issue: 1
  year: 2018
  end-page: 97
  article-title: Joint‐transformation‐based detection of false data injection attacks in smart grid
  publication-title: IEEE Trans. Ind. Inf.
– start-page: 1
  year: 2020
  end-page: 5
  article-title: Evasion attacks with adversarial deep learning against power system state Virtual Conference
– volume: 6
  start-page: 2725
  issue: 6
  year: 2015
  end-page: 2735
  article-title: Quickest detection of false data injection attack in wide‐area smart grids
  publication-title: IEEE Trans. Smart Grid
– volume: 33
  start-page: 5979
  issue: 6
  year: 2018
  end-page: 5989
  article-title: A highly efficient bad data identification approach for very large scale power systems
  publication-title: IEEE Trans. Power Syst.
– volume: 2
  start-page: 796
  issue: 4
  year: 2011
  end-page: 808
  article-title: Distributed intrusion detection system in a multi‐layer network architecture of smart grids
  publication-title: IEEE Trans. Smart Grid
– volume: 12
  start-page: 1609
  issue: 7
  year: 2017
  end-page: 1624
  article-title: Modeling and mitigating impact of false data injection attacks on automatic generation control
  publication-title: IEEE Trans. Inf. Forensics Secur.
– start-page: 1
  year: 2019
  end-page: 5
  article-title: Neural network model for false data detection in power system state estimation
– start-page: 183
  year: 2012
  end-page: 192
  article-title: On false data injection attacks against distributed energy routing in smart grid
– volume: 44
  start-page: 11271
  issue: 1
  year: 2011
  end-page: 11277
  article-title: A cyber security study of a SCADA energy management system: stealthy deception attacks on the state estimator
  publication-title: IFAC Proc. Vol.
– start-page: 4054
  year: 2011
  end-page: 4059
  article-title: Electric power network security analysis via minimum cut relaxation
– volume: 59
  start-page: 3194
  issue: 12
  year: 2014
  end-page: 3208
  article-title: Efficient computations of a security index for false data attacks in power networks
  publication-title: IEEE Trans. Autom. Control
– volume: 6
  start-page: 847
  issue: 5
  year: 2018
  end-page: 859
  article-title: Detection of false data injection attacks using unscented Kalman filter
  publication-title: J. Mod. Power Syst. Clean Energy
– volume: 95
  start-page: 245
  issue: 2
  year: 2017
  end-page: 258
  article-title: Neuroscience‐inspired artificial intelligence
  publication-title: Neuron
– year: 2012
– volume: 14
  start-page: 13
  issue: 1
  year: 2011
  article-title: False data injection attacks against state estimation in electric power grids
  publication-title: ACM Trans. Inf. Syst. Secur.
– year: 2018
  article-title: SOCP convex relaxation‐based simultaneous state estimation and bad data identification
– volume: 9
  start-page: 1601
  issue: 3
  year: 1994
  end-page: 1609
  article-title: State estimation for real‐time monitoring of distribution systems
  publication-title: IEEE Trans. Power Syst.
– volume: 2
  start-page: 659
  issue: 4
  year: 2011
  end-page: 666
  article-title: Integrity data attacks in power market operations
  publication-title: IEEE Trans. Smart Grid
– start-page: 1
  year: 2008
  end-page: 6
  article-title: A review of power system dynamic state estimation techniques
– volume: 12
  start-page: 2209
  issue: 11
  year: 2019
  article-title: A novel detection algorithm to identify false data injection attacks on power system state estimation
  publication-title: Energies
– volume: 7
  start-page: 1
  issue: 9
  year: 2020
  end-page: 1
  article-title: A machine learning‐based technique for false data injection attacks detection in industrial IoT
  publication-title: IEEE Internet Things J.
– start-page: 1
  year: 2018
  end-page: 5
  article-title: Proposed defense topology against cyber attacks in smart grid
– volume: 27
  start-page: 326
  issue: 3
  year: 1995
  end-page: 327
  article-title: Overfitting and undercomputing in machine learning
  publication-title: ACM Comput. Surv.
– start-page: 1037
  year: 2017
  end-page: 1042
  article-title: Bad data detection in state estimation using decision tree technique
– volume: 32
  start-page: 3670
  issue: 5
  year: 2017
  end-page: 3680
  article-title: Determination of Nash equilibrium based on plausible attack‐defense dynamics
  publication-title: IEEE Trans. Power Syst.
– start-page: 214
  year: 2010
  end-page: 219
  article-title: Stealth attacks and protection schemes for state estimators in power systems
– volume: 27
  start-page: 1773
  issue: 8
  year: 2016
  end-page: 1786
  article-title: Machine learning methods for attack detection in the smart grid
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 13
  start-page: 411
  issue: 2
  year: 2016
  end-page: 423
  article-title: False data injection on state estimation in power systems – attacks, impacts, and defense: A survey
  publication-title: IEEE Trans. Ind. Inf.
– volume: 62
  start-page: 2077
  year: 2019
  end-page: 2087
  article-title: False data injection attacks against smart gird state estimation: construction, detection and defense
  publication-title: Sci. China Technol. Sci.
– volume: 6
  start-page: 1686
  issue: 4
  year: 2015
  end-page: 1696
  article-title: Modeling of local false data injection attacks with reduced network information
  publication-title: IEEE Trans. Smart Grid
– start-page: 1
  year: 2019
  end-page: 1
  article-title: A data‐based detection method against false data injection attacks
  publication-title: IEEE Design Test
– volume: 3
  start-page: 1362
  issue: 3
  year: 2012
  end-page: 1370
  article-title: Vulnerability assessment of ac state estimation with respect to false data injection cyber‐attacks
  publication-title: IEEE Trans. Smart Grid
– volume: 88
  start-page: 262
  issue: 2
  year: 2000
  end-page: 282
  article-title: Electric power system state estimation
  publication-title: Proc. IEEE
– volume: 2
  start-page: 382
  issue: 2
  year: 2011
  end-page: 390
  article-title: Modeling load redistribution attacks in power systems
  publication-title: IEEE Trans. Smart Grid
– ident: e_1_2_9_69_2
  doi: 10.1109/TSG.2014.2382714
– ident: e_1_2_9_88_2
  doi: 10.1109/ISGT-Asia.2012.6303199
– ident: e_1_2_9_35_2
  doi: 10.1109/PESGM.2018.8586334
– ident: e_1_2_9_10_2
– ident: e_1_2_9_92_2
  doi: 10.1109/GLOCOM.2018.8647324
– ident: e_1_2_9_122_2
  doi: 10.1109/TAC.2014.2351625
– ident: e_1_2_9_8_2
  doi: 10.1007/978-3-030-00024-0_14
– ident: e_1_2_9_40_2
  doi: 10.1109/TPWRS.2011.2175255
– ident: e_1_2_9_63_2
  doi: 10.1016/B978-0-12-816946-9.00005-0
– ident: e_1_2_9_71_2
  doi: 10.1109/TSG.2011.2123925
– ident: e_1_2_9_87_2
  doi: 10.1109/TSG.2016.2550218
– ident: e_1_2_9_46_2
  doi: 10.1109/ISGT.2017.8085999
– ident: e_1_2_9_81_2
  doi: 10.1109/TSG.2015.2509945
– ident: e_1_2_9_62_2
  doi: 10.1109/TSG.2018.2813280
– ident: e_1_2_9_75_2
  doi: 10.1109/SMARTGRID.2010.5622048
– ident: e_1_2_9_138_2
  doi: 10.1109/PESGM41954.2020.9281719
– ident: e_1_2_9_25_2
  doi: 10.1109/TSG.2014.2374577
– ident: e_1_2_9_21_2
  doi: 10.1109/TII.2018.2875529
– volume: 9
  start-page: 203
  year: 2008
  ident: e_1_2_9_120_2
  article-title: Optimization techniques for semi‐supervised support vector machines
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_9_136_2
  doi: 10.1109/ISGT45199.2020.9087789
– volume: 50
  start-page: 179
  issue: 2
  year: 1990
  ident: e_1_2_9_113_2
  article-title: Perceptron‐based learning algorithms
  publication-title: IEEE Trans. Neural Netw.
– ident: e_1_2_9_135_2
  doi: 10.1016/j.eswa.2008.09.054
– volume: 9
  start-page: 2042
  issue: 3
  year: 2016
  ident: e_1_2_9_17_2
  article-title: Bad data detection in the context of leverage point attacks in modern power networks
  publication-title: IEEE Trans. Smart Grid
– ident: e_1_2_9_57_2
  doi: 10.1109/PESGM.2017.8273918
– ident: e_1_2_9_124_2
  doi: 10.1016/j.neuron.2017.06.011
– ident: e_1_2_9_7_2
  doi: 10.1109/PTC.2019.8810568
– ident: e_1_2_9_112_2
– ident: e_1_2_9_101_2
– ident: e_1_2_9_111_2
  doi: 10.1007/978-3-319-93677-2
– ident: e_1_2_9_90_2
  doi: 10.1109/ICC.2016.7510610
– ident: e_1_2_9_54_2
– ident: e_1_2_9_80_2
  doi: 10.1109/TSG.2013.2294966
– ident: e_1_2_9_44_2
  doi: 10.1109/CMI.2016.7413793
– ident: e_1_2_9_73_2
  doi: 10.1109/ICDCS.2014.72
– ident: e_1_2_9_93_2
  doi: 10.1007/s40565-018-0432-2
– ident: e_1_2_9_109_2
  doi: 10.1109/TSG.2017.2703842
– ident: e_1_2_9_24_2
  doi: 10.1109/SMARTGRID.2010.5622045
– ident: e_1_2_9_36_2
  doi: 10.3390/en12071327
– ident: e_1_2_9_126_2
  doi: 10.1109/IWCMC.2018.8450487
– ident: e_1_2_9_141_2
  doi: 10.1109/SmartGridComm.2019.8909713
– ident: e_1_2_9_134_2
  doi: 10.14257/ijdta.2015.8.1.18
– ident: e_1_2_9_30_2
  doi: 10.1109/JPROC.2011.2109671
– ident: e_1_2_9_55_2
  doi: 10.1109/TPAS.1985.318945
– ident: e_1_2_9_84_2
  doi: 10.1109/TSG.2016.2561266
– ident: e_1_2_9_131_2
  doi: 10.1109/TII.2017.2656905
– ident: e_1_2_9_104_2
  doi: 10.1016/j.eswa.2017.05.013
– ident: e_1_2_9_140_2
  doi: 10.1145/212094.212114
– ident: e_1_2_9_130_2
  doi: 10.1109/TASLP.2014.2303296
– ident: e_1_2_9_114_2
  doi: 10.1023/A:1022627411411
– volume-title: State estimation in electric power systems: a generalized approach
  year: 2012
  ident: e_1_2_9_47_2
– ident: e_1_2_9_34_2
  doi: 10.1109/IJCNN.2016.7727361
– ident: e_1_2_9_48_2
  doi: 10.1109/PSCE.2009.4840192
– ident: e_1_2_9_67_2
  doi: 10.1109/PESGM.2014.6939474
– ident: e_1_2_9_26_2
  doi: 10.1109/LSP.2015.2421935
– ident: e_1_2_9_43_2
  doi: 10.1049/ip-gtd:20020645
– ident: e_1_2_9_106_2
  doi: 10.1109/CCECE.2019.8861919
– ident: e_1_2_9_132_2
  doi: 10.1109/TIFS.2017.2676721
– ident: e_1_2_9_16_2
  doi: 10.1016/j.jisa.2020.102518
– ident: e_1_2_9_72_2
  doi: 10.1109/TSG.2015.2495133
– ident: e_1_2_9_9_2
– ident: e_1_2_9_96_2
  doi: 10.1109/ISVLSI49217.2020.00086
– ident: e_1_2_9_142_2
  doi: 10.1109/SmartGridComm.2018.8587547
– ident: e_1_2_9_6_2
– ident: e_1_2_9_86_2
  doi: 10.1109/TPWRS.2016.2635156
– ident: e_1_2_9_70_2
  doi: 10.1109/TSG.2015.2394358
– ident: e_1_2_9_20_2
  doi: 10.1109/TSG.2015.2388545
– ident: e_1_2_9_105_2
  doi: 10.3390/en12112209
– ident: e_1_2_9_58_2
  doi: 10.3182/20110828-6-IT-1002.02210
– ident: e_1_2_9_56_2
  doi: 10.1109/SMARTGRID.2010.5622046
– ident: e_1_2_9_107_2
  doi: 10.1016/j.ijepes.2018.11.013
– ident: e_1_2_9_64_2
  doi: 10.1109/CDC.2011.6160456
– ident: e_1_2_9_76_2
  doi: 10.1109/TSG.2011.2161892
– ident: e_1_2_9_29_2
  doi: 10.1109/TSG.2011.2159818
– ident: e_1_2_9_31_2
  doi: 10.1109/TPAMI.2011.108
– ident: e_1_2_9_97_2
  doi: 10.1080/00107514.2014.964942
– ident: e_1_2_9_27_2
  doi: 10.1109/TII.2017.2720726
– ident: e_1_2_9_49_2
  doi: 10.1109/ICPST.2008.4745312
– ident: e_1_2_9_95_2
  doi: 10.1109/SURV.2012.062612.00056
– ident: e_1_2_9_121_2
– ident: e_1_2_9_3_2
  doi: 10.1109/JPROC.2015.2512235
– start-page: 1
  year: 2019
  ident: e_1_2_9_123_2
  article-title: A data‐based detection method against false data injection attacks
  publication-title: IEEE Design Test
– ident: e_1_2_9_83_2
  doi: 10.1109/TSG.2011.2119336
– ident: e_1_2_9_14_2
  doi: 10.1109/TSG.2019.2949998
– ident: e_1_2_9_37_2
  doi: 10.1109/TPWRS.2013.2281323
– ident: e_1_2_9_60_2
  doi: 10.1109/TII.2016.2614396
– ident: e_1_2_9_42_2
  doi: 10.1109/TPWRS.2012.2212921
– ident: e_1_2_9_4_2
  doi: 10.1109/TSG.2011.2163829
– ident: e_1_2_9_39_2
  doi: 10.1109/59.336098
– ident: e_1_2_9_110_2
  doi: 10.1109/CAC.2018.8623514
– ident: e_1_2_9_98_2
  doi: 10.1109/JSYST.2014.2341597
– ident: e_1_2_9_116_2
  doi: 10.1002/9781118548387
– volume: 4
  year: 2002
  ident: e_1_2_9_119_2
  article-title: The origins of logistic regression
  publication-title: IEEE Trans. Autom. Control
– ident: e_1_2_9_15_2
  doi: 10.1007/s11431-019-9544-7
– ident: e_1_2_9_65_2
  doi: 10.1109/78.258082
– ident: e_1_2_9_137_2
– ident: e_1_2_9_89_2
  doi: 10.1109/ICCNC.2014.6785297
– ident: e_1_2_9_91_2
  doi: 10.1109/PGSRET.2018.8685944
– ident: e_1_2_9_59_2
  doi: 10.1109/TSG.2012.2195338
– ident: e_1_2_9_117_2
  doi: 10.1109/TIT.2009.2016060
– ident: e_1_2_9_78_2
– ident: e_1_2_9_12_2
  doi: 10.1109/IranianCEE.2017.7985192
– ident: e_1_2_9_19_2
  doi: 10.1109/TSG.2013.2284438
– ident: e_1_2_9_102_2
  doi: 10.1109/TSTE.2017.2782090
– ident: e_1_2_9_127_2
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_2_9_100_2
  doi: 10.1049/iet-cps.2017.0013
– ident: e_1_2_9_41_2
  doi: 10.1049/iet-gtd.2010.0210
– ident: e_1_2_9_68_2
  doi: 10.1109/TSP.2014.2385670
– ident: e_1_2_9_82_2
  doi: 10.1109/TPWRS.2006.881149
– ident: e_1_2_9_85_2
  doi: 10.1109/TPWRS.2012.2226480
– ident: e_1_2_9_45_2
  doi: 10.1109/5.824004
– ident: e_1_2_9_23_2
  doi: 10.1109/CISS.2010.5464816
– ident: e_1_2_9_53_2
  doi: 10.1109/TPWRS.2018.2826980
– ident: e_1_2_9_5_2
– ident: e_1_2_9_79_2
  doi: 10.1109/TSG.2011.2163807
– ident: e_1_2_9_13_2
  doi: 10.1145/1952982.1952995
– ident: e_1_2_9_94_2
  doi: 10.1049/iet-cps.2017.0033
– ident: e_1_2_9_22_2
  doi: 10.1007/s40565-018-0413-5
– ident: e_1_2_9_108_2
  doi: 10.1109/TII.2018.2825243
– ident: e_1_2_9_133_2
  doi: 10.1093/nsr/nwx106
– ident: e_1_2_9_125_2
– ident: e_1_2_9_99_2
  doi: 10.1109/ISGT.2018.8403355
– ident: e_1_2_9_18_2
– ident: e_1_2_9_51_2
  doi: 10.1109/T-PAS.1975.31858
– ident: e_1_2_9_11_2
  doi: 10.1109/TPAS.1983.318053
– ident: e_1_2_9_74_2
  doi: 10.1109/ICCPS.2012.26
– ident: e_1_2_9_115_2
  doi: 10.1080/00031305.1992.10475879
– ident: e_1_2_9_118_2
  doi: 10.1007/978-1-84996-098-4_7
– ident: e_1_2_9_52_2
  doi: 10.1109/TII.2016.2626782
– ident: e_1_2_9_139_2
  doi: 10.1016/j.bdr.2015.04.001
– ident: e_1_2_9_28_2
  doi: 10.1109/TPWRS.2018.2831453
– ident: e_1_2_9_33_2
  doi: 10.1109/SmartGridComm.2011.6102326
– ident: e_1_2_9_103_2
  doi: 10.4236/jcc.2018.611025
– ident: e_1_2_9_128_2
  doi: 10.4249/scholarpedia.5947
– ident: e_1_2_9_61_2
  doi: 10.1109/ACCESS.2019.2904959
– ident: e_1_2_9_66_2
  doi: 10.1109/GLOCOM.2012.6503599
– ident: e_1_2_9_38_2
  doi: 10.1109/TPWRS.2011.2145396
– ident: e_1_2_9_129_2
  doi: 10.1109/JIOT.2020.2991693
– ident: e_1_2_9_2_2
  doi: 10.1093/es/khi123
– ident: e_1_2_9_77_2
  doi: 10.1109/TII.2019.2924246
– ident: e_1_2_9_50_2
  doi: 10.1109/TPAS.1971.292925
– ident: e_1_2_9_32_2
  doi: 10.1109/TNNLS.2015.2404803
SSID ssib032176772
ssj0002810737
Score 2.5207098
Snippet Over the last decade, the number of cyber attacks targeting power systems and causing physical and economic damages has increased rapidly. Among them, false...
SourceID doaj
unpaywall
proquest
crossref
wiley
iet
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 581
SubjectTerms Algorithms
Approximation
binary decision diagrams
Buses
cyber attacks
Damage detection
Data acquisition
data detection algorithms
data-driven solutions
Electricity distribution
Energy management
energy management system
energy management systems
false data injection attacks
FDIA
learning (artificial intelligence)
Machine learning
machine learning algorithms
malicious data vectors
Network topologies
power engineering computing
power grid monitoring systems
power grids
power system measurement
power system SE algorithms
power system security
power system state estimation
power systems
security of data
sensor data
Special Section: Privacy and Security in Smart Grids
State estimation
system data
system redundant measurements
unknown state variables
Variables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQCzAgPkX5kgfEAIqa2nEdjxRRKiRYWiQmItuxEaiEiqYg_j13TijtAgys1iVxzhfde_H5HSFHUigWayejOPEJEBQhIt2yLkpd6lkutGQOf-hf37R7t8nVnbibafWFNWGVPHDluCb3bSM95OUctfPyltYtLxQXRieaCR2O7sWpmiFTT-GXEdAaLqfbmKr56MpoXD4AI2RYzIVtcGcSUdDrh_QCVnNQc2lSjPTHux4O58FryD7dNbJaw0Z6Vk13nSy4YoOszIgJbpL7_uT1zX3QF0-fQ4Wko3VLiAda9YkeU0CoNHe4b4CjHkLPUawRpY_FU6jJKqguSzx2DyN0hB3UaKX1PN4it92LwXkvqrsnRBYSDousTjnwFa9MSzukfUnqjVXaW2Mhp-s2Zy43kO8lsxIWTIgUqJ6SAIIkoDzDt8li8VK4HUKTxLaNyVHnB9iT40ZwIblQGsJQsNw2SPzlyszW0uLY4WKYhS3uRGXg1wy8n6H3sYxONMjJ9JJRpavxk3EH12dqiJLYYQACJasDJfstUBrkGG9cf6Ljn562_xUA39Y8BiTMkM83yOk0KP4ydR7C5nfLrD-4ZJ0uYnC2-x8vvEeW8eZV5eE-WSxfJ-4AEFRpDsPH8gmuVBU0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB2V9AAcKj5FoCAfEAfQqom9jteHChHUUCERIdpKPbGyvXZUFDYh2VD133fG-9H2Erha413LHu-8sWffA3irpOYD41UySEOKCYqUiRk6n2Q-C7yQRnFPB_rfpqPjs_TruTzfgWn7LwyVVbbfxPihLhaOzsgPxAChCKeE6uPyT0KqUXS72kpomEZaoTiMFGP3YJcTM1YPdsdH0-8_ulMXnmG6I1R3vakPLnyVrKsZZoqcirxIHvdWgIo8_hh20OoOBL2_KZfm6tLM53dBbYxKk0ew18BJ9qle_8ew48sn8PAWyeBT-HmyWf31V2wR2O9YOelZIxUxY7V-9JohcmWFp_sEag3okp5R7Si7KH_FWq2Smaqi3_GxhS1JWY3VHNDrZ3A2OTr9fJw0qgqJw0DEE2cygXlM0HZoPKWDaRas0yY46zDWm5HgvrCIAxR3ChdSygxTQK0QHClEf1Y8h165KP0LYGnqRtYWxP-DWZUXVgqphNQG3VPywvVh0E5l7hrKcVK-mOfx6jvVOc5rjrOf0-xTeZ3sw_uuy7Lm29hmPKb16QyJKjs2LFazvNl5uQgjqwICu4LIF4uhMcMgtZDWpIZLo_vwjh7cbN31trfttw5wY33jln340DnF_wxdRLf5t2V-cvqFjyeEzfnL7UN4BQ-oW11ruA-9arXxrxEzVfZNsxGuAT8eEy8
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9N3QPiARgfomggP0w8gDJaf8Tx44bWTZOYkLZK44XIduwyKGnVpqDx13OXpIEiNEDi1TrHiXPn-519_h3AnlaGD2zQyUBGiQGKUokd-pBkIYu8UFbzQBv6b87Sk7E8vVSXW3C8vgvT8EN0G25kGfV6TQY-L2KzzjdRpzSvrkKVLKsJhnmcMrTosvl2qhCU92B7fPb24B2VlkOPnXAjdXem-Zt-G16pJu9HX4NSG7jz1qqc2-uvdjrdRLK1KxrdhQ_rj2gyUD7tryq377_9wu_4H77yHtxp4So7aPRrB7ZCeR9u_0Ri-ADen68WX8I1m0X2uc7MDKwtRTFhTX3qJUNkzIpA5xXUGlHlA6PcVHZVfqxzwUpmq4qu-2MLm1PlNtZwTC8fwnh0dPH6JGmrNiQeHR1PvM0ExknRuKENFG7KLDpvbPTOI5awqeChcIgzNPcaFUWpDENMoxF8aUSXTjyCXjkrw2NgUvrUuYL4hTBqC8IpobRQxqL6K174PgzWfy33LaU5VdaY5vXRujQ5Tl2OU5fT1FH6nurDi67LvOHzuEn4kFShEyQq7rphtpjkrWXnIqZORwSOBZE7FkNrh1EZoZyVlitr-vCcHtwuDcubRttd69oPaTFABM5pH6EPLzv9-5tXF7Va_VkyP7845ocjwv78yT-NsQu9arEKTxGVVe5Za3HfAdLENdk
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBele9j2UNZ9sHRd0cPYw4pZrI_IelzLsjJYGbSFPs2cZCl0ZE5InJb-97uTHXeh0I29irNsdHe-30mn3zH2zmgrhhBMNlRRYYKidQa5D1kRiigqDUYE2tD_djo6uVBfL_XlFjte34Vp-SH6DTfyjPS_JgcH13YhQVCLSrwKTbZsJpjiCarOoovmj3LEM2TmQn3vN1pEgRlO4s7EUK4zYZXpTzftx3uzbMSnROOPUQelNhDo41U9h9sbmE43MW0KSuNnbKdDk_xTq_5dthXq5-zpHxyDL9iPs9XiOtzyWeS_UuFk4F2niAlv20cvOQJXXgU6TqDRiBYZOJWO8qv6ZyrVqjk0Dd3GxxE-p8ZqvKWAXr5kF-PP58cnWddUIfMYh0TmoZCYxkTrcgiUDaoiOm8heucx1MNIilA5hAFGeIN61LrADNAaxEYGwZ-Tr9h2PavDa8aV8iPnKqL_waQqSKelNlJbQOvUovIDNlwvZek7xnFqfDEt08m3siWua4mrX9LqU3WdHrAP_SPzlm7jIeEj0k8vSEzZaWC2mJSd45UyjpyJiOsq4l6scoA8aiu1AwVCgx2w9zRx57nLh962vzaAO2k5RIAsKM0fsMPeKP7l02Uym79LlmfnX8TRmKC52Puvp96wJzTeViDus-1msQpvEUk17iB5ym-X9xRU
  priority: 102
  providerName: Wiley-Blackwell
Title Survey of machine learning methods for detecting false data injection attacks in power systems
URI http://digital-library.theiet.org/content/journals/10.1049/iet-stg.2020.0015
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-stg.2020.0015
https://www.proquest.com/docview/3092323383
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-stg.2020.0015
https://doaj.org/article/3f6b7f560d0243d1aa1f5935ba4a25a9
UnpaywallVersion publishedVersion
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2515-2947
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0002810737
  issn: 2515-2947
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2515-2947
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810737
  issn: 2515-2947
  databaseCode: ADMLS
  dateStart: 20201001
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 2515-2947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810737
  issn: 2515-2947
  databaseCode: IDLOA
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2515-2947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810737
  issn: 2515-2947
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: PROQUEST
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2515-2947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810737
  issn: 2515-2947
  databaseCode: BENPR
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2515-2947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810737
  issn: 2515-2947
  databaseCode: AVUZU
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2515-2947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810737
  issn: 2515-2947
  databaseCode: 24P
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED-x9oG9oE0MrRur_DDxsCmi9UecPNKNwhBU1aASe1lkO3bF1IWKpkz897tL0qJKE-MliazL1_mS-_3s8x3AR61S3jNeRz0ZJBIUpSLTdz5KfBJ4rozmngb0L0bx6USeXavrx-XR-c2UamVEqxE3Gi339coDCt3G__Bho-O6IAni20MUiBblFLkepzAtWnHe5sjOeQva376eNxQL7Usg_I4RTa4nN_9x7oZ7qrL4o9NBqQ0Aur0s5ubhj5nNNiFt5ZOGr2CnAZPsqO7917Dli134ebm8u_cP7Daw31WkpGdNaYgpq-tFLxgiVZZ7mj-g1oDv6RnFirKb4lcVm1UwU5a0_B5b2JwqqbE65_PiDUyGx1dfTqOmikLk0PHwyJlEIG8Jqe0bT_RPJsG61ARnHfp2Ewvuc4t-X3OnseOUSpDypRrBkEa0Z8UetIrbwr8FJqWLrc0p3w-yKC-sEkoLlRo0R8Vz14HeSnmZa1KMU6WLWVZNdcs0Q01mqO-M9E3hdKoDn9anzOv8Gk8JD6hH1oKUGrtqQPvImi8tEyG2OiCQyynZYt43ph9UKpQ10nBl0g4c0IVXZvTU3fZXXf4oLXqIiDnx-g58XpvBcx5dVIbyf8ns8uqED4aExfm75z7re3hJx3WU4T60yrul_4BoqbRdeMHlGLfJ8KQL7cHxaPy9W408dJvPA_eT0fjox188FxYE
linkProvider Institution of Engineering and Technology
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwEN4p6aFwYHgOgQI6AAcYTxPJiu1DhyHQkNI2w9B0pqcaSZYyZYITYodO_hy_jV2_2l4Cl141a9leabXfSqv9AF4FMuIdZQOv4zsfAxQpPdU11gtt6HgiVcAtbegfjXrDE__LqTzdgD_1XRhKq6zXxGKhTmaG9sh3RAehCKeA6v38l0esUXS6WlNoqIpaIdktSoxVFzsO7OoCQ7hsd_8Tjvdrzgd7449Dr2IZ8AwuzNwzKhSI612ku8pSeOSHTptIOaMN-j7VE9wmGv1iwE2APyZliCFRFCBYCBANaYH93oJNX2BbCzb7e6Ov35pdHh5ieCWC5jg12jm3uZflE4xMOSWVER3vFYdY8Aagm0Opa5B3a5nO1epCTafXQXThBQf34G4FX9mHcr7dhw2bPoA7V4oaPoSz4-Xit12xmWM_i0xNyypqigkr-aozhkiZJZbOL6jVoQlYRrmq7Dz9UeSGpUzlOV3_xxY2JyY3Vtaczh7ByY3o9zG00llqnwDzfdPTOqF6QxjFWaGlkIGQkUJzkDwxbejUqoxNVeKcmDamcXHU7kcx6jVG7cekfUrnk2142zwyL-t7rBPu0_g0glSau2iYLSZxZemxcD0dOASSCRV7TLpKdZ2MhNTKV1yqqA1vqONqqcjWvW27ngCX0pdm0IZ3zaT4n08XxbT5t2R8PP7M-wOKBfjT9Z_wEraG46PD-HB_dPAMblMXZZ7jNrTyxdI-R7yW6xeVUTD4ftN2-BdQ6k3x
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaqVOJxQDzVlAI-IA6gFRs_4vWxpYTyqpDaoIoDlu21o6J0EyUbUP89M97NQoRUEFdr9iHvzM732eNvCHmqpGa5DSrLRRRAUKTM7MCHrAhFZKW0igVc0P94PDwai3dn8myLHK7PwjT6EN2CG0ZG-l9jgId5GRvCKVAk8zzU2bKeAMdjWJ6FJ823IZ_noke29z-Pv4y7tRZWAMlJ8pmQzWXGtFDdBqd--cd9NlJUUvKHxANWGyD0-qqa28sfdjrdhLUpL41uk1stoKT7jQfcIVuhuktu_iYzeI98PVktvodLOov0ItVOBto2i5jQpoP0kgJ2pWXAHQUcjeCUgWL1KD2vvqVqrYrausYD-TBC59hbjTYq0Mv7ZDx6ffrqKGv7KmQeUhHLvC04MJmo3cAGJISiiM5rG73zkO3tkLNQOkACinkFn1LKAkigVgCPFOA_xx-QXjWrwg6hQvihcyUqAAGvCtxJLhWX2oKDSlb6PsnXU2l8KzqOvS-mJm1-C21gXg3MvsHZxwI72SfPu0vmjeLGVcYH-H06QxTLTgOzxcS0sWd4HDoVAdqVKL9YDqwdRKm5dFZYJq3uk2d44zZ4l1c9bW_tAL-seQ4YmSHT75MXnVP8y6vz5DZ_tzQnp2_YwQjROdv9r6uekGufDkfmw9vj9w_JDTRp6hH3SK9erMIjwFW1e9yGzU9iRxkU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9N3QPiARgfomggP0w8gDJaf8Tx44bWTZOYkLZK44XIduwyKGnVpqDx13OXpIEiNEDi1TrHiXPn-519_h3AnlaGD2zQyUBGiQGKUokd-pBkIYu8UFbzQBv6b87Sk7E8vVSXW3C8vgvT8EN0G25kGfV6TQY-L2KzzjdRpzSvrkKVLKsJhnmcMrTosvl2qhCU92B7fPb24B2VlkOPnXAjdXem-Zt-G16pJu9HX4NSG7jz1qqc2-uvdjrdRLK1KxrdhQ_rj2gyUD7tryq377_9wu_4H77yHtxp4So7aPRrB7ZCeR9u_0Ri-ADen68WX8I1m0X2uc7MDKwtRTFhTX3qJUNkzIpA5xXUGlHlA6PcVHZVfqxzwUpmq4qu-2MLm1PlNtZwTC8fwnh0dPH6JGmrNiQeHR1PvM0ExknRuKENFG7KLDpvbPTOI5awqeChcIgzNPcaFUWpDENMoxF8aUSXTjyCXjkrw2NgUvrUuYL4hTBqC8IpobRQxqL6K174PgzWfy33LaU5VdaY5vXRujQ5Tl2OU5fT1FH6nurDi67LvOHzuEn4kFShEyQq7rphtpjkrWXnIqZORwSOBZE7FkNrh1EZoZyVlitr-vCcHtwuDcubRttd69oPaTFABM5pH6EPLzv9-5tXF7Va_VkyP7845ocjwv78yT-NsQu9arEKTxGVVe5Za3HfAdLENdk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survey+of+machine+learning+methods+for+detecting+false+data+injection+attacks+in+power+systems&rft.jtitle=IET+Smart+Grid&rft.au=Sayghe%2C+Ali&rft.au=Hu%2C+Yaodan&rft.au=Zografopoulos%2C+Ioannis&rft.au=Liu%2C+XiaoRui&rft.date=2020-10-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.eissn=2515-2947&rft.volume=3&rft.issue=5&rft.spage=581&rft.epage=595&rft_id=info:doi/10.1049%2Fiet-stg.2020.0015&rft.externalDocID=10_1049_iet_stg_2020_0015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2515-2947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2515-2947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2515-2947&client=summon