A machine learning analysis to predict the response to intravenous and subcutaneous immunoglobulin in inflammatory myopathies. A proposal for a future multi-omics approach in autoimmune diseases
To evaluate the response to treatment with intravenous (IVIg) and subcutaneous (20%SCIg) immunoglobulin in our series of patients with Inflammatory idiopathic myopathies (IIM) by the means of artificial intelligence. IIM are rare diseases mainly involving the skeletal muscle with particular clinical...
Saved in:
| Published in | Autoimmunity reviews Vol. 21; no. 6; p. 103105 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
01.06.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1568-9972 1873-0183 |
| DOI | 10.1016/j.autrev.2022.103105 |
Cover
| Abstract | To evaluate the response to treatment with intravenous (IVIg) and subcutaneous (20%SCIg) immunoglobulin in our series of patients with Inflammatory idiopathic myopathies (IIM) by the means of artificial intelligence.
IIM are rare diseases mainly involving the skeletal muscle with particular clinical, laboratory and radiological characteristics. Artificial intelligence (AI) represents computer processes which allows to perform complex calculations and data analyses, with the least human intervention. Recently, the use an AI in medicine significantly expanded, especially through machine learning (ML) which analyses huge amounts of information and accordingly makes decisions, and deep learning (DL) which uses artificial neural networks to analyse data and automatically learn.
In this study, we employed AI in the evaluation of the response to treatment with IVIg and 20%SCIg in our series of patients with IIM. The diagnoses were determined on the established EULAR/ACR criteria. The treatment response was evaluated employing the following: serum creatine kinase levels, muscle strength (MMT8 score), disease activity (MITAX score) and disability (HAQ-DI score). We evaluated all the above parameters, applying, with R, different supervised ML algorithms, including Least Absolute Shrinkage and Selection Operator, Ridge, Elastic Net, Classification and Regression Trees and Random Forest to estimate the most important predictors for a good response to IVIg and 20%SCIg treatment.
By the means of AI we have been able to identify the scores that best predict a good response to IVIg and 20%SCIg treatment. The muscle strength as evaluated by MMT8 score at the follow-up is predicted by the presence of dysphagia and of skin disorders, and the myositis activity index (MITAX) at the beginning of the treatment. The relationship between muscle strength and MITAX indicates a better action of IVIg therapy in patients with more active systemic disease. Considering our results, Elastic Net and similar approaches were seen to be the most viable, efficient, and effective ML methods for predicting the clinical outcome (MMT8 and MITAX at most) in myositis.
•Artificial intelligence allows to perform data analyses, with the least human intervention.•We employed AI in the evaluation of the response to treatment with IVIg and 20%SCIg in myositis.•The muscle strength at the follow-up is predicteddysphagia and of skin disorders at the beginning of the treatment.•The relationship between muscle strength and disease activity indicates a benefit of IVIg in patients with more active systemic disease.•Elastic Net and similar approaches were seen to be the most viable, efficient, and effective ML methods for predicting the clinical outcome (MMT8 and MITAX) in myositis. |
|---|---|
| AbstractList | To evaluate the response to treatment with intravenous (IVIg) and subcutaneous (20%SCIg) immunoglobulin in our series of patients with Inflammatory idiopathic myopathies (IIM) by the means of artificial intelligence.
IIM are rare diseases mainly involving the skeletal muscle with particular clinical, laboratory and radiological characteristics. Artificial intelligence (AI) represents computer processes which allows to perform complex calculations and data analyses, with the least human intervention. Recently, the use an AI in medicine significantly expanded, especially through machine learning (ML) which analyses huge amounts of information and accordingly makes decisions, and deep learning (DL) which uses artificial neural networks to analyse data and automatically learn.
In this study, we employed AI in the evaluation of the response to treatment with IVIg and 20%SCIg in our series of patients with IIM. The diagnoses were determined on the established EULAR/ACR criteria. The treatment response was evaluated employing the following: serum creatine kinase levels, muscle strength (MMT8 score), disease activity (MITAX score) and disability (HAQ-DI score). We evaluated all the above parameters, applying, with R, different supervised ML algorithms, including Least Absolute Shrinkage and Selection Operator, Ridge, Elastic Net, Classification and Regression Trees and Random Forest to estimate the most important predictors for a good response to IVIg and 20%SCIg treatment.
By the means of AI we have been able to identify the scores that best predict a good response to IVIg and 20%SCIg treatment. The muscle strength as evaluated by MMT8 score at the follow-up is predicted by the presence of dysphagia and of skin disorders, and the myositis activity index (MITAX) at the beginning of the treatment. The relationship between muscle strength and MITAX indicates a better action of IVIg therapy in patients with more active systemic disease. Considering our results, Elastic Net and similar approaches were seen to be the most viable, efficient, and effective ML methods for predicting the clinical outcome (MMT8 and MITAX at most) in myositis.
•Artificial intelligence allows to perform data analyses, with the least human intervention.•We employed AI in the evaluation of the response to treatment with IVIg and 20%SCIg in myositis.•The muscle strength at the follow-up is predicteddysphagia and of skin disorders at the beginning of the treatment.•The relationship between muscle strength and disease activity indicates a benefit of IVIg in patients with more active systemic disease.•Elastic Net and similar approaches were seen to be the most viable, efficient, and effective ML methods for predicting the clinical outcome (MMT8 and MITAX) in myositis. AbstractObjectiveTo evaluate the response to treatment with intravenous (IVIg) and subcutaneous (20%SCIg) immunoglobulin in our series of patients with Inflammatory idiopathic myopathies (IIM) by the means of artificial intelligence. BackgroundIIM are rare diseases mainly involving the skeletal muscle with particular clinical, laboratory and radiological characteristics. Artificial intelligence (AI) represents computer processes which allows to perform complex calculations and data analyses, with the least human intervention. Recently, the use an AI in medicine significantly expanded, especially through machine learning (ML) which analyses huge amounts of information and accordingly makes decisions, and deep learning (DL) which uses artificial neural networks to analyse data and automatically learn. MethodsIn this study, we employed AI in the evaluation of the response to treatment with IVIg and 20%SCIg in our series of patients with IIM. The diagnoses were determined on the established EULAR/ACR criteria. The treatment response was evaluated employing the following: serum creatine kinase levels, muscle strength (MMT8 score), disease activity (MITAX score) and disability (HAQ-DI score). We evaluated all the above parameters, applying, with R, different supervised ML algorithms, including Least Absolute Shrinkage and Selection Operator, Ridge, Elastic Net, Classification and Regression Trees and Random Forest to estimate the most important predictors for a good response to IVIg and 20%SCIg treatment. Results and conclusionBy the means of AI we have been able to identify the scores that best predict a good response to IVIg and 20%SCIg treatment. The muscle strength as evaluated by MMT8 score at the follow-up is predicted by the presence of dysphagia and of skin disorders, and the myositis activity index (MITAX) at the beginning of the treatment. The relationship between muscle strength and MITAX indicates a better action of IVIg therapy in patients with more active systemic disease. Considering our results, Elastic Net and similar approaches were seen to be the most viable, efficient, and effective ML methods for predicting the clinical outcome (MMT8 and MITAX at most) in myositis. To evaluate the response to treatment with intravenous (IVIg) and subcutaneous (20%SCIg) immunoglobulin in our series of patients with Inflammatory idiopathic myopathies (IIM) by the means of artificial intelligence. IIM are rare diseases mainly involving the skeletal muscle with particular clinical, laboratory and radiological characteristics. Artificial intelligence (AI) represents computer processes which allows to perform complex calculations and data analyses, with the least human intervention. Recently, the use an AI in medicine significantly expanded, especially through machine learning (ML) which analyses huge amounts of information and accordingly makes decisions, and deep learning (DL) which uses artificial neural networks to analyse data and automatically learn. In this study, we employed AI in the evaluation of the response to treatment with IVIg and 20%SCIg in our series of patients with IIM. The diagnoses were determined on the established EULAR/ACR criteria. The treatment response was evaluated employing the following: serum creatine kinase levels, muscle strength (MMT8 score), disease activity (MITAX score) and disability (HAQ-DI score). We evaluated all the above parameters, applying, with R, different supervised ML algorithms, including Least Absolute Shrinkage and Selection Operator, Ridge, Elastic Net, Classification and Regression Trees and Random Forest to estimate the most important predictors for a good response to IVIg and 20%SCIg treatment. By the means of AI we have been able to identify the scores that best predict a good response to IVIg and 20%SCIg treatment. The muscle strength as evaluated by MMT8 score at the follow-up is predicted by the presence of dysphagia and of skin disorders, and the myositis activity index (MITAX) at the beginning of the treatment. The relationship between muscle strength and MITAX indicates a better action of IVIg therapy in patients with more active systemic disease. Considering our results, Elastic Net and similar approaches were seen to be the most viable, efficient, and effective ML methods for predicting the clinical outcome (MMT8 and MITAX at most) in myositis. |
| ArticleNumber | 103105 |
| Author | Danieli, Maria Giovanna Allegra, Alessandro Paladini, Alberto Longhi, Eleonora Gangemi, Sebastiano Moroncini, Gianluca Tonacci, Alessandro Sansone, Francesco |
| Author_xml | – sequence: 1 givenname: Maria Giovanna surname: Danieli fullname: Danieli, Maria Giovanna email: m.g.danieli@univpm.it organization: Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, via Tronto 10/A, 60126 Torrette di Ancona, Italy – sequence: 2 givenname: Alessandro surname: Tonacci fullname: Tonacci, Alessandro organization: Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), Via G. Moruzzi 1, 56124 Pisa, Italy – sequence: 3 givenname: Alberto surname: Paladini fullname: Paladini, Alberto organization: PostGraduate School of Internal Medicine, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy – sequence: 4 givenname: Eleonora surname: Longhi fullname: Longhi, Eleonora organization: Scuola di Medicina e Chirurgia, Alma Mater Studiorum, Università degli Studi di Bologna, 40126 Bologna, Italy – sequence: 5 givenname: Gianluca surname: Moroncini fullname: Moroncini, Gianluca organization: Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, via Tronto 10/A, 60126 Torrette di Ancona, Italy – sequence: 6 givenname: Alessandro surname: Allegra fullname: Allegra, Alessandro organization: Division of Haematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy – sequence: 7 givenname: Francesco surname: Sansone fullname: Sansone, Francesco organization: Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), Via G. Moruzzi 1, 56124 Pisa, Italy – sequence: 8 givenname: Sebastiano surname: Gangemi fullname: Gangemi, Sebastiano email: sebastiano.gangemi@unime.it organization: School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35452850$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVku2K1TAQhousuB96ByK5gZ5N0ua0FREOi7rCgj_U32GaTPfk2CYlHwd6e3tlpnvcP4IsQiBhmPeZzLxzWZxZZ7Eo3jK6YZRtrw8bSNHjccMp5zlUMSpeFBesbaqSsrY6y2-xbcuua_h5cRnCgWZZx7tXxXklasFbQS-Khx2ZQO2NRTIieGvsPQEL4xJMINGR2aM2KpK4R-IxzM4GXOPGRg9HtC6FnK9JSL1KESyuATNNybr70fVpNJY8nmGEaYLo_EKmxc0Q9wbDhuxyBTe7ACMZnCdAhhSTRzKlMZrSTUZl_pxz8idXUO7ZPeKRaBMQAobXxcsBxoBv_txXxc_Pn37c3JZ33758vdndlapuaCyxHWoQvMKuETXVVUNF03eK6y2ojte65bTN41Gq1bqtGgAtum1f10ixYqD66qp4d-LOqZ9Qy9mbCfwin4aZE96fEpR3IXgcpDIRonHrrMwoGZWrc_IgT87J1Tl5ci6L67_ET_xnZB9PMsydHw16GZRBq7JrHlWU2pn_BajsmVEw_sIFw8Eln9chSCYDl1R-X3dqXSnOKaWNYBnw4d-A5-v_Btgb5A0 |
| CitedBy_id | crossref_primary_10_3389_fimmu_2022_978708 crossref_primary_10_1016_j_bspc_2024_106495 crossref_primary_10_1016_j_autrev_2023_103353 crossref_primary_10_1016_j_autrev_2023_103496 crossref_primary_10_1177_09733698241255915 crossref_primary_10_1021_acs_jafc_3c04460 crossref_primary_10_3390_diagnostics13182906 crossref_primary_10_1016_j_clindermatol_2024_06_019 crossref_primary_10_1002_open_202200192 crossref_primary_10_3390_diagnostics13040664 crossref_primary_10_3390_ijms24065680 crossref_primary_10_3390_pr10102088 crossref_primary_10_1051_medsci_2023136 crossref_primary_10_3389_fimmu_2024_1477130 crossref_primary_10_1007_s10278_024_01168_w crossref_primary_10_1109_ACCESS_2023_3320798 crossref_primary_10_1093_bib_bbad514 crossref_primary_10_1080_1744666X_2023_2270737 crossref_primary_10_1093_rheumatology_keaf070 crossref_primary_10_1038_s41598_023_36833_7 crossref_primary_10_1111_1756_185X_15092 crossref_primary_10_3390_psychoactives2020007 crossref_primary_10_1016_j_imu_2022_101142 crossref_primary_10_1016_j_ophtha_2024_07_004 |
| Cites_doi | 10.3390/diagnostics11101880 10.1177/0394632016681577 10.1109/RBME.2020.3007816 10.1136/annrheumdis-2017-211868 10.1016/j.autrev.2016.07.023 10.1007/s11926-012-0249-3 10.1177/1759720X20936822 10.1002/art.10053 10.1038/nrrheum.2018.33 10.3390/diagnostics11060940 10.1038/s41467-022-28905-5 10.1186/s13040-021-00283-6 10.1016/j.autrev.2010.09.004 10.1136/annrheumdis-2019-216599 10.1111/tri.13818 10.1111/j.2517-6161.1996.tb02080.x 10.1111/ced.13607 10.3109/03009740903555366 10.18383/j.tom.2019.00009 10.1016/j.autrev.2021.102997 10.1016/j.cmi.2019.09.009 10.1056/NEJMra1402225 10.1161/STROKEAHA.118.024293 10.1056/NEJM197502132920706 10.1038/s41598-021-89311-3 10.1016/j.autrev.2020.102508 10.1016/j.autrev.2021.102757 10.1186/ar3704 10.1038/s41598-021-96292-w 10.1002/mus.27225 10.1136/annrheumdis-2017-211468 10.1038/nrrheum.2018.41 10.1002/acr.20325 10.3389/fimmu.2021.805705 10.3899/jrheum.161311 10.4103/0028-3886.60398 10.1186/ar4332 10.1056/NEJM199312303292704 10.1093/rheumatology/41.1.22 10.1016/S0169-7439(98)00071-9 10.1093/rheumatology/keaa443 10.1093/rheumatology/kem131 10.1371/journal.pone.0184059 10.2152/jmi.66.237 10.1002/art.24904 10.1007/PL00009595 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION NPM |
| DOI | 10.1016/j.autrev.2022.103105 |
| DatabaseName | CrossRef PubMed |
| DatabaseTitle | CrossRef PubMed |
| DatabaseTitleList | PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1873-0183 |
| EndPage | 103105 |
| ExternalDocumentID | 35452850 10_1016_j_autrev_2022_103105 S1568997222000751 1_s2_0_S1568997222000751 |
| Genre | Journal Article Review |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AAAJQ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGEKW AGHFR AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV CJTIS CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM LUGTX M41 MO0 N9A O-L O9- O9~ OAUVE OK0 OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SES SEW SPCBC SSH SSI SSZ T5K UHS UNMZH UV1 Z5R ~G- ~HD AACTN AFCTW AFKWA AJOXV AMFUW RIG AAYXX CITATION NPM |
| ID | FETCH-LOGICAL-c470t-e8f4a523e97540d37057b9c2d6ac924d8208692cc8dd837aad596b44e0e31acb3 |
| IEDL.DBID | .~1 |
| ISSN | 1568-9972 |
| IngestDate | Thu Apr 03 07:09:51 EDT 2025 Wed Oct 29 21:14:43 EDT 2025 Thu Apr 24 22:58:39 EDT 2025 Sun Apr 06 06:53:53 EDT 2025 Tue Feb 25 20:03:23 EST 2025 Tue Oct 14 19:29:44 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Subcutaneous immunoglobulin Polymyositis Dermatomyositis Machine learning Intravenous immunoglobulin DL SCIg IVIg DM PM Multi-omics ML Deep Learning |
| Language | English |
| License | Copyright © 2022 Elsevier B.V. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-e8f4a523e97540d37057b9c2d6ac924d8208692cc8dd837aad596b44e0e31acb3 |
| PMID | 35452850 |
| PageCount | 1 |
| ParticipantIDs | pubmed_primary_35452850 crossref_citationtrail_10_1016_j_autrev_2022_103105 crossref_primary_10_1016_j_autrev_2022_103105 elsevier_sciencedirect_doi_10_1016_j_autrev_2022_103105 elsevier_clinicalkeyesjournals_1_s2_0_S1568997222000751 elsevier_clinicalkey_doi_10_1016_j_autrev_2022_103105 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Autoimmunity reviews |
| PublicationTitleAlternate | Autoimmun Rev |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Canessa, Iacopelli, Pecoraro (bb0080) 2017; 30 Danieli, Pettinari, Moretti, Logullo, Gabrielli (bb0075) 2011; 10 Sultan, Ioannou, Moss, Isenberg (bb0215) 2002; 41 Barsotti, Cavazzana, Zanframundo, Neri, Taraborelli, Cioffi (bb0180) 2021; 20 Bohan, Peter (bb0040) 1975; 292 Labeit, Perlova, Pawlitzki, Ruck, Muhle, Claus (bb0135) 2021; 63 Cabral-Marques, Halpert, Schimke, Ostrinski, Vojdani, Baiocchi (bb0035) 2022; 13 Rider, Aggarwal, Machado (bb0085) 2018; 14 Kim, Han, Jeong, Beom (bb0140) 2010; 39 Marie (bb0175) 2012; 14 Dalakas, Illa, Dambrosia, Soueidan, Stein, Otero (bb0150) 1993; 329 Murdaca, Banchero, Tonacci, Nencioni, Monacelli, Gangemi (bb0030) 2021; 11 Nodera, Sogawa, Takamatsu, Hashiguchi, Saito, Mori (bb0240) 2019; 66 Guerra, Gelardi, Capucci, Gabrielli, Danieli (bb0060) 2017; 44 Conrad, Shoenfeld, Fritzler (bb0020) 2020; 19 Hoff, de Souza, Miossi, Shinjo sk. (bb0205) 2021 Marie, Hachulla, Hatron, Hellot, Levesque, Devulder (bb0070) 2001; 28 Danieli, Verga, Mezzanotte (bb0190) 2022; 12 Xu, Wu, Zhang, Chen, Tao, Zhao (bb0235) 2021; 11 Cherin, Pelletier, Teixeira, Laforet, Genereau, Simon (bb0210) 2002; 46 Dalakas (bb0005) 2015; 372 Burlina, Billings, Joshi, Albayda (bb0245) 2017; 12 Goswami, Haldar, Chatterjee, Vij, van der Kooi, Lim (bb0165) 2022; 21 Murdaca, Caprioli, Tonacci, Billeci, Greco, Negrini (bb0025) 2021; 11 McCann, Garay, Ryan, Harris, Riley, Pilkington (bb0145) 2007; 46 Goldenberg, Berthusen, Cárdenas-Rodríguez, Pagel (bb0230) 2019; 5 Lundberg, de Visser, Werth (bb0010) 2018; 14 Lilleker, Vencovsky, Wang (bb0015) 2018; 77 Marie, Menard, Hatron, Hachulla, Mouthon, Tiev (bb0155) 2010; 62 Lundberg, Tjärnlund, Bottai, Werth, Pilkington, de Visser (bb0045) 2017; 76 Finch, Finch (bb0125) 2016; 21 Heo, Yoon, Park, Kim, Nam, Heo (bb0115) 2019; 50 Conlin, Martin, Morris (bb0095) 1998; 44 Nagawa, Suzuki, Yamamoto, Inoue, Kozawa, Mimura (bb0225) 2021; 11 Giannini, Fiorella, Tampoia, Girolamo, Fornaro, Amati (bb0170) 2021; 60 Schiopu, Phillips, MacDonald, Crofford, Somers (bb0200) 2012; 14 Beinecke, Heider (bb0100) 2021; 14 Marie, Hatron, Cherin, Hachulla, Diot, Vittecoq (bb0160) 2013; 15 Rider, Lachenbruch, Monroe, Ravelli, Cabalar, Feldman (bb0220) 2009; 60 Tibshirani (bb0090) 1996; 58 Ferrarese, Sartori, Orrù, Frigo, Pelizzaro, Burra (bb0120) 2021; 34 Musset, Allenbach, Benveniste (bb0050) 2016; 15 Galimberti, Kooistra, Li (bb0185) 2018; 43 Peiffer-Smadja, Rawson, Ahmad, Buchard, Georgiou, Lescure (bb0105) 2020; 26 Rider, Werth, Huber, Alexanderson, Rao, Ruperto (bb0055) 2011; 63 Naji, Shahram, Nadji, Davatchi (bb0195) 2010; 58 Shamout, Zhu, Clifton (bb0110) 2021; 14 O’Neil, Purdy, Falk, Gallo (bb0065) 1999; 14 Pinal-Fernandez, Casal-Dominguez, Derfoul, Pak, Miller, Milisenda (bb0255) 2020; 79 Kabeya, Okubo, Yonezawa, Nakano, Inoue, Ogasawara (bb0250) 2021 Lee, Lee, Hong, Lee, Yoo, Oh (bb0130) 2020; 12 Finch (10.1016/j.autrev.2022.103105_bb0125) 2016; 21 Nagawa (10.1016/j.autrev.2022.103105_bb0225) 2021; 11 Bohan (10.1016/j.autrev.2022.103105_bb0040) 1975; 292 Dalakas (10.1016/j.autrev.2022.103105_bb0005) 2015; 372 Tibshirani (10.1016/j.autrev.2022.103105_bb0090) 1996; 58 O’Neil (10.1016/j.autrev.2022.103105_bb0065) 1999; 14 Shamout (10.1016/j.autrev.2022.103105_bb0110) 2021; 14 Nodera (10.1016/j.autrev.2022.103105_bb0240) 2019; 66 Rider (10.1016/j.autrev.2022.103105_bb0220) 2009; 60 Cherin (10.1016/j.autrev.2022.103105_bb0210) 2002; 46 Lundberg (10.1016/j.autrev.2022.103105_bb0045) 2017; 76 Dalakas (10.1016/j.autrev.2022.103105_bb0150) 1993; 329 Naji (10.1016/j.autrev.2022.103105_bb0195) 2010; 58 Marie (10.1016/j.autrev.2022.103105_bb0175) 2012; 14 Xu (10.1016/j.autrev.2022.103105_bb0235) 2021; 11 Marie (10.1016/j.autrev.2022.103105_bb0070) 2001; 28 Danieli (10.1016/j.autrev.2022.103105_bb0190) 2022; 12 Goldenberg (10.1016/j.autrev.2022.103105_bb0230) 2019; 5 Conrad (10.1016/j.autrev.2022.103105_bb0020) 2020; 19 Pinal-Fernandez (10.1016/j.autrev.2022.103105_bb0255) 2020; 79 Giannini (10.1016/j.autrev.2022.103105_bb0170) 2021; 60 Ferrarese (10.1016/j.autrev.2022.103105_bb0120) 2021; 34 Galimberti (10.1016/j.autrev.2022.103105_bb0185) 2018; 43 Conlin (10.1016/j.autrev.2022.103105_bb0095) 1998; 44 Heo (10.1016/j.autrev.2022.103105_bb0115) 2019; 50 Hoff (10.1016/j.autrev.2022.103105_bb0205) 2021 Sultan (10.1016/j.autrev.2022.103105_bb0215) 2002; 41 Danieli (10.1016/j.autrev.2022.103105_bb0075) 2011; 10 Canessa (10.1016/j.autrev.2022.103105_bb0080) 2017; 30 Beinecke (10.1016/j.autrev.2022.103105_bb0100) 2021; 14 Lee (10.1016/j.autrev.2022.103105_bb0130) 2020; 12 Murdaca (10.1016/j.autrev.2022.103105_bb0025) 2021; 11 Guerra (10.1016/j.autrev.2022.103105_bb0060) 2017; 44 Barsotti (10.1016/j.autrev.2022.103105_bb0180) 2021; 20 Musset (10.1016/j.autrev.2022.103105_bb0050) 2016; 15 Burlina (10.1016/j.autrev.2022.103105_bb0245) 2017; 12 Kim (10.1016/j.autrev.2022.103105_bb0140) 2010; 39 Kabeya (10.1016/j.autrev.2022.103105_bb0250) 2021 McCann (10.1016/j.autrev.2022.103105_bb0145) 2007; 46 Cabral-Marques (10.1016/j.autrev.2022.103105_bb0035) 2022; 13 Murdaca (10.1016/j.autrev.2022.103105_bb0030) 2021; 11 Marie (10.1016/j.autrev.2022.103105_bb0155) 2010; 62 Lilleker (10.1016/j.autrev.2022.103105_bb0015) 2018; 77 Rider (10.1016/j.autrev.2022.103105_bb0085) 2018; 14 Rider (10.1016/j.autrev.2022.103105_bb0055) 2011; 63 Schiopu (10.1016/j.autrev.2022.103105_bb0200) 2012; 14 Marie (10.1016/j.autrev.2022.103105_bb0160) 2013; 15 Goswami (10.1016/j.autrev.2022.103105_bb0165) 2022; 21 Peiffer-Smadja (10.1016/j.autrev.2022.103105_bb0105) 2020; 26 Lundberg (10.1016/j.autrev.2022.103105_bb0010) 2018; 14 Labeit (10.1016/j.autrev.2022.103105_bb0135) 2021; 63 |
| References_xml | – volume: 77 start-page: 30 year: 2018 end-page: 39 ident: bb0015 article-title: The EuroMyositis registry: an international collaborative tool to facilitate myositis research publication-title: Ann Rheum Dis – volume: 39 start-page: 336 year: 2010 end-page: 340 ident: bb0140 article-title: Comparison between swallowing-related and limb muscle involvement in dermatomyositis patients publication-title: Scand J Rheumatol – year: 2021 ident: bb0250 article-title: Deep convolutional neural network-based algorithm for muscle biopsy diagnosis publication-title: Lab Invest – volume: 11 start-page: 9821 year: 2021 ident: bb0225 article-title: Texture analysis of muscle MRI: machine learning-based classifications in idiopathic inflammatory myopathies publication-title: Sci Rep – volume: 28 start-page: 2230 year: 2001 end-page: 2237 ident: bb0070 article-title: Polymyositis and dermatomyositis: short term and long-term outcome, and predictive factors of prognosis publication-title: J Rheumatol – volume: 44 start-page: 161 year: 1998 end-page: 173 ident: bb0095 article-title: Data augmentation: an alternative approach to the analysis of spectroscopic data publication-title: Chemom Intel Lab Syst – volume: 63 start-page: 874 year: 2021 end-page: 880 ident: bb0135 article-title: Predictors, outcome and characteristics of oropharyngeal dysphagia in idiopathic inflammatory myopathy publication-title: Muscle Nerve – volume: 14 start-page: 49 year: 2021 ident: bb0100 article-title: Gaussian noise up-sampling is better suited than SMOTE and ADASYN for clinical decision making publication-title: BioData Min – volume: 14 start-page: 139 year: 1999 end-page: 145 ident: bb0065 article-title: The dysphagia outcome and severity scale publication-title: Dysphagia – volume: 14 start-page: 116 year: 2021 end-page: 126 ident: bb0110 article-title: Machine learning for clinical outcome prediction publication-title: IEEE Rev Biomed Eng – volume: 79 start-page: 1234 year: 2020 end-page: 1242 ident: bb0255 article-title: Machine learning algorithms reveal unique gene expression profiles in muscle biopsies from patients with different types of myositis publication-title: Ann Rheum Dis – volume: 63 start-page: S118 year: 2011 end-page: S157 ident: bb0055 article-title: Measures of adult and juvenile dermatomyositis, polymyositis, and inclusion body myositis: physician and patient/parent global activity, manual muscle testing (MMT), health assessment questionnaire (HAQ)/childhood health assessment questionnaire (C-HAQ), childhood Myo-sitisAssessment scale (CMAS), myositis disease activity assessment tool (MDAAT), disease activity score (DAS), short form 36 (SF-36), child health questionnaire (CHQ), physician global damage, myositis damage index (MDI), quantitative muscle testing (QMT), myositis functional Index-2 (FI-2), myositis activities profile (MAP), inclusion body myositis functional rating scale (IBMFRS), cutaneous dermatomyositis disease area and severity index (CDASI), cutaneous assessment tool (CAT), dermatomyositis skin severity index (DSSI), Skindex, and dermatology life quality index (DLQI) publication-title: Arthritis Care Res (Hoboken) – volume: 12 year: 2020 ident: bb0130 article-title: Prognostic factors for steroid-free remission in patients with idiopathic inflammatory myopathies: importance of anthropometric measurements publication-title: Ther Adv Musculoskelet Dis – volume: 11 start-page: 1880 year: 2021 ident: bb0025 article-title: A machine learning application to predict early lung involvement in scleroderma: a feasibility evaluation publication-title: Diagnostics (Basel) – volume: 58 start-page: 58 year: 2010 end-page: 61 ident: bb0195 article-title: Effect of early treatment in polymyositis and dermatomyositis publication-title: Neurol India – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bb0090 article-title: Regression shrinkage and selection via the Lasso publication-title: J R Stat Soc Series B – volume: 21 year: 2022 ident: bb0165 article-title: Efficacy and safety of intravenous and subcutaneous immunoglobulin therapy in idiopathic inflammatory myopathy: a systematic review and meta-analysis publication-title: Autoimmun Rev – volume: 44 start-page: 815 year: 2017 end-page: 821 ident: bb0060 article-title: Subclinical cardiac dysfunction in polymyositis and dermatomyositis: a speckle-tracking case-control study publication-title: J Rheumatol – volume: 372 start-page: 1734 year: 2015 end-page: 1747 ident: bb0005 article-title: Inflammatory muscle diseases publication-title: N Engl J Med – volume: 14 start-page: R22 year: 2012 ident: bb0200 article-title: Predictors of survival in a cohort of patients with polymyositis and dermatomyositis: effect of corticosteroids, methotrexate and azathioprine publication-title: Arthritis Res Ther – volume: 292 start-page: 344 year: 1975 end-page: 347 ident: bb0040 article-title: Polymyositis and dermatomyositis publication-title: N Engl J Med – volume: 15 start-page: R149 year: 2013 ident: bb0160 article-title: Functional outcome and prognostic factors in anti-Jo1 patients with antisynthetase syndrome publication-title: Arthritis Res Ther – volume: 12 year: 2017 ident: bb0245 article-title: Automated diagnosis of myositis from muscle ultrasound: exploring the use of machine learning and deep learning methods publication-title: PLoS One – volume: 329 start-page: 1993 year: 1993 end-page: 2000 ident: bb0150 article-title: A controlled trial of high-dose intravenous immune globulin infusions as treatment for dermatomyositis publication-title: N Engl J Med – volume: 50 start-page: 1263 year: 2019 end-page: 1265 ident: bb0115 article-title: Machine learning-based model for prediction of outcomes in acute stroke publication-title: Stroke – volume: 13 start-page: 1220 year: 2022 ident: bb0035 article-title: Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity publication-title: Nat Commun – volume: 41 start-page: 22 year: 2002 end-page: 26 ident: bb0215 article-title: Outcome in patients with idiopathic inflammatory myositis: morbidity and mortality publication-title: Rheumatology (Oxford) – volume: 21 start-page: 7 year: 2016 ident: bb0125 article-title: Regularization methods for fitting linear models with small sample sizes: fitting the Lasso estimator using R publication-title: Pract Assess Res Eval – volume: 66 start-page: 237 year: 2019 end-page: 247 ident: bb0240 article-title: Texture analysis of sonographic muscle images can distinguish myopathic conditions publication-title: J Med Invest – year: 2021 ident: bb0205 article-title: Long-term effects of early pulse methylprednisolone and intravenous immunoglobulin in patients with dermatomyositis and polymyositis publication-title: Rheumatology (Oxford) – volume: 19 year: 2020 ident: bb0020 article-title: Precision health: a pragmatic approach to understanding and addressing key factors in autoimmune diseases publication-title: Autoimmun Rev – volume: 11 start-page: 17070 year: 2021 ident: bb0235 article-title: A novel CT scoring method predicts the prognosis of interstitial lung disease associated with anti-MDA5 positive dermatomyositis publication-title: Sci Rep – volume: 20 year: 2021 ident: bb0180 article-title: Real life picture of the use of intravenous immunoglobulins in idiopathic inflammatory myopathies: results of a multicentric study publication-title: Autoimmun Rev – volume: 12 year: 2022 ident: bb0190 article-title: Replacement and immunomodulatory activities of 20% subcutaneous immunoglobulin treatment: a single-center retrospective study in autoimmune myositis and CVID patients publication-title: Front Immunol – volume: 46 start-page: 467 year: 2002 end-page: 474 ident: bb0210 article-title: Results and long-term followup of intravenous immunoglobulin infusions in chronic, refractory polymyositis: an open study with thirty-five adult patients publication-title: Arthritis Rheum – volume: 26 start-page: 584 year: 2020 end-page: 595 ident: bb0105 article-title: Machine learning for clinical decision support in infectious diseases: a narrative review of current applications publication-title: Clin Microbiol Infect – volume: 60 start-page: 1234 year: 2021 end-page: 1242 ident: bb0170 article-title: Long-term efficacy of adding intravenous immunoglobulins as treatment of refractory dysphagia related to myositis: a retrospective analysis publication-title: Rheumatology (Oxford) – volume: 14 start-page: 275 year: 2012 end-page: 285 ident: bb0175 article-title: Morbidity and mortality in adult polymyositis and dermatomyositis publication-title: Curr Rheumatol Rep – volume: 60 start-page: 3425 year: 2009 end-page: 3435 ident: bb0220 article-title: IMACS group. Damage extent and predictors in adult and juvenile dermatomyositis and polymyositis as determined with the myositis damage index publication-title: Arthritis Rheum – volume: 15 start-page: 983 year: 2016 end-page: 993 ident: bb0050 article-title: Anti-HMGCR antibodies as a biomarker for immune-mediated necrotizing myopathies: a history of statins and experience from a large international multi-center study publication-title: Autoimmun Rev – volume: 10 start-page: 144 year: 2011 end-page: 149 ident: bb0075 article-title: Subcutaneous immunoglobulin in polymyositis and dermatomyositis: a novel application publication-title: Autoimmun Rev – volume: 62 start-page: 1748 year: 2010 end-page: 1755 ident: bb0155 article-title: Intravenous immunoglobulins for steroid-refractory esophageal involvement related to polymyositis and dermatomyositis: a series of 73 patients publication-title: Arthritis Care Res (Hoboken) – volume: 34 start-page: 398 year: 2021 end-page: 411 ident: bb0120 article-title: Machine learning in liver transplantation: a tool for some unsolved questions? publication-title: Transpl Int – volume: 5 start-page: 283 year: 2019 end-page: 291 ident: bb0230 article-title: Differentiation of myositis-induced models of bacterial infection and inflammation with T2-weighted, CEST, and DCE-MRI publication-title: Tomography – volume: 14 start-page: 269 year: 2018 end-page: 278 ident: bb0010 article-title: Classification of myositis publication-title: Nat Rev Rheumatol – volume: 43 start-page: 906 year: 2018 end-page: 912 ident: bb0185 article-title: Intravenous immunoglobulin is an effective treatment for refractory cutaneous dermatomyositis publication-title: Clin Exp Dermatol – volume: 76 start-page: 1955 year: 2017 end-page: 1964 ident: bb0045 article-title: International myositis classification criteria project consortium, the euromyositis register, and the juvenile dermatomyositis cohort biomarker study and repository (UK and Ireland). 2017 European league against rheumatism/American College of Rheumatology classification criteria for adult and juvenile idiopathic inflammatory myopathies and their major subgroups. Arthritis Rheum 2017;69:2271-82 publication-title: Ann Rheum Dis – volume: 46 start-page: 1363 year: 2007 end-page: 1366 ident: bb0145 article-title: Oropharyngeal dysphagia in juvenile dermatomyositis (JDM): an evaluation of videofluoroscopy swallow study (VFSS) changes in relation to clinical symptoms and objective muscle scores publication-title: Rheumatology – volume: 11 start-page: 940 year: 2021 ident: bb0030 article-title: Vitamin D and folate as predictors of MMSE in Alzheimer’s disease: a machine learning analysis publication-title: Diagnostics (Basel) – volume: 14 start-page: 303 year: 2018 end-page: 318 ident: bb0085 article-title: Update on outcome assessment in myositis publication-title: Nat Rev Rheumatol – volume: 30 start-page: 73 year: 2017 end-page: 82 ident: bb0080 article-title: Shift from intravenous or 16% subcutaneous replacement therapy to 20% subcutaneous immunoglobulin in patients with primary antibody deficiencies publication-title: Int J Immunopathol Pharmacol – volume: 11 start-page: 1880 issue: 10 year: 2021 ident: 10.1016/j.autrev.2022.103105_bb0025 article-title: A machine learning application to predict early lung involvement in scleroderma: a feasibility evaluation publication-title: Diagnostics (Basel) doi: 10.3390/diagnostics11101880 – volume: 30 start-page: 73 issue: 1 year: 2017 ident: 10.1016/j.autrev.2022.103105_bb0080 article-title: Shift from intravenous or 16% subcutaneous replacement therapy to 20% subcutaneous immunoglobulin in patients with primary antibody deficiencies publication-title: Int J Immunopathol Pharmacol doi: 10.1177/0394632016681577 – volume: 14 start-page: 116 year: 2021 ident: 10.1016/j.autrev.2022.103105_bb0110 article-title: Machine learning for clinical outcome prediction publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2020.3007816 – volume: 77 start-page: 30 year: 2018 ident: 10.1016/j.autrev.2022.103105_bb0015 article-title: The EuroMyositis registry: an international collaborative tool to facilitate myositis research publication-title: Ann Rheum Dis doi: 10.1136/annrheumdis-2017-211868 – volume: 15 start-page: 983 year: 2016 ident: 10.1016/j.autrev.2022.103105_bb0050 article-title: Anti-HMGCR antibodies as a biomarker for immune-mediated necrotizing myopathies: a history of statins and experience from a large international multi-center study publication-title: Autoimmun Rev doi: 10.1016/j.autrev.2016.07.023 – volume: 14 start-page: 275 year: 2012 ident: 10.1016/j.autrev.2022.103105_bb0175 article-title: Morbidity and mortality in adult polymyositis and dermatomyositis publication-title: Curr Rheumatol Rep doi: 10.1007/s11926-012-0249-3 – volume: 12 year: 2020 ident: 10.1016/j.autrev.2022.103105_bb0130 article-title: Prognostic factors for steroid-free remission in patients with idiopathic inflammatory myopathies: importance of anthropometric measurements publication-title: Ther Adv Musculoskelet Dis doi: 10.1177/1759720X20936822 – volume: 46 start-page: 467 issue: 2 year: 2002 ident: 10.1016/j.autrev.2022.103105_bb0210 article-title: Results and long-term followup of intravenous immunoglobulin infusions in chronic, refractory polymyositis: an open study with thirty-five adult patients publication-title: Arthritis Rheum doi: 10.1002/art.10053 – volume: 14 start-page: 303 issue: 5 year: 2018 ident: 10.1016/j.autrev.2022.103105_bb0085 article-title: Update on outcome assessment in myositis publication-title: Nat Rev Rheumatol doi: 10.1038/nrrheum.2018.33 – volume: 11 start-page: 940 issue: 6 year: 2021 ident: 10.1016/j.autrev.2022.103105_bb0030 article-title: Vitamin D and folate as predictors of MMSE in Alzheimer’s disease: a machine learning analysis publication-title: Diagnostics (Basel) doi: 10.3390/diagnostics11060940 – volume: 13 start-page: 1220 issue: 1 year: 2022 ident: 10.1016/j.autrev.2022.103105_bb0035 article-title: Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity publication-title: Nat Commun doi: 10.1038/s41467-022-28905-5 – volume: 14 start-page: 49 issue: 1 year: 2021 ident: 10.1016/j.autrev.2022.103105_bb0100 article-title: Gaussian noise up-sampling is better suited than SMOTE and ADASYN for clinical decision making publication-title: BioData Min doi: 10.1186/s13040-021-00283-6 – volume: 28 start-page: 2230 year: 2001 ident: 10.1016/j.autrev.2022.103105_bb0070 article-title: Polymyositis and dermatomyositis: short term and long-term outcome, and predictive factors of prognosis publication-title: J Rheumatol – volume: 10 start-page: 144 issue: 3 year: 2011 ident: 10.1016/j.autrev.2022.103105_bb0075 article-title: Subcutaneous immunoglobulin in polymyositis and dermatomyositis: a novel application publication-title: Autoimmun Rev doi: 10.1016/j.autrev.2010.09.004 – volume: 79 start-page: 1234 issue: 9 year: 2020 ident: 10.1016/j.autrev.2022.103105_bb0255 article-title: Machine learning algorithms reveal unique gene expression profiles in muscle biopsies from patients with different types of myositis publication-title: Ann Rheum Dis doi: 10.1136/annrheumdis-2019-216599 – volume: 34 start-page: 398 issue: 3 year: 2021 ident: 10.1016/j.autrev.2022.103105_bb0120 article-title: Machine learning in liver transplantation: a tool for some unsolved questions? publication-title: Transpl Int doi: 10.1111/tri.13818 – volume: 58 start-page: 267 year: 1996 ident: 10.1016/j.autrev.2022.103105_bb0090 article-title: Regression shrinkage and selection via the Lasso publication-title: J R Stat Soc Series B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 43 start-page: 906 year: 2018 ident: 10.1016/j.autrev.2022.103105_bb0185 article-title: Intravenous immunoglobulin is an effective treatment for refractory cutaneous dermatomyositis publication-title: Clin Exp Dermatol doi: 10.1111/ced.13607 – volume: 39 start-page: 336 issue: 4 year: 2010 ident: 10.1016/j.autrev.2022.103105_bb0140 article-title: Comparison between swallowing-related and limb muscle involvement in dermatomyositis patients publication-title: Scand J Rheumatol doi: 10.3109/03009740903555366 – volume: 5 start-page: 283 issue: 3 year: 2019 ident: 10.1016/j.autrev.2022.103105_bb0230 article-title: Differentiation of myositis-induced models of bacterial infection and inflammation with T2-weighted, CEST, and DCE-MRI publication-title: Tomography doi: 10.18383/j.tom.2019.00009 – volume: 21 issue: 2 year: 2022 ident: 10.1016/j.autrev.2022.103105_bb0165 article-title: Efficacy and safety of intravenous and subcutaneous immunoglobulin therapy in idiopathic inflammatory myopathy: a systematic review and meta-analysis publication-title: Autoimmun Rev doi: 10.1016/j.autrev.2021.102997 – volume: 26 start-page: 584 issue: 5 year: 2020 ident: 10.1016/j.autrev.2022.103105_bb0105 article-title: Machine learning for clinical decision support in infectious diseases: a narrative review of current applications publication-title: Clin Microbiol Infect doi: 10.1016/j.cmi.2019.09.009 – volume: 372 start-page: 1734 issue: 18 year: 2015 ident: 10.1016/j.autrev.2022.103105_bb0005 article-title: Inflammatory muscle diseases publication-title: N Engl J Med doi: 10.1056/NEJMra1402225 – volume: 50 start-page: 1263 issue: 5 year: 2019 ident: 10.1016/j.autrev.2022.103105_bb0115 article-title: Machine learning-based model for prediction of outcomes in acute stroke publication-title: Stroke doi: 10.1161/STROKEAHA.118.024293 – volume: 292 start-page: 344 year: 1975 ident: 10.1016/j.autrev.2022.103105_bb0040 article-title: Polymyositis and dermatomyositis publication-title: N Engl J Med doi: 10.1056/NEJM197502132920706 – volume: 11 start-page: 9821 issue: 1 year: 2021 ident: 10.1016/j.autrev.2022.103105_bb0225 article-title: Texture analysis of muscle MRI: machine learning-based classifications in idiopathic inflammatory myopathies publication-title: Sci Rep doi: 10.1038/s41598-021-89311-3 – volume: 19 issue: 5 year: 2020 ident: 10.1016/j.autrev.2022.103105_bb0020 article-title: Precision health: a pragmatic approach to understanding and addressing key factors in autoimmune diseases publication-title: Autoimmun Rev doi: 10.1016/j.autrev.2020.102508 – volume: 20 issue: 3 year: 2021 ident: 10.1016/j.autrev.2022.103105_bb0180 article-title: Real life picture of the use of intravenous immunoglobulins in idiopathic inflammatory myopathies: results of a multicentric study publication-title: Autoimmun Rev doi: 10.1016/j.autrev.2021.102757 – volume: 14 start-page: R22 issue: 1 year: 2012 ident: 10.1016/j.autrev.2022.103105_bb0200 article-title: Predictors of survival in a cohort of patients with polymyositis and dermatomyositis: effect of corticosteroids, methotrexate and azathioprine publication-title: Arthritis Res Ther doi: 10.1186/ar3704 – volume: 11 start-page: 17070 issue: 1 year: 2021 ident: 10.1016/j.autrev.2022.103105_bb0235 article-title: A novel CT scoring method predicts the prognosis of interstitial lung disease associated with anti-MDA5 positive dermatomyositis publication-title: Sci Rep doi: 10.1038/s41598-021-96292-w – volume: 63 start-page: 874 issue: 6 year: 2021 ident: 10.1016/j.autrev.2022.103105_bb0135 article-title: Predictors, outcome and characteristics of oropharyngeal dysphagia in idiopathic inflammatory myopathy publication-title: Muscle Nerve doi: 10.1002/mus.27225 – volume: 76 start-page: 1955 year: 2017 ident: 10.1016/j.autrev.2022.103105_bb0045 publication-title: Ann Rheum Dis doi: 10.1136/annrheumdis-2017-211468 – volume: 14 start-page: 269 issue: 5 year: 2018 ident: 10.1016/j.autrev.2022.103105_bb0010 article-title: Classification of myositis publication-title: Nat Rev Rheumatol doi: 10.1038/nrrheum.2018.41 – volume: 62 start-page: 1748 issue: 12 year: 2010 ident: 10.1016/j.autrev.2022.103105_bb0155 article-title: Intravenous immunoglobulins for steroid-refractory esophageal involvement related to polymyositis and dermatomyositis: a series of 73 patients publication-title: Arthritis Care Res (Hoboken) doi: 10.1002/acr.20325 – volume: 12 year: 2022 ident: 10.1016/j.autrev.2022.103105_bb0190 article-title: Replacement and immunomodulatory activities of 20% subcutaneous immunoglobulin treatment: a single-center retrospective study in autoimmune myositis and CVID patients publication-title: Front Immunol doi: 10.3389/fimmu.2021.805705 – volume: 63 start-page: S118 issue: Suppl. 11 year: 2011 ident: 10.1016/j.autrev.2022.103105_bb0055 publication-title: Arthritis Care Res (Hoboken) – volume: 44 start-page: 815 issue: 6 year: 2017 ident: 10.1016/j.autrev.2022.103105_bb0060 article-title: Subclinical cardiac dysfunction in polymyositis and dermatomyositis: a speckle-tracking case-control study publication-title: J Rheumatol doi: 10.3899/jrheum.161311 – volume: 58 start-page: 58 issue: 1 year: 2010 ident: 10.1016/j.autrev.2022.103105_bb0195 article-title: Effect of early treatment in polymyositis and dermatomyositis publication-title: Neurol India doi: 10.4103/0028-3886.60398 – volume: 15 start-page: R149 issue: 5 year: 2013 ident: 10.1016/j.autrev.2022.103105_bb0160 article-title: Functional outcome and prognostic factors in anti-Jo1 patients with antisynthetase syndrome publication-title: Arthritis Res Ther doi: 10.1186/ar4332 – volume: 329 start-page: 1993 issue: 27 year: 1993 ident: 10.1016/j.autrev.2022.103105_bb0150 article-title: A controlled trial of high-dose intravenous immune globulin infusions as treatment for dermatomyositis publication-title: N Engl J Med doi: 10.1056/NEJM199312303292704 – volume: 41 start-page: 22 issue: 1 year: 2002 ident: 10.1016/j.autrev.2022.103105_bb0215 article-title: Outcome in patients with idiopathic inflammatory myositis: morbidity and mortality publication-title: Rheumatology (Oxford) doi: 10.1093/rheumatology/41.1.22 – volume: 21 start-page: 7 year: 2016 ident: 10.1016/j.autrev.2022.103105_bb0125 article-title: Regularization methods for fitting linear models with small sample sizes: fitting the Lasso estimator using R publication-title: Pract Assess Res Eval – volume: 44 start-page: 161 issue: 1–2 year: 1998 ident: 10.1016/j.autrev.2022.103105_bb0095 article-title: Data augmentation: an alternative approach to the analysis of spectroscopic data publication-title: Chemom Intel Lab Syst doi: 10.1016/S0169-7439(98)00071-9 – year: 2021 ident: 10.1016/j.autrev.2022.103105_bb0250 article-title: Deep convolutional neural network-based algorithm for muscle biopsy diagnosis publication-title: Lab Invest – volume: 60 start-page: 1234 issue: 3 year: 2021 ident: 10.1016/j.autrev.2022.103105_bb0170 article-title: Long-term efficacy of adding intravenous immunoglobulins as treatment of refractory dysphagia related to myositis: a retrospective analysis publication-title: Rheumatology (Oxford) doi: 10.1093/rheumatology/keaa443 – volume: 46 start-page: 1363 issue: 8 year: 2007 ident: 10.1016/j.autrev.2022.103105_bb0145 article-title: Oropharyngeal dysphagia in juvenile dermatomyositis (JDM): an evaluation of videofluoroscopy swallow study (VFSS) changes in relation to clinical symptoms and objective muscle scores publication-title: Rheumatology doi: 10.1093/rheumatology/kem131 – year: 2021 ident: 10.1016/j.autrev.2022.103105_bb0205 article-title: Long-term effects of early pulse methylprednisolone and intravenous immunoglobulin in patients with dermatomyositis and polymyositis publication-title: Rheumatology (Oxford) – volume: 12 issue: 8 year: 2017 ident: 10.1016/j.autrev.2022.103105_bb0245 article-title: Automated diagnosis of myositis from muscle ultrasound: exploring the use of machine learning and deep learning methods publication-title: PLoS One doi: 10.1371/journal.pone.0184059 – volume: 66 start-page: 237 issue: 3.4 year: 2019 ident: 10.1016/j.autrev.2022.103105_bb0240 article-title: Texture analysis of sonographic muscle images can distinguish myopathic conditions publication-title: J Med Invest doi: 10.2152/jmi.66.237 – volume: 60 start-page: 3425 issue: 11 year: 2009 ident: 10.1016/j.autrev.2022.103105_bb0220 article-title: IMACS group. Damage extent and predictors in adult and juvenile dermatomyositis and polymyositis as determined with the myositis damage index publication-title: Arthritis Rheum doi: 10.1002/art.24904 – volume: 14 start-page: 139 issue: 3 year: 1999 ident: 10.1016/j.autrev.2022.103105_bb0065 article-title: The dysphagia outcome and severity scale publication-title: Dysphagia doi: 10.1007/PL00009595 |
| SSID | ssj0016929 |
| Score | 2.48 |
| SecondaryResourceType | review_article |
| Snippet | To evaluate the response to treatment with intravenous (IVIg) and subcutaneous (20%SCIg) immunoglobulin in our series of patients with Inflammatory idiopathic... AbstractObjectiveTo evaluate the response to treatment with intravenous (IVIg) and subcutaneous (20%SCIg) immunoglobulin in our series of patients with... |
| SourceID | pubmed crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 103105 |
| SubjectTerms | Allergy and Immunology Dermatomyositis Intravenous immunoglobulin Machine learning Multi-omics Polymyositis Subcutaneous immunoglobulin |
| Title | A machine learning analysis to predict the response to intravenous and subcutaneous immunoglobulin in inflammatory myopathies. A proposal for a future multi-omics approach in autoimmune diseases |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1568997222000751 https://www.clinicalkey.es/playcontent/1-s2.0-S1568997222000751 https://dx.doi.org/10.1016/j.autrev.2022.103105 https://www.ncbi.nlm.nih.gov/pubmed/35452850 |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-0183 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016929 issn: 1568-9972 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-0183 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016929 issn: 1568-9972 databaseCode: ACRLP dateStart: 20020201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-0183 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016929 issn: 1568-9972 databaseCode: AIKHN dateStart: 20020201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-0183 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016929 issn: 1568-9972 databaseCode: .~1 dateStart: 20020201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-0183 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016929 issn: 1568-9972 databaseCode: AKRWK dateStart: 20020201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhodBL6btpm6BDr6rXu9rX0ZgGp21MaBvITegxW1xir_GuC7n0x_WXdUbSmpSUphSMzQpJu9bIM99YM_Mx9gatjDUAWrjSgZAmBWGqDN-oVlwBGhEF5Q6fzYvZhXx_mV_usemQC0NhlVH3B53utXVsGcXVHK0Xi9Fn9DwqSvtMU2_4fAa7LInF4O2PXZjHuKg9Uxl1FtR7SJ_zMV562xPTS4qGjLLPx0Ri91fzdMP2nDxkDyJo5JPwXI_YHqwes3uBRvL6Cfs54UsfEwk8kkB85ToWG-F9y9cbOo3pOWI9vgkxsUDtC_pj97sv0or9He-2xm4RLAI1LChxpKV6IRSrzv2rwe2z9MfyfHndejJj9LP5BO_QrtsOHxEhMNc8FCrhPlhRUNozzh9rl9NEuB6tnx54PB_qnrKLk3dfpjMRuRmElWXSC6gaqdGJhbpEzOeyEnGfqW3qCm3RpXMILCpcemsr59AH1trldWGkhASysbYme8b2V-0KXjBe2qIupMnTwhqpU11V0BiETbVL6rTJm0OWDSJRNhYuJ_6MKzVEqH1TQZCKBKmCIA-Z2I1ah8Idd_TPB2mrISkV1ahCy3LHuPJP46CLuqBTY9WlKlG39uvNkb9t-X-45_OwHXffLCOq-CpPXv73nK_YfboKUXCv2X6_2cIR4q3eHPsf1DE7mEw_fTynz9MPszm2zs_PfgF4AzJ2 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaqIgQXxJvy9IGrycbrfR2jiipA2wut1JvlxywKarJRdoPUCz-OX8aM7Y2KQBQhRXtwbO-ux5n5Jp6Zj7G3aGWcBTDCVx6EshKErXO8UK24EgwiCsodPjkt5-fq40VxsccOx1wYCqtMuj_q9KCtU8skreZkvVhMPqPnUVPap5TB8KELdEsVsiIP7N33XZzHtGwCVRn1FtR9zJ8LQV5mOxDVi0RLRunnU2Kx-6t9umZ8ju6zewk18ll8sAdsD1YP2e3II3n1iP2Y8WUIigSeWCC-cJOqjfCh4-sNHccMHMEe38SgWKD2Bf2z-y1UacX-nvdb67aIFoEaFpQ50lHBEApW5-HT4v5ZhnN5vrzqApsxOtp8hnfo1l2Pj4gYmBseK5XwEK0oKO8Z50_Fy2kiXI8uTA88HRD1j9n50fuzw7lI5AzCqSobBNStMujFQlMh6PN5hcDPNk760jj06TwiixqX3rnae3SCjfFFU1qlIIN8apzNn7D9VbeCZ4xXrmxKZQtZOquMNHUNrUXc1PiskW3RHrB8FIl2qXI5EWhc6jFE7auOgtQkSB0FecDEbtQ6Vu64oX8xSluPWamoRzWalhvGVX8aB31SBr2e6l7qTP-2Ya-P_GXP_8M9n8btuHuznLji6yJ7_t9zvmF35mcnx_r4w-mnF-wufRND4l6y_WGzhVcIvgb7Ovy4fgKDkDFq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning+analysis+to+predict+the+response+to+intravenous+and+subcutaneous+immunoglobulin+in+inflammatory+myopathies.+A+proposal+for+a+future+multi-omics+approach+in+autoimmune+diseases&rft.jtitle=Autoimmunity+reviews&rft.au=Danieli%2C+Maria+Giovanna&rft.au=Tonacci%2C+Alessandro&rft.au=Paladini%2C+Alberto&rft.au=Longhi%2C+Eleonora&rft.date=2022-06-01&rft.issn=1568-9972&rft.volume=21&rft.issue=6&rft.spage=103105&rft.epage=103105&rft_id=info:doi/10.1016%2Fj.autrev.2022.103105&rft.externalDBID=ECK1-s2.0-S1568997222000751&rft.externalDocID=1_s2_0_S1568997222000751 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F15689972%2Fcov200h.gif |