Bifidobacterium animalis subsp. lactis decreases urinary oxalate excretion in a mouse model of primary hyperoxaluria
Hyperoxaluria significantly increases the risk of calcium oxalate kidney stone formation. Since several bacteria have been shown to metabolize oxalate in vitro, including probiotic bifidobacteria, we focused on the efficiency and possible mechanisms by which bifidobacteria can influence oxalate hand...
Saved in:
Published in | Urolithiasis Vol. 43; no. 2; pp. 107 - 117 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2015
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2194-7228 2194-7236 2194-7236 |
DOI | 10.1007/s00240-014-0728-2 |
Cover
Abstract | Hyperoxaluria significantly increases the risk of calcium oxalate kidney stone formation. Since several bacteria have been shown to metabolize oxalate in vitro, including probiotic bifidobacteria, we focused on the efficiency and possible mechanisms by which bifidobacteria can influence oxalate handling in vivo, especially in the intestines, and compared these results with the reported effects of
Oxalobacter formigenes
.
Bifidobacterium animalis
subsp.
lactis
DSM 10140 and
B. adolescentis
ATCC 15703 were administered to wild-type (WT) mice and to mice deficient in the hepatic enzyme alanine-glyoxylate aminotransferase (
Agxt
−/−
, a mouse model of Primary Hyperoxaluria) that were fed an oxalate-supplemented diet. The administration of
B. animalis
subsp.
lactis
led to a significant decrease in urinary oxalate excretion in WT and
Agxt
−/−
mice when compared to treatment with
B. adolescentis
. Detection of
B. animalis
subsp.
lactis
in feces revealed that 3 weeks after oral gavage with the bacteria 64 % of WT mice, but only 37 % of
Agxt
−/−
mice were colonized. Examining intestinal oxalate fluxes showed there were no significant changes to net oxalate secretion in colonized animals and were therefore not associated with the changes in urinary oxalate excretion. These results indicate that colonization with
B. animalis
subsp.
lactis
decreased urinary oxalate excretion by degrading dietary oxalate thus limiting its absorption across the intestine but it did not promote enteric oxalate excretion as reported for
O. formigenes.
Preventive or therapeutic administration of
B. animalis
subsp.
lactis
appears to have some potential to beneficially influence dietary hyperoxaluria in mice. |
---|---|
AbstractList | Hyperoxaluria significantly increases the risk of calcium oxalate kidney stone formation. Since several bacteria have been shown to metabolize oxalate in vitro, including probiotic bifidobacteria, we focused on the efficiency and possible mechanisms by which bifidobacteria can influence oxalate handling in vivo, especially in the intestines, and compared these results with the reported effects of Oxalobacter formigenes. Bifidobacterium animalis subsp. lactis DSM 10140 and B. adolescentis ATCC 15703 were administered to wild-type (WT) mice and to mice deficient in the hepatic enzyme alanine-glyoxylate aminotransferase (Agxt ^sup -/-^, a mouse model of Primary Hyperoxaluria) that were fed an oxalate-supplemented diet. The administration of B. animalis subsp. lactis led to a significant decrease in urinary oxalate excretion in WT and Agxt ^sup -/-^ mice when compared to treatment with B. adolescentis. Detection of B. animalis subsp. lactis in feces revealed that 3 weeks after oral gavage with the bacteria 64 % of WT mice, but only 37 % of Agxt ^sup -/-^ mice were colonized. Examining intestinal oxalate fluxes showed there were no significant changes to net oxalate secretion in colonized animals and were therefore not associated with the changes in urinary oxalate excretion. These results indicate that colonization with B. animalis subsp. lactis decreased urinary oxalate excretion by degrading dietary oxalate thus limiting its absorption across the intestine but it did not promote enteric oxalate excretion as reported for O. formigenes. Preventive or therapeutic administration of B. animalis subsp. lactis appears to have some potential to beneficially influence dietary hyperoxaluria in mice. Hyperoxaluria significantly increases the risk of calcium oxalate kidney stone formation. Since several bacteria have been shown to metabolize oxalate in vitro, including probiotic bifidobacteria, we focused on the efficiency and possible mechanisms by which bifidobacteria can influence oxalate handling in vivo, especially in the intestines, and compared these results with the reported effects of Oxalobacter formigenes. Bifidobacterium animalis subsp. lactis DSM 10140 and B. adolescentis ATCC 15703 were administered to wild-type (WT) mice and to mice deficient in the hepatic enzyme alanine-glyoxylate aminotransferase (Agxt(-/-), a mouse model of Primary Hyperoxaluria) that were fed an oxalate-supplemented diet. The administration of B. animalis subsp. lactis led to a significant decrease in urinary oxalate excretion in WT and Agxt(-/-) mice when compared to treatment with B. adolescentis. Detection of B. animalis subsp. lactis in feces revealed that 3 weeks after oral gavage with the bacteria 64% of WT mice, but only 37% of Agxt(-/-) mice were colonized. Examining intestinal oxalate fluxes showed there were no significant changes to net oxalate secretion in colonized animals and were therefore not associated with the changes in urinary oxalate excretion. These results indicate that colonization with B. animalis subsp. lactis decreased urinary oxalate excretion by degrading dietary oxalate thus limiting its absorption across the intestine but it did not promote enteric oxalate excretion as reported for O. formigenes. Preventive or therapeutic administration of B. animalis subsp. lactis appears to have some potential to beneficially influence dietary hyperoxaluria in mice. Hyperoxaluria significantly increases the risk of calcium oxalate kidney stone formation. Since several bacteria have been shown to metabolize oxalate in vitro, including probiotic bifidobacteria, we focused on the efficiency and possible mechanisms by which bifidobacteria can influence oxalate handling in vivo, especially in the intestines, and compared these results with the reported effects of Oxalobacter formigenes. Bifidobacterium animalis subsp. lactis DSM 10140 and B. adolescentis ATCC 15703 were administered to wild-type (WT) mice and to mice deficient in the hepatic enzyme alanine-glyoxylate aminotransferase (Agxt(-/-), a mouse model of Primary Hyperoxaluria) that were fed an oxalate-supplemented diet. The administration of B. animalis subsp. lactis led to a significant decrease in urinary oxalate excretion in WT and Agxt(-/-) mice when compared to treatment with B. adolescentis. Detection of B. animalis subsp. lactis in feces revealed that 3 weeks after oral gavage with the bacteria 64% of WT mice, but only 37% of Agxt(-/-) mice were colonized. Examining intestinal oxalate fluxes showed there were no significant changes to net oxalate secretion in colonized animals and were therefore not associated with the changes in urinary oxalate excretion. These results indicate that colonization with B. animalis subsp. lactis decreased urinary oxalate excretion by degrading dietary oxalate thus limiting its absorption across the intestine but it did not promote enteric oxalate excretion as reported for O. formigenes. Preventive or therapeutic administration of B. animalis subsp. lactis appears to have some potential to beneficially influence dietary hyperoxaluria in mice.Hyperoxaluria significantly increases the risk of calcium oxalate kidney stone formation. Since several bacteria have been shown to metabolize oxalate in vitro, including probiotic bifidobacteria, we focused on the efficiency and possible mechanisms by which bifidobacteria can influence oxalate handling in vivo, especially in the intestines, and compared these results with the reported effects of Oxalobacter formigenes. Bifidobacterium animalis subsp. lactis DSM 10140 and B. adolescentis ATCC 15703 were administered to wild-type (WT) mice and to mice deficient in the hepatic enzyme alanine-glyoxylate aminotransferase (Agxt(-/-), a mouse model of Primary Hyperoxaluria) that were fed an oxalate-supplemented diet. The administration of B. animalis subsp. lactis led to a significant decrease in urinary oxalate excretion in WT and Agxt(-/-) mice when compared to treatment with B. adolescentis. Detection of B. animalis subsp. lactis in feces revealed that 3 weeks after oral gavage with the bacteria 64% of WT mice, but only 37% of Agxt(-/-) mice were colonized. Examining intestinal oxalate fluxes showed there were no significant changes to net oxalate secretion in colonized animals and were therefore not associated with the changes in urinary oxalate excretion. These results indicate that colonization with B. animalis subsp. lactis decreased urinary oxalate excretion by degrading dietary oxalate thus limiting its absorption across the intestine but it did not promote enteric oxalate excretion as reported for O. formigenes. Preventive or therapeutic administration of B. animalis subsp. lactis appears to have some potential to beneficially influence dietary hyperoxaluria in mice. Hyperoxaluria significantly increases the risk of calcium oxalate kidney stone formation. Since several bacteria have been shown to metabolize oxalate in vitro, including probiotic bifidobacteria, we focused on the efficiency and possible mechanisms by which bifidobacteria can infuence oxalate handling in vivo, especially in the intestines, and compared these results with the reported effects of Oxalobacter formigenes . Bifidobacterium animalis subsp. lactis DSM 10140 and B. adolescentis ATCC 15703 were administered to wild-type (WT) mice and to mice defcient in the hepatic enzyme alanine-glyoxylate aminotransferase ( Agxt −/− , a mouse model of Primary Hyperoxaluria) that were fed an oxalate-supplemented diet. The administration of B. animalis subsp. lactis led to a significant decrease in urinary oxalate excretion in WT and Agxt −/− mice when compared to treatment with B. adolescent-is . Detection of B. animalis subsp. lactis in feces revealed that 3 weeks after oral gavage with the bacteria 64 % of WT mice, but only 37 % of Agxt −/− mice were colonized. Examining intestinal oxalate fuxes showed there were no significant changes to net oxalate secretion in colonized animals and were therefore not associated with the changes in urinary oxalate excretion. These results indicate that colonization with B. animalis subsp. lactis decreased urinary oxalate excretion by degrading dietary oxalate thus limiting its absorption across the intestine but it did not promote enteric oxalate excretion as reported for O. formigenes. Preventive or therapeutic administration of B. animalis subsp. lactis appears to have some potential to beneficially infuence dietary hyperoxaluria in mice. Hyperoxaluria significantly increases the risk of calcium oxalate kidney stone formation. Since several bacteria have been shown to metabolize oxalate in vitro, including probiotic bifidobacteria, we focused on the efficiency and possible mechanisms by which bifidobacteria can influence oxalate handling in vivo, especially in the intestines, and compared these results with the reported effects of Oxalobacter formigenes . Bifidobacterium animalis subsp. lactis DSM 10140 and B. adolescentis ATCC 15703 were administered to wild-type (WT) mice and to mice deficient in the hepatic enzyme alanine-glyoxylate aminotransferase ( Agxt −/− , a mouse model of Primary Hyperoxaluria) that were fed an oxalate-supplemented diet. The administration of B. animalis subsp. lactis led to a significant decrease in urinary oxalate excretion in WT and Agxt −/− mice when compared to treatment with B. adolescentis . Detection of B. animalis subsp. lactis in feces revealed that 3 weeks after oral gavage with the bacteria 64 % of WT mice, but only 37 % of Agxt −/− mice were colonized. Examining intestinal oxalate fluxes showed there were no significant changes to net oxalate secretion in colonized animals and were therefore not associated with the changes in urinary oxalate excretion. These results indicate that colonization with B. animalis subsp. lactis decreased urinary oxalate excretion by degrading dietary oxalate thus limiting its absorption across the intestine but it did not promote enteric oxalate excretion as reported for O. formigenes. Preventive or therapeutic administration of B. animalis subsp. lactis appears to have some potential to beneficially influence dietary hyperoxaluria in mice. |
Author | Whittamore, Jonathan M. Klimesova, Klara Hatch, Marguerite |
Author_xml | – sequence: 1 givenname: Klara surname: Klimesova fullname: Klimesova, Klara email: klimesov@biomed.cas.cz organization: Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Laboratory of Cellular and Molecular Immunology, Institute of Microbiology ASCR – sequence: 2 givenname: Jonathan M. surname: Whittamore fullname: Whittamore, Jonathan M. organization: Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida – sequence: 3 givenname: Marguerite surname: Hatch fullname: Hatch, Marguerite organization: Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25269440$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1vFSEUJabG1tof4MaQuHEzFRgGho2JNq2aNOmmXROGubQ0DDxhxrT_Xibv9aU2URZ83XMO53LeooOYIiD0npJTSoj8XAhhnDSE8oZI1jfsFTpiVPFGslYc7PesP0QnpdyTOpRSnJI36JB1TCjOyRGav3nnxzQYO0P2y4RN9JMJvuCyDGVzikOt1NMINoMpUPCSfTT5EacHE8wMGB5qZfYpYh-xwVNaCtR5hICTw5tc5Sr67nEDeaVUunmHXjsTCpzs1mN0c3F-ffajubz6_vPs62VjuSRzYwdpTWt72TEFBng_9JbboVOdc44J6kzvBicBhOll73g3klZ0vGXrBVeiPUZftrqbZZhgtBDnbILeedLJeP13Jfo7fZt-ay6Y6ltSBT7tBHL6tUCZ9eSLhRBMhNqnpkJ0tH40lRX68QX0Pi051vZWFG-VYnJFfXjuaG_lKZAKoFuAzamUDG4PoUSvuett7rrmrtfcNasc-YJj_WzWSGpTPvyXybbMUl-Jt5Cfmf4n6Q_ZFsPz |
CitedBy_id | crossref_primary_10_1089_end_2018_0294 crossref_primary_10_1159_000533295 crossref_primary_10_1007_s11306_020_01747_2 crossref_primary_10_25207_1608_6228_2021_28_2_90_103 crossref_primary_10_1128_mSphere_00498_20 crossref_primary_10_21508_1027_4065_2021_66_2_35_40 crossref_primary_10_1007_s00240_020_01181_y crossref_primary_10_3390_life14101338 crossref_primary_10_1007_s00240_022_01310_9 crossref_primary_10_3389_fmed_2023_1159616 crossref_primary_10_1038_s41581_019_0118_7 crossref_primary_10_3390_jpm11020074 crossref_primary_10_3920_BM2020_0008 crossref_primary_10_1007_s00240_019_01144_y crossref_primary_10_3389_fimmu_2021_673423 crossref_primary_10_1007_s11934_018_0791_2 crossref_primary_10_1007_s00240_016_0952_z crossref_primary_10_1128_AEM_00544_21 crossref_primary_10_3390_genes14091719 crossref_primary_10_1007_s00240_018_1089_z crossref_primary_10_1016_j_advnut_2023_03_002 crossref_primary_10_1016_j_ijsu_2016_11_024 crossref_primary_10_3390_app112311204 crossref_primary_10_1016_j_micres_2024_127663 crossref_primary_10_3390_biomedicines11061654 crossref_primary_10_1007_s12602_022_09958_w crossref_primary_10_1038_s41581_022_00643_3 crossref_primary_10_1097_MNH_0000000000000510 crossref_primary_10_1038_s41467_024_49212_1 crossref_primary_10_1016_j_ekir_2024_03_004 crossref_primary_10_1016_j_ymgme_2020_12_289 crossref_primary_10_7554_eLife_63642 crossref_primary_10_1007_s00253_020_11086_w crossref_primary_10_1007_s00424_020_02495_x crossref_primary_10_1097_MNH_0000000000000518 crossref_primary_10_3390_cells11020284 crossref_primary_10_1016_j_semnephrol_2018_10_009 crossref_primary_10_21508_1027_4065_2020_65_4_41_46 |
Cites_doi | 10.1128/AEM.68.8.3841-3847.2002 10.3390/pathogens2040636 10.1128/AEM.00844-10 10.1111/j.1523-1755.2005.00520.x 10.1016/S0022-5347(05)01001-3 10.1007/s00240-011-0421-7 10.1152/ajpgi.00465.2009 10.1016/j.eururo.2012.03.052 10.1007/BF00446731 10.1016/j.vetmic.2008.10.005 10.1007/s00345-005-0030-6 10.1517/14656566.2013.775250 10.1007/s00240-009-0177-5 10.2215/CJN.00600207 10.1038/ki.2010.310 10.1128/AEM.70.9.5066-5073.2004 10.1186/1479-5876-11-306 10.1073/pnas.0607218103 10.1038/sj.ki.5000162 10.1007/s00240-010-0262-9 10.1007/s00240-013-0601-8 10.1152/ajpgi.00434.2010 10.1016/0009-8981(73)90466-X 10.1093/ndt/gfr107 10.1152/ajpgi.00481.2005 10.1111/j.1365-2672.2007.03388.x 10.1128/AEM.07749-11 10.1016/j.urology.2011.11.017 10.3945/jn.109.114553 10.1159/000086362 10.1007/s00240-006-0054-4 10.1089/end.2005.19.102 10.1046/j.1523-1755.2001.0600031097.x 10.1046/j.1442-2042.2003.00634.x 10.1172/JCI108994 10.1038/sj.ki.5001707 10.1111/j.1365-2672.2012.05346.x 10.1007/s00240-005-0017-1 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2014 Springer-Verlag Berlin Heidelberg 2015 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2014 – notice: Springer-Verlag Berlin Heidelberg 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8AO 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1007/s00240-014-0728-2 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest One Academic ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Pharma Collection ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Academic Middle East (New) MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2194-7236 |
EndPage | 117 |
ExternalDocumentID | PMC4629830 3628440291 25269440 10_1007_s00240_014_0728_2 |
Genre | Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK088892 – fundername: NIDDK NIH HHS grantid: DK 088892 – fundername: NIDDK NIH HHS grantid: R56 DK088892 |
GroupedDBID | -EM .VR 06C 06D 0R~ 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 3V. 4.4 406 408 40E 53G 5C9 5VS 7X7 88E 8FI 8FJ 8UJ 95- 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABLJU ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACPIV ACUDM ACZOJ ADBBV ADHIR ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGWZB AGYKE AHBYD AHIZS AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BDATZ BGNMA BSONS BVXVI CCPQU CSCUP DDRTE DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMB EMOBN ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ8 GRRUI H13 HF~ HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IKXTQ IMOTQ IWAJR IXD IZIGR I~Z J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M1P M4Y MA- N2Q NPVJJ NQJWS NU0 O93 O9G O9J PF0 PQQKQ PROAC PSQYO PT4 QOR R89 RIG ROL RSV S16 SAP SCLPG SDE SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN TSG TUC U9L UG4 UKHRP UOJIU UTJUX UZXMN VFIZW W23 W48 YLTOR ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ ABUWG BENPR CGR CUY CVF ECM EIF NPM PJZUB PPXIY 7XB 8AO 8FK FYUFA K9. PKEHL PQEST PQUKI PRINS PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c470t-cb7ca3c87529eae48b8c4cb595fff261fa8fbf7ee6a878f45d0365432e6a84963 |
IEDL.DBID | AGYKE |
ISSN | 2194-7228 2194-7236 |
IngestDate | Thu Aug 21 14:01:15 EDT 2025 Fri Sep 05 03:09:02 EDT 2025 Sat Aug 23 14:47:55 EDT 2025 Mon Jul 21 06:01:10 EDT 2025 Tue Jul 01 03:47:02 EDT 2025 Thu Apr 24 23:03:17 EDT 2025 Fri Feb 21 02:25:47 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Probiotics Hyperoxaluria Calcium oxalate Intestinal transport Kidney stones |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-cb7ca3c87529eae48b8c4cb595fff261fa8fbf7ee6a878f45d0365432e6a84963 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 Present Address: K. Klimesova, Laboratory of Cellular and Molecular Immunology, Institute of Microbiology ASCR, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4629830 |
PMID | 25269440 |
PQID | 1664399277 |
PQPubID | 326290 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4629830 proquest_miscellaneous_1665121917 proquest_journals_1664399277 pubmed_primary_25269440 crossref_primary_10_1007_s00240_014_0728_2 crossref_citationtrail_10_1007_s00240_014_0728_2 springer_journals_10_1007_s00240_014_0728_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-01 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationSubtitle | Urolithiasis |
PublicationTitle | Urolithiasis |
PublicationTitleAbbrev | Urolithiasis |
PublicationTitleAlternate | Urolithiasis |
PublicationYear | 2015 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Junick, Blaut (CR35) 2012; 78 Lange, Wood, Wong, Otto, Mufarrij, Knight, Akpinar, Holmes, Assimos (CR39) 2012; 79 Siener, Bade, Hesse, Hoppe (CR26) 2013; 11 Turroni, Bendazzoli, Dipalo, Candela, Vitali, Gotti, Brigidi (CR18) 2010; 76 Magwira, Kullin, Lewandowski, Rodgers, Reid, Abratt (CR5) 2012; 113 Hoppe, Groothoff, Hulton, Cochat, Niaudet, Kemper, Deschenes, Unwin, Milliner (CR14) 2011; 26 Sidhu, Schmidt, Cornelius, Thamilselvan, Khan, Hesse, Peck (CR7) 1999; 10 Goldfarb, Modersitzki, Asplin (CR29) 2007; 2 Duncan, Richardson, Kaul, Holmes, Allison, Stewart (CR9) 2002; 68 Hatch, Cornelius, Allison, Sidhu, Peck, Freel (CR10) 2006; 69 Allison, Dawson, Mayberry, Foss (CR8) 1985; 141 Al-Wahsh, Wu, Liebman (CR27) 2012; 40 Mittal, Kumar, Bid, Mittal (CR40) 2005; 19 Hatch, Gjymishka, Salido, Allison, Freel (CR12) 2011; 300 Lewandowski, Rodgers, Laube, von Unruh, Zimmermann, Hesse (CR15) 2005; 23 Heinegard, Tiderstrom (CR34) 1973; 43 Miller, Dearing (CR37) 2013; 2 Scales, Smith, Hanley, Saigal (CR3) 2012; 62 Raheja, Singh, Ma, Boumendjel, Borthakur, Gill, Saksena, Alrefai, Ramaswamy, Dudeja (CR23) 2010; 298 Campieri, Campieri, Bertuzzi, Swennen, Matteuzzi, Stefoni, Pirovano, Centi, Ulisse, Famularo, De Simone (CR25) 2001; 60 Rodgers (CR16) 2006; 34 Okombo, Liebman (CR32) 2010; 38 Mikami, Akakura, Takei, Ueda, Mizoguchi, Noda, Miyake, Ito (CR6) 2003; 10 Lieske, Goldfarb, De Simone, Regnier (CR30) 2005; 68 Voss, Hesse, Zimmermann, Sauerbruch, von Unruh (CR2) 2006; 175 Murphy, Murphy, O’Brien, O’Donoghue, Boileau, Sunvold, Reinhart, Kiely, Shanahan, O’Mahony (CR21) 2009; 136 Federici, Vitali, Gotti, Pasca, Gobbi, Peck, Brigidi (CR17) 2004; 70 Kwak, Jeong, Ku, Kim, Lee, Huh, Baek, Lee (CR20) 2006; 34 Salido, Li, Lu, Wang, Santana, Roy-Chowdhury, Torres, Shapiro, Roy-Chowdhury (CR33) 2006; 103 Turroni, Vitali, Bendazzoli, Candela, Gotti, Federici, Pirovano, Brigidi (CR19) 2007; 103 Heuvelin, Lebreton, Bichara, Cerf-Bensussan, Heyman (CR22) 2010; 140 Xu, Zisman, Coe, Worcester (CR24) 2013; 14 Hatch, Freel (CR11) 2013; 41 Conway (CR38) 1996; 5 Danpure (CR4) 2005; 25 Ferraz, Marques, Froeder, Menon, Siliano, Baxmann, Heilberg (CR28) 2009; 37 Lieske, Tremaine, De Simone, O’Connor, Li, Bergstralh, Goldfarb (CR31) 2010; 78 Weinman, Frankfurt, Ince, Sansom (CR1) 1978; 61 Hoppe, Beck, Gatter, von Unruh, Tischer, Hesse, Laube, Kaul, Sidhu (CR13) 2006; 70 Freel, Hatch, Green, Soleimani (CR36) 2006; 290 K Mikami (728_CR6) 2003; 10 JC Lieske (728_CR31) 2010; 78 SH Duncan (728_CR9) 2002; 68 B Hoppe (728_CR13) 2006; 70 D Heinegard (728_CR34) 1973; 43 A Miller (728_CR37) 2013; 2 J Okombo (728_CR32) 2010; 38 C Murphy (728_CR21) 2009; 136 RW Freel (728_CR36) 2006; 290 S Turroni (728_CR19) 2007; 103 JN Lange (728_CR39) 2012; 79 CJ Danpure (728_CR4) 2005; 25 M Hatch (728_CR10) 2006; 69 F Federici (728_CR17) 2004; 70 M Hatch (728_CR11) 2013; 41 J Junick (728_CR35) 2012; 78 A Rodgers (728_CR16) 2006; 34 CA Magwira (728_CR5) 2012; 113 H Sidhu (728_CR7) 1999; 10 S Voss (728_CR2) 2006; 175 M Hatch (728_CR12) 2011; 300 CD Scales Jr (728_CR3) 2012; 62 S Turroni (728_CR18) 2010; 76 PL Conway (728_CR38) 1996; 5 JC Lieske (728_CR30) 2005; 68 C Kwak (728_CR20) 2006; 34 E Heuvelin (728_CR22) 2010; 140 RR Ferraz (728_CR28) 2009; 37 H Xu (728_CR24) 2013; 14 I Al-Wahsh (728_CR27) 2012; 40 S Lewandowski (728_CR15) 2005; 23 C Campieri (728_CR25) 2001; 60 RD Mittal (728_CR40) 2005; 19 G Raheja (728_CR23) 2010; 298 B Hoppe (728_CR14) 2011; 26 EJ Weinman (728_CR1) 1978; 61 EC Salido (728_CR33) 2006; 103 MJ Allison (728_CR8) 1985; 141 R Siener (728_CR26) 2013; 11 DS Goldfarb (728_CR29) 2007; 2 12147479 - Appl Environ Microbiol. 2002 Aug;68(8):3841-7 3994481 - Arch Microbiol. 1985 Feb;141(1):1-7 16555110 - Urol Res. 2006 Apr;34(2):92-5 21460356 - Nephrol Dial Transplant. 2011 Nov;26(11):3609-15 15345383 - Appl Environ Microbiol. 2004 Sep;70(9):5066-73 16633809 - Urol Res. 2006 Aug;34(4):265-70 15735393 - J Endourol. 2005 Jan-Feb;19(1):102-6 19214493 - Urol Res. 2009 Apr;37(2):95-100 11532105 - Kidney Int. 2001 Sep;60(3):1097-105 19889806 - J Nutr. 2010 Jan;140(1):7-11 16283325 - World J Urol. 2005 Nov;23(5):330-3 20224931 - Urol Res. 2010 Jun;38(3):169-78 20601517 - Appl Environ Microbiol. 2010 Aug;76(16):5609-20 641156 - J Clin Invest. 1978 Mar;61(3):801-6 10541258 - J Am Soc Nephrol. 1999 Nov;10 Suppl 14:S334-40 16600737 - J Urol. 2006 May;175(5):1711-5 20044511 - Am J Physiol Gastrointest Liver Physiol. 2010 Mar;298(3):G395-401 4690902 - Clin Chim Acta. 1973 Feb 12;43(3):305-10 22307308 - Appl Environ Microbiol. 2012 Apr;78(8):2613-22 16105057 - Kidney Int. 2005 Sep;68(3):1244-9 23959075 - Urolithiasis. 2013 Oct;41(5):379-84 20736987 - Kidney Int. 2010 Dec;78(11):1178-85 21163900 - Am J Physiol Gastrointest Liver Physiol. 2011 Mar;300(3):G461-9 17953571 - J Appl Microbiol. 2007 Nov;103(5):1600-9 17110443 - Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18249-54 16850020 - Kidney Int. 2006 Oct;70(7):1305-11 16518326 - Kidney Int. 2006 Feb;69(4):691-8 23438422 - Expert Opin Pharmacother. 2013 Mar;14(4):435-47 19028028 - Vet Microbiol. 2009 Apr 14;136(1-2):100-7 12757596 - Int J Urol. 2003 Jun;10(6):293-6 15961951 - Am J Nephrol. 2005 May-Jun;25(3):303-10 16373425 - Am J Physiol Gastrointest Liver Physiol. 2006 Apr;290(4):G719-28 24330782 - J Transl Med. 2013;11:306 22498635 - Eur Urol. 2012 Jul;62(1):160-5 24394458 - Asia Pac J Clin Nutr. 1996 Mar;5(1):10-4 22616725 - J Appl Microbiol. 2012 Aug;113(2):418-28 21874572 - Urol Res. 2012 Jun;40(3):191-6 25437337 - Pathogens. 2013 Dec 06;2(4):636-52 22656407 - Urology. 2012 Jun;79(6):1286-9 17699491 - Clin J Am Soc Nephrol. 2007 Jul;2(4):745-9 |
References_xml | – volume: 68 start-page: 3841 issue: 8 year: 2002 end-page: 3847 ident: CR9 article-title: Oxalobacter formigenes and its potential role in human health publication-title: Appl Environ Microbiol doi: 10.1128/AEM.68.8.3841-3847.2002 – volume: 2 start-page: 636 issue: 4 year: 2013 end-page: 652 ident: CR37 article-title: The metabolic and ecological interactions of oxalate-degrading bacteria in the mammalian gut publication-title: Pathogens doi: 10.3390/pathogens2040636 – volume: 76 start-page: 5609 issue: 16 year: 2010 end-page: 5620 ident: CR18 article-title: Oxalate-degrading activity in Bifidobacterium animalis subsp. lactis: impact of acidic conditions on the transcriptional levels of the oxalyl coenzyme A (CoA) decarboxylase and formyl-CoA transferase genes publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00844-10 – volume: 68 start-page: 1244 issue: 3 year: 2005 end-page: 1249 ident: CR30 article-title: Use of a probiotic to decrease enteric hyperoxaluria publication-title: Kidney Int doi: 10.1111/j.1523-1755.2005.00520.x – volume: 175 start-page: 1711 issue: 5 year: 2006 end-page: 1715 ident: CR2 article-title: Intestinal oxalate absorption is higher in idiopathic calcium oxalate stone formers than in healthy controls: measurements with the [(13) C2] oxalate absorption test publication-title: J Urol doi: 10.1016/S0022-5347(05)01001-3 – volume: 40 start-page: 191 issue: 3 year: 2012 end-page: 196 ident: CR27 article-title: Acute probiotic ingestion reduces gastrointestinal oxalate absorption in healthy subjects publication-title: Urol Res doi: 10.1007/s00240-011-0421-7 – volume: 298 start-page: G395 issue: 3 year: 2010 end-page: G401 ident: CR23 article-title: Lactobacillus acidophilus stimulates the expression of SLC26A3 via a transcriptional mechanism publication-title: Am J Physiol Gastrointest Liver Physiol doi: 10.1152/ajpgi.00465.2009 – volume: 62 start-page: 160 issue: 1 year: 2012 end-page: 165 ident: CR3 article-title: Prevalence of kidney stones in the United States publication-title: Eur Urol doi: 10.1016/j.eururo.2012.03.052 – volume: 141 start-page: 1 issue: 1 year: 1985 end-page: 7 ident: CR8 article-title: Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract publication-title: Arch Microbiol doi: 10.1007/BF00446731 – volume: 136 start-page: 100 issue: 1–2 year: 2009 end-page: 107 ident: CR21 article-title: Metabolic activity of probiotics-oxalate degradation publication-title: Vet Microbiol doi: 10.1016/j.vetmic.2008.10.005 – volume: 10 start-page: S334 issue: Suppl 14 year: 1999 end-page: S340 ident: CR7 article-title: Direct correlation between hyperoxaluria/oxalate stone disease and the absence of the gastrointestinal tract-dwelling bacterium Oxalobacter formigenes: possible prevention by gut recolonization or enzyme replacement therapy publication-title: J Am Soc Nephrol – volume: 23 start-page: 330 issue: 5 year: 2005 end-page: 333 ident: CR15 article-title: Oxalate and its handling in a low stone risk vs a stone-prone population group publication-title: World J Urol doi: 10.1007/s00345-005-0030-6 – volume: 14 start-page: 435 issue: 4 year: 2013 end-page: 447 ident: CR24 article-title: Kidney stones: an update on current pharmacological management and future directions publication-title: Expert Opin Pharmacother doi: 10.1517/14656566.2013.775250 – volume: 37 start-page: 95 issue: 2 year: 2009 end-page: 100 ident: CR28 article-title: Effects of and on urinary oxalate excretion in nephrolithiasis patients publication-title: Urol Res doi: 10.1007/s00240-009-0177-5 – volume: 2 start-page: 745 issue: 4 year: 2007 end-page: 749 ident: CR29 article-title: A randomized, controlled trial of lactic acid bacteria for idiopathic hyperoxaluria publication-title: Clin J Am Soc Nephrol doi: 10.2215/CJN.00600207 – volume: 78 start-page: 1178 issue: 11 year: 2010 end-page: 1185 ident: CR31 article-title: Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation publication-title: Kidney Int doi: 10.1038/ki.2010.310 – volume: 70 start-page: 5066 issue: 9 year: 2004 end-page: 5073 ident: CR17 article-title: Characterization and heterologous expression of the oxalyl coenzyme A decarboxylase gene from Bifidobacterium lactis publication-title: Appl Environ Microbiol doi: 10.1128/AEM.70.9.5066-5073.2004 – volume: 11 start-page: 306 year: 2013 ident: CR26 article-title: Dietary hyperoxaluria is not reduced by treatment with lactic acid bacteria publication-title: J Transl Med doi: 10.1186/1479-5876-11-306 – volume: 103 start-page: 18249 issue: 48 year: 2006 end-page: 18254 ident: CR33 article-title: Alanine-glyoxylate aminotransferase-deficient mice, a model for primary hyperoxaluria that responds to adenoviral gene transfer publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0607218103 – volume: 69 start-page: 691 issue: 4 year: 2006 end-page: 698 ident: CR10 article-title: Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion publication-title: Kidney Int doi: 10.1038/sj.ki.5000162 – volume: 38 start-page: 169 issue: 3 year: 2010 end-page: 178 ident: CR32 article-title: Probiotic-induced reduction of gastrointestinal oxalate absorption in healthy subjects publication-title: Urol Res doi: 10.1007/s00240-010-0262-9 – volume: 41 start-page: 379 issue: 5 year: 2013 end-page: 384 ident: CR11 article-title: A human strain of Oxalobacter (HC-1) promotes enteric oxalate secretion in the small intestine of mice and reduces urinary oxalate excretion publication-title: Urolithiasis doi: 10.1007/s00240-013-0601-8 – volume: 300 start-page: G461 issue: 3 year: 2011 end-page: G469 ident: CR12 article-title: Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter publication-title: Am J Physiol Gastrointest Liv Physiol doi: 10.1152/ajpgi.00434.2010 – volume: 43 start-page: 305 issue: 3 year: 1973 end-page: 310 ident: CR34 article-title: Determination of serum creatinine by a direct colorimetric method publication-title: Clin Chim Acta doi: 10.1016/0009-8981(73)90466-X – volume: 26 start-page: 3609 issue: 11 year: 2011 end-page: 3615 ident: CR14 article-title: Efficacy and safety of Oxalobacter formigenes to reduce urinary oxalate in primary hyperoxaluria publication-title: Nephrol Dial Transplant doi: 10.1093/ndt/gfr107 – volume: 290 start-page: G719 issue: 4 year: 2006 end-page: G728 ident: CR36 article-title: Ileal oxalate absorption and urinary oxalate excretion are enhanced in Slc26a6 null mice publication-title: Am J Physiol Gastrointest Liver Physiol doi: 10.1152/ajpgi.00481.2005 – volume: 103 start-page: 1600 issue: 5 year: 2007 end-page: 1609 ident: CR19 article-title: Oxalate consumption by lactobacilli: evaluation of oxalyl-CoA decarboxylase and formyl-CoA transferase activity in Lactobacillus acidophilus publication-title: J Appl Microbiol doi: 10.1111/j.1365-2672.2007.03388.x – volume: 78 start-page: 2613 issue: 8 year: 2012 end-page: 2622 ident: CR35 article-title: Quantification of human fecal bifidobacterium species by use of quantitative real-time PCR analysis targeting the groEL gene publication-title: Appl Environ Microbiol doi: 10.1128/AEM.07749-11 – volume: 79 start-page: 1286 issue: 6 year: 2012 end-page: 1289 ident: CR39 article-title: Sensitivity of human strains of to commonly prescribed antibiotics publication-title: Urology doi: 10.1016/j.urology.2011.11.017 – volume: 140 start-page: 7 issue: 1 year: 2010 end-page: 11 ident: CR22 article-title: A Bifidobacterium probiotic strain and its soluble factors alleviate chloride secretion by human intestinal epithelial cells publication-title: J Nutr doi: 10.3945/jn.109.114553 – volume: 25 start-page: 303 issue: 3 year: 2005 end-page: 310 ident: CR4 article-title: Molecular etiology of primary hyperoxaluria type 1: new directions for treatment publication-title: Am J Nephrol doi: 10.1159/000086362 – volume: 34 start-page: 265 issue: 4 year: 2006 end-page: 270 ident: CR20 article-title: Prevention of nephrolithiasis by Lactobacillus in stone-forming rats: a preliminary study publication-title: Urol Res doi: 10.1007/s00240-006-0054-4 – volume: 19 start-page: 102 issue: 1 year: 2005 end-page: 106 ident: CR40 article-title: Effect of antibiotics on colonization of human gastrointestinal tract publication-title: J Endourol doi: 10.1089/end.2005.19.102 – volume: 60 start-page: 1097 issue: 3 year: 2001 end-page: 1105 ident: CR25 article-title: Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration publication-title: Kidney Int doi: 10.1046/j.1523-1755.2001.0600031097.x – volume: 10 start-page: 293 issue: 6 year: 2003 end-page: 296 ident: CR6 article-title: Association of absence of intestinal oxalate degrading bacteria with urinary calcium oxalate stone formation publication-title: Int J Urol doi: 10.1046/j.1442-2042.2003.00634.x – volume: 5 start-page: 10 issue: 1 year: 1996 end-page: 14 ident: CR38 article-title: Selection criteria for probiotic microorganisms publication-title: Asia Pac J Clin Nutr – volume: 61 start-page: 801 issue: 3 year: 1978 end-page: 806 ident: CR1 article-title: Renal tubular transport of organic acids. Studies with oxalate and para-aminohippurate in the rat publication-title: J Clin Investig doi: 10.1172/JCI108994 – volume: 70 start-page: 1305 issue: 7 year: 2006 end-page: 1311 ident: CR13 article-title: Oxalobacter formigenes: a potential tool for the treatment of primary hyperoxaluria type 1 publication-title: Kidney Int doi: 10.1038/sj.ki.5001707 – volume: 113 start-page: 418 issue: 2 year: 2012 end-page: 428 ident: CR5 article-title: Diversity of faecal oxalate-degrading bacteria in black and white South African study groups: insights into understanding the rarity of urolithiasis in the black group publication-title: J Appl Microbiol doi: 10.1111/j.1365-2672.2012.05346.x – volume: 34 start-page: 92 issue: 2 year: 2006 end-page: 95 ident: CR16 article-title: The riddle of kidney stone disease: lessons from Africa publication-title: Urol Res doi: 10.1007/s00240-005-0017-1 – volume: 300 start-page: G461 issue: 3 year: 2011 ident: 728_CR12 publication-title: Am J Physiol Gastrointest Liv Physiol doi: 10.1152/ajpgi.00434.2010 – volume: 103 start-page: 18249 issue: 48 year: 2006 ident: 728_CR33 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0607218103 – volume: 26 start-page: 3609 issue: 11 year: 2011 ident: 728_CR14 publication-title: Nephrol Dial Transplant doi: 10.1093/ndt/gfr107 – volume: 34 start-page: 92 issue: 2 year: 2006 ident: 728_CR16 publication-title: Urol Res doi: 10.1007/s00240-005-0017-1 – volume: 34 start-page: 265 issue: 4 year: 2006 ident: 728_CR20 publication-title: Urol Res doi: 10.1007/s00240-006-0054-4 – volume: 61 start-page: 801 issue: 3 year: 1978 ident: 728_CR1 publication-title: J Clin Investig doi: 10.1172/JCI108994 – volume: 14 start-page: 435 issue: 4 year: 2013 ident: 728_CR24 publication-title: Expert Opin Pharmacother doi: 10.1517/14656566.2013.775250 – volume: 38 start-page: 169 issue: 3 year: 2010 ident: 728_CR32 publication-title: Urol Res doi: 10.1007/s00240-010-0262-9 – volume: 40 start-page: 191 issue: 3 year: 2012 ident: 728_CR27 publication-title: Urol Res doi: 10.1007/s00240-011-0421-7 – volume: 37 start-page: 95 issue: 2 year: 2009 ident: 728_CR28 publication-title: Urol Res doi: 10.1007/s00240-009-0177-5 – volume: 68 start-page: 1244 issue: 3 year: 2005 ident: 728_CR30 publication-title: Kidney Int doi: 10.1111/j.1523-1755.2005.00520.x – volume: 69 start-page: 691 issue: 4 year: 2006 ident: 728_CR10 publication-title: Kidney Int doi: 10.1038/sj.ki.5000162 – volume: 78 start-page: 1178 issue: 11 year: 2010 ident: 728_CR31 publication-title: Kidney Int doi: 10.1038/ki.2010.310 – volume: 76 start-page: 5609 issue: 16 year: 2010 ident: 728_CR18 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00844-10 – volume: 41 start-page: 379 issue: 5 year: 2013 ident: 728_CR11 publication-title: Urolithiasis doi: 10.1007/s00240-013-0601-8 – volume: 136 start-page: 100 issue: 1–2 year: 2009 ident: 728_CR21 publication-title: Vet Microbiol doi: 10.1016/j.vetmic.2008.10.005 – volume: 10 start-page: S334 issue: Suppl 14 year: 1999 ident: 728_CR7 publication-title: J Am Soc Nephrol – volume: 43 start-page: 305 issue: 3 year: 1973 ident: 728_CR34 publication-title: Clin Chim Acta doi: 10.1016/0009-8981(73)90466-X – volume: 2 start-page: 636 issue: 4 year: 2013 ident: 728_CR37 publication-title: Pathogens doi: 10.3390/pathogens2040636 – volume: 175 start-page: 1711 issue: 5 year: 2006 ident: 728_CR2 publication-title: J Urol doi: 10.1016/S0022-5347(05)01001-3 – volume: 62 start-page: 160 issue: 1 year: 2012 ident: 728_CR3 publication-title: Eur Urol doi: 10.1016/j.eururo.2012.03.052 – volume: 10 start-page: 293 issue: 6 year: 2003 ident: 728_CR6 publication-title: Int J Urol doi: 10.1046/j.1442-2042.2003.00634.x – volume: 68 start-page: 3841 issue: 8 year: 2002 ident: 728_CR9 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.68.8.3841-3847.2002 – volume: 140 start-page: 7 issue: 1 year: 2010 ident: 728_CR22 publication-title: J Nutr doi: 10.3945/jn.109.114553 – volume: 113 start-page: 418 issue: 2 year: 2012 ident: 728_CR5 publication-title: J Appl Microbiol doi: 10.1111/j.1365-2672.2012.05346.x – volume: 141 start-page: 1 issue: 1 year: 1985 ident: 728_CR8 publication-title: Arch Microbiol doi: 10.1007/BF00446731 – volume: 23 start-page: 330 issue: 5 year: 2005 ident: 728_CR15 publication-title: World J Urol doi: 10.1007/s00345-005-0030-6 – volume: 78 start-page: 2613 issue: 8 year: 2012 ident: 728_CR35 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.07749-11 – volume: 79 start-page: 1286 issue: 6 year: 2012 ident: 728_CR39 publication-title: Urology doi: 10.1016/j.urology.2011.11.017 – volume: 2 start-page: 745 issue: 4 year: 2007 ident: 728_CR29 publication-title: Clin J Am Soc Nephrol doi: 10.2215/CJN.00600207 – volume: 60 start-page: 1097 issue: 3 year: 2001 ident: 728_CR25 publication-title: Kidney Int doi: 10.1046/j.1523-1755.2001.0600031097.x – volume: 103 start-page: 1600 issue: 5 year: 2007 ident: 728_CR19 publication-title: J Appl Microbiol doi: 10.1111/j.1365-2672.2007.03388.x – volume: 11 start-page: 306 year: 2013 ident: 728_CR26 publication-title: J Transl Med doi: 10.1186/1479-5876-11-306 – volume: 25 start-page: 303 issue: 3 year: 2005 ident: 728_CR4 publication-title: Am J Nephrol doi: 10.1159/000086362 – volume: 298 start-page: G395 issue: 3 year: 2010 ident: 728_CR23 publication-title: Am J Physiol Gastrointest Liver Physiol doi: 10.1152/ajpgi.00465.2009 – volume: 5 start-page: 10 issue: 1 year: 1996 ident: 728_CR38 publication-title: Asia Pac J Clin Nutr – volume: 19 start-page: 102 issue: 1 year: 2005 ident: 728_CR40 publication-title: J Endourol doi: 10.1089/end.2005.19.102 – volume: 70 start-page: 5066 issue: 9 year: 2004 ident: 728_CR17 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.70.9.5066-5073.2004 – volume: 70 start-page: 1305 issue: 7 year: 2006 ident: 728_CR13 publication-title: Kidney Int doi: 10.1038/sj.ki.5001707 – volume: 290 start-page: G719 issue: 4 year: 2006 ident: 728_CR36 publication-title: Am J Physiol Gastrointest Liver Physiol doi: 10.1152/ajpgi.00481.2005 – reference: 22656407 - Urology. 2012 Jun;79(6):1286-9 – reference: 20224931 - Urol Res. 2010 Jun;38(3):169-78 – reference: 16850020 - Kidney Int. 2006 Oct;70(7):1305-11 – reference: 16283325 - World J Urol. 2005 Nov;23(5):330-3 – reference: 16633809 - Urol Res. 2006 Aug;34(4):265-70 – reference: 22307308 - Appl Environ Microbiol. 2012 Apr;78(8):2613-22 – reference: 19889806 - J Nutr. 2010 Jan;140(1):7-11 – reference: 25437337 - Pathogens. 2013 Dec 06;2(4):636-52 – reference: 17110443 - Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18249-54 – reference: 16518326 - Kidney Int. 2006 Feb;69(4):691-8 – reference: 16105057 - Kidney Int. 2005 Sep;68(3):1244-9 – reference: 16555110 - Urol Res. 2006 Apr;34(2):92-5 – reference: 21163900 - Am J Physiol Gastrointest Liver Physiol. 2011 Mar;300(3):G461-9 – reference: 24330782 - J Transl Med. 2013;11:306 – reference: 12757596 - Int J Urol. 2003 Jun;10(6):293-6 – reference: 24394458 - Asia Pac J Clin Nutr. 1996 Mar;5(1):10-4 – reference: 19028028 - Vet Microbiol. 2009 Apr 14;136(1-2):100-7 – reference: 15961951 - Am J Nephrol. 2005 May-Jun;25(3):303-10 – reference: 641156 - J Clin Invest. 1978 Mar;61(3):801-6 – reference: 21874572 - Urol Res. 2012 Jun;40(3):191-6 – reference: 19214493 - Urol Res. 2009 Apr;37(2):95-100 – reference: 12147479 - Appl Environ Microbiol. 2002 Aug;68(8):3841-7 – reference: 11532105 - Kidney Int. 2001 Sep;60(3):1097-105 – reference: 15345383 - Appl Environ Microbiol. 2004 Sep;70(9):5066-73 – reference: 22498635 - Eur Urol. 2012 Jul;62(1):160-5 – reference: 17699491 - Clin J Am Soc Nephrol. 2007 Jul;2(4):745-9 – reference: 10541258 - J Am Soc Nephrol. 1999 Nov;10 Suppl 14:S334-40 – reference: 20736987 - Kidney Int. 2010 Dec;78(11):1178-85 – reference: 16373425 - Am J Physiol Gastrointest Liver Physiol. 2006 Apr;290(4):G719-28 – reference: 23438422 - Expert Opin Pharmacother. 2013 Mar;14(4):435-47 – reference: 15735393 - J Endourol. 2005 Jan-Feb;19(1):102-6 – reference: 20044511 - Am J Physiol Gastrointest Liver Physiol. 2010 Mar;298(3):G395-401 – reference: 21460356 - Nephrol Dial Transplant. 2011 Nov;26(11):3609-15 – reference: 3994481 - Arch Microbiol. 1985 Feb;141(1):1-7 – reference: 22616725 - J Appl Microbiol. 2012 Aug;113(2):418-28 – reference: 4690902 - Clin Chim Acta. 1973 Feb 12;43(3):305-10 – reference: 20601517 - Appl Environ Microbiol. 2010 Aug;76(16):5609-20 – reference: 17953571 - J Appl Microbiol. 2007 Nov;103(5):1600-9 – reference: 23959075 - Urolithiasis. 2013 Oct;41(5):379-84 – reference: 16600737 - J Urol. 2006 May;175(5):1711-5 |
SSID | ssj0000999410 |
Score | 2.2621436 |
Snippet | Hyperoxaluria significantly increases the risk of calcium oxalate kidney stone formation. Since several bacteria have been shown to metabolize oxalate in... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 107 |
SubjectTerms | Animals Bifidobacterium Dietary Supplements Disease Models, Animal Hyperoxaluria, Primary - diet therapy Hyperoxaluria, Primary - urine Male Medical Biochemistry Medicine Medicine & Public Health Mice Mice, Inbred C57BL Nephrology Original Paper Oxalates - urine Oxalobacter formigenes Urology |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7aFEovoW36cJIWFXpKUGtrZcs-hbQ0hEJ6amBvRtaDGDb2Nt5A8u8zo5XdbEMDPlkPWxqN9GlG-gbgs3JppnPjeGGU4VJYiSplNDc6t7LAJwsMfGe_itNz-XOez6PBbYjHKsc5MUzUtjdkI_-aFbR2VkKpo-UfTlGjyLsaQ2g8hWcZIhEK3aDmarKxEPqRgZAA9VJyJUQ5OjbTwCMq6GxjJnmqBI6XzaXpAd58eGzyH99pWJJOXsJ2xJLseC38V_DEda_h-Vn0lu_A6lvrW4sKGwiZry-Z7tpLIjxkA04Xyy9sQbcaBmYDdBzcwMj0rq9uWX-jFwhCmbsxdMux71jbMc3ITOBYCJ7Des-Wa6YKdnFLbONYBIvrN3B-8uP391MeoyxwI1W64qZRRs8M7ltE5bSTZVMaaZq8yr33uL_yuvSNV84VulSll7nFRS-XM0EvJOrvW9jq-s69B-aszYoUa1UzTKmsbpR3HnfBKVbZOJVAOnZwbSIFOUXCWNQTeXKQSY0yqUkmtUjgYCoSW_VY5v1RanVUxaH-O3AS-DQloxKRZ0R3DnuO8iDwoa1rAu_WQp6-JigGu5RpAmpD_FMGIujeTOnai0DULQtRlTMseTgOlHu_9b9G7D7eiD14gZgtXx8e2oet1dW1-4C4aNV8DIP_Dj6-C6s priority: 102 providerName: ProQuest |
Title | Bifidobacterium animalis subsp. lactis decreases urinary oxalate excretion in a mouse model of primary hyperoxaluria |
URI | https://link.springer.com/article/10.1007/s00240-014-0728-2 https://www.ncbi.nlm.nih.gov/pubmed/25269440 https://www.proquest.com/docview/1664399277 https://www.proquest.com/docview/1665121917 https://pubmed.ncbi.nlm.nih.gov/PMC4629830 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD54gWVfvO7qeCPCPu3SoZNJmvZRxQuKIqIw-1TSNMHi2BHbAfXXe5JedLyBUCg0tyY5J_lOTvIF4I_Qfk9ypb1ACeUxmjJUKSU9JXnKAnx6joHv9Cw4umLHAz6oz3EXzW73xiXpRur2sJuj40LTl3m-oNi90zDL0T5BbZzdOfx_8rK0YkEPczwEqI7ME5SGjT_zo3wmZ6R3MPP9bsk3LlM3Ex3Mw2VTh2oDyk13XCZd9fSG3vGblVyAuRqZkp1KlBZhSudL8OO09r0vQ7mbmSxF9Xf0zuNbIvPs1tInkgIHn7suGdozEgVJHRAtdEHsQr68fySjBzlESEv0g7JnJkc5yXIiiV100MRdxUNGhtxVvBfk-tFyl2MSTC5_wdXB_uXekVff2eApJvzSU4lQsq_QCqKRlpqFSaiYSnjEjTForRkZmsQIrQMZitAwnuIUylmf2g8MR4PfMJOPcr0KRKdpL_AxV9HHkCiViTDaoE3tY5aJFh3wm36LVU1obu_VGMYtFbNrzRhbM7atGdMO_G2T1LX6KvJGIwxxrdhF3AsshIuowOK322BUSetnkbnGlrNxEEZZQ7gDK5XstKVRe6M7Y34HxIRUtREs3fdkSJ5dO9pvFtAo7GPKf43ovPqtzyqx9q3Y6_ATASGvdiZtwEx5P9abCLrKZAumxUBs1aqG7939s_OLZzxfJz4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEN8EBhgJXkCBxHXi5GFCDDZ1bK0Q2qS9ZY5ja5G6pCydWP85_jbu3CRQJvY2KU_1R-rc-fzznf07gNfSBKGKtPFjLbUveCFwSmnlaxUVIsYndAx840k8OhRfj6KjNfjV3YWhY5WdTXSGuqg1-cg_hDGtnSmX8uPsh09Zoyi62qXQUG1qhWLTUYy1Fzv2zOInbuGazd0vKO83nO9sH3we-W2WAV8LGcx9nUuthhpxO0-NMiLJEy10HqWRtRb3F1YlNrfSmFglMrEiKtDoR2LI6QeB-ov93oB1QQ6UAaxvbU--fe-9PIS_hKNEQMsgfMl50oVWA8dkyul0ZSj8QHLU2NXF8RLivXxw85_orVsUd-7CnRbNsk9L9bsHa6a6DzfHbbz-Acy3SlsWaDIcJfT5KVNVeUqUi6xBgzV7z6Z0r6JhhQOvjWkYOf_V2YLVF2qKMJiZC033LOuKlRVTjBwVhrn0Pay2bLbkymAnC-I7xybYXD2Ew2uRwCMYVHVlngAzRRHGAfYqh1iSFiqX1ljchwfYZW6kB0H3gTPdkqBTLo5p1tM3O5lkKJOMZJJxD972TdpRXVV5o5Na1hqDJvujuh686otxGlNsRlUGvxzVQehFm2cPHi-F3L-NUxZ4IQIP5Ir4-wpEEb5aUpUnjipcxDxNhtjyXacof_2t_w3i6dWDeAm3Rgfj_Wx_d7L3DG4jgoyWR5k2YDA_OzfPEaXN8xftVGBwfN2z7zfdj1Bb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcUHmHFjASXEChiePEyQEhoKxaSisOVNpbcBxbjbRNlmYrun-NX8eM84ClordKOcWPxJ6Hx57xNwAvpAlCFWvjJ1pqX_BSoEhp5WsVlyLBJ3QIfIdHyd6x-DyNp2vwa7gLQ2GVg050irpsNJ2R74QJrZ0Zl3LH9mERX3cn7-Y_fMogRZ7WIZ1GxyIHZvkTt2_t2_1dpPVLziefvn3c8_sMA74WMlj4upBaRRptdp4ZZURapFroIs5iay3uLaxKbWGlMYlKZWpFXKLCj0XE6YVA3sV-b8BNGQlBaSPkVI7nO2R5CQeGgDpB-JLzdHCqBg7DlFNcZSj8QHLk1dVl8ZKtezlk8x-_rVsOJ5twu7dj2fuO8e7AmqnvwsZh76m_B4sPla1KVBYODPr8lKm6OiWwRdaiqpq_YTO6UdGy0pmtrWkZHfursyVrLtQMDWBmLjTdsGxqVtVMMTqiMMwl7mGNZfMOJYOdLAnpHJtgc3Ufjq9l_h_Aet3U5hEwU5ZhEmCvMsKSrFSFtMbiDjzALgsjPQiGCc51D39OWThm-Qjc7GiSI01yoknOPXg1NulHdVXl7YFqea8G2vwP03rwfCxGASavjKoNzhzVQaOLts0ePOyIPH6NU_535C0P5Ar5xwoEDr5aUlcnDiRcJDxLI2z5emCUv37rf4N4fPUgnsEGylz-Zf_oYAtuoekYdzFM27C-ODs3T9A8WxRPnRww-H7dgvcbsqpN9w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bifidobacterium+animalis+subsp.+lactis+decreases+urinary+oxalate+excretion+in+a+mouse+model+of+primary+hyperoxaluria&rft.jtitle=Urolithiasis&rft.au=Klimesova%2C+Klara&rft.au=Whittamore%2C+Jonathan+M&rft.au=Hatch%2C+Marguerite&rft.date=2015-04-01&rft.eissn=2194-7236&rft.volume=43&rft.issue=2&rft.spage=107&rft_id=info:doi/10.1007%2Fs00240-014-0728-2&rft_id=info%3Apmid%2F25269440&rft.externalDocID=25269440 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-7228&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-7228&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-7228&client=summon |