β-amyloid and tau drive early Alzheimer’s disease decline while glucose hypometabolism drives late decline
Clinical trials focusing on therapeutic candidates that modify β-amyloid (Aβ) have repeatedly failed to treat Alzheimer’s disease (AD), suggesting that Aβ may not be the optimal target for treating AD. The evaluation of Aβ, tau, and neurodegenerative (A/T/N) biomarkers has been proposed for classify...
Saved in:
| Published in | Communications biology Vol. 3; no. 1; p. 352 |
|---|---|
| Main Authors | , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
06.07.2020
Nature Publishing Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2399-3642 2399-3642 |
| DOI | 10.1038/s42003-020-1079-x |
Cover
| Abstract | Clinical trials focusing on therapeutic candidates that modify β-amyloid (Aβ) have repeatedly failed to treat Alzheimer’s disease (AD), suggesting that Aβ may not be the optimal target for treating AD. The evaluation of Aβ, tau, and neurodegenerative (A/T/N) biomarkers has been proposed for classifying AD. However, it remains unclear whether disturbances in each arm of the A/T/N framework contribute equally throughout the progression of AD. Here, using the random forest machine learning method to analyze participants in the Alzheimer’s Disease Neuroimaging Initiative dataset, we show that A/T/N biomarkers show varying importance in predicting AD development, with elevated biomarkers of Aβ and tau better predicting early dementia status, and biomarkers of neurodegeneration, especially glucose hypometabolism, better predicting later dementia status. Our results suggest that AD treatments may also need to be disease stage-oriented with Aβ and tau as targets in early AD and glucose metabolism as a target in later AD.
Here the authors analyze the Alzheimer’s Disease Neuroimaging Initiative dataset using random forest machine learning methods and determine that Aβ and tau biomarkers are better predictors of early dementia status, while glucose hypometabolism is a better predictor of later dementia status. These results suggest the need for stage-oriented Alzheimer’s disease treatments. |
|---|---|
| AbstractList | Clinical trials focusing on therapeutic candidates that modify β-amyloid (Aβ) have repeatedly failed to treat Alzheimer’s disease (AD), suggesting that Aβ may not be the optimal target for treating AD. The evaluation of Aβ, tau, and neurodegenerative (A/T/N) biomarkers has been proposed for classifying AD. However, it remains unclear whether disturbances in each arm of the A/T/N framework contribute equally throughout the progression of AD. Here, using the random forest machine learning method to analyze participants in the Alzheimer’s Disease Neuroimaging Initiative dataset, we show that A/T/N biomarkers show varying importance in predicting AD development, with elevated biomarkers of Aβ and tau better predicting early dementia status, and biomarkers of neurodegeneration, especially glucose hypometabolism, better predicting later dementia status. Our results suggest that AD treatments may also need to be disease stage-oriented with Aβ and tau as targets in early AD and glucose metabolism as a target in later AD.
Here the authors analyze the Alzheimer’s Disease Neuroimaging Initiative dataset using random forest machine learning methods and determine that Aβ and tau biomarkers are better predictors of early dementia status, while glucose hypometabolism is a better predictor of later dementia status. These results suggest the need for stage-oriented Alzheimer’s disease treatments. Clinical trials focusing on therapeutic candidates that modify β-amyloid (Aβ) have repeatedly failed to treat Alzheimer's disease (AD), suggesting that Aβ may not be the optimal target for treating AD. The evaluation of Aβ, tau, and neurodegenerative (A/T/N) biomarkers has been proposed for classifying AD. However, it remains unclear whether disturbances in each arm of the A/T/N framework contribute equally throughout the progression of AD. Here, using the random forest machine learning method to analyze participants in the Alzheimer's Disease Neuroimaging Initiative dataset, we show that A/T/N biomarkers show varying importance in predicting AD development, with elevated biomarkers of Aβ and tau better predicting early dementia status, and biomarkers of neurodegeneration, especially glucose hypometabolism, better predicting later dementia status. Our results suggest that AD treatments may also need to be disease stage-oriented with Aβ and tau as targets in early AD and glucose metabolism as a target in later AD. Clinical trials focusing on therapeutic candidates that modify β-amyloid (Aβ) have repeatedly failed to treat Alzheimer's disease (AD), suggesting that Aβ may not be the optimal target for treating AD. The evaluation of Aβ, tau, and neurodegenerative (A/T/N) biomarkers has been proposed for classifying AD. However, it remains unclear whether disturbances in each arm of the A/T/N framework contribute equally throughout the progression of AD. Here, using the random forest machine learning method to analyze participants in the Alzheimer's Disease Neuroimaging Initiative dataset, we show that A/T/N biomarkers show varying importance in predicting AD development, with elevated biomarkers of Aβ and tau better predicting early dementia status, and biomarkers of neurodegeneration, especially glucose hypometabolism, better predicting later dementia status. Our results suggest that AD treatments may also need to be disease stage-oriented with Aβ and tau as targets in early AD and glucose metabolism as a target in later AD.Clinical trials focusing on therapeutic candidates that modify β-amyloid (Aβ) have repeatedly failed to treat Alzheimer's disease (AD), suggesting that Aβ may not be the optimal target for treating AD. The evaluation of Aβ, tau, and neurodegenerative (A/T/N) biomarkers has been proposed for classifying AD. However, it remains unclear whether disturbances in each arm of the A/T/N framework contribute equally throughout the progression of AD. Here, using the random forest machine learning method to analyze participants in the Alzheimer's Disease Neuroimaging Initiative dataset, we show that A/T/N biomarkers show varying importance in predicting AD development, with elevated biomarkers of Aβ and tau better predicting early dementia status, and biomarkers of neurodegeneration, especially glucose hypometabolism, better predicting later dementia status. Our results suggest that AD treatments may also need to be disease stage-oriented with Aβ and tau as targets in early AD and glucose metabolism as a target in later AD. Clinical trials focusing on therapeutic candidates that modify β-amyloid (Aβ) have repeatedly failed to treat Alzheimer’s disease (AD), suggesting that Aβ may not be the optimal target for treating AD. The evaluation of Aβ, tau, and neurodegenerative (A/T/N) biomarkers has been proposed for classifying AD. However, it remains unclear whether disturbances in each arm of the A/T/N framework contribute equally throughout the progression of AD. Here, using the random forest machine learning method to analyze participants in the Alzheimer’s Disease Neuroimaging Initiative dataset, we show that A/T/N biomarkers show varying importance in predicting AD development, with elevated biomarkers of Aβ and tau better predicting early dementia status, and biomarkers of neurodegeneration, especially glucose hypometabolism, better predicting later dementia status. Our results suggest that AD treatments may also need to be disease stage-oriented with Aβ and tau as targets in early AD and glucose metabolism as a target in later AD.Here the authors analyze the Alzheimer’s Disease Neuroimaging Initiative dataset using random forest machine learning methods and determine that Aβ and tau biomarkers are better predictors of early dementia status, while glucose hypometabolism is a better predictor of later dementia status. These results suggest the need for stage-oriented Alzheimer’s disease treatments. |
| ArticleNumber | 352 |
| Author | Nho, Kwangsik Cheng, Qiang Elahi, Fanny Hammond, Tyler C. Jacobs, Nathan Crane, Paul K. Yanckello, Lucille M. Liang, Gongbo Ma, David Ziegler, David A. Xing, Xin Lin, Ai-Ling Wang, Chris |
| Author_xml | – sequence: 1 givenname: Tyler C. surname: Hammond fullname: Hammond, Tyler C. organization: Sanders-Brown Center on Aging, University of Kentucky, Department of Neuroscience, University of Kentucky – sequence: 2 givenname: Xin surname: Xing fullname: Xing, Xin organization: Sanders-Brown Center on Aging, University of Kentucky, Department of Computer Science, University of Kentucky – sequence: 3 givenname: Chris surname: Wang fullname: Wang, Chris organization: Department of Computer Science, University of Kentucky – sequence: 4 givenname: David surname: Ma fullname: Ma, David organization: Sanders-Brown Center on Aging, University of Kentucky, Department of Statistics, Harvard University – sequence: 5 givenname: Kwangsik surname: Nho fullname: Nho, Kwangsik organization: Department of Radiology and Imaging Sciences, Indiana Alzheimer Disease Center, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine – sequence: 6 givenname: Paul K. surname: Crane fullname: Crane, Paul K. organization: Department of Medicine, University of Washington – sequence: 7 givenname: Fanny surname: Elahi fullname: Elahi, Fanny organization: Department of Neurology, University of California – sequence: 8 givenname: David A. orcidid: 0000-0002-2280-7417 surname: Ziegler fullname: Ziegler, David A. organization: Department of Neurology, University of California – sequence: 9 givenname: Gongbo orcidid: 0000-0002-6700-6664 surname: Liang fullname: Liang, Gongbo organization: Department of Computer Science, University of Kentucky – sequence: 10 givenname: Qiang surname: Cheng fullname: Cheng, Qiang organization: Institute of Biomedical Informatics, University of Kentucky – sequence: 11 givenname: Lucille M. surname: Yanckello fullname: Yanckello, Lucille M. organization: Sanders-Brown Center on Aging, University of Kentucky, Department of Pharmacology and Nutritional Sciences, University of Kentucky – sequence: 12 givenname: Nathan orcidid: 0000-0002-4242-8967 surname: Jacobs fullname: Jacobs, Nathan organization: Department of Computer Science, University of Kentucky – sequence: 13 givenname: Ai-Ling orcidid: 0000-0002-5197-2219 surname: Lin fullname: Lin, Ai-Ling email: ailing.lin@uky.edu organization: Sanders-Brown Center on Aging, University of Kentucky, Department of Neuroscience, University of Kentucky, Department of Pharmacology and Nutritional Sciences, University of Kentucky, F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32632135$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU9u1DAYxS1URMvQA7BBltiwCfjfJPEGqaqgIFXqBtaWE3-ZceXYg520TVdcg2twkB6Ck-BRpn-oBGJly36_5_c9P0d7PnhA6CUlbynh9bskGCG8IIwUlFSyuHqCDhiXsuClYHsP9vvoMKVzQgiVUpZcPEP7nJWcUb48QP3Nz0L3kwvWYO0NHvSITbQXgEFHN-Ejd70G20P89f1HwsYm0AmwgdZZD_hybR3glRvbkE_X0yb0MOgmOJv62SZhp4c74AV62mmX4HC3LtDXjx--HH8qTs9OPh8fnRatqMhQNIZQU4uSlRRAQK0rXlPRMl13tO4q01FKmrYhtF4Sqs1S0tJIIrnky7JreMUXiM2-o9_o6VI7pzbR9jpOihK1rU_N9alcn9rWp64y9H6GNmPTg2nBD1Hfg0Fb9eeNt2u1Cheq4rwW2XSB3uwMYvg2QhpUb1MLzmkPYUyKCZaDV5SJLH39SHoexuhzJ1sV4VxIUWbVq4eJ7qLcfl8W0FnQxpBShO6_xqweMa0d9GDDdijr_knuWk35Fb-CeB_679Bvlo7SBw |
| CitedBy_id | crossref_primary_10_1177_0271678X221135061 crossref_primary_10_1002_hbm_26043 crossref_primary_10_3390_electronics12020467 crossref_primary_10_7554_eLife_77745 crossref_primary_10_1093_bib_bbaa365 crossref_primary_10_1016_j_compbiomed_2024_108029 crossref_primary_10_1016_j_clnu_2025_01_007 crossref_primary_10_3233_JAD_220683 crossref_primary_10_1038_s41386_022_01364_8 crossref_primary_10_1038_s41467_022_28941_1 crossref_primary_10_1177_0271678X241237484 crossref_primary_10_3390_bioengineering10080901 crossref_primary_10_3390_biomedicines10102597 crossref_primary_10_1016_j_arr_2024_102250 crossref_primary_10_3389_fnagi_2024_1346621 crossref_primary_10_1016_j_ceca_2021_102362 crossref_primary_10_3233_JAD_231149 crossref_primary_10_1007_s12559_023_10192_x crossref_primary_10_3389_fnagi_2024_1513930 crossref_primary_10_1016_j_obpill_2022_100020 crossref_primary_10_3390_ijms252211955 crossref_primary_10_1016_j_nbd_2023_106310 crossref_primary_10_1162_netn_a_00271 crossref_primary_10_1016_j_tranon_2020_100979 crossref_primary_10_3390_nu12103215 crossref_primary_10_1007_s10695_023_01185_6 crossref_primary_10_1002_mrm_29107 crossref_primary_10_1186_s13195_021_00886_5 crossref_primary_10_3389_frmbi_2022_986951 crossref_primary_10_1039_D4FO00886C crossref_primary_10_1038_s41598_022_06637_2 crossref_primary_10_1016_j_bbadis_2025_167678 crossref_primary_10_1038_s41598_023_42381_x crossref_primary_10_3233_JAD_231239 crossref_primary_10_3390_bioengineering11090943 crossref_primary_10_3390_cells10113064 crossref_primary_10_1242_dmm_048993 crossref_primary_10_1016_j_bios_2024_116907 crossref_primary_10_1007_s42979_022_01371_y crossref_primary_10_1016_j_pnpbp_2025_111343 crossref_primary_10_3233_JAD_240620 crossref_primary_10_1177_0271678X241261942 crossref_primary_10_1016_j_yfrne_2020_100877 crossref_primary_10_14336_AD_2021_0104 crossref_primary_10_3390_biology12091169 crossref_primary_10_1186_s13195_023_01328_0 crossref_primary_10_3390_antiox9111083 crossref_primary_10_1212_WNL_0000000000200387 crossref_primary_10_3233_JAD_230118 crossref_primary_10_31083_j_jin2206150 crossref_primary_10_20517_and_2023_57 crossref_primary_10_1111_cns_14357 crossref_primary_10_3233_JAD_220294 crossref_primary_10_1093_braincomms_fcac117 crossref_primary_10_3233_JAD_201549 crossref_primary_10_1002_alz_14625 crossref_primary_10_3389_fnagi_2023_1227203 crossref_primary_10_1007_s11357_024_01339_1 crossref_primary_10_59368_agingbio_20240025 crossref_primary_10_3390_life13122285 crossref_primary_10_1186_s40708_024_00222_1 crossref_primary_10_1038_s44324_024_00029_y crossref_primary_10_1002_alz_12480 crossref_primary_10_3390_ijms241813900 |
| Cites_doi | 10.5114/fn.2013.34190 10.1016/j.jsbmb.2016.03.012 10.1002/ana.23650 10.1159/000356422 10.1016/S0022-510X(00)00396-8 10.1515/bmt-2016-0239 10.1016/j.neurobiolaging.2012.04.017 10.7717/peerj.453 10.1186/alzrt269 10.1016/j.bbadis.2011.11.005 10.2217/ahe.11.89 10.1148/radiol.2018180958 10.7861/clinmedicine.16-3-247 10.1212/WNL.0b013e3181bc010c 10.1016/j.pharep.2014.09.004 10.1093/brain/awl004 10.1016/j.neurobiolaging.2015.03.012 10.1007/s11682-012-9186-z 10.1016/j.neures.2014.12.009 10.1371/journal.pone.0221828 10.2967/jnumed.115.166439 10.1007/s11682-012-9176-1 10.1001/archneurol.2009.913 10.1111/ene.13439 10.1007/s00401-017-1681-2 10.1212/WNL.50.1.164 10.1016/j.neuroimage.2017.04.024 10.1186/s13024-019-0315-7 10.1016/j.trci.2019.05.008 10.3389/fnagi.2017.00345 10.1159/000334607 10.1016/j.jalz.2010.03.003 10.1001/archneurol.2011.233 10.1038/s41598-018-25190-5 10.1016/S1474-4422(12)70291-0 10.1073/pnas.0500579102 10.1001/jamaneurol.2017.1359 10.1038/jcbfm.2013.87 10.1126/science.3260686 10.1016/j.nicl.2019.101859 10.1016/j.neuropharm.2017.11.037 10.3233/JAD-170490 10.2217/nmt-2019-0006 10.1016/j.neurobiolaging.2017.06.027 10.1001/jamaneurol.2016.5755 10.1212/WNL.0000000000004670 10.1177/1073858412440596 10.1016/j.jalz.2018.02.018 10.1016/j.jalz.2010.03.004 10.1038/ismej.2011.139 10.1093/brain/awz037 10.1002/jnr.23827 10.1523/JNEUROSCI.2262-17.2018 10.1007/s11910-001-0060-4 10.1155/2019/1435276 10.1016/j.jalz.2018.07.217 10.1016/j.neurobiolaging.2009.07.002 10.1038/jcbfm.2014.114 10.1038/s41598-018-22871-z 10.1111/ane.12569 10.1073/pnas.0909711107 10.1016/j.jalz.2018.08.012 10.1146/annurev.genet.39.110304.095751 10.1016/j.neurobiolaging.2013.06.018 10.1016/j.ebiom.2019.08.032 10.1212/WNL.0000000000002923 10.1073/pnas.061509598 10.1093/brain/awx243 10.1073/pnas.2635903100 10.1016/j.tins.2013.07.001 10.1002/ana.25395 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1038/s42003-020-1079-x |
| DatabaseName | Springer Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Databases Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database (Proquest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2399-3642 |
| ExternalDocumentID | 10.1038/s42003-020-1079-x PMC7338410 32632135 10_1038_s42003_020_1079_x |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging) – fundername: U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging) grantid: R01AG054459; RF1AG062480 funderid: https://doi.org/10.13039/100000049 – fundername: NIA NIH HHS grantid: R01AG054459 – fundername: NIA NIH HHS grantid: R01 AG054459 – fundername: NIA NIH HHS grantid: R13 AG030995 – fundername: NIA NIH HHS grantid: R01 AG029672 – fundername: CIHR – fundername: NLM NIH HHS grantid: R01 LM012535 – fundername: NIA NIH HHS grantid: RF1AG062480 – fundername: NIDDK NIH HHS grantid: T32 DK007778 – fundername: NIA NIH HHS grantid: R03 AG063250 – fundername: NIA NIH HHS grantid: R03 AG054936 – fundername: ; – fundername: ; grantid: R01AG054459; RF1AG062480 |
| GroupedDBID | 0R~ 53G 88I AAJSJ ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BBNVY BCNDV BENPR BHPHI C6C CCPQU DWQXO EBLON EBS GNUQQ GROUPED_DOAJ HCIFZ HYE M2P M7P M~E NAO O9- OK1 PGMZT PIMPY RNT RPM SNYQT AASML AAYXX CITATION PHGZM PHGZT PQGLB PUEGO CGR CUY CVF ECM EIF NPM 3V. 7XB 8FE 8FH 8FK AARCD LK8 PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC EJD H13 UNPAY |
| ID | FETCH-LOGICAL-c470t-bd01d846261ee4e8a73814c2a8f18f7df110bcb018501ad5916d90939356fb373 |
| IEDL.DBID | UNPAY |
| ISSN | 2399-3642 |
| IngestDate | Sun Oct 26 04:17:18 EDT 2025 Tue Sep 30 16:50:25 EDT 2025 Fri Sep 05 07:31:49 EDT 2025 Wed Aug 13 09:38:08 EDT 2025 Thu Apr 03 07:03:23 EDT 2025 Wed Oct 01 03:42:07 EDT 2025 Thu Apr 24 23:01:44 EDT 2025 Fri Feb 21 02:40:14 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-bd01d846261ee4e8a73814c2a8f18f7df110bcb018501ad5916d90939356fb373 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5197-2219 0000-0002-4242-8967 0000-0002-2280-7417 0000-0002-6700-6664 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/s42003-020-1079-x.pdf |
| PMID | 32632135 |
| PQID | 2420334946 |
| PQPubID | 4669726 |
| ParticipantIDs | unpaywall_primary_10_1038_s42003_020_1079_x pubmedcentral_primary_oai_pubmedcentral_nih_gov_7338410 proquest_miscellaneous_2421107124 proquest_journals_2420334946 pubmed_primary_32632135 crossref_primary_10_1038_s42003_020_1079_x crossref_citationtrail_10_1038_s42003_020_1079_x springer_journals_10_1038_s42003_020_1079_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-06 |
| PublicationDateYYYYMMDD | 2020-07-06 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Communications biology |
| PublicationTitleAbbrev | Commun Biol |
| PublicationTitleAlternate | Commun Biol |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Neth, Craft (CR39) 2017; 9 Wallace (CR46) 2005; 39 Zhang, Liu (CR12) 2018; 63 Chapman, Schioth, Grillo, Benedict (CR59) 2018; 136 Wakabayashi (CR54) 2019; 14 Jack (CR70) 2010; 6 Fleisher (CR52) 2013; 34 Reiman (CR51) 2001; 98 Jeong, Park, Song, Chung, Rhie (CR35) 2017; 135 Kumar, Singh, Ekavali (CR1) 2015; 67 Trzepacz (CR20) 2014; 35 Kakimoto (CR40) 2016; 57 Vlassenko, Benzinger, Morris (CR23) 2012; 1822 Sperling (CR30) 2019; 85 Lin, Zhang, Gao, Watts (CR61) 2015; 36 Craft (CR55) 1998; 50 Ma (CR64) 2018; 8 Cavanna, Trimble (CR27) 2006; 129 Chayer, Freedman (CR28) 2001; 1 Huber, Yee, May, Dhanala, Mitchell (CR32) 2018; 61 Zhang (CR62) 2013; 33 Reiman (CR53) 2004; 101 van der Walt (CR72) 2014; 2 Jagust (CR71) 2010; 6 Lin, Fox, Hardies, Duong, Gao (CR68) 2010; 107 Risacher (CR34) 2017; 89 Wu, Zhang, Zhao (CR42) 2018; 38 Nagpal, Neth, Wang, Craft, Yadav (CR63) 2019; 47 Bentourkia (CR45) 2000; 181 Hoffman (CR65) 2019; 14 McDonald (CR14) 2012; 6 Sery, Povova, Misek, Pesak, Janout (CR3) 2013; 51 Nho (CR48) 2019; 15 Xia (CR66) 2017; 74 Seghier (CR36) 2013; 19 Crane (CR15) 2012; 6 Mergenthaler, Lindauer, Dienel, Meisel (CR37) 2013; 36 Modrego, Lobo (CR4) 2019; 9 Jack (CR9) 2016; 87 Lu (CR18) 2018; 8 Opitz (CR29) 2014; 34 Mielke (CR33) 2017; 74 Lin, Coman, Jiang, Rothman, Hyder (CR38) 2014; 34 Fox, Raichle, Mintun, Dence (CR67) 1988; 241 Jack (CR17) 2013; 12 Wang (CR22) 2019; 23 Arenaza-Urquijo (CR44) 2019; 142 Mathotaarachchi (CR24) 2017; 59 MahmoudianDehkordi (CR47) 2019; 15 Jackson, Bajada, Rice, Cloutman, Lambon Ralph (CR26) 2018; 170 Rorbach-Dolata, Piwowar (CR56) 2019; 2019 Cummings, Lee, Ritter, Sabbagh, Zhong (CR7) 2019; 5 Gibbons (CR16) 2012; 6 Pike (CR69) 2017; 95 de la Monte (CR58) 2012; 8 Landau (CR25) 2012; 72 Cummings, Morstorf, Zhong (CR6) 2014; 6 Kim, Chey, Kim, Kim (CR41) 2015; 94 Landau (CR73) 2011; 32 Briggs, Kennelly, O’Neill (CR5) 2016; 16 Jack (CR8) 2018; 14 Lane, Hardy, Schott (CR2) 2018; 25 Craft (CR57) 2012; 69 Wang, Brinton (CR60) 2016; 8 Josephs (CR10) 2017; 133 Ding (CR19) 2019; 290 Dong (CR21) 2017; 140 Jagust (CR11) 2009; 73 Riedel, Thompson, Brinton (CR43) 2016; 160 Reiman (CR50) 2005; 102 Ward (CR13) 2012; 38 Thambisetty, Beason-Held, An, Kraut, Resnick (CR49) 2010; 67 Bejanin (CR31) 2017; 140 SM Landau (1079_CR25) 2012; 72 A Bejanin (1079_CR31) 2017; 140 M Bentourkia (1079_CR45) 2000; 181 CM Huber (1079_CR32) 2018; 61 AL Lin (1079_CR38) 2014; 34 AS Fleisher (1079_CR52) 2013; 34 M Thambisetty (1079_CR49) 2010; 67 AL Lin (1079_CR68) 2010; 107 BC Riedel (1079_CR43) 2016; 160 SM de la Monte (1079_CR58) 2012; 8 AL Lin (1079_CR61) 2015; 36 C Chayer (1079_CR28) 2001; 1 CR Jack (1079_CR70) 2010; 6 CJ Pike (1079_CR69) 2017; 95 S Mathotaarachchi (1079_CR24) 2017; 59 J Kim (1079_CR41) 2015; 94 CR Jack Jr (1079_CR8) 2018; 14 PT Trzepacz (1079_CR20) 2014; 35 WJ Jagust (1079_CR71) 2010; 6 HS Jeong (1079_CR35) 2017; 135 Y Wang (1079_CR60) 2016; 8 C Xia (1079_CR66) 2017; 74 L Wu (1079_CR42) 2018; 38 A Dong (1079_CR21) 2017; 140 R Nagpal (1079_CR63) 2019; 47 RL Jackson (1079_CR26) 2018; 170 EM Reiman (1079_CR53) 2004; 101 S Craft (1079_CR57) 2012; 69 Y Wang (1079_CR22) 2019; 23 WJ Jagust (1079_CR11) 2009; 73 A Ward (1079_CR13) 2012; 38 T Wakabayashi (1079_CR54) 2019; 14 ML Seghier (1079_CR36) 2013; 19 KA Josephs (1079_CR10) 2017; 133 D Lu (1079_CR18) 2018; 8 AG Vlassenko (1079_CR23) 2012; 1822 CR Jack (1079_CR17) 2013; 12 EM Reiman (1079_CR51) 2001; 98 BJ Neth (1079_CR39) 2017; 9 J Cummings (1079_CR7) 2019; 5 A Rorbach-Dolata (1079_CR56) 2019; 2019 A Kakimoto (1079_CR40) 2016; 57 JD Hoffman (1079_CR65) 2019; 14 EM Arenaza-Urquijo (1079_CR44) 2019; 142 CD Chapman (1079_CR59) 2018; 136 PT Fox (1079_CR67) 1988; 241 MM Mielke (1079_CR33) 2017; 74 K Nho (1079_CR48) 2019; 15 CR Jack Jr (1079_CR9) 2016; 87 PK Crane (1079_CR15) 2012; 6 SM Landau (1079_CR73) 2011; 32 EM Reiman (1079_CR50) 2005; 102 R Briggs (1079_CR5) 2016; 16 O Sery (1079_CR3) 2013; 51 A Kumar (1079_CR1) 2015; 67 SL Risacher (1079_CR34) 2017; 89 B Opitz (1079_CR29) 2014; 34 D McDonald (1079_CR14) 2012; 6 Y Zhang (1079_CR12) 2018; 63 P Modrego (1079_CR4) 2019; 9 DC Wallace (1079_CR46) 2005; 39 D Ma (1079_CR64) 2018; 8 Y Zhang (1079_CR62) 2013; 33 Y Ding (1079_CR19) 2019; 290 S MahmoudianDehkordi (1079_CR47) 2019; 15 RA Sperling (1079_CR30) 2019; 85 LE Gibbons (1079_CR16) 2012; 6 S van der Walt (1079_CR72) 2014; 2 JL Cummings (1079_CR6) 2014; 6 P Mergenthaler (1079_CR37) 2013; 36 S Craft (1079_CR55) 1998; 50 AE Cavanna (1079_CR27) 2006; 129 CA Lane (1079_CR2) 2018; 25 35373192 - J Cell Immunol. 2022;4(1):15-18 |
| References_xml | – volume: 51 start-page: 1 year: 2013 end-page: 9 ident: CR3 article-title: Molecular mechanisms of neuropathological changes in Alzheimer’s disease: a review publication-title: Folia Neuropathol. doi: 10.5114/fn.2013.34190 – volume: 160 start-page: 134 year: 2016 end-page: 147 ident: CR43 article-title: Age, APOE and sex: triad of risk of Alzheimer’s disease publication-title: J. Steroid Biochem. Mol. Biol. doi: 10.1016/j.jsbmb.2016.03.012 – volume: 72 start-page: 578 year: 2012 end-page: 586 ident: CR25 article-title: Amyloid deposition, hypometabolism, and longitudinal cognitive decline publication-title: Ann. Neurol. doi: 10.1002/ana.23650 – volume: 34 start-page: 51 year: 2014 end-page: 59 ident: CR29 article-title: Memory function and the hippocampus publication-title: Front. Neurol. Neurosci. doi: 10.1159/000356422 – volume: 181 start-page: 19 year: 2000 end-page: 28 ident: CR45 article-title: Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging publication-title: J. Neurol. Sci. doi: 10.1016/S0022-510X(00)00396-8 – volume: 63 start-page: 427 year: 2018 end-page: 437 ident: CR12 article-title: Analysis of structural brain MRI and multi-parameter classification for Alzheimer’s disease publication-title: Biomed. Tech. doi: 10.1515/bmt-2016-0239 – volume: 34 start-page: 1 year: 2013 end-page: 12 ident: CR52 article-title: Apolipoprotein E epsilon4 and age effects on florbetapir positron emission tomography in healthy aging and Alzheimer disease publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2012.04.017 – volume: 2 start-page: e453 year: 2014 ident: CR72 article-title: scikit-image: image processing in Python publication-title: PeerJ doi: 10.7717/peerj.453 – volume: 6 start-page: 37 year: 2014 ident: CR6 article-title: Alzheimer’s disease drug-development pipeline: few candidates, frequent failures publication-title: Alzheimers Res. Ther. doi: 10.1186/alzrt269 – volume: 1822 start-page: 370 year: 2012 end-page: 379 ident: CR23 article-title: PET amyloid-beta imaging in preclinical Alzheimer’s disease publication-title: Biochim Biophys. Acta doi: 10.1016/j.bbadis.2011.11.005 – volume: 8 start-page: 61 year: 2012 end-page: 64 ident: CR58 article-title: Early intranasal insulin therapy halts progression of neurodegeneration: progress in Alzheimer’s disease therapeutics publication-title: Aging Health doi: 10.2217/ahe.11.89 – volume: 290 start-page: 456 year: 2019 end-page: 464 ident: CR19 article-title: A deep learning model to predict a diagnosis of Alzheimer disease by using (18)F-FDG PET of the brain publication-title: Radiology doi: 10.1148/radiol.2018180958 – volume: 16 start-page: 247 year: 2016 end-page: 253 ident: CR5 article-title: Drug treatments in Alzheimer’s disease publication-title: Clin. Med. doi: 10.7861/clinmedicine.16-3-247 – volume: 73 start-page: 1193 year: 2009 end-page: 1199 ident: CR11 article-title: Relationships between biomarkers in aging and dementia publication-title: Neurology doi: 10.1212/WNL.0b013e3181bc010c – volume: 67 start-page: 195 year: 2015 end-page: 203 ident: CR1 article-title: A review on Alzheimer’s disease pathophysiology and its management: an update publication-title: Pharm. Rep. doi: 10.1016/j.pharep.2014.09.004 – volume: 129 start-page: 564 year: 2006 end-page: 583 ident: CR27 article-title: The precuneus: a review of its functional anatomy and behavioural correlates publication-title: Brain doi: 10.1093/brain/awl004 – volume: 36 start-page: 2296 year: 2015 end-page: 2303 ident: CR61 article-title: Caloric restriction increases ketone bodies metabolism and preserves blood flow in aging brain publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2015.03.012 – volume: 6 start-page: 502 year: 2012 end-page: 516 ident: CR15 article-title: Development and assessment of a composite score for memory in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) publication-title: Brain Imaging Behav. doi: 10.1007/s11682-012-9186-z – volume: 94 start-page: 50 year: 2015 end-page: 61 ident: CR41 article-title: The effect of education on regional brain metabolism and its functional connectivity in an aged population utilizing positron emission tomography publication-title: Neurosci. Res. doi: 10.1016/j.neures.2014.12.009 – volume: 14 start-page: e0221828 year: 2019 ident: CR65 article-title: Dietary inulin alters the gut microbiome, enhances systemic metabolism and reduces neuroinflammation in an APOE4 mouse model publication-title: PLoS One doi: 10.1371/journal.pone.0221828 – volume: 57 start-page: 221 year: 2016 end-page: 225 ident: CR40 article-title: Age-related sex-specific changes in brain metabolism and morphology publication-title: J. Nucl. Med. doi: 10.2967/jnumed.115.166439 – volume: 6 start-page: 517 year: 2012 end-page: 527 ident: CR16 article-title: A composite score for executive functioning, validated in Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants with baseline mild cognitive impairment publication-title: Brain Imaging Behav. doi: 10.1007/s11682-012-9176-1 – volume: 67 start-page: 93 year: 2010 end-page: 98 ident: CR49 article-title: APOE epsilon4 genotype and longitudinal changes in cerebral blood flow in normal aging publication-title: Arch. Neurol. doi: 10.1001/archneurol.2009.913 – volume: 25 start-page: 59 year: 2018 end-page: 70 ident: CR2 article-title: Alzheimer’s disease publication-title: Eur. J. Neurol. doi: 10.1111/ene.13439 – volume: 133 start-page: 705 year: 2017 end-page: 715 ident: CR10 article-title: Tau aggregation influences cognition and hippocampal atrophy in the absence of beta-amyloid: a clinico-imaging-pathological study of primary age-related tauopathy (PART) publication-title: Acta Neuropathol. doi: 10.1007/s00401-017-1681-2 – volume: 50 start-page: 164 year: 1998 end-page: 168 ident: CR55 article-title: Cerebrospinal fluid and plasma insulin levels in Alzheimer’s disease: relationship to severity of dementia and apolipoprotein E genotype publication-title: Neurology doi: 10.1212/WNL.50.1.164 – volume: 170 start-page: 385 year: 2018 end-page: 399 ident: CR26 article-title: An emergent functional parcellation of the temporal cortex publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.04.024 – volume: 14 start-page: 15 year: 2019 ident: CR54 article-title: Differential effects of diet- and genetically-induced brain insulin resistance on amyloid pathology in a mouse model of Alzheimer’s disease publication-title: Mol. Neurodegener. doi: 10.1186/s13024-019-0315-7 – volume: 5 start-page: 272 year: 2019 end-page: 293 ident: CR7 article-title: Alzheimer’s disease drug development pipeline: 2019 publication-title: Alzheimers Dement. doi: 10.1016/j.trci.2019.05.008 – volume: 9 start-page: 345 year: 2017 ident: CR39 article-title: Insulin resistance and Alzheimer’s disease: bioenergetic linkages publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2017.00345 – volume: 38 start-page: 1 year: 2012 end-page: 17 ident: CR13 article-title: Prevalence of apolipoprotein E4 genotype and homozygotes (APOE e4/4) among patients diagnosed with Alzheimer’s disease: a systematic review and meta-analysis publication-title: Neuroepidemiology doi: 10.1159/000334607 – volume: 6 start-page: 221 year: 2010 end-page: 229 ident: CR71 article-title: The Alzheimer’s disease neuroimaging initiative positron emission tomography core publication-title: Alzheimer’s Dement. doi: 10.1016/j.jalz.2010.03.003 – volume: 69 start-page: 29 year: 2012 end-page: 38 ident: CR57 article-title: Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial publication-title: Arch. Neurol. doi: 10.1001/archneurol.2011.233 – volume: 8 year: 2018 ident: CR64 article-title: Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice publication-title: Sci. Rep. doi: 10.1038/s41598-018-25190-5 – volume: 12 start-page: 207 year: 2013 end-page: 216 ident: CR17 article-title: Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(12)70291-0 – volume: 102 start-page: 8299 year: 2005 end-page: 8302 ident: CR50 article-title: Correlations between apolipoprotein E epsilon4 gene dose and brain-imaging measurements of regional hypometabolism publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0500579102 – volume: 74 start-page: 1073 year: 2017 end-page: 1080 ident: CR33 article-title: Association of plasma total tau level with cognitive decline and risk of mild cognitive impairment or dementia in the mayo clinic study on aging publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2017.1359 – volume: 85 start-page: 181 year: 2019 end-page: 193 ident: CR30 article-title: The impact of amyloid-beta and tau on prospective cognitive decline in older individuals publication-title: Ann. Neurol. – volume: 33 start-page: 1307 year: 2013 end-page: 1311 ident: CR62 article-title: Ketosis proportionately spares glucose utilization in brain publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2013.87 – volume: 241 start-page: 462 year: 1988 end-page: 464 ident: CR67 article-title: Nonoxidative glucose consumption during focal physiologic neural activity publication-title: Science doi: 10.1126/science.3260686 – volume: 23 start-page: 101859 year: 2019 ident: CR22 article-title: Diagnosis and prognosis of Alzheimer’s disease using brain morphometry and white matter connectomes publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2019.101859 – volume: 136 start-page: 196 year: 2018 end-page: 201 ident: CR59 article-title: Intranasal insulin in Alzheimer’s disease: food for thought publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2017.11.037 – volume: 61 start-page: 265 year: 2018 end-page: 281 ident: CR32 article-title: Cognitive decline in preclinical Alzheimer’s disease: amyloid-beta versus tauopathy publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-170490 – volume: 9 start-page: 119 year: 2019 end-page: 121 ident: CR4 article-title: A good marker does not mean a good target for clinical trials in Alzheimer’s disease: the amyloid hypothesis questioned. publication-title: Neurodegener. Dis. Manage. doi: 10.2217/nmt-2019-0006 – volume: 59 start-page: 80 year: 2017 end-page: 90 ident: CR24 article-title: Identifying incipient dementia individuals using machine learning and amyloid imaging publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2017.06.027 – volume: 74 start-page: 427 year: 2017 end-page: 436 ident: CR66 article-title: Association of in vivo [18F]AV-1451 Tau PET imaging results with cortical atrophy and symptoms in typical and atypical Alzheimer disease publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2016.5755 – volume: 89 start-page: 2176 year: 2017 end-page: 2186 ident: CR34 article-title: Alzheimer disease brain atrophy subtypes are associated with cognition and rate of decline publication-title: Neurology doi: 10.1212/WNL.0000000000004670 – volume: 19 start-page: 43 year: 2013 end-page: 61 ident: CR36 article-title: The angular gyrus: multiple functions and multiple subdivisions publication-title: Neuroscientist doi: 10.1177/1073858412440596 – volume: 14 start-page: 535 year: 2018 end-page: 562 ident: CR8 article-title: NIA-AA research framework: toward a biological definition of Alzheimer’s disease publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2018.02.018 – volume: 6 start-page: 212 year: 2010 end-page: 220 ident: CR70 article-title: Update on the magnetic resonance imaging core of the Alzheimer’s disease neuroimaging initiative publication-title: Alzheimer’s Dement. doi: 10.1016/j.jalz.2010.03.004 – volume: 6 start-page: 610 year: 2012 end-page: 618 ident: CR14 article-title: An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea publication-title: ISME J. doi: 10.1038/ismej.2011.139 – volume: 140 start-page: 735 year: 2017 end-page: 747 ident: CR21 article-title: Heterogeneity of neuroanatomical patterns in prodromal Alzheimer’s disease: links to cognition, progression and biomarkers publication-title: Brain – volume: 142 start-page: 1134 year: 2019 end-page: 1147 ident: CR44 article-title: The metabolic brain signature of cognitive resilience in the 80+: beyond Alzheimer pathologies publication-title: Brain doi: 10.1093/brain/awz037 – volume: 95 start-page: 671 year: 2017 end-page: 680 ident: CR69 article-title: Sex and the development of Alzheimer’s disease publication-title: J. Neurosci. Res. doi: 10.1002/jnr.23827 – volume: 38 start-page: 6665 year: 2018 end-page: 6681 ident: CR42 article-title: Human ApoE isoforms differentially modulate brain glucose and ketone body metabolism: implications for Alzheimer’s disease risk reduction and early intervention publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2262-17.2018 – volume: 1 start-page: 547 year: 2001 end-page: 552 ident: CR28 article-title: Frontal lobe functions publication-title: Curr. Neurol. Neurosci. Rep. doi: 10.1007/s11910-001-0060-4 – volume: 2019 start-page: 1435276 year: 2019 ident: CR56 article-title: Neurometabolic evidence supporting the hypothesis of increased incidence of type 3 diabetes mellitus in the 21st century publication-title: Biomed. Res. Int. doi: 10.1155/2019/1435276 – volume: 15 start-page: 76 year: 2019 end-page: 92 ident: CR47 article-title: Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease—an emerging role for gut microbiome publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2018.07.217 – volume: 32 start-page: 1207 year: 2011 end-page: 1218 ident: CR73 article-title: Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2009.07.002 – volume: 34 start-page: 1440 year: 2014 end-page: 1443 ident: CR38 article-title: Caloric restriction impedes age-related decline of mitochondrial function and neuronal activity publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2014.114 – volume: 8 year: 2018 ident: CR18 article-title: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images publication-title: Sci. Rep. doi: 10.1038/s41598-018-22871-z – volume: 135 start-page: 108 year: 2017 end-page: 114 ident: CR35 article-title: Changes in cognitive function and brain glucose metabolism in elderly women with subjective memory impairment: a 24-month prospective pilot study publication-title: Acta Neurol. Scand. doi: 10.1111/ane.12569 – volume: 8 start-page: 232 year: 2016 ident: CR60 article-title: Triad of risk for late onset Alzheimer’s: mitochondrial haplotype, APOE genotype and chromosomal sex publication-title: Front. Aging Neurosci. – volume: 107 start-page: 8446 year: 2010 end-page: 8451 ident: CR68 article-title: Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0909711107 – volume: 15 start-page: 232 year: 2019 end-page: 244 ident: CR48 article-title: Altered bile acid profile in mild cognitive impairment and Alzheimer’s disease: relationship to neuroimaging and CSF biomarkers publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2018.08.012 – volume: 39 start-page: 359 year: 2005 end-page: 407 ident: CR46 article-title: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.39.110304.095751 – volume: 35 start-page: 143 year: 2014 end-page: 151 ident: CR20 article-title: Comparison of neuroimaging modalities for the prediction of conversion from mild cognitive impairment to Alzheimer’s dementia publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2013.06.018 – volume: 47 start-page: 529 year: 2019 end-page: 542 ident: CR63 article-title: Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. publication-title: EBioMed. doi: 10.1016/j.ebiom.2019.08.032 – volume: 87 start-page: 539 year: 2016 end-page: 547 ident: CR9 article-title: A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers publication-title: Neurology doi: 10.1212/WNL.0000000000002923 – volume: 98 start-page: 3334 year: 2001 end-page: 3339 ident: CR51 article-title: Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: a foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.061509598 – volume: 140 start-page: 3286 year: 2017 end-page: 3300 ident: CR31 article-title: Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease publication-title: Brain doi: 10.1093/brain/awx243 – volume: 101 start-page: 284 year: 2004 end-page: 289 ident: CR53 article-title: Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2635903100 – volume: 36 start-page: 587 year: 2013 end-page: 597 ident: CR37 article-title: Sugar for the brain: the role of glucose in physiological and pathological brain function publication-title: Trends Neurosci. doi: 10.1016/j.tins.2013.07.001 – volume: 9 start-page: 119 year: 2019 ident: 1079_CR4 publication-title: Neurodegener. Dis. Manage. doi: 10.2217/nmt-2019-0006 – volume: 8 start-page: 232 year: 2016 ident: 1079_CR60 publication-title: Front. Aging Neurosci. – volume: 6 start-page: 212 year: 2010 ident: 1079_CR70 publication-title: Alzheimer’s Dement. doi: 10.1016/j.jalz.2010.03.004 – volume: 1 start-page: 547 year: 2001 ident: 1079_CR28 publication-title: Curr. Neurol. Neurosci. Rep. doi: 10.1007/s11910-001-0060-4 – volume: 32 start-page: 1207 year: 2011 ident: 1079_CR73 publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2009.07.002 – volume: 140 start-page: 3286 year: 2017 ident: 1079_CR31 publication-title: Brain doi: 10.1093/brain/awx243 – volume: 85 start-page: 181 year: 2019 ident: 1079_CR30 publication-title: Ann. Neurol. doi: 10.1002/ana.25395 – volume: 74 start-page: 1073 year: 2017 ident: 1079_CR33 publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2017.1359 – volume: 14 start-page: e0221828 year: 2019 ident: 1079_CR65 publication-title: PLoS One doi: 10.1371/journal.pone.0221828 – volume: 89 start-page: 2176 year: 2017 ident: 1079_CR34 publication-title: Neurology doi: 10.1212/WNL.0000000000004670 – volume: 67 start-page: 195 year: 2015 ident: 1079_CR1 publication-title: Pharm. Rep. doi: 10.1016/j.pharep.2014.09.004 – volume: 6 start-page: 517 year: 2012 ident: 1079_CR16 publication-title: Brain Imaging Behav. doi: 10.1007/s11682-012-9176-1 – volume: 25 start-page: 59 year: 2018 ident: 1079_CR2 publication-title: Eur. J. Neurol. doi: 10.1111/ene.13439 – volume: 39 start-page: 359 year: 2005 ident: 1079_CR46 publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.39.110304.095751 – volume: 6 start-page: 221 year: 2010 ident: 1079_CR71 publication-title: Alzheimer’s Dement. doi: 10.1016/j.jalz.2010.03.003 – volume: 8 start-page: 61 year: 2012 ident: 1079_CR58 publication-title: Aging Health doi: 10.2217/ahe.11.89 – volume: 102 start-page: 8299 year: 2005 ident: 1079_CR50 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0500579102 – volume: 33 start-page: 1307 year: 2013 ident: 1079_CR62 publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2013.87 – volume: 98 start-page: 3334 year: 2001 ident: 1079_CR51 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.061509598 – volume: 38 start-page: 6665 year: 2018 ident: 1079_CR42 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2262-17.2018 – volume: 38 start-page: 1 year: 2012 ident: 1079_CR13 publication-title: Neuroepidemiology doi: 10.1159/000334607 – volume: 67 start-page: 93 year: 2010 ident: 1079_CR49 publication-title: Arch. Neurol. doi: 10.1001/archneurol.2009.913 – volume: 14 start-page: 15 year: 2019 ident: 1079_CR54 publication-title: Mol. Neurodegener. doi: 10.1186/s13024-019-0315-7 – volume: 87 start-page: 539 year: 2016 ident: 1079_CR9 publication-title: Neurology doi: 10.1212/WNL.0000000000002923 – volume: 6 start-page: 502 year: 2012 ident: 1079_CR15 publication-title: Brain Imaging Behav. doi: 10.1007/s11682-012-9186-z – volume: 57 start-page: 221 year: 2016 ident: 1079_CR40 publication-title: J. Nucl. Med. doi: 10.2967/jnumed.115.166439 – volume: 8 year: 2018 ident: 1079_CR64 publication-title: Sci. Rep. doi: 10.1038/s41598-018-25190-5 – volume: 19 start-page: 43 year: 2013 ident: 1079_CR36 publication-title: Neuroscientist doi: 10.1177/1073858412440596 – volume: 5 start-page: 272 year: 2019 ident: 1079_CR7 publication-title: Alzheimers Dement. doi: 10.1016/j.trci.2019.05.008 – volume: 61 start-page: 265 year: 2018 ident: 1079_CR32 publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-170490 – volume: 135 start-page: 108 year: 2017 ident: 1079_CR35 publication-title: Acta Neurol. Scand. doi: 10.1111/ane.12569 – volume: 6 start-page: 37 year: 2014 ident: 1079_CR6 publication-title: Alzheimers Res. Ther. doi: 10.1186/alzrt269 – volume: 133 start-page: 705 year: 2017 ident: 1079_CR10 publication-title: Acta Neuropathol. doi: 10.1007/s00401-017-1681-2 – volume: 34 start-page: 51 year: 2014 ident: 1079_CR29 publication-title: Front. Neurol. Neurosci. doi: 10.1159/000356422 – volume: 36 start-page: 587 year: 2013 ident: 1079_CR37 publication-title: Trends Neurosci. doi: 10.1016/j.tins.2013.07.001 – volume: 94 start-page: 50 year: 2015 ident: 1079_CR41 publication-title: Neurosci. Res. doi: 10.1016/j.neures.2014.12.009 – volume: 23 start-page: 101859 year: 2019 ident: 1079_CR22 publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2019.101859 – volume: 181 start-page: 19 year: 2000 ident: 1079_CR45 publication-title: J. Neurol. Sci. doi: 10.1016/S0022-510X(00)00396-8 – volume: 59 start-page: 80 year: 2017 ident: 1079_CR24 publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2017.06.027 – volume: 69 start-page: 29 year: 2012 ident: 1079_CR57 publication-title: Arch. Neurol. doi: 10.1001/archneurol.2011.233 – volume: 63 start-page: 427 year: 2018 ident: 1079_CR12 publication-title: Biomed. Tech. doi: 10.1515/bmt-2016-0239 – volume: 72 start-page: 578 year: 2012 ident: 1079_CR25 publication-title: Ann. Neurol. doi: 10.1002/ana.23650 – volume: 95 start-page: 671 year: 2017 ident: 1079_CR69 publication-title: J. Neurosci. Res. doi: 10.1002/jnr.23827 – volume: 170 start-page: 385 year: 2018 ident: 1079_CR26 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.04.024 – volume: 2019 start-page: 1435276 year: 2019 ident: 1079_CR56 publication-title: Biomed. Res. Int. doi: 10.1155/2019/1435276 – volume: 290 start-page: 456 year: 2019 ident: 1079_CR19 publication-title: Radiology doi: 10.1148/radiol.2018180958 – volume: 129 start-page: 564 year: 2006 ident: 1079_CR27 publication-title: Brain doi: 10.1093/brain/awl004 – volume: 34 start-page: 1 year: 2013 ident: 1079_CR52 publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2012.04.017 – volume: 9 start-page: 345 year: 2017 ident: 1079_CR39 publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2017.00345 – volume: 2 start-page: e453 year: 2014 ident: 1079_CR72 publication-title: PeerJ doi: 10.7717/peerj.453 – volume: 107 start-page: 8446 year: 2010 ident: 1079_CR68 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0909711107 – volume: 8 year: 2018 ident: 1079_CR18 publication-title: Sci. Rep. doi: 10.1038/s41598-018-22871-z – volume: 16 start-page: 247 year: 2016 ident: 1079_CR5 publication-title: Clin. Med. doi: 10.7861/clinmedicine.16-3-247 – volume: 136 start-page: 196 year: 2018 ident: 1079_CR59 publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2017.11.037 – volume: 15 start-page: 232 year: 2019 ident: 1079_CR48 publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2018.08.012 – volume: 51 start-page: 1 year: 2013 ident: 1079_CR3 publication-title: Folia Neuropathol. doi: 10.5114/fn.2013.34190 – volume: 74 start-page: 427 year: 2017 ident: 1079_CR66 publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2016.5755 – volume: 241 start-page: 462 year: 1988 ident: 1079_CR67 publication-title: Science doi: 10.1126/science.3260686 – volume: 50 start-page: 164 year: 1998 ident: 1079_CR55 publication-title: Neurology doi: 10.1212/WNL.50.1.164 – volume: 47 start-page: 529 year: 2019 ident: 1079_CR63 publication-title: EBioMed. doi: 10.1016/j.ebiom.2019.08.032 – volume: 6 start-page: 610 year: 2012 ident: 1079_CR14 publication-title: ISME J. doi: 10.1038/ismej.2011.139 – volume: 73 start-page: 1193 year: 2009 ident: 1079_CR11 publication-title: Neurology doi: 10.1212/WNL.0b013e3181bc010c – volume: 1822 start-page: 370 year: 2012 ident: 1079_CR23 publication-title: Biochim Biophys. Acta doi: 10.1016/j.bbadis.2011.11.005 – volume: 140 start-page: 735 year: 2017 ident: 1079_CR21 publication-title: Brain – volume: 142 start-page: 1134 year: 2019 ident: 1079_CR44 publication-title: Brain doi: 10.1093/brain/awz037 – volume: 35 start-page: 143 year: 2014 ident: 1079_CR20 publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2013.06.018 – volume: 12 start-page: 207 year: 2013 ident: 1079_CR17 publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(12)70291-0 – volume: 15 start-page: 76 year: 2019 ident: 1079_CR47 publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2018.07.217 – volume: 160 start-page: 134 year: 2016 ident: 1079_CR43 publication-title: J. Steroid Biochem. Mol. Biol. doi: 10.1016/j.jsbmb.2016.03.012 – volume: 14 start-page: 535 year: 2018 ident: 1079_CR8 publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2018.02.018 – volume: 34 start-page: 1440 year: 2014 ident: 1079_CR38 publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2014.114 – volume: 101 start-page: 284 year: 2004 ident: 1079_CR53 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2635903100 – volume: 36 start-page: 2296 year: 2015 ident: 1079_CR61 publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2015.03.012 – reference: 35373192 - J Cell Immunol. 2022;4(1):15-18 |
| SSID | ssj0001999634 |
| Score | 2.4236887 |
| Snippet | Clinical trials focusing on therapeutic candidates that modify β-amyloid (Aβ) have repeatedly failed to treat Alzheimer’s disease (AD), suggesting that Aβ may... Clinical trials focusing on therapeutic candidates that modify β-amyloid (Aβ) have repeatedly failed to treat Alzheimer's disease (AD), suggesting that Aβ may... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 352 |
| SubjectTerms | 59/57 59/78 631/378/116/2396 692/53/2423 Aged Algorithms Alzheimer Disease - diagnostic imaging Alzheimer Disease - metabolism Alzheimer Disease - pathology Alzheimer's disease Amyloid beta-Peptides - metabolism Biomarkers Biomarkers - metabolism Biomedical and Life Sciences Brain - diagnostic imaging Brain - metabolism Brain - pathology Clinical trials Dementia Dementia disorders Disease Progression Female Glucose Glucose - metabolism Humans Learning algorithms Life Sciences Machine learning Magnetic Resonance Imaging Male Medical imaging Mental Status and Dementia Tests Neurodegeneration Neurodegenerative diseases Neuroimaging Positron-Emission Tomography Tau protein tau Proteins - metabolism β-Amyloid |
| SummonAdditionalLinks | – databaseName: ProQuest Databases dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NitRAEC7WWUQ9iP9GV2nBk0vYTrozSQ4iq-yyCA4iLuwtdKc7zECSGScZdseTr-Fr-CA-hE9iVf7GYWE85ZDOT6equ75KVX0F8DrWUoSKupdFfurKzPiuDkzgWo_rTKRUtkfVyJ8m47Nz-fEiuNiDSV8LQ2mV_Z7YbNRmntI_8iM0JVwQl8r43eKbS12jKLrat9BQXWsF87ahGLsB-z4xY41g__3J5POXzV8XwvdC9uFNER1VsknPIi8KPaHYvdo2UNdQ5_XkySGCegdurcqFWl-qPP_HSJ3eg7sdumTHrTrchz1bPoCbbb_J9UMofv9yVYEu-swwVRpWqxUzS9zvmCWeY3acf5_aWWGXf378rFgXu2HGUvmkZZdT3EFYl-POpuvFvLA16lA-q4r2NhXLEbr2FzyC89OTrx_O3K7fgpvKkNeuNtwziEfQqbJW2kiFaM5l6qso86IsNBlCBZ1qjiaee8oEiCxNzGMq7h1nWoTiMYzKeWmfAgviKLNBmulsjBBBk1MVqjExgcqI49EB3n_kJO3IyKknRp40QXERJa1cEpRLQnJJrhx4M1yyaJk4dg0-6CWXdIuySjYq5MCr4TQuJ4qRqNLOV80Y8ogR9TjwpBX08DRB3PaeCBwIt1RgGEBU3dtnytm0oewOhYikxx047JVl81o7JnE46NP_p_xs95Sfw22flLzJdjyAUb1c2ReIp2r9slskfwHw7x9c priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6hrRBwqPgtoQUZiRNVhLN2Ns5xVVFVK8EFKvUW2bGjXSnJrjZZleXEa_AaPAgPwZN0Jn9ltVIRpxz8F2fGnm8yns8A72IjRaTp9jI1Tn2Z2bFvQhv6LuAmEyml7VE28qfPk4tLObsKrzqebcqF2YnfN9TdlWzOT5Gbg65K7CNgPFCol2oEB9Pp7Mvs9pcKgXch-9ilUB_22u5anz1IuX8ycgiPPoIHm3Klt9c6z_-yQOeP4bCDjmzayvoJ3HPlU7jfXia5fQbF71--LtD_XlimS8tqvWF2jZsZc0RizKb597lbFG7958fPinWBGWYd5UY6dj3H7YF1B9jZfLtaFq5GBckXVdF2U7EccWnf4Dlcnn_8enbhd5cp-KmMeO0bywOLYAM9JuekUzpCWy3TsVZZoLLIZogDTGo42m8eaBsibLQxjylzd5IZEYkXMCqXpXsJLIxV5sI0M9kE7b8hjynSE6L5lIrj0wPef-Qk7ZjG6cKLPGki3kIlrVwSlEtCckm-efB-aLJqaTbuqnzSSy7pVlyVINTggrh2cPi3QzGuFQqA6NItN00dcncR0nhw1Ap6GE0QcX0gQg-iHRUYKhAP925JuZg3fNwRuvky4B6c9spy-1p3TOJ00Kd_T_nVf_V9DA_HpPPNycYTGNXrjXuN2Kk2b7o1cwPe2BOR priority: 102 providerName: Springer Nature |
| Title | β-amyloid and tau drive early Alzheimer’s disease decline while glucose hypometabolism drives late decline |
| URI | https://link.springer.com/article/10.1038/s42003-020-1079-x https://www.ncbi.nlm.nih.gov/pubmed/32632135 https://www.proquest.com/docview/2420334946 https://www.proquest.com/docview/2421107124 https://pubmed.ncbi.nlm.nih.gov/PMC7338410 https://www.nature.com/articles/s42003-020-1079-x.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 3 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2399-3642 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999634 issn: 2399-3642 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2399-3642 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999634 issn: 2399-3642 databaseCode: ABDBF dateStart: 20180419 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2399-3642 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999634 issn: 2399-3642 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2399-3642 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999634 issn: 2399-3642 databaseCode: RPM dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2399-3642 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999634 issn: 2399-3642 databaseCode: NAO dateStart: 20181201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2399-3642 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999634 issn: 2399-3642 databaseCode: BENPR dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2399-3642 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999634 issn: 2399-3642 databaseCode: AAJSJ dateStart: 20181201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature Open Access Journals customDbUrl: eissn: 2399-3642 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999634 issn: 2399-3642 databaseCode: C6C dateStart: 20181201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEB61iRBw4P_HUKJF4kTl1M7692iiVlUkogoIKidr17tWImwnim216YnX4DV4EB6CJ2HWfxAiFfXkw856vevZ9TeemW8A3vjcoi5T1cu8UaRbsRjp3Ba2Lk2DxzRSaXsqG_n91DmdWZNz-3wP7DYXpgrarygtq2O6jQ47yq0qikoZO2iw-PrlcCXifeg7NkLwHvRn07PgS1VIzvd1iqC69WBSb7fv9jdoB1juxkd2TtK7cLvMVmxzwZLkr-_QyX343M6gDj_5OiwLPoyu_iF3vPEUH8C9BpmSoBZ8CHsyewS36lqVm8eQ_vyhsxTN-4UgLBOkYCURazwriVQcySRIruZykcr1r2_fc9L4fYiQKvVSkos5nj6kiY8n881qmcoC9S9Z5Gl9m5wkCHvbDk9gdnL8aXyqN7Ua9MhyjULnwjAFYhk0yKS0pMdchAJWNGJebHqxK2KEGTziBsIDw2TCRlQqfMNXicFOzKlLn0IvW2byORDb92JpRzGPHYQXXBlkLnMUi6jlGXjVwGjfXhg1ROaqnkYSVg516oX1Soa4kqFayfBSg7ddl1XN4nGd8EGrEmGzofMQkYxBFZUPDv-6a8atqPwrLJPLspJR1jQiJg2e1RrUjUYVL75JbQ3cLd3qBBTN93ZLtphXdN8upZ5lGhoctlr457GumcRhp6j_n_KLG0m_hDsjpaVV4OQB9Ip1KV8hNCv4APpBMPk4weu74-nZhwHsj53xoPrRMWg26W86Fjsa |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVqhwQPxjKLBIcKGyanvXPzlUqECrlLYRQq3Um7v2rpVIjhPiRKk58Rq8Bg_AI_AQPAkz_gtRpXDqyQfvrr2e2fnxzHwD8LoTCe5L6l4WOLEpEuWYkatcU9tWlPCYyvaoGvmk53XPxKdz93wNfjW1MJRW2cjEUlCrUUz_yHdQlVicsFS8d-OvJnWNouhq00JD1q0V1G4JMVYXdhzpYo4uXL57-BHp_cZxDvZPP3TNusuAGQvfmpqRsmyFWhhdCa2FDqSPSkzEjgwSO0h8laCCjOLIQsVm2VK5aE-pjtWhklYvibjPcd0bsCHw3dD523i_3_v8ZfGXh_wJLppwKg92clGmg5HXhp5Xx7xcVohXrNyryZptxPY2bM6ysSzmMk3_UYoHd-FObc2yvYr97sGazu7Dzaq_ZfEAhr9_mnJYpKOBYjJTbCpnTE1QvjJNuMpsL_3W14Ohnvz5_iNndayIKU3lmprN-yixWJ1Tz_rFeDTUU-TZdJAPq2VylqKp3Ex4CGfX8uUfwXo2yvQTYG4nSLQbJ1HioUkSkRPnS4-QR0Vg4dUAq_nIYVyDn1MPjjQsg_A8CCu6hEiXkOgSXhrwtp0yrpA_Vg3eaigX1kIgDxcsa8Cr9jYeX4rJyEyPZuUY8sDRyjLgcUXo9mmcsPRt7hrgL7FAO4CgwZfvZIN-CRHucx4I2zJgu2GWxWut2MR2y0__3_LT1Vt-CZvd05Pj8Piwd_QMbjnE8GWm5RasTycz_RxtuWn0oj4wDC6u-4z-BUc3WvA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwEB2VVtweEHcCBYzEE1WKs3ZujytgVRaokKBS3yI7trUrJdnVJqt2eeI3-I1-SD-iX9JxbmW1UhFPefAtzoztM5mZY4C3seQsFPb2smiQutyogSt95bvao9Kw1Kbt2Wzkb4fBwREfH_vHW-B3uTB10H5NaVlv01102PuS11FU1thBgyV2T_fnytyAnShkASrzznA4_jG--rliYTzjnReTRZvt18-hDXC5GSPZO0rvwu1lMRerE5Flf51Fo_twrwWRZNi89gPY0sVDuNlcK7l6BPn5mStytMSniohCkUosiVrgtka0pTMmw-zXRE9zvbj4_ackrYuGKG2zJDU5meBGQdpQdjJZzWe5rlBVsmmZN92UJEOE2jV4DEejTz8_HLjttQpuykNauVJRTyHsQNtJa64jEeKpzdOBiIwXmVAZRAQylRRPcuoJ5SOAVDGNbQ5vYCQL2RPYLmaFfgbEjyOj_dRIEyASkNZ2CkVgCT95RPHpAO0-cpK2nOP26ossqX3fLEoauSQol8TKJTl14F3fZN4QblxXebeTXNKuvTJB0EGZZd3B4d_0xbhqrCtEFHq2rOtYwxfBjQNPG0H3ozFLYe8x34FwTQX6CpaRe72kmE5qZu4QDX7uUQf2OmW5eq1rJrHX69O_p_z8v_p-Dbe-fxwlXz8ffnkBdwZW_etwx13YrhZL_RIBVSVftcvnEqvZHAM |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwEB4tXSHgwP9PYEFG4sQqxanj_BwrxGqFxIoDRcspsmNbrUjSqkm02z3xGrwGD8JD8CSM8wel0qI95eBxHDtj-xvNzDcAr2Lps1DY6mXRJHV9oyau5Iq72qPSsNSm7dls5A8nwfHMf3_KT_eA97kwTdB-Q2nZHNN9dNib0m-iqKyxgwZL7J6PV8pcg_2AIwQfwf7s5OP0S1NILo5dhqC692CyaLfv9h20Ayx34yMHJ-ktuFEXK7E5E1n21z10dAc-9zNow0--jutKjtOLf8gdrzzFu3C7Q6Zk2gregz1d3Ifrba3KzQPIf_5wRY7m_UIRUShSiZqoNZ6VRFuOZDLNLuZ6kev1r2_fS9L5fYjSNvVSk7M5nj6ki48n881qmesK9S9blHn7mpJkCHv7Dg9hdvTu09tjt6vV4KZ-SCtXKuopxDJokGnt60iECAX8dCIi40UmVAZhhkwlRXhAPaE4olIV09gmBgdGspA9glGxLPQTIDyOjOapkSZAeCGtQRaKwLKI-hHFpwO0_3tJ2hGZ23oaWdI41FmUtCuZ4EomdiWTcwdeD11WLYvHZcIHvUok3YYuE0QylFkqHxz-5dCMW9H6V0Shl3UjY61pREwOPG41aBiNWV58j3EHwi3dGgQszfd2S7GYN3TfIWOR71EHDnst_PNZl0zicFDU_0_56ZWkn8HNidXSJnDyAEbVutbPEZpV8kW3EX8DDx42Ig |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%CE%B2-amyloid+and+tau+drive+early+Alzheimer%E2%80%99s+disease+decline+while+glucose+hypometabolism+drives+late+decline&rft.jtitle=Communications+biology&rft.au=Hammond%2C+Tyler+C.&rft.au=Xing%2C+Xin&rft.au=Wang%2C+Chris&rft.au=Ma%2C+David&rft.date=2020-07-06&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2399-3642&rft.volume=3&rft_id=info:doi/10.1038%2Fs42003-020-1079-x&rft_id=info%3Apmid%2F32632135&rft.externalDocID=PMC7338410 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3642&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3642&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3642&client=summon |