A machine learning analysis to predict the response to intravenous and subcutaneous immunoglobulin in inflammatory myopathies. A proposal for a future multi-omics approach in autoimmune diseases

To evaluate the response to treatment with intravenous (IVIg) and subcutaneous (20%SCIg) immunoglobulin in our series of patients with Inflammatory idiopathic myopathies (IIM) by the means of artificial intelligence. IIM are rare diseases mainly involving the skeletal muscle with particular clinical...

Full description

Saved in:
Bibliographic Details
Published inAutoimmunity reviews Vol. 21; no. 6; p. 103105
Main Authors Danieli, Maria Giovanna, Tonacci, Alessandro, Paladini, Alberto, Longhi, Eleonora, Moroncini, Gianluca, Allegra, Alessandro, Sansone, Francesco, Gangemi, Sebastiano
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.06.2022
Subjects
Online AccessGet full text
ISSN1568-9972
1873-0183
DOI10.1016/j.autrev.2022.103105

Cover

Abstract To evaluate the response to treatment with intravenous (IVIg) and subcutaneous (20%SCIg) immunoglobulin in our series of patients with Inflammatory idiopathic myopathies (IIM) by the means of artificial intelligence. IIM are rare diseases mainly involving the skeletal muscle with particular clinical, laboratory and radiological characteristics. Artificial intelligence (AI) represents computer processes which allows to perform complex calculations and data analyses, with the least human intervention. Recently, the use an AI in medicine significantly expanded, especially through machine learning (ML) which analyses huge amounts of information and accordingly makes decisions, and deep learning (DL) which uses artificial neural networks to analyse data and automatically learn. In this study, we employed AI in the evaluation of the response to treatment with IVIg and 20%SCIg in our series of patients with IIM. The diagnoses were determined on the established EULAR/ACR criteria. The treatment response was evaluated employing the following: serum creatine kinase levels, muscle strength (MMT8 score), disease activity (MITAX score) and disability (HAQ-DI score). We evaluated all the above parameters, applying, with R, different supervised ML algorithms, including Least Absolute Shrinkage and Selection Operator, Ridge, Elastic Net, Classification and Regression Trees and Random Forest to estimate the most important predictors for a good response to IVIg and 20%SCIg treatment. By the means of AI we have been able to identify the scores that best predict a good response to IVIg and 20%SCIg treatment. The muscle strength as evaluated by MMT8 score at the follow-up is predicted by the presence of dysphagia and of skin disorders, and the myositis activity index (MITAX) at the beginning of the treatment. The relationship between muscle strength and MITAX indicates a better action of IVIg therapy in patients with more active systemic disease. Considering our results, Elastic Net and similar approaches were seen to be the most viable, efficient, and effective ML methods for predicting the clinical outcome (MMT8 and MITAX at most) in myositis. •Artificial intelligence allows to perform data analyses, with the least human intervention.•We employed AI in the evaluation of the response to treatment with IVIg and 20%SCIg in myositis.•The muscle strength at the follow-up is predicteddysphagia and of skin disorders at the beginning of the treatment.•The relationship between muscle strength and disease activity indicates a  benefit  of IVIg in patients with more active systemic disease.•Elastic Net and similar approaches were seen to be the most viable, efficient, and effective ML methods for predicting the clinical outcome (MMT8 and MITAX) in myositis.
AbstractList To evaluate the response to treatment with intravenous (IVIg) and subcutaneous (20%SCIg) immunoglobulin in our series of patients with Inflammatory idiopathic myopathies (IIM) by the means of artificial intelligence. IIM are rare diseases mainly involving the skeletal muscle with particular clinical, laboratory and radiological characteristics. Artificial intelligence (AI) represents computer processes which allows to perform complex calculations and data analyses, with the least human intervention. Recently, the use an AI in medicine significantly expanded, especially through machine learning (ML) which analyses huge amounts of information and accordingly makes decisions, and deep learning (DL) which uses artificial neural networks to analyse data and automatically learn. In this study, we employed AI in the evaluation of the response to treatment with IVIg and 20%SCIg in our series of patients with IIM. The diagnoses were determined on the established EULAR/ACR criteria. The treatment response was evaluated employing the following: serum creatine kinase levels, muscle strength (MMT8 score), disease activity (MITAX score) and disability (HAQ-DI score). We evaluated all the above parameters, applying, with R, different supervised ML algorithms, including Least Absolute Shrinkage and Selection Operator, Ridge, Elastic Net, Classification and Regression Trees and Random Forest to estimate the most important predictors for a good response to IVIg and 20%SCIg treatment. By the means of AI we have been able to identify the scores that best predict a good response to IVIg and 20%SCIg treatment. The muscle strength as evaluated by MMT8 score at the follow-up is predicted by the presence of dysphagia and of skin disorders, and the myositis activity index (MITAX) at the beginning of the treatment. The relationship between muscle strength and MITAX indicates a better action of IVIg therapy in patients with more active systemic disease. Considering our results, Elastic Net and similar approaches were seen to be the most viable, efficient, and effective ML methods for predicting the clinical outcome (MMT8 and MITAX at most) in myositis. •Artificial intelligence allows to perform data analyses, with the least human intervention.•We employed AI in the evaluation of the response to treatment with IVIg and 20%SCIg in myositis.•The muscle strength at the follow-up is predicteddysphagia and of skin disorders at the beginning of the treatment.•The relationship between muscle strength and disease activity indicates a  benefit  of IVIg in patients with more active systemic disease.•Elastic Net and similar approaches were seen to be the most viable, efficient, and effective ML methods for predicting the clinical outcome (MMT8 and MITAX) in myositis.
AbstractObjectiveTo evaluate the response to treatment with intravenous (IVIg) and subcutaneous (20%SCIg) immunoglobulin in our series of patients with Inflammatory idiopathic myopathies (IIM) by the means of artificial intelligence. BackgroundIIM are rare diseases mainly involving the skeletal muscle with particular clinical, laboratory and radiological characteristics. Artificial intelligence (AI) represents computer processes which allows to perform complex calculations and data analyses, with the least human intervention. Recently, the use an AI in medicine significantly expanded, especially through machine learning (ML) which analyses huge amounts of information and accordingly makes decisions, and deep learning (DL) which uses artificial neural networks to analyse data and automatically learn. MethodsIn this study, we employed AI in the evaluation of the response to treatment with IVIg and 20%SCIg in our series of patients with IIM. The diagnoses were determined on the established EULAR/ACR criteria. The treatment response was evaluated employing the following: serum creatine kinase levels, muscle strength (MMT8 score), disease activity (MITAX score) and disability (HAQ-DI score). We evaluated all the above parameters, applying, with R, different supervised ML algorithms, including Least Absolute Shrinkage and Selection Operator, Ridge, Elastic Net, Classification and Regression Trees and Random Forest to estimate the most important predictors for a good response to IVIg and 20%SCIg treatment. Results and conclusionBy the means of AI we have been able to identify the scores that best predict a good response to IVIg and 20%SCIg treatment. The muscle strength as evaluated by MMT8 score at the follow-up is predicted by the presence of dysphagia and of skin disorders, and the myositis activity index (MITAX) at the beginning of the treatment. The relationship between muscle strength and MITAX indicates a better action of IVIg therapy in patients with more active systemic disease. Considering our results, Elastic Net and similar approaches were seen to be the most viable, efficient, and effective ML methods for predicting the clinical outcome (MMT8 and MITAX at most) in myositis.
To evaluate the response to treatment with intravenous (IVIg) and subcutaneous (20%SCIg) immunoglobulin in our series of patients with Inflammatory idiopathic myopathies (IIM) by the means of artificial intelligence. IIM are rare diseases mainly involving the skeletal muscle with particular clinical, laboratory and radiological characteristics. Artificial intelligence (AI) represents computer processes which allows to perform complex calculations and data analyses, with the least human intervention. Recently, the use an AI in medicine significantly expanded, especially through machine learning (ML) which analyses huge amounts of information and accordingly makes decisions, and deep learning (DL) which uses artificial neural networks to analyse data and automatically learn. In this study, we employed AI in the evaluation of the response to treatment with IVIg and 20%SCIg in our series of patients with IIM. The diagnoses were determined on the established EULAR/ACR criteria. The treatment response was evaluated employing the following: serum creatine kinase levels, muscle strength (MMT8 score), disease activity (MITAX score) and disability (HAQ-DI score). We evaluated all the above parameters, applying, with R, different supervised ML algorithms, including Least Absolute Shrinkage and Selection Operator, Ridge, Elastic Net, Classification and Regression Trees and Random Forest to estimate the most important predictors for a good response to IVIg and 20%SCIg treatment. By the means of AI we have been able to identify the scores that best predict a good response to IVIg and 20%SCIg treatment. The muscle strength as evaluated by MMT8 score at the follow-up is predicted by the presence of dysphagia and of skin disorders, and the myositis activity index (MITAX) at the beginning of the treatment. The relationship between muscle strength and MITAX indicates a better action of IVIg therapy in patients with more active systemic disease. Considering our results, Elastic Net and similar approaches were seen to be the most viable, efficient, and effective ML methods for predicting the clinical outcome (MMT8 and MITAX at most) in myositis.
ArticleNumber 103105
Author Danieli, Maria Giovanna
Allegra, Alessandro
Paladini, Alberto
Longhi, Eleonora
Gangemi, Sebastiano
Moroncini, Gianluca
Tonacci, Alessandro
Sansone, Francesco
Author_xml – sequence: 1
  givenname: Maria Giovanna
  surname: Danieli
  fullname: Danieli, Maria Giovanna
  email: m.g.danieli@univpm.it
  organization: Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, via Tronto 10/A, 60126 Torrette di Ancona, Italy
– sequence: 2
  givenname: Alessandro
  surname: Tonacci
  fullname: Tonacci, Alessandro
  organization: Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), Via G. Moruzzi 1, 56124 Pisa, Italy
– sequence: 3
  givenname: Alberto
  surname: Paladini
  fullname: Paladini, Alberto
  organization: PostGraduate School of Internal Medicine, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy
– sequence: 4
  givenname: Eleonora
  surname: Longhi
  fullname: Longhi, Eleonora
  organization: Scuola di Medicina e Chirurgia, Alma Mater Studiorum, Università degli Studi di Bologna, 40126 Bologna, Italy
– sequence: 5
  givenname: Gianluca
  surname: Moroncini
  fullname: Moroncini, Gianluca
  organization: Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, via Tronto 10/A, 60126 Torrette di Ancona, Italy
– sequence: 6
  givenname: Alessandro
  surname: Allegra
  fullname: Allegra, Alessandro
  organization: Division of Haematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
– sequence: 7
  givenname: Francesco
  surname: Sansone
  fullname: Sansone, Francesco
  organization: Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), Via G. Moruzzi 1, 56124 Pisa, Italy
– sequence: 8
  givenname: Sebastiano
  surname: Gangemi
  fullname: Gangemi, Sebastiano
  email: sebastiano.gangemi@unime.it
  organization: School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35452850$$D View this record in MEDLINE/PubMed
BookMark eNqVku2K1TAQhousuB96ByK5gZ5N0ua0FREOi7rCgj_U32GaTPfk2CYlHwd6e3tlpnvcP4IsQiBhmPeZzLxzWZxZZ7Eo3jK6YZRtrw8bSNHjccMp5zlUMSpeFBesbaqSsrY6y2-xbcuua_h5cRnCgWZZx7tXxXklasFbQS-Khx2ZQO2NRTIieGvsPQEL4xJMINGR2aM2KpK4R-IxzM4GXOPGRg9HtC6FnK9JSL1KESyuATNNybr70fVpNJY8nmGEaYLo_EKmxc0Q9wbDhuxyBTe7ACMZnCdAhhSTRzKlMZrSTUZl_pxz8idXUO7ZPeKRaBMQAobXxcsBxoBv_txXxc_Pn37c3JZ33758vdndlapuaCyxHWoQvMKuETXVVUNF03eK6y2ojte65bTN41Gq1bqtGgAtum1f10ixYqD66qp4d-LOqZ9Qy9mbCfwin4aZE96fEpR3IXgcpDIRonHrrMwoGZWrc_IgT87J1Tl5ci6L67_ET_xnZB9PMsydHw16GZRBq7JrHlWU2pn_BajsmVEw_sIFw8Eln9chSCYDl1R-X3dqXSnOKaWNYBnw4d-A5-v_Btgb5A0
CitedBy_id crossref_primary_10_3389_fimmu_2022_978708
crossref_primary_10_1016_j_bspc_2024_106495
crossref_primary_10_1016_j_autrev_2023_103353
crossref_primary_10_1016_j_autrev_2023_103496
crossref_primary_10_1177_09733698241255915
crossref_primary_10_1021_acs_jafc_3c04460
crossref_primary_10_3390_diagnostics13182906
crossref_primary_10_1016_j_clindermatol_2024_06_019
crossref_primary_10_1002_open_202200192
crossref_primary_10_3390_diagnostics13040664
crossref_primary_10_3390_ijms24065680
crossref_primary_10_3390_pr10102088
crossref_primary_10_1051_medsci_2023136
crossref_primary_10_3389_fimmu_2024_1477130
crossref_primary_10_1007_s10278_024_01168_w
crossref_primary_10_1109_ACCESS_2023_3320798
crossref_primary_10_1093_bib_bbad514
crossref_primary_10_1080_1744666X_2023_2270737
crossref_primary_10_1093_rheumatology_keaf070
crossref_primary_10_1038_s41598_023_36833_7
crossref_primary_10_1111_1756_185X_15092
crossref_primary_10_3390_psychoactives2020007
crossref_primary_10_1016_j_imu_2022_101142
crossref_primary_10_1016_j_ophtha_2024_07_004
Cites_doi 10.3390/diagnostics11101880
10.1177/0394632016681577
10.1109/RBME.2020.3007816
10.1136/annrheumdis-2017-211868
10.1016/j.autrev.2016.07.023
10.1007/s11926-012-0249-3
10.1177/1759720X20936822
10.1002/art.10053
10.1038/nrrheum.2018.33
10.3390/diagnostics11060940
10.1038/s41467-022-28905-5
10.1186/s13040-021-00283-6
10.1016/j.autrev.2010.09.004
10.1136/annrheumdis-2019-216599
10.1111/tri.13818
10.1111/j.2517-6161.1996.tb02080.x
10.1111/ced.13607
10.3109/03009740903555366
10.18383/j.tom.2019.00009
10.1016/j.autrev.2021.102997
10.1016/j.cmi.2019.09.009
10.1056/NEJMra1402225
10.1161/STROKEAHA.118.024293
10.1056/NEJM197502132920706
10.1038/s41598-021-89311-3
10.1016/j.autrev.2020.102508
10.1016/j.autrev.2021.102757
10.1186/ar3704
10.1038/s41598-021-96292-w
10.1002/mus.27225
10.1136/annrheumdis-2017-211468
10.1038/nrrheum.2018.41
10.1002/acr.20325
10.3389/fimmu.2021.805705
10.3899/jrheum.161311
10.4103/0028-3886.60398
10.1186/ar4332
10.1056/NEJM199312303292704
10.1093/rheumatology/41.1.22
10.1016/S0169-7439(98)00071-9
10.1093/rheumatology/keaa443
10.1093/rheumatology/kem131
10.1371/journal.pone.0184059
10.2152/jmi.66.237
10.1002/art.24904
10.1007/PL00009595
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
DOI 10.1016/j.autrev.2022.103105
DatabaseName CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1873-0183
EndPage 103105
ExternalDocumentID 35452850
10_1016_j_autrev_2022_103105
S1568997222000751
1_s2_0_S1568997222000751
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AAAJQ
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CJTIS
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LUGTX
M41
MO0
N9A
O-L
O9-
O9~
OAUVE
OK0
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPCBC
SSH
SSI
SSZ
T5K
UHS
UNMZH
UV1
Z5R
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAYXX
CITATION
NPM
ID FETCH-LOGICAL-c470t-e8f4a523e97540d37057b9c2d6ac924d8208692cc8dd837aad596b44e0e31acb3
IEDL.DBID .~1
ISSN 1568-9972
IngestDate Thu Apr 03 07:09:51 EDT 2025
Wed Oct 29 21:14:43 EDT 2025
Thu Apr 24 22:58:39 EDT 2025
Sun Apr 06 06:53:53 EDT 2025
Tue Feb 25 20:03:23 EST 2025
Tue Oct 14 19:29:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Subcutaneous immunoglobulin
Polymyositis
Dermatomyositis
Machine learning
Intravenous immunoglobulin
DL
SCIg
IVIg
DM
PM
Multi-omics
ML
Deep Learning
Language English
License Copyright © 2022 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-e8f4a523e97540d37057b9c2d6ac924d8208692cc8dd837aad596b44e0e31acb3
PMID 35452850
PageCount 1
ParticipantIDs pubmed_primary_35452850
crossref_citationtrail_10_1016_j_autrev_2022_103105
crossref_primary_10_1016_j_autrev_2022_103105
elsevier_sciencedirect_doi_10_1016_j_autrev_2022_103105
elsevier_clinicalkeyesjournals_1_s2_0_S1568997222000751
elsevier_clinicalkey_doi_10_1016_j_autrev_2022_103105
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Autoimmunity reviews
PublicationTitleAlternate Autoimmun Rev
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Canessa, Iacopelli, Pecoraro (bb0080) 2017; 30
Danieli, Pettinari, Moretti, Logullo, Gabrielli (bb0075) 2011; 10
Sultan, Ioannou, Moss, Isenberg (bb0215) 2002; 41
Barsotti, Cavazzana, Zanframundo, Neri, Taraborelli, Cioffi (bb0180) 2021; 20
Bohan, Peter (bb0040) 1975; 292
Labeit, Perlova, Pawlitzki, Ruck, Muhle, Claus (bb0135) 2021; 63
Cabral-Marques, Halpert, Schimke, Ostrinski, Vojdani, Baiocchi (bb0035) 2022; 13
Rider, Aggarwal, Machado (bb0085) 2018; 14
Kim, Han, Jeong, Beom (bb0140) 2010; 39
Marie (bb0175) 2012; 14
Dalakas, Illa, Dambrosia, Soueidan, Stein, Otero (bb0150) 1993; 329
Murdaca, Banchero, Tonacci, Nencioni, Monacelli, Gangemi (bb0030) 2021; 11
Nodera, Sogawa, Takamatsu, Hashiguchi, Saito, Mori (bb0240) 2019; 66
Guerra, Gelardi, Capucci, Gabrielli, Danieli (bb0060) 2017; 44
Conrad, Shoenfeld, Fritzler (bb0020) 2020; 19
Hoff, de Souza, Miossi, Shinjo sk. (bb0205) 2021
Marie, Hachulla, Hatron, Hellot, Levesque, Devulder (bb0070) 2001; 28
Danieli, Verga, Mezzanotte (bb0190) 2022; 12
Xu, Wu, Zhang, Chen, Tao, Zhao (bb0235) 2021; 11
Cherin, Pelletier, Teixeira, Laforet, Genereau, Simon (bb0210) 2002; 46
Dalakas (bb0005) 2015; 372
Burlina, Billings, Joshi, Albayda (bb0245) 2017; 12
Goswami, Haldar, Chatterjee, Vij, van der Kooi, Lim (bb0165) 2022; 21
Murdaca, Caprioli, Tonacci, Billeci, Greco, Negrini (bb0025) 2021; 11
McCann, Garay, Ryan, Harris, Riley, Pilkington (bb0145) 2007; 46
Goldenberg, Berthusen, Cárdenas-Rodríguez, Pagel (bb0230) 2019; 5
Lundberg, de Visser, Werth (bb0010) 2018; 14
Lilleker, Vencovsky, Wang (bb0015) 2018; 77
Marie, Menard, Hatron, Hachulla, Mouthon, Tiev (bb0155) 2010; 62
Lundberg, Tjärnlund, Bottai, Werth, Pilkington, de Visser (bb0045) 2017; 76
Finch, Finch (bb0125) 2016; 21
Heo, Yoon, Park, Kim, Nam, Heo (bb0115) 2019; 50
Conlin, Martin, Morris (bb0095) 1998; 44
Nagawa, Suzuki, Yamamoto, Inoue, Kozawa, Mimura (bb0225) 2021; 11
Giannini, Fiorella, Tampoia, Girolamo, Fornaro, Amati (bb0170) 2021; 60
Schiopu, Phillips, MacDonald, Crofford, Somers (bb0200) 2012; 14
Beinecke, Heider (bb0100) 2021; 14
Marie, Hatron, Cherin, Hachulla, Diot, Vittecoq (bb0160) 2013; 15
Rider, Lachenbruch, Monroe, Ravelli, Cabalar, Feldman (bb0220) 2009; 60
Tibshirani (bb0090) 1996; 58
Ferrarese, Sartori, Orrù, Frigo, Pelizzaro, Burra (bb0120) 2021; 34
Musset, Allenbach, Benveniste (bb0050) 2016; 15
Galimberti, Kooistra, Li (bb0185) 2018; 43
Peiffer-Smadja, Rawson, Ahmad, Buchard, Georgiou, Lescure (bb0105) 2020; 26
Rider, Werth, Huber, Alexanderson, Rao, Ruperto (bb0055) 2011; 63
Naji, Shahram, Nadji, Davatchi (bb0195) 2010; 58
Shamout, Zhu, Clifton (bb0110) 2021; 14
O’Neil, Purdy, Falk, Gallo (bb0065) 1999; 14
Pinal-Fernandez, Casal-Dominguez, Derfoul, Pak, Miller, Milisenda (bb0255) 2020; 79
Kabeya, Okubo, Yonezawa, Nakano, Inoue, Ogasawara (bb0250) 2021
Lee, Lee, Hong, Lee, Yoo, Oh (bb0130) 2020; 12
Finch (10.1016/j.autrev.2022.103105_bb0125) 2016; 21
Nagawa (10.1016/j.autrev.2022.103105_bb0225) 2021; 11
Bohan (10.1016/j.autrev.2022.103105_bb0040) 1975; 292
Dalakas (10.1016/j.autrev.2022.103105_bb0005) 2015; 372
Tibshirani (10.1016/j.autrev.2022.103105_bb0090) 1996; 58
O’Neil (10.1016/j.autrev.2022.103105_bb0065) 1999; 14
Shamout (10.1016/j.autrev.2022.103105_bb0110) 2021; 14
Nodera (10.1016/j.autrev.2022.103105_bb0240) 2019; 66
Rider (10.1016/j.autrev.2022.103105_bb0220) 2009; 60
Cherin (10.1016/j.autrev.2022.103105_bb0210) 2002; 46
Lundberg (10.1016/j.autrev.2022.103105_bb0045) 2017; 76
Dalakas (10.1016/j.autrev.2022.103105_bb0150) 1993; 329
Naji (10.1016/j.autrev.2022.103105_bb0195) 2010; 58
Marie (10.1016/j.autrev.2022.103105_bb0175) 2012; 14
Xu (10.1016/j.autrev.2022.103105_bb0235) 2021; 11
Marie (10.1016/j.autrev.2022.103105_bb0070) 2001; 28
Danieli (10.1016/j.autrev.2022.103105_bb0190) 2022; 12
Goldenberg (10.1016/j.autrev.2022.103105_bb0230) 2019; 5
Conrad (10.1016/j.autrev.2022.103105_bb0020) 2020; 19
Pinal-Fernandez (10.1016/j.autrev.2022.103105_bb0255) 2020; 79
Giannini (10.1016/j.autrev.2022.103105_bb0170) 2021; 60
Ferrarese (10.1016/j.autrev.2022.103105_bb0120) 2021; 34
Galimberti (10.1016/j.autrev.2022.103105_bb0185) 2018; 43
Conlin (10.1016/j.autrev.2022.103105_bb0095) 1998; 44
Heo (10.1016/j.autrev.2022.103105_bb0115) 2019; 50
Hoff (10.1016/j.autrev.2022.103105_bb0205) 2021
Sultan (10.1016/j.autrev.2022.103105_bb0215) 2002; 41
Danieli (10.1016/j.autrev.2022.103105_bb0075) 2011; 10
Canessa (10.1016/j.autrev.2022.103105_bb0080) 2017; 30
Beinecke (10.1016/j.autrev.2022.103105_bb0100) 2021; 14
Lee (10.1016/j.autrev.2022.103105_bb0130) 2020; 12
Murdaca (10.1016/j.autrev.2022.103105_bb0025) 2021; 11
Guerra (10.1016/j.autrev.2022.103105_bb0060) 2017; 44
Barsotti (10.1016/j.autrev.2022.103105_bb0180) 2021; 20
Musset (10.1016/j.autrev.2022.103105_bb0050) 2016; 15
Burlina (10.1016/j.autrev.2022.103105_bb0245) 2017; 12
Kim (10.1016/j.autrev.2022.103105_bb0140) 2010; 39
Kabeya (10.1016/j.autrev.2022.103105_bb0250) 2021
McCann (10.1016/j.autrev.2022.103105_bb0145) 2007; 46
Cabral-Marques (10.1016/j.autrev.2022.103105_bb0035) 2022; 13
Murdaca (10.1016/j.autrev.2022.103105_bb0030) 2021; 11
Marie (10.1016/j.autrev.2022.103105_bb0155) 2010; 62
Lilleker (10.1016/j.autrev.2022.103105_bb0015) 2018; 77
Rider (10.1016/j.autrev.2022.103105_bb0085) 2018; 14
Rider (10.1016/j.autrev.2022.103105_bb0055) 2011; 63
Schiopu (10.1016/j.autrev.2022.103105_bb0200) 2012; 14
Marie (10.1016/j.autrev.2022.103105_bb0160) 2013; 15
Goswami (10.1016/j.autrev.2022.103105_bb0165) 2022; 21
Peiffer-Smadja (10.1016/j.autrev.2022.103105_bb0105) 2020; 26
Lundberg (10.1016/j.autrev.2022.103105_bb0010) 2018; 14
Labeit (10.1016/j.autrev.2022.103105_bb0135) 2021; 63
References_xml – volume: 77
  start-page: 30
  year: 2018
  end-page: 39
  ident: bb0015
  article-title: The EuroMyositis registry: an international collaborative tool to facilitate myositis research
  publication-title: Ann Rheum Dis
– volume: 39
  start-page: 336
  year: 2010
  end-page: 340
  ident: bb0140
  article-title: Comparison between swallowing-related and limb muscle involvement in dermatomyositis patients
  publication-title: Scand J Rheumatol
– year: 2021
  ident: bb0250
  article-title: Deep convolutional neural network-based algorithm for muscle biopsy diagnosis
  publication-title: Lab Invest
– volume: 11
  start-page: 9821
  year: 2021
  ident: bb0225
  article-title: Texture analysis of muscle MRI: machine learning-based classifications in idiopathic inflammatory myopathies
  publication-title: Sci Rep
– volume: 28
  start-page: 2230
  year: 2001
  end-page: 2237
  ident: bb0070
  article-title: Polymyositis and dermatomyositis: short term and long-term outcome, and predictive factors of prognosis
  publication-title: J Rheumatol
– volume: 44
  start-page: 161
  year: 1998
  end-page: 173
  ident: bb0095
  article-title: Data augmentation: an alternative approach to the analysis of spectroscopic data
  publication-title: Chemom Intel Lab Syst
– volume: 63
  start-page: 874
  year: 2021
  end-page: 880
  ident: bb0135
  article-title: Predictors, outcome and characteristics of oropharyngeal dysphagia in idiopathic inflammatory myopathy
  publication-title: Muscle Nerve
– volume: 14
  start-page: 49
  year: 2021
  ident: bb0100
  article-title: Gaussian noise up-sampling is better suited than SMOTE and ADASYN for clinical decision making
  publication-title: BioData Min
– volume: 14
  start-page: 139
  year: 1999
  end-page: 145
  ident: bb0065
  article-title: The dysphagia outcome and severity scale
  publication-title: Dysphagia
– volume: 14
  start-page: 116
  year: 2021
  end-page: 126
  ident: bb0110
  article-title: Machine learning for clinical outcome prediction
  publication-title: IEEE Rev Biomed Eng
– volume: 79
  start-page: 1234
  year: 2020
  end-page: 1242
  ident: bb0255
  article-title: Machine learning algorithms reveal unique gene expression profiles in muscle biopsies from patients with different types of myositis
  publication-title: Ann Rheum Dis
– volume: 63
  start-page: S118
  year: 2011
  end-page: S157
  ident: bb0055
  article-title: Measures of adult and juvenile dermatomyositis, polymyositis, and inclusion body myositis: physician and patient/parent global activity, manual muscle testing (MMT), health assessment questionnaire (HAQ)/childhood health assessment questionnaire (C-HAQ), childhood Myo-sitisAssessment scale (CMAS), myositis disease activity assessment tool (MDAAT), disease activity score (DAS), short form 36 (SF-36), child health questionnaire (CHQ), physician global damage, myositis damage index (MDI), quantitative muscle testing (QMT), myositis functional Index-2 (FI-2), myositis activities profile (MAP), inclusion body myositis functional rating scale (IBMFRS), cutaneous dermatomyositis disease area and severity index (CDASI), cutaneous assessment tool (CAT), dermatomyositis skin severity index (DSSI), Skindex, and dermatology life quality index (DLQI)
  publication-title: Arthritis Care Res (Hoboken)
– volume: 12
  year: 2020
  ident: bb0130
  article-title: Prognostic factors for steroid-free remission in patients with idiopathic inflammatory myopathies: importance of anthropometric measurements
  publication-title: Ther Adv Musculoskelet Dis
– volume: 11
  start-page: 1880
  year: 2021
  ident: bb0025
  article-title: A machine learning application to predict early lung involvement in scleroderma: a feasibility evaluation
  publication-title: Diagnostics (Basel)
– volume: 58
  start-page: 58
  year: 2010
  end-page: 61
  ident: bb0195
  article-title: Effect of early treatment in polymyositis and dermatomyositis
  publication-title: Neurol India
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bb0090
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J R Stat Soc Series B
– volume: 21
  year: 2022
  ident: bb0165
  article-title: Efficacy and safety of intravenous and subcutaneous immunoglobulin therapy in idiopathic inflammatory myopathy: a systematic review and meta-analysis
  publication-title: Autoimmun Rev
– volume: 44
  start-page: 815
  year: 2017
  end-page: 821
  ident: bb0060
  article-title: Subclinical cardiac dysfunction in polymyositis and dermatomyositis: a speckle-tracking case-control study
  publication-title: J Rheumatol
– volume: 372
  start-page: 1734
  year: 2015
  end-page: 1747
  ident: bb0005
  article-title: Inflammatory muscle diseases
  publication-title: N Engl J Med
– volume: 14
  start-page: R22
  year: 2012
  ident: bb0200
  article-title: Predictors of survival in a cohort of patients with polymyositis and dermatomyositis: effect of corticosteroids, methotrexate and azathioprine
  publication-title: Arthritis Res Ther
– volume: 292
  start-page: 344
  year: 1975
  end-page: 347
  ident: bb0040
  article-title: Polymyositis and dermatomyositis
  publication-title: N Engl J Med
– volume: 15
  start-page: R149
  year: 2013
  ident: bb0160
  article-title: Functional outcome and prognostic factors in anti-Jo1 patients with antisynthetase syndrome
  publication-title: Arthritis Res Ther
– volume: 12
  year: 2017
  ident: bb0245
  article-title: Automated diagnosis of myositis from muscle ultrasound: exploring the use of machine learning and deep learning methods
  publication-title: PLoS One
– volume: 329
  start-page: 1993
  year: 1993
  end-page: 2000
  ident: bb0150
  article-title: A controlled trial of high-dose intravenous immune globulin infusions as treatment for dermatomyositis
  publication-title: N Engl J Med
– volume: 50
  start-page: 1263
  year: 2019
  end-page: 1265
  ident: bb0115
  article-title: Machine learning-based model for prediction of outcomes in acute stroke
  publication-title: Stroke
– volume: 13
  start-page: 1220
  year: 2022
  ident: bb0035
  article-title: Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity
  publication-title: Nat Commun
– volume: 41
  start-page: 22
  year: 2002
  end-page: 26
  ident: bb0215
  article-title: Outcome in patients with idiopathic inflammatory myositis: morbidity and mortality
  publication-title: Rheumatology (Oxford)
– volume: 21
  start-page: 7
  year: 2016
  ident: bb0125
  article-title: Regularization methods for fitting linear models with small sample sizes: fitting the Lasso estimator using R
  publication-title: Pract Assess Res Eval
– volume: 66
  start-page: 237
  year: 2019
  end-page: 247
  ident: bb0240
  article-title: Texture analysis of sonographic muscle images can distinguish myopathic conditions
  publication-title: J Med Invest
– year: 2021
  ident: bb0205
  article-title: Long-term effects of early pulse methylprednisolone and intravenous immunoglobulin in patients with dermatomyositis and polymyositis
  publication-title: Rheumatology (Oxford)
– volume: 19
  year: 2020
  ident: bb0020
  article-title: Precision health: a pragmatic approach to understanding and addressing key factors in autoimmune diseases
  publication-title: Autoimmun Rev
– volume: 11
  start-page: 17070
  year: 2021
  ident: bb0235
  article-title: A novel CT scoring method predicts the prognosis of interstitial lung disease associated with anti-MDA5 positive dermatomyositis
  publication-title: Sci Rep
– volume: 20
  year: 2021
  ident: bb0180
  article-title: Real life picture of the use of intravenous immunoglobulins in idiopathic inflammatory myopathies: results of a multicentric study
  publication-title: Autoimmun Rev
– volume: 12
  year: 2022
  ident: bb0190
  article-title: Replacement and immunomodulatory activities of 20% subcutaneous immunoglobulin treatment: a single-center retrospective study in autoimmune myositis and CVID patients
  publication-title: Front Immunol
– volume: 46
  start-page: 467
  year: 2002
  end-page: 474
  ident: bb0210
  article-title: Results and long-term followup of intravenous immunoglobulin infusions in chronic, refractory polymyositis: an open study with thirty-five adult patients
  publication-title: Arthritis Rheum
– volume: 26
  start-page: 584
  year: 2020
  end-page: 595
  ident: bb0105
  article-title: Machine learning for clinical decision support in infectious diseases: a narrative review of current applications
  publication-title: Clin Microbiol Infect
– volume: 60
  start-page: 1234
  year: 2021
  end-page: 1242
  ident: bb0170
  article-title: Long-term efficacy of adding intravenous immunoglobulins as treatment of refractory dysphagia related to myositis: a retrospective analysis
  publication-title: Rheumatology (Oxford)
– volume: 14
  start-page: 275
  year: 2012
  end-page: 285
  ident: bb0175
  article-title: Morbidity and mortality in adult polymyositis and dermatomyositis
  publication-title: Curr Rheumatol Rep
– volume: 60
  start-page: 3425
  year: 2009
  end-page: 3435
  ident: bb0220
  article-title: IMACS group. Damage extent and predictors in adult and juvenile dermatomyositis and polymyositis as determined with the myositis damage index
  publication-title: Arthritis Rheum
– volume: 15
  start-page: 983
  year: 2016
  end-page: 993
  ident: bb0050
  article-title: Anti-HMGCR antibodies as a biomarker for immune-mediated necrotizing myopathies: a history of statins and experience from a large international multi-center study
  publication-title: Autoimmun Rev
– volume: 10
  start-page: 144
  year: 2011
  end-page: 149
  ident: bb0075
  article-title: Subcutaneous immunoglobulin in polymyositis and dermatomyositis: a novel application
  publication-title: Autoimmun Rev
– volume: 62
  start-page: 1748
  year: 2010
  end-page: 1755
  ident: bb0155
  article-title: Intravenous immunoglobulins for steroid-refractory esophageal involvement related to polymyositis and dermatomyositis: a series of 73 patients
  publication-title: Arthritis Care Res (Hoboken)
– volume: 34
  start-page: 398
  year: 2021
  end-page: 411
  ident: bb0120
  article-title: Machine learning in liver transplantation: a tool for some unsolved questions?
  publication-title: Transpl Int
– volume: 5
  start-page: 283
  year: 2019
  end-page: 291
  ident: bb0230
  article-title: Differentiation of myositis-induced models of bacterial infection and inflammation with T2-weighted, CEST, and DCE-MRI
  publication-title: Tomography
– volume: 14
  start-page: 269
  year: 2018
  end-page: 278
  ident: bb0010
  article-title: Classification of myositis
  publication-title: Nat Rev Rheumatol
– volume: 43
  start-page: 906
  year: 2018
  end-page: 912
  ident: bb0185
  article-title: Intravenous immunoglobulin is an effective treatment for refractory cutaneous dermatomyositis
  publication-title: Clin Exp Dermatol
– volume: 76
  start-page: 1955
  year: 2017
  end-page: 1964
  ident: bb0045
  article-title: International myositis classification criteria project consortium, the euromyositis register, and the juvenile dermatomyositis cohort biomarker study and repository (UK and Ireland). 2017 European league against rheumatism/American College of Rheumatology classification criteria for adult and juvenile idiopathic inflammatory myopathies and their major subgroups. Arthritis Rheum 2017;69:2271-82
  publication-title: Ann Rheum Dis
– volume: 46
  start-page: 1363
  year: 2007
  end-page: 1366
  ident: bb0145
  article-title: Oropharyngeal dysphagia in juvenile dermatomyositis (JDM): an evaluation of videofluoroscopy swallow study (VFSS) changes in relation to clinical symptoms and objective muscle scores
  publication-title: Rheumatology
– volume: 11
  start-page: 940
  year: 2021
  ident: bb0030
  article-title: Vitamin D and folate as predictors of MMSE in Alzheimer’s disease: a machine learning analysis
  publication-title: Diagnostics (Basel)
– volume: 14
  start-page: 303
  year: 2018
  end-page: 318
  ident: bb0085
  article-title: Update on outcome assessment in myositis
  publication-title: Nat Rev Rheumatol
– volume: 30
  start-page: 73
  year: 2017
  end-page: 82
  ident: bb0080
  article-title: Shift from intravenous or 16% subcutaneous replacement therapy to 20% subcutaneous immunoglobulin in patients with primary antibody deficiencies
  publication-title: Int J Immunopathol Pharmacol
– volume: 11
  start-page: 1880
  issue: 10
  year: 2021
  ident: 10.1016/j.autrev.2022.103105_bb0025
  article-title: A machine learning application to predict early lung involvement in scleroderma: a feasibility evaluation
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics11101880
– volume: 30
  start-page: 73
  issue: 1
  year: 2017
  ident: 10.1016/j.autrev.2022.103105_bb0080
  article-title: Shift from intravenous or 16% subcutaneous replacement therapy to 20% subcutaneous immunoglobulin in patients with primary antibody deficiencies
  publication-title: Int J Immunopathol Pharmacol
  doi: 10.1177/0394632016681577
– volume: 14
  start-page: 116
  year: 2021
  ident: 10.1016/j.autrev.2022.103105_bb0110
  article-title: Machine learning for clinical outcome prediction
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2020.3007816
– volume: 77
  start-page: 30
  year: 2018
  ident: 10.1016/j.autrev.2022.103105_bb0015
  article-title: The EuroMyositis registry: an international collaborative tool to facilitate myositis research
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2017-211868
– volume: 15
  start-page: 983
  year: 2016
  ident: 10.1016/j.autrev.2022.103105_bb0050
  article-title: Anti-HMGCR antibodies as a biomarker for immune-mediated necrotizing myopathies: a history of statins and experience from a large international multi-center study
  publication-title: Autoimmun Rev
  doi: 10.1016/j.autrev.2016.07.023
– volume: 14
  start-page: 275
  year: 2012
  ident: 10.1016/j.autrev.2022.103105_bb0175
  article-title: Morbidity and mortality in adult polymyositis and dermatomyositis
  publication-title: Curr Rheumatol Rep
  doi: 10.1007/s11926-012-0249-3
– volume: 12
  year: 2020
  ident: 10.1016/j.autrev.2022.103105_bb0130
  article-title: Prognostic factors for steroid-free remission in patients with idiopathic inflammatory myopathies: importance of anthropometric measurements
  publication-title: Ther Adv Musculoskelet Dis
  doi: 10.1177/1759720X20936822
– volume: 46
  start-page: 467
  issue: 2
  year: 2002
  ident: 10.1016/j.autrev.2022.103105_bb0210
  article-title: Results and long-term followup of intravenous immunoglobulin infusions in chronic, refractory polymyositis: an open study with thirty-five adult patients
  publication-title: Arthritis Rheum
  doi: 10.1002/art.10053
– volume: 14
  start-page: 303
  issue: 5
  year: 2018
  ident: 10.1016/j.autrev.2022.103105_bb0085
  article-title: Update on outcome assessment in myositis
  publication-title: Nat Rev Rheumatol
  doi: 10.1038/nrrheum.2018.33
– volume: 11
  start-page: 940
  issue: 6
  year: 2021
  ident: 10.1016/j.autrev.2022.103105_bb0030
  article-title: Vitamin D and folate as predictors of MMSE in Alzheimer’s disease: a machine learning analysis
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics11060940
– volume: 13
  start-page: 1220
  issue: 1
  year: 2022
  ident: 10.1016/j.autrev.2022.103105_bb0035
  article-title: Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-28905-5
– volume: 14
  start-page: 49
  issue: 1
  year: 2021
  ident: 10.1016/j.autrev.2022.103105_bb0100
  article-title: Gaussian noise up-sampling is better suited than SMOTE and ADASYN for clinical decision making
  publication-title: BioData Min
  doi: 10.1186/s13040-021-00283-6
– volume: 28
  start-page: 2230
  year: 2001
  ident: 10.1016/j.autrev.2022.103105_bb0070
  article-title: Polymyositis and dermatomyositis: short term and long-term outcome, and predictive factors of prognosis
  publication-title: J Rheumatol
– volume: 10
  start-page: 144
  issue: 3
  year: 2011
  ident: 10.1016/j.autrev.2022.103105_bb0075
  article-title: Subcutaneous immunoglobulin in polymyositis and dermatomyositis: a novel application
  publication-title: Autoimmun Rev
  doi: 10.1016/j.autrev.2010.09.004
– volume: 79
  start-page: 1234
  issue: 9
  year: 2020
  ident: 10.1016/j.autrev.2022.103105_bb0255
  article-title: Machine learning algorithms reveal unique gene expression profiles in muscle biopsies from patients with different types of myositis
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2019-216599
– volume: 34
  start-page: 398
  issue: 3
  year: 2021
  ident: 10.1016/j.autrev.2022.103105_bb0120
  article-title: Machine learning in liver transplantation: a tool for some unsolved questions?
  publication-title: Transpl Int
  doi: 10.1111/tri.13818
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.1016/j.autrev.2022.103105_bb0090
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J R Stat Soc Series B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 43
  start-page: 906
  year: 2018
  ident: 10.1016/j.autrev.2022.103105_bb0185
  article-title: Intravenous immunoglobulin is an effective treatment for refractory cutaneous dermatomyositis
  publication-title: Clin Exp Dermatol
  doi: 10.1111/ced.13607
– volume: 39
  start-page: 336
  issue: 4
  year: 2010
  ident: 10.1016/j.autrev.2022.103105_bb0140
  article-title: Comparison between swallowing-related and limb muscle involvement in dermatomyositis patients
  publication-title: Scand J Rheumatol
  doi: 10.3109/03009740903555366
– volume: 5
  start-page: 283
  issue: 3
  year: 2019
  ident: 10.1016/j.autrev.2022.103105_bb0230
  article-title: Differentiation of myositis-induced models of bacterial infection and inflammation with T2-weighted, CEST, and DCE-MRI
  publication-title: Tomography
  doi: 10.18383/j.tom.2019.00009
– volume: 21
  issue: 2
  year: 2022
  ident: 10.1016/j.autrev.2022.103105_bb0165
  article-title: Efficacy and safety of intravenous and subcutaneous immunoglobulin therapy in idiopathic inflammatory myopathy: a systematic review and meta-analysis
  publication-title: Autoimmun Rev
  doi: 10.1016/j.autrev.2021.102997
– volume: 26
  start-page: 584
  issue: 5
  year: 2020
  ident: 10.1016/j.autrev.2022.103105_bb0105
  article-title: Machine learning for clinical decision support in infectious diseases: a narrative review of current applications
  publication-title: Clin Microbiol Infect
  doi: 10.1016/j.cmi.2019.09.009
– volume: 372
  start-page: 1734
  issue: 18
  year: 2015
  ident: 10.1016/j.autrev.2022.103105_bb0005
  article-title: Inflammatory muscle diseases
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1402225
– volume: 50
  start-page: 1263
  issue: 5
  year: 2019
  ident: 10.1016/j.autrev.2022.103105_bb0115
  article-title: Machine learning-based model for prediction of outcomes in acute stroke
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.118.024293
– volume: 292
  start-page: 344
  year: 1975
  ident: 10.1016/j.autrev.2022.103105_bb0040
  article-title: Polymyositis and dermatomyositis
  publication-title: N Engl J Med
  doi: 10.1056/NEJM197502132920706
– volume: 11
  start-page: 9821
  issue: 1
  year: 2021
  ident: 10.1016/j.autrev.2022.103105_bb0225
  article-title: Texture analysis of muscle MRI: machine learning-based classifications in idiopathic inflammatory myopathies
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-89311-3
– volume: 19
  issue: 5
  year: 2020
  ident: 10.1016/j.autrev.2022.103105_bb0020
  article-title: Precision health: a pragmatic approach to understanding and addressing key factors in autoimmune diseases
  publication-title: Autoimmun Rev
  doi: 10.1016/j.autrev.2020.102508
– volume: 20
  issue: 3
  year: 2021
  ident: 10.1016/j.autrev.2022.103105_bb0180
  article-title: Real life picture of the use of intravenous immunoglobulins in idiopathic inflammatory myopathies: results of a multicentric study
  publication-title: Autoimmun Rev
  doi: 10.1016/j.autrev.2021.102757
– volume: 14
  start-page: R22
  issue: 1
  year: 2012
  ident: 10.1016/j.autrev.2022.103105_bb0200
  article-title: Predictors of survival in a cohort of patients with polymyositis and dermatomyositis: effect of corticosteroids, methotrexate and azathioprine
  publication-title: Arthritis Res Ther
  doi: 10.1186/ar3704
– volume: 11
  start-page: 17070
  issue: 1
  year: 2021
  ident: 10.1016/j.autrev.2022.103105_bb0235
  article-title: A novel CT scoring method predicts the prognosis of interstitial lung disease associated with anti-MDA5 positive dermatomyositis
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-96292-w
– volume: 63
  start-page: 874
  issue: 6
  year: 2021
  ident: 10.1016/j.autrev.2022.103105_bb0135
  article-title: Predictors, outcome and characteristics of oropharyngeal dysphagia in idiopathic inflammatory myopathy
  publication-title: Muscle Nerve
  doi: 10.1002/mus.27225
– volume: 76
  start-page: 1955
  year: 2017
  ident: 10.1016/j.autrev.2022.103105_bb0045
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2017-211468
– volume: 14
  start-page: 269
  issue: 5
  year: 2018
  ident: 10.1016/j.autrev.2022.103105_bb0010
  article-title: Classification of myositis
  publication-title: Nat Rev Rheumatol
  doi: 10.1038/nrrheum.2018.41
– volume: 62
  start-page: 1748
  issue: 12
  year: 2010
  ident: 10.1016/j.autrev.2022.103105_bb0155
  article-title: Intravenous immunoglobulins for steroid-refractory esophageal involvement related to polymyositis and dermatomyositis: a series of 73 patients
  publication-title: Arthritis Care Res (Hoboken)
  doi: 10.1002/acr.20325
– volume: 12
  year: 2022
  ident: 10.1016/j.autrev.2022.103105_bb0190
  article-title: Replacement and immunomodulatory activities of 20% subcutaneous immunoglobulin treatment: a single-center retrospective study in autoimmune myositis and CVID patients
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2021.805705
– volume: 63
  start-page: S118
  issue: Suppl. 11
  year: 2011
  ident: 10.1016/j.autrev.2022.103105_bb0055
  publication-title: Arthritis Care Res (Hoboken)
– volume: 44
  start-page: 815
  issue: 6
  year: 2017
  ident: 10.1016/j.autrev.2022.103105_bb0060
  article-title: Subclinical cardiac dysfunction in polymyositis and dermatomyositis: a speckle-tracking case-control study
  publication-title: J Rheumatol
  doi: 10.3899/jrheum.161311
– volume: 58
  start-page: 58
  issue: 1
  year: 2010
  ident: 10.1016/j.autrev.2022.103105_bb0195
  article-title: Effect of early treatment in polymyositis and dermatomyositis
  publication-title: Neurol India
  doi: 10.4103/0028-3886.60398
– volume: 15
  start-page: R149
  issue: 5
  year: 2013
  ident: 10.1016/j.autrev.2022.103105_bb0160
  article-title: Functional outcome and prognostic factors in anti-Jo1 patients with antisynthetase syndrome
  publication-title: Arthritis Res Ther
  doi: 10.1186/ar4332
– volume: 329
  start-page: 1993
  issue: 27
  year: 1993
  ident: 10.1016/j.autrev.2022.103105_bb0150
  article-title: A controlled trial of high-dose intravenous immune globulin infusions as treatment for dermatomyositis
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199312303292704
– volume: 41
  start-page: 22
  issue: 1
  year: 2002
  ident: 10.1016/j.autrev.2022.103105_bb0215
  article-title: Outcome in patients with idiopathic inflammatory myositis: morbidity and mortality
  publication-title: Rheumatology (Oxford)
  doi: 10.1093/rheumatology/41.1.22
– volume: 21
  start-page: 7
  year: 2016
  ident: 10.1016/j.autrev.2022.103105_bb0125
  article-title: Regularization methods for fitting linear models with small sample sizes: fitting the Lasso estimator using R
  publication-title: Pract Assess Res Eval
– volume: 44
  start-page: 161
  issue: 1–2
  year: 1998
  ident: 10.1016/j.autrev.2022.103105_bb0095
  article-title: Data augmentation: an alternative approach to the analysis of spectroscopic data
  publication-title: Chemom Intel Lab Syst
  doi: 10.1016/S0169-7439(98)00071-9
– year: 2021
  ident: 10.1016/j.autrev.2022.103105_bb0250
  article-title: Deep convolutional neural network-based algorithm for muscle biopsy diagnosis
  publication-title: Lab Invest
– volume: 60
  start-page: 1234
  issue: 3
  year: 2021
  ident: 10.1016/j.autrev.2022.103105_bb0170
  article-title: Long-term efficacy of adding intravenous immunoglobulins as treatment of refractory dysphagia related to myositis: a retrospective analysis
  publication-title: Rheumatology (Oxford)
  doi: 10.1093/rheumatology/keaa443
– volume: 46
  start-page: 1363
  issue: 8
  year: 2007
  ident: 10.1016/j.autrev.2022.103105_bb0145
  article-title: Oropharyngeal dysphagia in juvenile dermatomyositis (JDM): an evaluation of videofluoroscopy swallow study (VFSS) changes in relation to clinical symptoms and objective muscle scores
  publication-title: Rheumatology
  doi: 10.1093/rheumatology/kem131
– year: 2021
  ident: 10.1016/j.autrev.2022.103105_bb0205
  article-title: Long-term effects of early pulse methylprednisolone and intravenous immunoglobulin in patients with dermatomyositis and polymyositis
  publication-title: Rheumatology (Oxford)
– volume: 12
  issue: 8
  year: 2017
  ident: 10.1016/j.autrev.2022.103105_bb0245
  article-title: Automated diagnosis of myositis from muscle ultrasound: exploring the use of machine learning and deep learning methods
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0184059
– volume: 66
  start-page: 237
  issue: 3.4
  year: 2019
  ident: 10.1016/j.autrev.2022.103105_bb0240
  article-title: Texture analysis of sonographic muscle images can distinguish myopathic conditions
  publication-title: J Med Invest
  doi: 10.2152/jmi.66.237
– volume: 60
  start-page: 3425
  issue: 11
  year: 2009
  ident: 10.1016/j.autrev.2022.103105_bb0220
  article-title: IMACS group. Damage extent and predictors in adult and juvenile dermatomyositis and polymyositis as determined with the myositis damage index
  publication-title: Arthritis Rheum
  doi: 10.1002/art.24904
– volume: 14
  start-page: 139
  issue: 3
  year: 1999
  ident: 10.1016/j.autrev.2022.103105_bb0065
  article-title: The dysphagia outcome and severity scale
  publication-title: Dysphagia
  doi: 10.1007/PL00009595
SSID ssj0016929
Score 2.48
SecondaryResourceType review_article
Snippet To evaluate the response to treatment with intravenous (IVIg) and subcutaneous (20%SCIg) immunoglobulin in our series of patients with Inflammatory idiopathic...
AbstractObjectiveTo evaluate the response to treatment with intravenous (IVIg) and subcutaneous (20%SCIg) immunoglobulin in our series of patients with...
SourceID pubmed
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 103105
SubjectTerms Allergy and Immunology
Dermatomyositis
Intravenous immunoglobulin
Machine learning
Multi-omics
Polymyositis
Subcutaneous immunoglobulin
Title A machine learning analysis to predict the response to intravenous and subcutaneous immunoglobulin in inflammatory myopathies. A proposal for a future multi-omics approach in autoimmune diseases
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1568997222000751
https://www.clinicalkey.es/playcontent/1-s2.0-S1568997222000751
https://dx.doi.org/10.1016/j.autrev.2022.103105
https://www.ncbi.nlm.nih.gov/pubmed/35452850
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-0183
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016929
  issn: 1568-9972
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-0183
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016929
  issn: 1568-9972
  databaseCode: ACRLP
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-0183
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016929
  issn: 1568-9972
  databaseCode: AIKHN
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-0183
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016929
  issn: 1568-9972
  databaseCode: .~1
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-0183
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016929
  issn: 1568-9972
  databaseCode: AKRWK
  dateStart: 20020201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhodBL6btpm6BDr6rXu9rX0ZgGp21MaBvITegxW1xir_GuC7n0x_WXdUbSmpSUphSMzQpJu9bIM99YM_Mx9gatjDUAWrjSgZAmBWGqDN-oVlwBGhEF5Q6fzYvZhXx_mV_usemQC0NhlVH3B53utXVsGcXVHK0Xi9Fn9DwqSvtMU2_4fAa7LInF4O2PXZjHuKg9Uxl1FtR7SJ_zMV562xPTS4qGjLLPx0Ri91fzdMP2nDxkDyJo5JPwXI_YHqwes3uBRvL6Cfs54UsfEwk8kkB85ToWG-F9y9cbOo3pOWI9vgkxsUDtC_pj97sv0or9He-2xm4RLAI1LChxpKV6IRSrzv2rwe2z9MfyfHndejJj9LP5BO_QrtsOHxEhMNc8FCrhPlhRUNozzh9rl9NEuB6tnx54PB_qnrKLk3dfpjMRuRmElWXSC6gaqdGJhbpEzOeyEnGfqW3qCm3RpXMILCpcemsr59AH1trldWGkhASysbYme8b2V-0KXjBe2qIupMnTwhqpU11V0BiETbVL6rTJm0OWDSJRNhYuJ_6MKzVEqH1TQZCKBKmCIA-Z2I1ah8Idd_TPB2mrISkV1ahCy3LHuPJP46CLuqBTY9WlKlG39uvNkb9t-X-45_OwHXffLCOq-CpPXv73nK_YfboKUXCv2X6_2cIR4q3eHPsf1DE7mEw_fTynz9MPszm2zs_PfgF4AzJ2
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaqIgQXxJvy9IGrycbrfR2jiipA2wut1JvlxywKarJRdoPUCz-OX8aM7Y2KQBQhRXtwbO-ux5n5Jp6Zj7G3aGWcBTDCVx6EshKErXO8UK24EgwiCsodPjkt5-fq40VxsccOx1wYCqtMuj_q9KCtU8skreZkvVhMPqPnUVPap5TB8KELdEsVsiIP7N33XZzHtGwCVRn1FtR9zJ8LQV5mOxDVi0RLRunnU2Kx-6t9umZ8ju6zewk18ll8sAdsD1YP2e3II3n1iP2Y8WUIigSeWCC-cJOqjfCh4-sNHccMHMEe38SgWKD2Bf2z-y1UacX-nvdb67aIFoEaFpQ50lHBEApW5-HT4v5ZhnN5vrzqApsxOtp8hnfo1l2Pj4gYmBseK5XwEK0oKO8Z50_Fy2kiXI8uTA88HRD1j9n50fuzw7lI5AzCqSobBNStMujFQlMh6PN5hcDPNk760jj06TwiixqX3rnae3SCjfFFU1qlIIN8apzNn7D9VbeCZ4xXrmxKZQtZOquMNHUNrUXc1PiskW3RHrB8FIl2qXI5EWhc6jFE7auOgtQkSB0FecDEbtQ6Vu64oX8xSluPWamoRzWalhvGVX8aB31SBr2e6l7qTP-2Ya-P_GXP_8M9n8btuHuznLji6yJ7_t9zvmF35mcnx_r4w-mnF-wufRND4l6y_WGzhVcIvgb7Ovy4fgKDkDFq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning+analysis+to+predict+the+response+to+intravenous+and+subcutaneous+immunoglobulin+in+inflammatory+myopathies.+A+proposal+for+a+future+multi-omics+approach+in+autoimmune+diseases&rft.jtitle=Autoimmunity+reviews&rft.au=Danieli%2C+Maria+Giovanna&rft.au=Tonacci%2C+Alessandro&rft.au=Paladini%2C+Alberto&rft.au=Longhi%2C+Eleonora&rft.date=2022-06-01&rft.issn=1568-9972&rft.volume=21&rft.issue=6&rft.spage=103105&rft.epage=103105&rft_id=info:doi/10.1016%2Fj.autrev.2022.103105&rft.externalDBID=ECK1-s2.0-S1568997222000751&rft.externalDocID=1_s2_0_S1568997222000751
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F15689972%2Fcov200h.gif